Chris Metcalf | 867e359 | 2010-05-28 23:09:12 -0400 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/mmzone.h> |
| 18 | #include <linux/bootmem.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/node.h> |
| 21 | #include <linux/cpu.h> |
| 22 | #include <linux/ioport.h> |
| 23 | #include <linux/kexec.h> |
| 24 | #include <linux/pci.h> |
| 25 | #include <linux/initrd.h> |
| 26 | #include <linux/io.h> |
| 27 | #include <linux/highmem.h> |
| 28 | #include <linux/smp.h> |
| 29 | #include <linux/timex.h> |
| 30 | #include <asm/setup.h> |
| 31 | #include <asm/sections.h> |
| 32 | #include <asm/sections.h> |
| 33 | #include <asm/cacheflush.h> |
| 34 | #include <asm/cacheflush.h> |
| 35 | #include <asm/pgalloc.h> |
| 36 | #include <asm/mmu_context.h> |
| 37 | #include <hv/hypervisor.h> |
| 38 | #include <arch/interrupts.h> |
| 39 | |
| 40 | /* <linux/smp.h> doesn't provide this definition. */ |
| 41 | #ifndef CONFIG_SMP |
| 42 | #define setup_max_cpus 1 |
| 43 | #endif |
| 44 | |
| 45 | static inline int ABS(int x) { return x >= 0 ? x : -x; } |
| 46 | |
| 47 | /* Chip information */ |
| 48 | char chip_model[64] __write_once; |
| 49 | |
| 50 | struct pglist_data node_data[MAX_NUMNODES] __read_mostly; |
| 51 | EXPORT_SYMBOL(node_data); |
| 52 | |
| 53 | /* We only create bootmem data on node 0. */ |
| 54 | static bootmem_data_t __initdata node0_bdata; |
| 55 | |
| 56 | /* Information on the NUMA nodes that we compute early */ |
| 57 | unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES]; |
| 58 | unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES]; |
| 59 | unsigned long __initdata node_memmap_pfn[MAX_NUMNODES]; |
| 60 | unsigned long __initdata node_percpu_pfn[MAX_NUMNODES]; |
| 61 | unsigned long __initdata node_free_pfn[MAX_NUMNODES]; |
| 62 | |
| 63 | #ifdef CONFIG_HIGHMEM |
| 64 | /* Page frame index of end of lowmem on each controller. */ |
| 65 | unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES]; |
| 66 | |
| 67 | /* Number of pages that can be mapped into lowmem. */ |
| 68 | static unsigned long __initdata mappable_physpages; |
| 69 | #endif |
| 70 | |
| 71 | /* Data on which physical memory controller corresponds to which NUMA node */ |
| 72 | int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 }; |
| 73 | |
| 74 | #ifdef CONFIG_HIGHMEM |
| 75 | /* Map information from VAs to PAs */ |
| 76 | unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)] |
| 77 | __write_once __attribute__((aligned(L2_CACHE_BYTES))); |
| 78 | EXPORT_SYMBOL(pbase_map); |
| 79 | |
| 80 | /* Map information from PAs to VAs */ |
| 81 | void *vbase_map[NR_PA_HIGHBIT_VALUES] |
| 82 | __write_once __attribute__((aligned(L2_CACHE_BYTES))); |
| 83 | EXPORT_SYMBOL(vbase_map); |
| 84 | #endif |
| 85 | |
| 86 | /* Node number as a function of the high PA bits */ |
| 87 | int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once; |
| 88 | EXPORT_SYMBOL(highbits_to_node); |
| 89 | |
| 90 | static unsigned int __initdata maxmem_pfn = -1U; |
| 91 | static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = { |
| 92 | [0 ... MAX_NUMNODES-1] = -1U |
| 93 | }; |
| 94 | static nodemask_t __initdata isolnodes; |
| 95 | |
| 96 | #ifdef CONFIG_PCI |
| 97 | enum { DEFAULT_PCI_RESERVE_MB = 64 }; |
| 98 | static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB; |
| 99 | unsigned long __initdata pci_reserve_start_pfn = -1U; |
