blob: 2e8218fb05795c906d1c731812f61751af8a50c6 [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include <linux/netdevice.h>
32#include <linux/ethtool.h>
33#include <linux/pci.h>
34#include <linux/delay.h>
35
36#include "e1000.h"
37
38struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
42};
43
44#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96};
97
98#define E1000_GLOBAL_STATS_LEN \
99 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
100#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
101static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
102 "Register test (offline)", "Eeprom test (offline)",
103 "Interrupt test (offline)", "Loopback test (offline)",
104 "Link test (on/offline)"
105};
106#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
107
108static int e1000_get_settings(struct net_device *netdev,
109 struct ethtool_cmd *ecmd)
110{
111 struct e1000_adapter *adapter = netdev_priv(netdev);
112 struct e1000_hw *hw = &adapter->hw;
113
114 if (hw->media_type == e1000_media_type_copper) {
115
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
126
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
131 }
132
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
136
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
141
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
145
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
148 }
149
150 if (er32(STATUS) & E1000_STATUS_LU) {
151
152 adapter->hw.mac.ops.get_link_up_info(hw, &adapter->link_speed,
153 &adapter->link_duplex);
154 ecmd->speed = adapter->link_speed;
155
156 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
157 * and HALF_DUPLEX != DUPLEX_HALF */
158
159 if (adapter->link_duplex == FULL_DUPLEX)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
166 }
167
168 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
171}
172
173static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
174{
175 struct e1000_mac_info *mac = &adapter->hw.mac;
176
177 mac->autoneg = 0;
178
179 /* Fiber NICs only allow 1000 gbps Full duplex */
180 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
181 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
182 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
183 "configuration\n");
184 return -EINVAL;
185 }
186
187 switch (spddplx) {
188 case SPEED_10 + DUPLEX_HALF:
189 mac->forced_speed_duplex = ADVERTISE_10_HALF;
190 break;
191 case SPEED_10 + DUPLEX_FULL:
192 mac->forced_speed_duplex = ADVERTISE_10_FULL;
193 break;
194 case SPEED_100 + DUPLEX_HALF:
195 mac->forced_speed_duplex = ADVERTISE_100_HALF;
196 break;
197 case SPEED_100 + DUPLEX_FULL:
198 mac->forced_speed_duplex = ADVERTISE_100_FULL;
199 break;
200 case SPEED_1000 + DUPLEX_FULL:
201 mac->autoneg = 1;
202 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
203 break;
204 case SPEED_1000 + DUPLEX_HALF: /* not supported */
205 default:
206 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
207 "configuration\n");
208 return -EINVAL;
209 }
210 return 0;
211}
212
213static int e1000_set_settings(struct net_device *netdev,
214 struct ethtool_cmd *ecmd)
215{
216 struct e1000_adapter *adapter = netdev_priv(netdev);
217 struct e1000_hw *hw = &adapter->hw;
218
219 /* When SoL/IDER sessions are active, autoneg/speed/duplex
220 * cannot be changed */
221 if (e1000_check_reset_block(hw)) {
222 ndev_err(netdev, "Cannot change link "
223 "characteristics when SoL/IDER is active.\n");
224 return -EINVAL;
225 }
226
227 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
228 msleep(1);
229
230 if (ecmd->autoneg == AUTONEG_ENABLE) {
231 hw->mac.autoneg = 1;
232 if (hw->media_type == e1000_media_type_fiber)
233 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
234 ADVERTISED_FIBRE |
235 ADVERTISED_Autoneg;
236 else
237 hw->phy.autoneg_advertised = ecmd->advertising |
238 ADVERTISED_TP |
239 ADVERTISED_Autoneg;
240 ecmd->advertising = hw->phy.autoneg_advertised;
241 } else {
242 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
243 clear_bit(__E1000_RESETTING, &adapter->state);
244 return -EINVAL;
245 }
246 }
247
248 /* reset the link */
249
250 if (netif_running(adapter->netdev)) {
251 e1000e_down(adapter);
252 e1000e_up(adapter);
253 } else {
254 e1000e_reset(adapter);
255 }
256
257 clear_bit(__E1000_RESETTING, &adapter->state);
258 return 0;
259}
260
261static void e1000_get_pauseparam(struct net_device *netdev,
262 struct ethtool_pauseparam *pause)
263{
264 struct e1000_adapter *adapter = netdev_priv(netdev);
265 struct e1000_hw *hw = &adapter->hw;
266
267 pause->autoneg =
268 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
269
270 if (hw->mac.fc == e1000_fc_rx_pause) {
271 pause->rx_pause = 1;
272 } else if (hw->mac.fc == e1000_fc_tx_pause) {
273 pause->tx_pause = 1;
274 } else if (hw->mac.fc == e1000_fc_full) {
275 pause->rx_pause = 1;
276 pause->tx_pause = 1;
277 }
278}
279
280static int e1000_set_pauseparam(struct net_device *netdev,
281 struct ethtool_pauseparam *pause)
282{
283 struct e1000_adapter *adapter = netdev_priv(netdev);
284 struct e1000_hw *hw = &adapter->hw;
285 int retval = 0;
286
287 adapter->fc_autoneg = pause->autoneg;
288
289 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
290 msleep(1);
291
292 if (pause->rx_pause && pause->tx_pause)
293 hw->mac.fc = e1000_fc_full;
294 else if (pause->rx_pause && !pause->tx_pause)
295 hw->mac.fc = e1000_fc_rx_pause;
296 else if (!pause->rx_pause && pause->tx_pause)
297 hw->mac.fc = e1000_fc_tx_pause;
298 else if (!pause->rx_pause && !pause->tx_pause)
299 hw->mac.fc = e1000_fc_none;
300
301 hw->mac.original_fc = hw->mac.fc;
302
303 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
304 if (netif_running(adapter->netdev)) {
305 e1000e_down(adapter);
306 e1000e_up(adapter);
307 } else {
308 e1000e_reset(adapter);
309 }
310 } else {
311 retval = ((hw->media_type == e1000_media_type_fiber) ?