| 100 | unsigned long __initdata pci_reserve_end_pfn = -1U; |
| 101 | #endif |
| 102 | |
| 103 | static int __init setup_maxmem(char *str) |
| 104 | { |
| 105 | long maxmem_mb; |
| 106 | if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 || |
| 107 | maxmem_mb == 0) |
| 108 | return -EINVAL; |
| 109 | |
| 110 | maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) << |
| 111 | (HPAGE_SHIFT - PAGE_SHIFT); |
| 112 | printk("Forcing RAM used to no more than %dMB\n", |
| 113 | maxmem_pfn >> (20 - PAGE_SHIFT)); |
| 114 | return 0; |
| 115 | } |
| 116 | early_param("maxmem", setup_maxmem); |
| 117 | |
| 118 | static int __init setup_maxnodemem(char *str) |
| 119 | { |
| 120 | char *endp; |
| 121 | long maxnodemem_mb, node; |
| 122 | |
| 123 | node = str ? simple_strtoul(str, &endp, 0) : INT_MAX; |
| 124 | if (node >= MAX_NUMNODES || *endp != ':' || |
| 125 | strict_strtol(endp+1, 0, &maxnodemem_mb) != 0) |
| 126 | return -EINVAL; |
| 127 | |
| 128 | maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) << |
| 129 | (HPAGE_SHIFT - PAGE_SHIFT); |
| 130 | printk("Forcing RAM used on node %ld to no more than %dMB\n", |
| 131 | node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT)); |
| 132 | return 0; |
| 133 | } |
| 134 | early_param("maxnodemem", setup_maxnodemem); |
| 135 | |
| 136 | static int __init setup_isolnodes(char *str) |
| 137 | { |
| 138 | char buf[MAX_NUMNODES * 5]; |
| 139 | if (str == NULL || nodelist_parse(str, isolnodes) != 0) |
| 140 | return -EINVAL; |
| 141 | |
| 142 | nodelist_scnprintf(buf, sizeof(buf), isolnodes); |
| 143 | printk("Set isolnodes value to '%s'\n", buf); |
| 144 | return 0; |
| 145 | } |
| 146 | early_param("isolnodes", setup_isolnodes); |
| 147 | |
| 148 | #ifdef CONFIG_PCI |
| 149 | static int __init setup_pci_reserve(char* str) |
| 150 | { |
| 151 | unsigned long mb; |
| 152 | |
| 153 | if (str == NULL || strict_strtoul(str, 0, &mb) != 0 || |
| 154 | mb > 3 * 1024) |
| 155 | return -EINVAL; |
| 156 | |
| 157 | pci_reserve_mb = mb; |
| 158 | printk("Reserving %dMB for PCIE root complex mappings\n", |
| 159 | pci_reserve_mb); |
| 160 | return 0; |
| 161 | } |
| 162 | early_param("pci_reserve", setup_pci_reserve); |
| 163 | #endif |
| 164 | |
| 165 | #ifndef __tilegx__ |
| 166 | /* |
| 167 | * vmalloc=size forces the vmalloc area to be exactly 'size' bytes. |
| 168 | * This can be used to increase (or decrease) the vmalloc area. |
| 169 | */ |
| 170 | static int __init parse_vmalloc(char *arg) |
| 171 | { |
| 172 | if (!arg) |
| 173 | return -EINVAL; |
| 174 | |
| 175 | VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK; |
| 176 | |
| 177 | /* See validate_va() for more on this test. */ |
| 178 | if ((long)_VMALLOC_START >= 0) |
| 179 | early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n", |
| 180 | VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL); |
| 181 | |
| 182 | return 0; |
| 183 | } |
| 184 | early_param("vmalloc", parse_vmalloc); |
| 185 | #endif |
| 186 | |
| 187 | #ifdef CONFIG_HIGHMEM |
| 188 | /* |
| 189 | * Determine for each controller where its lowmem is mapped and how |
| 190 | * much of it is mapped there. On controller zero, the first few |
| 191 | * megabytes are mapped at 0xfd000000 as code, so in principle we |
| 192 | * could start our data mappings higher up, but for now we don't |
| 193 | * bother, to avoid additional confusion. |
| 194 | * |
| 195 | * One question is whether, on systems with more than 768 Mb and |
| 196 | * controllers of different sizes, to map in a proportionate amount of |
| 197 | * each one, or to try to map the same amount from each controller. |
| 198 | * (E.g. if we have three controllers with 256MB, 1GB, and 256MB |
| 199 | * respectively, do we map 256MB from each, or do we map 128 MB, 512 |
| 200 | * MB, and 128 MB respectively?) For now we use a proportionate |
| 201 | * solution like the latter. |
| 202 | * |
| 203 | * The VA/PA mapping demands that we align our decisions at 16 MB |
| 204 | * boundaries so that we can rapidly convert VA to PA. |
| 205 | */ |
| 206 | static void *__init setup_pa_va_mapping(void) |
| 207 | { |
| 208 | unsigned long curr_pages = 0; |
| 209 | unsigned long vaddr = PAGE_OFFSET; |
| 210 | nodemask_t highonlynodes = isolnodes; |
| 211 | int i, j; |
| 212 | |
| 213 | memset(pbase_map, -1, sizeof(pbase_map)); |
| 214 | memset(vbase_map, -1, sizeof(vbase_map)); |
| 215 | |
| 216 | /* Node zero cannot be isolated for LOWMEM purposes. */ |
| 217 | node_clear(0, highonlynodes); |
| 218 | |
| 219 | /* Count up the number of pages on non-highonlynodes controllers. */ |
| 220 | mappable_physpages = 0; |
| 221 | for_each_online_node(i) { |
| 222 | if (!node_isset(i, highonlynodes)) |
| 223 | mappable_physpages += |
| 224 | node_end_pfn[i] - node_start_pfn[i]; |
| 225 | } |
| 226 | |
| 227 | for_each_online_node(i) { |
| 228 | unsigned long start = node_start_pfn[i]; |
| 229 | unsigned long end = node_end_pfn[i]; |
| 230 | unsigned long size = end - start; |
| 231 | unsigned long vaddr_end; |
| 232 | |
| 233 | if (node_isset(i, highonlynodes)) { |
| 234 | /* Mark this controller as having no lowmem. */ |
| 235 | node_lowmem_end_pfn[i] = start; |
| 236 | continue; |
| 237 | } |
| 238 | |
| 239 | curr_pages += size; |
| 240 | if (mappable_physpages > MAXMEM_PFN) { |
| 241 | vaddr_end = PAGE_OFFSET + |
| 242 | (((u64)curr_pages * MAXMEM_PFN / |
| 243 | mappable_physpages) |
| 244 | << PAGE_SHIFT); |
| 245 | } else { |
| 246 | vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT); |
| 247 | } |
| 248 | for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) { |
| 249 | unsigned long this_pfn = |
| 250 | start + (j << HUGETLB_PAGE_ORDER); |
| 251 | pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn; |
| 252 | if (vbase_map[__pfn_to_highbits(this_pfn)] == |
| 253 | (void *)-1) |
| 254 | vbase_map[__pfn_to_highbits(this_pfn)] = |
| 255 | (void *)(vaddr & HPAGE_MASK); |
| 256 | } |
| 257 | node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER); |
| 258 | BUG_ON(node_lowmem_end_pfn[i] > end); |
| 259 | } |
| 260 | |
| 261 | /* Return highest address of any mapped memory. */ |
| 262 | return (void *)vaddr; |
| 263 | } |
| 264 | #endif /* CONFIG_HIGHMEM */ |
| 265 | |
| 266 | /* |
| 267 | * Register our most important memory mappings with the debug stub. |
| 268 | * |
| 269 | * This is up to 4 mappings for lowmem, one mapping per memory |
| 270 | * controller, plus one for our text segment. |
| 271 | */ |
| 272 | void __cpuinit store_permanent_mappings(void) |
| 273 | { |
| 274 | int i; |
| 275 | |
| 276 | for_each_online_node(i) { |
| 277 | HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT; |