312 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
313 }
314
315 clear_bit(__E1000_RESETTING, &adapter->state);
316 return retval;
317}
318
319static u32 e1000_get_rx_csum(struct net_device *netdev)
320{
321 struct e1000_adapter *adapter = netdev_priv(netdev);
322 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
323}
324
325static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
326{
327 struct e1000_adapter *adapter = netdev_priv(netdev);
328
329 if (data)
330 adapter->flags |= FLAG_RX_CSUM_ENABLED;
331 else
332 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
333
334 if (netif_running(netdev))
335 e1000e_reinit_locked(adapter);
336 else
337 e1000e_reset(adapter);
338 return 0;
339}
340
341static u32 e1000_get_tx_csum(struct net_device *netdev)
342{
343 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
344}
345
346static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
347{
348 if (data)
349 netdev->features |= NETIF_F_HW_CSUM;
350 else
351 netdev->features &= ~NETIF_F_HW_CSUM;
352
353 return 0;
354}
355
356static int e1000_set_tso(struct net_device *netdev, u32 data)
357{
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359
360 if (data) {
361 netdev->features |= NETIF_F_TSO;
362 netdev->features |= NETIF_F_TSO6;
363 } else {
364 netdev->features &= ~NETIF_F_TSO;
365 netdev->features &= ~NETIF_F_TSO6;
366 }
367
368 ndev_info(netdev, "TSO is %s\n",
369 data ? "Enabled" : "Disabled");
370 adapter->flags |= FLAG_TSO_FORCE;
371 return 0;
372}
373
374static u32 e1000_get_msglevel(struct net_device *netdev)
375{
376 struct e1000_adapter *adapter = netdev_priv(netdev);
377 return adapter->msg_enable;
378}
379
380static void e1000_set_msglevel(struct net_device *netdev, u32 data)
381{
382 struct e1000_adapter *adapter = netdev_priv(netdev);
383 adapter->msg_enable = data;
384}
385
386static int e1000_get_regs_len(struct net_device *netdev)
387{
388#define E1000_REGS_LEN 32 /* overestimate */
389 return E1000_REGS_LEN * sizeof(u32);
390}
391
392static void e1000_get_regs(struct net_device *netdev,
393 struct ethtool_regs *regs, void *p)
394{
395 struct e1000_adapter *adapter = netdev_priv(netdev);
396 struct e1000_hw *hw = &adapter->hw;
397 u32 *regs_buff = p;
398 u16 phy_data;
399 u8 revision_id;
400
401 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
402
403 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
404
405 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
406
407 regs_buff[0] = er32(CTRL);
408 regs_buff[1] = er32(STATUS);
409
410 regs_buff[2] = er32(RCTL);
411 regs_buff[3] = er32(RDLEN);
412 regs_buff[4] = er32(RDH);
413 regs_buff[5] = er32(RDT);
414 regs_buff[6] = er32(RDTR);
415
416 regs_buff[7] = er32(TCTL);
417 regs_buff[8] = er32(TDLEN);
418 regs_buff[9] = er32(TDH);
419 regs_buff[10] = er32(TDT);
420 regs_buff[11] = er32(TIDV);
421
422 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
423 if (hw->phy.type == e1000_phy_m88) {
424 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
425 regs_buff[13] = (u32)phy_data; /* cable length */
426 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
427 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
429 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
430 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
431 regs_buff[18] = regs_buff[13]; /* cable polarity */
432 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
433 regs_buff[20] = regs_buff[17]; /* polarity correction */
434 /* phy receive errors */
435 regs_buff[22] = adapter->phy_stats.receive_errors;
436 regs_buff[23] = regs_buff[13]; /* mdix mode */
437 }
438 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
439 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
440 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
441 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
442}
443
444static int e1000_get_eeprom_len(struct net_device *netdev)
445{
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 return adapter->hw.nvm.word_size * 2;
448}
449
450static int e1000_get_eeprom(struct net_device *netdev,
451 struct ethtool_eeprom *eeprom, u8 *bytes)
452{
453 struct e1000_adapter *adapter = netdev_priv(netdev);
454 struct e1000_hw *hw = &adapter->hw;
455 u16 *eeprom_buff;
456 int first_word;
457 int last_word;
458 int ret_val = 0;
459 u16 i;
460
461 if (eeprom->len == 0)
462 return -EINVAL;
463
464 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
465
466 first_word = eeprom->offset >> 1;
467 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469 eeprom_buff = kmalloc(sizeof(u16) *
470 (last_word - first_word + 1), GFP_KERNEL);
471 if (!eeprom_buff)
472 return -ENOMEM;
473
474 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
475 ret_val = e1000_read_nvm(hw, first_word,
476 last_word - first_word + 1,
477 eeprom_buff);
478 } else {
479 for (i = 0; i < last_word - first_word + 1; i++) {
480 ret_val = e1000_read_nvm(hw, first_word + i, 1,
481 &eeprom_buff[i]);
482 if (ret_val)
483 break;
484 }
485 }
486
487 /* Device's eeprom is always little-endian, word addressable */
488 for (i = 0; i < last_word - first_word + 1; i++)
489 le16_to_cpus(&eeprom_buff[i]);
490
491 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
492 kfree(eeprom_buff);
493
494 return ret_val;
495}
496
497static int e1000_set_eeprom(struct net_device *netdev,
498 struct ethtool_eeprom *eeprom, u8 *bytes)
499{
500 struct e1000_adapter *adapter = netdev_priv(netdev);
501 struct e1000_hw *hw = &adapter->hw;
502 u16 *eeprom_buff;
503 void *ptr;
504 int max_len;
505 int first_word;
506 int last_word;
507 int ret_val = 0;
508 u16 i;
509
510 if (eeprom->len == 0)
511 return -EOPNOTSUPP;
512
513 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
514 return -EFAULT;
515
516 max_len = hw->nvm.word_size * 2;
517
518 first_word = eeprom->offset >> 1;
519 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
520 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
521 if (!eeprom_buff)
522 return -ENOMEM;
523
524 ptr = (void *)eeprom_buff;
525
526 if (eeprom->offset & 1) {
527 /* need read/modify/write of first changed EEPROM word */
528 /* only the second byte of the word is being modified */