| 278 | #ifdef CONFIG_HIGHMEM |
| 279 | HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i]; |
| 280 | #else |
| 281 | HV_PhysAddr high_mapped_pa = node_end_pfn[i]; |
| 282 | #endif |
| 283 | |
| 284 | unsigned long pages = high_mapped_pa - node_start_pfn[i]; |
| 285 | HV_VirtAddr addr = (HV_VirtAddr) __va(pa); |
| 286 | hv_store_mapping(addr, pages << PAGE_SHIFT, pa); |
| 287 | } |
| 288 | |
| 289 | hv_store_mapping((HV_VirtAddr)_stext, |
| 290 | (uint32_t)(_einittext - _stext), 0); |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Use hv_inquire_physical() to populate node_{start,end}_pfn[] |
| 295 | * and node_online_map, doing suitable sanity-checking. |
| 296 | * Also set min_low_pfn, max_low_pfn, and max_pfn. |
| 297 | */ |
| 298 | static void __init setup_memory(void) |
| 299 | { |
| 300 | int i, j; |
| 301 | int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 }; |
| 302 | #ifdef CONFIG_HIGHMEM |
| 303 | long highmem_pages; |
| 304 | #endif |
| 305 | #ifndef __tilegx__ |
| 306 | int cap; |
| 307 | #endif |
| 308 | #if defined(CONFIG_HIGHMEM) || defined(__tilegx__) |
| 309 | long lowmem_pages; |
| 310 | #endif |
| 311 | |
| 312 | /* We are using a char to hold the cpu_2_node[] mapping */ |
| 313 | BUG_ON(MAX_NUMNODES > 127); |
| 314 | |
| 315 | /* Discover the ranges of memory available to us */ |
| 316 | for (i = 0; ; ++i) { |
| 317 | unsigned long start, size, end, highbits; |
| 318 | HV_PhysAddrRange range = hv_inquire_physical(i); |
| 319 | if (range.size == 0) |
| 320 | break; |
| 321 | #ifdef CONFIG_FLATMEM |
| 322 | if (i > 0) { |
| 323 | printk("Can't use discontiguous PAs: %#llx..%#llx\n", |
| 324 | range.size, range.start + range.size); |
| 325 | continue; |
| 326 | } |
| 327 | #endif |
| 328 | #ifndef __tilegx__ |
| 329 | if ((unsigned long)range.start) { |
| 330 | printk("Range not at 4GB multiple: %#llx..%#llx\n", |
| 331 | range.start, range.start + range.size); |
| 332 | continue; |
| 333 | } |
| 334 | #endif |
| 335 | if ((range.start & (HPAGE_SIZE-1)) != 0 || |
| 336 | (range.size & (HPAGE_SIZE-1)) != 0) { |
| 337 | unsigned long long start_pa = range.start; |
| 338 | unsigned long long size = range.size; |
| 339 | range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK; |
| 340 | range.size -= (range.start - start_pa); |
| 341 | range.size &= HPAGE_MASK; |
| 342 | printk("Range not hugepage-aligned: %#llx..%#llx:" |
| 343 | " now %#llx-%#llx\n", |
| 344 | start_pa, start_pa + size, |
| 345 | range.start, range.start + range.size); |
| 346 | } |
| 347 | highbits = __pa_to_highbits(range.start); |
| 348 | if (highbits >= NR_PA_HIGHBIT_VALUES) { |
| 349 | printk("PA high bits too high: %#llx..%#llx\n", |
| 350 | range.start, range.start + range.size); |
| 351 | continue; |
| 352 | } |
| 353 | if (highbits_seen[highbits]) { |
| 354 | printk("Range overlaps in high bits: %#llx..%#llx\n", |
| 355 | range.start, range.start + range.size); |
| 356 | continue; |
| 357 | } |
| 358 | highbits_seen[highbits] = 1; |
| 359 | if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) { |
| 360 | int size = maxnodemem_pfn[i]; |
| 361 | if (size > 0) { |
| 362 | printk("Maxnodemem reduced node %d to" |
| 363 | " %d pages\n", i, size); |
| 364 | range.size = (HV_PhysAddr)size << PAGE_SHIFT; |
| 365 | } else { |
| 366 | printk("Maxnodemem disabled node %d\n", i); |