529 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
530 ptr++;
531 }
532 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
533 /* need read/modify/write of last changed EEPROM word */
534 /* only the first byte of the word is being modified */
535 ret_val = e1000_read_nvm(hw, last_word, 1,
536 &eeprom_buff[last_word - first_word]);
537
538 /* Device's eeprom is always little-endian, word addressable */
539 for (i = 0; i < last_word - first_word + 1; i++)
540 le16_to_cpus(&eeprom_buff[i]);
541
542 memcpy(ptr, bytes, eeprom->len);
543
544 for (i = 0; i < last_word - first_word + 1; i++)
545 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547 ret_val = e1000_write_nvm(hw, first_word,
548 last_word - first_word + 1, eeprom_buff);
549
550 /* Update the checksum over the first part of the EEPROM if needed
551 * and flush shadow RAM for 82573 controllers */
552 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
553 (hw->mac.type == e1000_82573)))
554 e1000e_update_nvm_checksum(hw);
555
556 kfree(eeprom_buff);
557 return ret_val;
558}
559
560static void e1000_get_drvinfo(struct net_device *netdev,
561 struct ethtool_drvinfo *drvinfo)
562{
563 struct e1000_adapter *adapter = netdev_priv(netdev);
564 char firmware_version[32];
565 u16 eeprom_data;
566
567 strncpy(drvinfo->driver, e1000e_driver_name, 32);
568 strncpy(drvinfo->version, e1000e_driver_version, 32);
569
570 /* EEPROM image version # is reported as firmware version # for
571 * PCI-E controllers */
572 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
573 sprintf(firmware_version, "%d.%d-%d",
574 (eeprom_data & 0xF000) >> 12,
575 (eeprom_data & 0x0FF0) >> 4,
576 eeprom_data & 0x000F);
577
578 strncpy(drvinfo->fw_version, firmware_version, 32);
579 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700580 drvinfo->regdump_len = e1000_get_regs_len(netdev);
581 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
582}
583
584static void e1000_get_ringparam(struct net_device *netdev,
585 struct ethtool_ringparam *ring)
586{
587 struct e1000_adapter *adapter = netdev_priv(netdev);
588 struct e1000_ring *tx_ring = adapter->tx_ring;
589 struct e1000_ring *rx_ring = adapter->rx_ring;
590
591 ring->rx_max_pending = E1000_MAX_RXD;
592 ring->tx_max_pending = E1000_MAX_TXD;
593 ring->rx_mini_max_pending = 0;
594 ring->rx_jumbo_max_pending = 0;
595 ring->rx_pending = rx_ring->count;
596 ring->tx_pending = tx_ring->count;
597 ring->rx_mini_pending = 0;
598 ring->rx_jumbo_pending = 0;
599}
600
601static int e1000_set_ringparam(struct net_device *netdev,
602 struct ethtool_ringparam *ring)
603{
604 struct e1000_adapter *adapter = netdev_priv(netdev);
605 struct e1000_ring *tx_ring, *tx_old;
606 struct e1000_ring *rx_ring, *rx_old;
607 int err;
608
609 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
610 return -EINVAL;
611
612 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
613 msleep(1);
614
615 if (netif_running(adapter->netdev))
616 e1000e_down(adapter);
617
618 tx_old = adapter->tx_ring;
619 rx_old = adapter->rx_ring;
620
621 err = -ENOMEM;
622 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
623 if (!tx_ring)
624 goto err_alloc_tx;
625
626 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
627 if (!rx_ring)
628 goto err_alloc_rx;
629
630 adapter->tx_ring = tx_ring;
631 adapter->rx_ring = rx_ring;
632
633 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
634 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
635 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
636
637 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
638 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
639 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
640
641 if (netif_running(adapter->netdev)) {
642 /* Try to get new resources before deleting old */
643 err = e1000e_setup_rx_resources(adapter);
644 if (err)
645 goto err_setup_rx;
646 err = e1000e_setup_tx_resources(adapter);
647 if (err)
648 goto err_setup_tx;
649
650 /* save the new, restore the old in order to free it,
651 * then restore the new back again */
652 adapter->rx_ring = rx_old;
653 adapter->tx_ring = tx_old;
654 e1000e_free_rx_resources(adapter);
655 e1000e_free_tx_resources(adapter);
656 kfree(tx_old);
657 kfree(rx_old);
658 adapter->rx_ring = rx_ring;
659 adapter->tx_ring = tx_ring;
660 err = e1000e_up(adapter);
661 if (err)
662 goto err_setup;
663 }
664
665 clear_bit(__E1000_RESETTING, &adapter->state);
666 return 0;
667err_setup_tx:
668 e1000e_free_rx_resources(adapter);
669err_setup_rx:
670 adapter->rx_ring = rx_old;
671 adapter->tx_ring = tx_old;
672 kfree(rx_ring);
673err_alloc_rx:
674 kfree(tx_ring);
675err_alloc_tx:
676 e1000e_up(adapter);
677err_setup:
678 clear_bit(__E1000_RESETTING, &adapter->state);
679 return err;
680}
681
682#define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
683#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \
684{ \
685 u32 _pat; \
686 u32 _value; \
687 u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
688 for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \
689 E1000_WRITE_REG_ARRAY(hw, reg, offset, \
690 (_test[_pat] & writeable)); \
691 _value = E1000_READ_REG_ARRAY(hw, reg, offset); \
692 if (_value != (_test[_pat] & writeable & mask)) { \
693 ndev_err(netdev, "pattern test reg %04X " \
694 "failed: got 0x%08X expected 0x%08X\n", \
695 reg + offset, \
696 value, (_test[_pat] & writeable & mask)); \
697 *data = reg; \
698 return 1; \
699 } \
700 } \
701}
702
703#define REG_SET_AND_CHECK(R, M, W) \
704{ \
705 u32 _value; \
706 __ew32(hw, R, W & M); \
707 _value = __er32(hw, R); \
708 if ((W & M) != (_value & M)) { \
709 ndev_err(netdev, "set/check reg %04X test failed: " \
710 "got 0x%08X expected 0x%08X\n", R, (_value & M), \
711 (W & M)); \
712 *data = R; \
713 return 1; \
714 } \
715}
716
717static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
718{
719 struct e1000_hw *hw = &adapter->hw;
720 struct e1000_mac_info *mac = &adapter->hw.mac;
721 struct net_device *netdev = adapter->netdev;
722 u32 value;
723 u32 before;
724 u32 after;
725 u32 i;
726 u32 toggle;
727
728 /* The status register is Read Only, so a write should fail.
729 * Some bits that get toggled are ignored.
730 */
731 switch (mac->type) {
732 /* there are several bits on newer hardware that are r/w */
733 case e1000_82571:
734 case e1000_82572:
735 case e1000_80003es2lan:
736 toggle = 0x7FFFF3FF;
737 break;
738 case e1000_82573:
739 case e1000_ich8lan:
740 case e1000_ich9lan:
741 toggle = 0x7FFFF033;
742 break;
743 default:
744 toggle = 0xFFFFF833;
745 break;
746 }
747
748 before = er32(STATUS);
749 value = (er32(STATUS) & toggle);
750 ew32(STATUS, toggle);
751 after = er32(STATUS) & toggle;
752 if (value != after) {
753 ndev_err(netdev, "failed STATUS register test got: "
754 "0x%08X expected: 0x%08X\n", after, value);
755 *data = 1;
756 return 1;
757 }
758 /* restore previous status */
759 ew32(STATUS, before);
760
761 if ((mac->type != e1000_ich8lan) &&
762 (mac->type != e1000_ich9lan)) {
763 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
764 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
765 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
766 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
767 }
768
769 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
770 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
771 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
772 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
773 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
775 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
777 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
779
780 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
781
782 before = (((mac->type == e1000_ich8lan) ||
783 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
784 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
785 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
786
Auke Kok86582512007-10-04 15:00:08 -0700787 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
788 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789 if ((mac->type != e1000_ich8lan) &&
790 (mac->type != e1000_ich9lan))
791 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
793 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
794 for (i = 0; i < mac->rar_entry_count; i++)
795 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
796 0x8003FFFF, 0xFFFFFFFF);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700797
798 for (i = 0; i < mac->mta_reg_count; i++)
799 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
800
801 *data = 0;
802 return 0;
803}
804
805static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
806{
807 u16 temp;
808 u16 checksum = 0;
809 u16 i;
810
811 *data = 0;
812 /* Read and add up the contents of the EEPROM */
813 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
814 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
815 *data = 1;
816 break;
817 }
818 checksum += temp;
819 }
820
821 /* If Checksum is not Correct return error else test passed */
822 if ((checksum != (u16) NVM_SUM) && !(*data))
823 *data = 2;
824
825 return *data;
826}
827
828static irqreturn_t e1000_test_intr(int irq, void *data)
829{
830 struct net_device *netdev = (struct net_device *) data;
831 struct e1000_adapter *adapter = netdev_priv(netdev);
832 struct e1000_hw *hw = &adapter->hw;
833
834 adapter->test_icr |= er32(ICR);
835
836 return IRQ_HANDLED;
837}
838
839static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
840{
841 struct net_device *netdev = adapter->netdev;
842 struct e1000_hw *hw = &adapter->hw;
843 u32 mask;
844 u32 shared_int = 1;
845 u32 irq = adapter->pdev->irq;
846 int i;
847
848 *data = 0;
849
850 /* NOTE: we don't test MSI interrupts here, yet */
851 /* Hook up test interrupt handler just for this test */
852 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
853 netdev)) {
854 shared_int = 0;
855 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
856 netdev->name, netdev)) {
857 *data = 1;
858 return -1;
859 }
860 ndev_info(netdev, "testing %s interrupt\n",
861 (shared_int ? "shared" : "unshared"));
862
863 /* Disable all the interrupts */
864 ew32(IMC, 0xFFFFFFFF);
865 msleep(10);
866
867 /* Test each interrupt */
868 for (i = 0; i < 10; i++) {
869
870 if (((adapter->hw.mac.type == e1000_ich8lan) ||
871 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
872 continue;
873
874 /* Interrupt to test */
875 mask = 1 << i;
876
877 if (!shared_int) {
878 /* Disable the interrupt to be reported in
879 * the cause register and then force the same
880 * interrupt and see if one gets posted. If
881 * an interrupt was posted to the bus, the
882 * test failed.
883 */
884 adapter->test_icr = 0;
885 ew32(IMC, mask);
886 ew32(ICS, mask);
887 msleep(10);
888
889 if (adapter->test_icr & mask) {
890 *data = 3;
891 break;
892 }
893 }
894
895 /* Enable the interrupt to be reported in
896 * the cause register and then force the same
897 * interrupt and see if one gets posted. If
898 * an interrupt was not posted to the bus, the
899 * test failed.
900 */
901 adapter->test_icr = 0;
902 ew32(IMS, mask);
903 ew32(ICS, mask);
904 msleep(10);
905
906 if (!(adapter->test_icr & mask)) {
907 *data = 4;
908 break;
909 }
910
911 if (!shared_int) {
912 /* Disable the other interrupts to be reported in
913 * the cause register and then force the other
914 * interrupts and see if any get posted. If
915 * an interrupt was posted to the bus, the
916 * test failed.
917 */
918 adapter->test_icr = 0;
919 ew32(IMC, ~mask & 0x00007FFF);
920 ew32(ICS, ~mask & 0x00007FFF);
921 msleep(10);
922
923 if (adapter->test_icr) {
924 *data = 5;
925 break;
926 }
927 }
928 }
929
930 /* Disable all the interrupts */
931 ew32(IMC, 0xFFFFFFFF);
932 msleep(10);
933
934 /* Unhook test interrupt handler */
935 free_irq(irq, netdev);
936
937 return *data;
938}
939
940static void e1000_free_desc_rings(struct e1000_adapter *adapter)
941{
942 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
943 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
944 struct pci_dev *pdev = adapter->pdev;
945 int i;
946
947 if (tx_ring->desc && tx_ring->buffer_info) {
948 for (i = 0; i < tx_ring->count; i++) {
949 if (tx_ring->buffer_info[i].dma)
950 pci_unmap_single(pdev,
951 tx_ring->buffer_info[i].dma,
952 tx_ring->buffer_info[i].length,
953 PCI_DMA_TODEVICE);
954 if (tx_ring->buffer_info[i].skb)
955 dev_kfree_skb(tx_ring->buffer_info[i].skb);
956 }
957 }
958