| 367 | continue; |
| 368 | } |
| 369 | } |
| 370 | if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) { |
| 371 | int size = maxmem_pfn - num_physpages; |
| 372 | if (size > 0) { |
| 373 | printk("Maxmem reduced node %d to %d pages\n", |
| 374 | i, size); |
| 375 | range.size = (HV_PhysAddr)size << PAGE_SHIFT; |
| 376 | } else { |
| 377 | printk("Maxmem disabled node %d\n", i); |
| 378 | continue; |
| 379 | } |
| 380 | } |
| 381 | if (i >= MAX_NUMNODES) { |
| 382 | printk("Too many PA nodes (#%d): %#llx...%#llx\n", |
| 383 | i, range.size, range.size + range.start); |
| 384 | continue; |
| 385 | } |
| 386 | |
| 387 | start = range.start >> PAGE_SHIFT; |
| 388 | size = range.size >> PAGE_SHIFT; |
| 389 | end = start + size; |
| 390 | |
| 391 | #ifndef __tilegx__ |
| 392 | if (((HV_PhysAddr)end << PAGE_SHIFT) != |
| 393 | (range.start + range.size)) { |
| 394 | printk("PAs too high to represent: %#llx..%#llx\n", |
| 395 | range.start, range.start + range.size); |
| 396 | continue; |
| 397 | } |
| 398 | #endif |
| 399 | #ifdef CONFIG_PCI |
| 400 | /* |
| 401 | * Blocks that overlap the pci reserved region must |
| 402 | * have enough space to hold the maximum percpu data |
| 403 | * region at the top of the range. If there isn't |
| 404 | * enough space above the reserved region, just |
| 405 | * truncate the node. |
| 406 | */ |
| 407 | if (start <= pci_reserve_start_pfn && |
| 408 | end > pci_reserve_start_pfn) { |
| 409 | unsigned int per_cpu_size = |
| 410 | __per_cpu_end - __per_cpu_start; |
| 411 | unsigned int percpu_pages = |
| 412 | NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT); |
| 413 | if (end < pci_reserve_end_pfn + percpu_pages) { |
| 414 | end = pci_reserve_start_pfn; |
| 415 | printk("PCI mapping region reduced node %d to" |
| 416 | " %ld pages\n", i, end - start); |
| 417 | } |
| 418 | } |
| 419 | #endif |
| 420 | |
| 421 | for (j = __pfn_to_highbits(start); |
| 422 | j <= __pfn_to_highbits(end - 1); j++) |
| 423 | highbits_to_node[j] = i; |
| 424 | |
| 425 | node_start_pfn[i] = start; |
| 426 | node_end_pfn[i] = end; |
| 427 | node_controller[i] = range.controller; |
| 428 | num_physpages += size; |
| 429 | max_pfn = end; |
| 430 | |
| 431 | /* Mark node as online */ |
| 432 | node_set(i, node_online_map); |
| 433 | node_set(i, node_possible_map); |
| 434 | } |
| 435 | |
| 436 | #ifndef __tilegx__ |
| 437 | /* |
| 438 | * For 4KB pages, mem_map "struct page" data is 1% of the size |
| 439 | * of the physical memory, so can be quite big (640 MB for |
| 440 | * four 16G zones). These structures must be mapped in |
| 441 | * lowmem, and since we currently cap out at about 768 MB, |
| 442 | * it's impractical to try to use this much address space. |
| 443 | * For now, arbitrarily cap the amount of physical memory |
| 444 | * we're willing to use at 8 million pages (32GB of 4KB pages). |
| 445 | */ |
| 446 | cap = 8 * 1024 * 1024; /* 8 million pages */ |
| 447 | if (num_physpages > cap) { |
| 448 | int num_nodes = num_online_nodes(); |
| 449 | int cap_each = cap / num_nodes; |
| 450 | unsigned long dropped_pages = 0; |
| 451 | for (i = 0; i < num_nodes; ++i) { |
| 452 | int size = node_end_pfn[i] - node_start_pfn[i]; |
| 453 | if (size > cap_each) { |
| 454 | dropped_pages += (size - cap_each); |
| 455 | node_end_pfn[i] = node_start_pfn[i] + cap_each; |
| 456 | } |
| 457 | } |