959 if (rx_ring->desc && rx_ring->buffer_info) {
960 for (i = 0; i < rx_ring->count; i++) {
961 if (rx_ring->buffer_info[i].dma)
962 pci_unmap_single(pdev,
963 rx_ring->buffer_info[i].dma,
964 2048, PCI_DMA_FROMDEVICE);
965 if (rx_ring->buffer_info[i].skb)
966 dev_kfree_skb(rx_ring->buffer_info[i].skb);
967 }
968 }
969
970 if (tx_ring->desc) {
971 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
972 tx_ring->dma);
973 tx_ring->desc = NULL;
974 }
975 if (rx_ring->desc) {
976 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
977 rx_ring->dma);
978 rx_ring->desc = NULL;
979 }
980
981 kfree(tx_ring->buffer_info);
982 tx_ring->buffer_info = NULL;
983 kfree(rx_ring->buffer_info);
984 rx_ring->buffer_info = NULL;
985}
986
987static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
988{
989 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
990 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
991 struct pci_dev *pdev = adapter->pdev;
992 struct e1000_hw *hw = &adapter->hw;
993 u32 rctl;
994 int size;
995 int i;
996 int ret_val;
997
998 /* Setup Tx descriptor ring and Tx buffers */
999
1000 if (!tx_ring->count)
1001 tx_ring->count = E1000_DEFAULT_TXD;
1002
1003 size = tx_ring->count * sizeof(struct e1000_buffer);
1004 tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1005 if (!tx_ring->buffer_info) {
1006 ret_val = 1;
1007 goto err_nomem;
1008 }
1009 memset(tx_ring->buffer_info, 0, size);
1010
1011 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1012 tx_ring->size = ALIGN(tx_ring->size, 4096);
1013 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1014 &tx_ring->dma, GFP_KERNEL);
1015 if (!tx_ring->desc) {
1016 ret_val = 2;
1017 goto err_nomem;
1018 }
1019 memset(tx_ring->desc, 0, tx_ring->size);
1020 tx_ring->next_to_use = 0;
1021 tx_ring->next_to_clean = 0;
1022
1023 ew32(TDBAL,
1024 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1025 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1026 ew32(TDLEN,
1027 tx_ring->count * sizeof(struct e1000_tx_desc));
1028 ew32(TDH, 0);
1029 ew32(TDT, 0);
1030 ew32(TCTL,
1031 E1000_TCTL_PSP | E1000_TCTL_EN |
1032 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1033 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1034
1035 for (i = 0; i < tx_ring->count; i++) {
1036 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1037 struct sk_buff *skb;
1038 unsigned int skb_size = 1024;
1039
1040 skb = alloc_skb(skb_size, GFP_KERNEL);
1041 if (!skb) {
1042 ret_val = 3;
1043 goto err_nomem;
1044 }
1045 skb_put(skb, skb_size);
1046 tx_ring->buffer_info[i].skb = skb;
1047 tx_ring->buffer_info[i].length = skb->len;
1048 tx_ring->buffer_info[i].dma =
1049 pci_map_single(pdev, skb->data, skb->len,
1050 PCI_DMA_TODEVICE);
1051 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1052 ret_val = 4;
1053 goto err_nomem;
1054 }
1055 tx_desc->buffer_addr = cpu_to_le64(
1056 tx_ring->buffer_info[i].dma);
1057 tx_desc->lower.data = cpu_to_le32(skb->len);
1058 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1059 E1000_TXD_CMD_IFCS |
1060 E1000_TXD_CMD_RPS);
1061 tx_desc->upper.data = 0;
1062 }
1063
1064 /* Setup Rx descriptor ring and Rx buffers */
1065
1066 if (!rx_ring->count)
1067 rx_ring->count = E1000_DEFAULT_RXD;
1068
1069 size = rx_ring->count * sizeof(struct e1000_buffer);
1070 rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1071 if (!rx_ring->buffer_info) {
1072 ret_val = 5;
1073 goto err_nomem;
1074 }
1075 memset(rx_ring->buffer_info, 0, size);
1076
1077 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1078 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1079 &rx_ring->dma, GFP_KERNEL);
1080 if (!rx_ring->desc) {
1081 ret_val = 6;
1082 goto err_nomem;
1083 }
1084 memset(rx_ring->desc, 0, rx_ring->size);
1085 rx_ring->next_to_use = 0;
1086 rx_ring->next_to_clean = 0;
1087
1088 rctl = er32(RCTL);
1089 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1090 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1091 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1092 ew32(RDLEN, rx_ring->size);
1093 ew32(RDH, 0);
1094 ew32(RDT, 0);
1095 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1096 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1097 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1098 ew32(RCTL, rctl);
1099
1100 for (i = 0; i < rx_ring->count; i++) {
1101 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1102 struct sk_buff *skb;
1103
1104 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1105 if (!skb) {
1106 ret_val = 7;
1107 goto err_nomem;
1108 }
1109 skb_reserve(skb, NET_IP_ALIGN);
1110 rx_ring->buffer_info[i].skb = skb;
1111 rx_ring->buffer_info[i].dma =
1112 pci_map_single(pdev, skb->data, 2048,
1113 PCI_DMA_FROMDEVICE);
1114 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1115 ret_val = 8;
1116 goto err_nomem;
1117 }
1118 rx_desc->buffer_addr =
1119 cpu_to_le64(rx_ring->buffer_info[i].dma);
1120 memset(skb->data, 0x00, skb->len);
1121 }
1122
1123 return 0;
1124
1125err_nomem:
1126 e1000_free_desc_rings(adapter);
1127 return ret_val;
1128}
1129
1130static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1131{
1132 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1133 e1e_wphy(&adapter->hw, 29, 0x001F);
1134 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1135 e1e_wphy(&adapter->hw, 29, 0x001A);
1136 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1137}
1138
1139static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1140{
1141 struct e1000_hw *hw = &adapter->hw;
1142 u32 ctrl_reg = 0;
1143 u32 stat_reg = 0;
1144
1145 adapter->hw.mac.autoneg = 0;
1146
1147 if (adapter->hw.phy.type == e1000_phy_m88) {
1148 /* Auto-MDI/MDIX Off */
1149 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1150 /* reset to update Auto-MDI/MDIX */
1151 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1152 /* autoneg off */
1153 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1154 } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1155 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1156
1157 ctrl_reg = er32(CTRL);
1158
1159 if (adapter->hw.phy.type == e1000_phy_ife) {
1160 /* force 100, set loopback */
1161 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1162
1163 /* Now set up the MAC to the same speed/duplex as the PHY. */