| 458 | num_physpages -= dropped_pages; |
| 459 | printk(KERN_WARNING "Only using %ldMB memory;" |
| 460 | " ignoring %ldMB.\n", |
| 461 | num_physpages >> (20 - PAGE_SHIFT), |
| 462 | dropped_pages >> (20 - PAGE_SHIFT)); |
| 463 | printk(KERN_WARNING "Consider using a larger page size.\n"); |
| 464 | } |
| 465 | #endif |
| 466 | |
| 467 | /* Heap starts just above the last loaded address. */ |
| 468 | min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET); |
| 469 | |
| 470 | #ifdef CONFIG_HIGHMEM |
| 471 | /* Find where we map lowmem from each controller. */ |
| 472 | high_memory = setup_pa_va_mapping(); |
| 473 | |
| 474 | /* Set max_low_pfn based on what node 0 can directly address. */ |
| 475 | max_low_pfn = node_lowmem_end_pfn[0]; |
| 476 | |
| 477 | lowmem_pages = (mappable_physpages > MAXMEM_PFN) ? |
| 478 | MAXMEM_PFN : mappable_physpages; |
| 479 | highmem_pages = (long) (num_physpages - lowmem_pages); |
| 480 | |
| 481 | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", |
| 482 | pages_to_mb(highmem_pages > 0 ? highmem_pages : 0)); |
| 483 | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", |
| 484 | pages_to_mb(lowmem_pages)); |
| 485 | #else |
| 486 | /* Set max_low_pfn based on what node 0 can directly address. */ |
| 487 | max_low_pfn = node_end_pfn[0]; |
| 488 | |
| 489 | #ifndef __tilegx__ |
| 490 | if (node_end_pfn[0] > MAXMEM_PFN) { |
| 491 | printk(KERN_WARNING "Only using %ldMB LOWMEM.\n", |
| 492 | MAXMEM>>20); |
| 493 | printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); |
| 494 | max_low_pfn = MAXMEM_PFN; |
| 495 | max_pfn = MAXMEM_PFN; |
| 496 | num_physpages = MAXMEM_PFN; |
| 497 | node_end_pfn[0] = MAXMEM_PFN; |
| 498 | } else { |
| 499 | printk(KERN_NOTICE "%ldMB memory available.\n", |
| 500 | pages_to_mb(node_end_pfn[0])); |
| 501 | } |
| 502 | for (i = 1; i < MAX_NUMNODES; ++i) { |
| 503 | node_start_pfn[i] = 0; |
| 504 | node_end_pfn[i] = 0; |
| 505 | } |
| 506 | high_memory = __va(node_end_pfn[0]); |
| 507 | #else |
| 508 | lowmem_pages = 0; |
| 509 | for (i = 0; i < MAX_NUMNODES; ++i) { |
| 510 | int pages = node_end_pfn[i] - node_start_pfn[i]; |
| 511 | lowmem_pages += pages; |
| 512 | if (pages) |
| 513 | high_memory = pfn_to_kaddr(node_end_pfn[i]); |
| 514 | } |
| 515 | printk(KERN_NOTICE "%ldMB memory available.\n", |
| 516 | pages_to_mb(lowmem_pages)); |
| 517 | #endif |
| 518 | #endif |
| 519 | } |
| 520 | |
| 521 | static void __init setup_bootmem_allocator(void) |
| 522 | { |
| 523 | unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn; |
| 524 | |
| 525 | /* Provide a node 0 bdata. */ |
| 526 | NODE_DATA(0)->bdata = &node0_bdata; |
| 527 | |
| 528 | #ifdef CONFIG_PCI |
| 529 | /* Don't let boot memory alias the PCI region. */ |
| 530 | last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn); |
| 531 | #else |
| 532 | last_alloc_pfn = max_low_pfn; |
| 533 | #endif |
| 534 | |
| 535 | /* |
| 536 | * Initialize the boot-time allocator (with low memory only): |
| 537 | * The first argument says where to put the bitmap, and the |
| 538 | * second says where the end of allocatable memory is. |
| 539 | */ |
| 540 | bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn); |
| 541 | |
| 542 | /* |
| 543 | * Let the bootmem allocator use all the space we've given it |
| 544 | * except for its own bitmap. |
| 545 | */ |