1164 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1165 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1166 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1167 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1168 E1000_CTRL_FD); /* Force Duplex to FULL */
1169 } else {
1170 /* force 1000, set loopback */
1171 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1172
1173 /* Now set up the MAC to the same speed/duplex as the PHY. */
1174 ctrl_reg = er32(CTRL);
1175 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1176 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1177 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1178 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1179 E1000_CTRL_FD); /* Force Duplex to FULL */
1180 }
1181
1182 if (adapter->hw.media_type == e1000_media_type_copper &&
1183 adapter->hw.phy.type == e1000_phy_m88) {
1184 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1185 } else {
1186 /* Set the ILOS bit on the fiber Nic if half duplex link is
1187 * detected. */
1188 stat_reg = er32(STATUS);
1189 if ((stat_reg & E1000_STATUS_FD) == 0)
1190 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1191 }
1192
1193 ew32(CTRL, ctrl_reg);
1194
1195 /* Disable the receiver on the PHY so when a cable is plugged in, the
1196 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1197 */
1198 if (adapter->hw.phy.type == e1000_phy_m88)
1199 e1000_phy_disable_receiver(adapter);
1200
1201 udelay(500);
1202
1203 return 0;
1204}
1205
1206static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1207{
1208 struct e1000_hw *hw = &adapter->hw;
1209 u32 ctrl = er32(CTRL);
1210 int link = 0;
1211
1212 /* special requirements for 82571/82572 fiber adapters */
1213
1214 /* jump through hoops to make sure link is up because serdes
1215 * link is hardwired up */
1216 ctrl |= E1000_CTRL_SLU;
1217 ew32(CTRL, ctrl);
1218
1219 /* disable autoneg */
1220 ctrl = er32(TXCW);
1221 ctrl &= ~(1 << 31);
1222 ew32(TXCW, ctrl);
1223
1224 link = (er32(STATUS) & E1000_STATUS_LU);
1225
1226 if (!link) {
1227 /* set invert loss of signal */
1228 ctrl = er32(CTRL);
1229 ctrl |= E1000_CTRL_ILOS;
1230 ew32(CTRL, ctrl);
1231 }
1232
1233 /* special write to serdes control register to enable SerDes analog
1234 * loopback */
1235#define E1000_SERDES_LB_ON 0x410
1236 ew32(SCTL, E1000_SERDES_LB_ON);
1237 msleep(10);
1238
1239 return 0;
1240}
1241
1242/* only call this for fiber/serdes connections to es2lan */
1243static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1244{
1245 struct e1000_hw *hw = &adapter->hw;
1246 u32 ctrlext = er32(CTRL_EXT);
1247 u32 ctrl = er32(CTRL);
1248
1249 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1250 on mac_type 80003es2lan) */
1251 adapter->tx_fifo_head = ctrlext;
1252
1253 /* clear the serdes mode bits, putting the device into mac loopback */
1254 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1255 ew32(CTRL_EXT, ctrlext);
1256
1257 /* force speed to 1000/FD, link up */
1258 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1259 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1260 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1261 ew32(CTRL, ctrl);
1262
1263 /* set mac loopback */
1264 ctrl = er32(RCTL);
1265 ctrl |= E1000_RCTL_LBM_MAC;
1266 ew32(RCTL, ctrl);
1267
1268 /* set testing mode parameters (no need to reset later) */
1269#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1270#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1271 ew32(KMRNCTRLSTA,
1272 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1273
1274 return 0;
1275}
1276
1277static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1278{
1279 struct e1000_hw *hw = &adapter->hw;
1280 u32 rctl;
1281
1282 if (hw->media_type == e1000_media_type_fiber ||
1283 hw->media_type == e1000_media_type_internal_serdes) {
1284 switch (hw->mac.type) {
1285 case e1000_80003es2lan:
1286 return e1000_set_es2lan_mac_loopback(adapter);
1287 break;
1288 case e1000_82571:
1289 case e1000_82572:
1290 return e1000_set_82571_fiber_loopback(adapter);
1291 break;
1292 default:
1293 rctl = er32(RCTL);
1294 rctl |= E1000_RCTL_LBM_TCVR;
1295 ew32(RCTL, rctl);
1296 return 0;
1297 }
1298 } else if (hw->media_type == e1000_media_type_copper) {
1299 return e1000_integrated_phy_loopback(adapter);
1300 }
1301
1302 return 7;
1303}
1304
1305static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1306{
1307 struct e1000_hw *hw = &adapter->hw;
1308 u32 rctl;
1309 u16 phy_reg;
1310
1311 rctl = er32(RCTL);
1312 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1313 ew32(RCTL, rctl);
1314
1315 switch (hw->mac.type) {
1316 case e1000_80003es2lan:
1317 if (hw->media_type == e1000_media_type_fiber ||
1318 hw->media_type == e1000_media_type_internal_serdes) {
1319 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1320 ew32(CTRL_EXT,
1321 adapter->tx_fifo_head);
1322 adapter->tx_fifo_head = 0;
1323 }
1324 /* fall through */
1325 case e1000_82571:
1326 case e1000_82572:
1327 if (hw->media_type == e1000_media_type_fiber ||
1328 hw->media_type == e1000_media_type_internal_serdes) {
1329#define E1000_SERDES_LB_OFF 0x400
1330 ew32(SCTL, E1000_SERDES_LB_OFF);
1331 msleep(10);
1332 break;
1333 }
1334 /* Fall Through */
1335 default:
1336 hw->mac.autoneg = 1;
1337 if (hw->phy.type == e1000_phy_gg82563)
1338 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1339 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1340 if (phy_reg & MII_CR_LOOPBACK) {
1341 phy_reg &= ~MII_CR_LOOPBACK;
1342 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1343 e1000e_commit_phy(hw);
1344 }
1345 break;
1346 }
1347}
1348
1349static void e1000_create_lbtest_frame(struct sk_buff *skb,
1350 unsigned int frame_size)
1351{
1352 memset(skb->data, 0xFF, frame_size);
1353 frame_size &= ~1;
1354 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1355 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1356 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1357}
1358
1359static int e1000_check_lbtest_frame(struct sk_buff *skb,
1360 unsigned int frame_size)
1361{
1362 frame_size &= ~1;
1363 if (*(skb->data + 3) == 0xFF)
1364 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1365 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1366 return 0;
1367 return 13;
1368}
1369