| 546 | first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size); |
| 547 | if (first_alloc_pfn >= last_alloc_pfn) |
| 548 | early_panic("Not enough memory on controller 0 for bootmem\n"); |
| 549 | |
| 550 | free_bootmem(PFN_PHYS(first_alloc_pfn), |
| 551 | PFN_PHYS(last_alloc_pfn - first_alloc_pfn)); |
| 552 | |
| 553 | #ifdef CONFIG_KEXEC |
| 554 | if (crashk_res.start != crashk_res.end) |
| 555 | reserve_bootmem(crashk_res.start, |
| 556 | crashk_res.end - crashk_res.start + 1, 0); |
| 557 | #endif |
| 558 | |
| 559 | } |
| 560 | |
| 561 | void *__init alloc_remap(int nid, unsigned long size) |
| 562 | { |
| 563 | int pages = node_end_pfn[nid] - node_start_pfn[nid]; |
| 564 | void *map = pfn_to_kaddr(node_memmap_pfn[nid]); |
| 565 | BUG_ON(size != pages * sizeof(struct page)); |
| 566 | memset(map, 0, size); |
| 567 | return map; |
| 568 | } |
| 569 | |
| 570 | static int __init percpu_size(void) |
| 571 | { |
| 572 | int size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE); |
| 573 | #ifdef CONFIG_MODULES |
| 574 | if (size < PERCPU_ENOUGH_ROOM) |
| 575 | size = PERCPU_ENOUGH_ROOM; |
| 576 | #endif |
| 577 | /* In several places we assume the per-cpu data fits on a huge page. */ |
| 578 | BUG_ON(kdata_huge && size > HPAGE_SIZE); |
| 579 | return size; |
| 580 | } |
| 581 | |
| 582 | static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal) |
| 583 | { |
| 584 | void *kva = __alloc_bootmem(size, PAGE_SIZE, goal); |
| 585 | unsigned long pfn = kaddr_to_pfn(kva); |
| 586 | BUG_ON(goal && PFN_PHYS(pfn) != goal); |
| 587 | return pfn; |
| 588 | } |
| 589 | |
| 590 | static void __init zone_sizes_init(void) |
| 591 | { |
| 592 | unsigned long zones_size[MAX_NR_ZONES] = { 0 }; |
| 593 | unsigned long node_percpu[MAX_NUMNODES] = { 0 }; |
| 594 | int size = percpu_size(); |
| 595 | int num_cpus = smp_height * smp_width; |
| 596 | int i; |
| 597 | |
| 598 | for (i = 0; i < num_cpus; ++i) |
| 599 | node_percpu[cpu_to_node(i)] += size; |
| 600 | |
| 601 | for_each_online_node(i) { |
| 602 | unsigned long start = node_start_pfn[i]; |
| 603 | unsigned long end = node_end_pfn[i]; |
| 604 | #ifdef CONFIG_HIGHMEM |
| 605 | unsigned long lowmem_end = node_lowmem_end_pfn[i]; |
| 606 | #else |
| 607 | unsigned long lowmem_end = end; |
| 608 | #endif |
| 609 | int memmap_size = (end - start) * sizeof(struct page); |
| 610 | node_free_pfn[i] = start; |
| 611 | |
| 612 | /* |
| 613 | * Set aside pages for per-cpu data and the mem_map array. |
| 614 | * |
| 615 | * Since the per-cpu data requires special homecaching, |
| 616 | * if we are in kdata_huge mode, we put it at the end of |
| 617 | * the lowmem region. If we're not in kdata_huge mode, |
| 618 | * we take the per-cpu pages from the bottom of the |
| 619 | * controller, since that avoids fragmenting a huge page |
| 620 | * that users might want. We always take the memmap |
| 621 | * from the bottom of the controller, since with |
| 622 | * kdata_huge that lets it be under a huge TLB entry. |
| 623 | * |
| 624 | * If the user has requested isolnodes for a controller, |
| 625 | * though, there'll be no lowmem, so we just alloc_bootmem |
| 626 | * the memmap. There will be no percpu memory either. |
| 627 | */ |
| 628 | if (__pfn_to_highbits(start) == 0) { |
| 629 | /* In low PAs, allocate via bootmem. */ |
| 630 | unsigned long goal = 0; |