1370static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1371{
1372 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1373 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1374 struct pci_dev *pdev = adapter->pdev;
1375 struct e1000_hw *hw = &adapter->hw;
1376 int i, j, k, l;
1377 int lc;
1378 int good_cnt;
1379 int ret_val = 0;
1380 unsigned long time;
1381
1382 ew32(RDT, rx_ring->count - 1);
1383
1384 /* Calculate the loop count based on the largest descriptor ring
1385 * The idea is to wrap the largest ring a number of times using 64
1386 * send/receive pairs during each loop
1387 */
1388
1389 if (rx_ring->count <= tx_ring->count)
1390 lc = ((tx_ring->count / 64) * 2) + 1;
1391 else
1392 lc = ((rx_ring->count / 64) * 2) + 1;
1393
1394 k = 0;
1395 l = 0;
1396 for (j = 0; j <= lc; j++) { /* loop count loop */
1397 for (i = 0; i < 64; i++) { /* send the packets */
1398 e1000_create_lbtest_frame(
1399 tx_ring->buffer_info[i].skb, 1024);
1400 pci_dma_sync_single_for_device(pdev,
1401 tx_ring->buffer_info[k].dma,
1402 tx_ring->buffer_info[k].length,
1403 PCI_DMA_TODEVICE);
1404 k++;
1405 if (k == tx_ring->count)
1406 k = 0;
1407 }
1408 ew32(TDT, k);
1409 msleep(200);
1410 time = jiffies; /* set the start time for the receive */
1411 good_cnt = 0;
1412 do { /* receive the sent packets */
1413 pci_dma_sync_single_for_cpu(pdev,
1414 rx_ring->buffer_info[l].dma, 2048,
1415 PCI_DMA_FROMDEVICE);
1416
1417 ret_val = e1000_check_lbtest_frame(
1418 rx_ring->buffer_info[l].skb, 1024);
1419 if (!ret_val)
1420 good_cnt++;
1421 l++;
1422 if (l == rx_ring->count)
1423 l = 0;
1424 /* time + 20 msecs (200 msecs on 2.4) is more than
1425 * enough time to complete the receives, if it's
1426 * exceeded, break and error off
1427 */
1428 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1429 if (good_cnt != 64) {
1430 ret_val = 13; /* ret_val is the same as mis-compare */
1431 break;
1432 }
1433 if (jiffies >= (time + 2)) {
1434 ret_val = 14; /* error code for time out error */
1435 break;
1436 }
1437 } /* end loop count loop */
1438 return ret_val;
1439}
1440
1441static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1442{
1443 /* PHY loopback cannot be performed if SoL/IDER
1444 * sessions are active */
1445 if (e1000_check_reset_block(&adapter->hw)) {
1446 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1447 "when SoL/IDER is active.\n");
1448 *data = 0;
1449 goto out;
1450 }
1451
1452 *data = e1000_setup_desc_rings(adapter);
1453 if (data)
1454 goto out;
1455
1456 *data = e1000_setup_loopback_test(adapter);
1457 if (data)
1458 goto err_loopback;
1459
1460 *data = e1000_run_loopback_test(adapter);
1461 e1000_loopback_cleanup(adapter);
1462
1463err_loopback:
1464 e1000_free_desc_rings(adapter);
1465out:
1466 return *data;
1467}
1468
1469static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1470{
1471 struct e1000_hw *hw = &adapter->hw;
1472
1473 *data = 0;
1474 if (hw->media_type == e1000_media_type_internal_serdes) {
1475 int i = 0;
1476 hw->mac.serdes_has_link = 0;
1477
1478 /* On some blade server designs, link establishment
1479 * could take as long as 2-3 minutes */
1480 do {
1481 hw->mac.ops.check_for_link(hw);
1482 if (hw->mac.serdes_has_link)
1483 return *data;
1484 msleep(20);
1485 } while (i++ < 3750);
1486
1487 *data = 1;
1488 } else {
1489 hw->mac.ops.check_for_link(hw);
1490 if (hw->mac.autoneg)
1491 msleep(4000);
1492
1493 if (!(er32(STATUS) &
1494 E1000_STATUS_LU))
1495 *data = 1;
1496 }
1497 return *data;
1498}
1499
Jeff Garzikb9f2c042007-10-03 18:07:32 -07001500static int e1000e_get_sset_count(struct net_device *netdev, int sset)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001501{
Jeff Garzikb9f2c042007-10-03 18:07:32 -07001502 switch (sset) {
1503 case ETH_SS_TEST:
1504 return E1000_TEST_LEN;
1505 case ETH_SS_STATS:
1506 return E1000_STATS_LEN;
1507 default:
1508 return -EOPNOTSUPP;
1509 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001510}
1511
1512static void e1000_diag_test(struct net_device *netdev,
1513 struct ethtool_test *eth_test, u64 *data)
1514{
1515 struct e1000_adapter *adapter = netdev_priv(netdev);
1516 u16 autoneg_advertised;
1517 u8 forced_speed_duplex;
1518 u8 autoneg;
1519 bool if_running = netif_running(netdev);
1520
1521 set_bit(__E1000_TESTING, &adapter->state);
1522 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1523 /* Offline tests */
1524
1525 /* save speed, duplex, autoneg settings */
1526 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1527 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1528 autoneg = adapter->hw.mac.autoneg;
1529
1530 ndev_info(netdev, "offline testing starting\n");
1531
1532 /* Link test performed before hardware reset so autoneg doesn't
1533 * interfere with test result */
1534 if (e1000_link_test(adapter, &data[4]))
1535 eth_test->flags |= ETH_TEST_FL_FAILED;
1536
1537 if (if_running)
1538 /* indicate we're in test mode */
1539 dev_close(netdev);
1540 else
1541 e1000e_reset(adapter);
1542
1543 if (e1000_reg_test(adapter, &data[0]))
1544 eth_test->flags |= ETH_TEST_FL_FAILED;
1545
1546 e1000e_reset(adapter);
1547 if (e1000_eeprom_test(adapter, &data[1]))
1548 eth_test->flags |= ETH_TEST_FL_FAILED;
1549
1550 e1000e_reset(adapter);
1551 if (e1000_intr_test(adapter, &data[2]))
1552 eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554 e1000e_reset(adapter);
1555 /* make sure the phy is powered up */
1556 e1000e_power_up_phy(adapter);
1557 if (e1000_loopback_test(adapter, &data[3]))
1558 eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560 /* restore speed, duplex, autoneg settings */
1561 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1562 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1563 adapter->hw.mac.autoneg = autoneg;
1564
1565 /* force this routine to wait until autoneg complete/timeout */
1566 adapter->hw.phy.wait_for_link = 1;
1567 e1000e_reset(adapter);
1568 adapter->hw.phy.wait_for_link = 0;
1569
1570 clear_bit(__E1000_TESTING, &adapter->state);
1571 if (if_running)
1572 dev_open(netdev);
1573 } else {
1574 ndev_info(netdev, "online testing starting\n");
1575 /* Online tests */
1576 if (e1000_link_test(adapter, &data[4]))
1577 eth_test->flags |= ETH_TEST_FL_FAILED;
1578
1579 /* Online tests aren't run; pass by default */
1580 data[0] = 0;
1581 data[1] = 0;
1582 data[2] = 0;
1583 data[3] = 0;
1584
1585 clear_bit(__E1000_TESTING, &adapter->state);
1586 }
1587 msleep_interruptible(4 * 1000);
1588}
1589
1590static void e1000_get_wol(struct net_device *netdev,
1591 struct ethtool_wolinfo *wol)
1592{
1593 struct e1000_adapter *adapter = netdev_priv(netdev);
1594
1595 wol->supported = 0;
1596 wol->wolopts = 0;
1597
1598 if (!(adapter->flags & FLAG_HAS_WOL))
1599 return;
1600
1601 wol->supported = WAKE_UCAST | WAKE_MCAST |
1602 WAKE_BCAST | WAKE_MAGIC;
1603
1604 /* apply any specific unsupported masks here */
1605 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1606 wol->supported &= ~WAKE_UCAST;
1607
1608 if (adapter->wol & E1000_WUFC_EX)
1609 ndev_err(netdev, "Interface does not support "
1610 "directed (unicast) frame wake-up packets\n");
1611 }
1612
1613 if (adapter->wol & E1000_WUFC_EX)
1614 wol->wolopts |= WAKE_UCAST;
1615 if (adapter->wol & E1000_WUFC_MC)
1616 wol->wolopts |= WAKE_MCAST;
1617 if (adapter->wol & E1000_WUFC_BC)
1618 wol->wolopts |= WAKE_BCAST;
1619 if (adapter->wol & E1000_WUFC_MAG)
1620 wol->wolopts |= WAKE_MAGIC;
1621}
1622
1623static int e1000_set_wol(struct net_device *netdev,
1624 struct ethtool_wolinfo *wol)
1625{
1626 struct e1000_adapter *adapter = netdev_priv(netdev);
1627
1628 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1629 return -EOPNOTSUPP;
1630
1631 if (!(adapter->flags & FLAG_HAS_WOL))
1632 return wol->wolopts ? -EOPNOTSUPP : 0;
1633
1634 /* these settings will always override what we currently have */
1635 adapter->wol = 0;
1636
1637 if (wol->wolopts & WAKE_UCAST)
1638 adapter->wol |= E1000_WUFC_EX;
1639 if (wol->wolopts & WAKE_MCAST)
1640 adapter->wol |= E1000_WUFC_MC;
1641 if (wol->wolopts & WAKE_BCAST)
1642 adapter->wol |= E1000_WUFC_BC;
1643 if (wol->wolopts & WAKE_MAGIC)
1644 adapter->wol |= E1000_WUFC_MAG;
1645
1646 return 0;
1647}
1648
1649/* toggle LED 4 times per second = 2 "blinks" per second */
1650#define E1000_ID_INTERVAL (HZ/4)
1651
1652/* bit defines for adapter->led_status */
1653#define E1000_LED_ON 0
1654
1655static void e1000_led_blink_callback(unsigned long data)
1656{
1657 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1658
1659 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1660 adapter->hw.mac.ops.led_off(&adapter->hw);
1661 else
1662 adapter->hw.mac.ops.led_on(&adapter->hw);
1663
1664 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1665}
1666
1667static int e1000_phys_id(struct net_device *netdev, u32 data)
1668{
1669 struct e1000_adapter *adapter = netdev_priv(netdev);
1670
1671 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1672 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1673
1674 if (adapter->hw.phy.type == e1000_phy_ife) {
1675 if (!adapter->blink_timer.function) {
1676 init_timer(&adapter->blink_timer);
1677 adapter->blink_timer.function =
1678 e1000_led_blink_callback;
1679 adapter->blink_timer.data = (unsigned long) adapter;
1680 }
1681 mod_timer(&adapter->blink_timer, jiffies);
1682 msleep_interruptible(data * 1000);
1683 del_timer_sync(&adapter->blink_timer);
1684 e1e_wphy(&adapter->hw,
1685 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1686 } else {
1687 e1000e_blink_led(&adapter->hw);
1688 msleep_interruptible(data * 1000);
1689 }
1690
1691 adapter->hw.mac.ops.led_off(&adapter->hw);
1692 clear_bit(E1000_LED_ON, &adapter->led_status);
1693 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1694
1695 return 0;
1696}
1697
1698static int e1000_nway_reset(struct net_device *netdev)
1699{
1700 struct e1000_adapter *adapter = netdev_priv(netdev);
1701 if (netif_running(netdev))
1702 e1000e_reinit_locked(adapter);
1703 return 0;
1704}
1705
Auke Kokbc7f75f2007-09-17 12:30:59 -07001706static void e1000_get_ethtool_stats(struct net_device *netdev,
1707 struct ethtool_stats *stats,
1708 u64 *data)
1709{
1710 struct e1000_adapter *adapter = netdev_priv(netdev);
1711 int i;
1712
1713 e1000e_update_stats(adapter);
1714 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1715 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1716 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1717 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1718 }
1719}
1720
1721static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1722 u8 *data)
1723{
1724 u8 *p = data;
1725 int i;
1726
1727 switch (stringset) {
1728 case ETH_SS_TEST:
1729 memcpy(data, *e1000_gstrings_test,
1730 E1000_TEST_LEN*ETH_GSTRING_LEN);
1731 break;
1732 case ETH_SS_STATS:
1733 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1734 memcpy(p, e1000_gstrings_stats[i].stat_string,
1735 ETH_GSTRING_LEN);
1736 p += ETH_GSTRING_LEN;
1737 }
1738 break;
1739 }
1740}
1741
1742static const struct ethtool_ops e1000_ethtool_ops = {
1743 .get_settings = e1000_get_settings,
1744 .set_settings = e1000_set_settings,
1745 .get_drvinfo = e1000_get_drvinfo,
1746 .get_regs_len = e1000_get_regs_len,
1747 .get_regs = e1000_get_regs,
1748 .get_wol = e1000_get_wol,
1749 .set_wol = e1000_set_wol,
1750 .get_msglevel = e1000_get_msglevel,
1751 .set_msglevel = e1000_set_msglevel,
1752 .nway_reset = e1000_nway_reset,
1753 .get_link = ethtool_op_get_link,
1754 .get_eeprom_len = e1000_get_eeprom_len,
1755 .get_eeprom = e1000_get_eeprom,
1756 .set_eeprom = e1000_set_eeprom,
1757 .get_ringparam = e1000_get_ringparam,
1758 .set_ringparam = e1000_set_ringparam,
1759 .get_pauseparam = e1000_get_pauseparam,
1760 .set_pauseparam = e1000_set_pauseparam,
1761 .get_rx_csum = e1000_get_rx_csum,
1762 .set_rx_csum = e1000_set_rx_csum,
1763 .get_tx_csum = e1000_get_tx_csum,
1764 .set_tx_csum = e1000_set_tx_csum,
1765 .get_sg = ethtool_op_get_sg,
1766 .set_sg = ethtool_op_set_sg,
1767 .get_tso = ethtool_op_get_tso,
1768 .set_tso = e1000_set_tso,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001769 .self_test = e1000_diag_test,
1770 .get_strings = e1000_get_strings,
1771 .phys_id = e1000_phys_id,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001772 .get_ethtool_stats = e1000_get_ethtool_stats,
Jeff Garzikb9f2c042007-10-03 18:07:32 -07001773 .get_sset_count = e1000e_get_sset_count,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001774};
1775
1776void e1000e_set_ethtool_ops(struct net_device *netdev)
1777{
1778 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1779}