| 631 | node_memmap_pfn[i] = |
| 632 | alloc_bootmem_pfn(memmap_size, goal); |
| 633 | if (kdata_huge) |
| 634 | goal = PFN_PHYS(lowmem_end) - node_percpu[i]; |
| 635 | if (node_percpu[i]) |
| 636 | node_percpu_pfn[i] = |
| 637 | alloc_bootmem_pfn(node_percpu[i], goal); |
| 638 | } else if (cpu_isset(i, isolnodes)) { |
| 639 | node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0); |
| 640 | BUG_ON(node_percpu[i] != 0); |
| 641 | } else { |
| 642 | /* In high PAs, just reserve some pages. */ |
| 643 | node_memmap_pfn[i] = node_free_pfn[i]; |
| 644 | node_free_pfn[i] += PFN_UP(memmap_size); |
| 645 | if (!kdata_huge) { |
| 646 | node_percpu_pfn[i] = node_free_pfn[i]; |
| 647 | node_free_pfn[i] += PFN_UP(node_percpu[i]); |
| 648 | } else { |
| 649 | node_percpu_pfn[i] = |
| 650 | lowmem_end - PFN_UP(node_percpu[i]); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | #ifdef CONFIG_HIGHMEM |
| 655 | if (start > lowmem_end) { |
| 656 | zones_size[ZONE_NORMAL] = 0; |
| 657 | zones_size[ZONE_HIGHMEM] = end - start; |
| 658 | } else { |
| 659 | zones_size[ZONE_NORMAL] = lowmem_end - start; |
| 660 | zones_size[ZONE_HIGHMEM] = end - lowmem_end; |
| 661 | } |
| 662 | #else |
| 663 | zones_size[ZONE_NORMAL] = end - start; |
| 664 | #endif |
| 665 | |
| 666 | /* |
| 667 | * Everyone shares node 0's bootmem allocator, but |
| 668 | * we use alloc_remap(), above, to put the actual |
| 669 | * struct page array on the individual controllers, |
| 670 | * which is most of the data that we actually care about. |
| 671 | * We can't place bootmem allocators on the other |
| 672 | * controllers since the bootmem allocator can only |
| 673 | * operate on 32-bit physical addresses. |
| 674 | */ |
| 675 | NODE_DATA(i)->bdata = NODE_DATA(0)->bdata; |
| 676 | |
| 677 | free_area_init_node(i, zones_size, start, NULL); |
| 678 | printk(KERN_DEBUG " DMA zone: %ld per-cpu pages\n", |
| 679 | PFN_UP(node_percpu[i])); |
| 680 | |
| 681 | /* Track the type of memory on each node */ |
| 682 | if (zones_size[ZONE_NORMAL]) |
| 683 | node_set_state(i, N_NORMAL_MEMORY); |
| 684 | #ifdef CONFIG_HIGHMEM |
| 685 | if (end != start) |
| 686 | node_set_state(i, N_HIGH_MEMORY); |
| 687 | #endif |
| 688 | |
| 689 | node_set_online(i); |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | #ifdef CONFIG_NUMA |
| 694 | |
| 695 | /* which logical CPUs are on which nodes */ |
| 696 | struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once; |
| 697 | EXPORT_SYMBOL(node_2_cpu_mask); |
| 698 | |
| 699 | /* which node each logical CPU is on */ |
| 700 | char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES))); |
| 701 | EXPORT_SYMBOL(cpu_2_node); |
| 702 | |
| 703 | /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */ |
| 704 | static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus) |
| 705 | { |
| 706 | if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus)) |
| 707 | return -1; |
| 708 | else |
| 709 | return cpu_to_node(cpu); |
| 710 | } |
| 711 | |
| 712 | /* Return number of immediately-adjacent tiles sharing the same NUMA node. */ |
| 713 | static int __init node_neighbors(int node, int cpu, |
| 714 | struct cpumask *unbound_cpus) |
| 715 | { |
| 716 | int neighbors = 0; |
| 717 | int w = smp_width; |
| 718 | int h = smp_height; |
| 719 | int x = cpu % w; |
| 720 | int y = cpu / w; |
| 721 | if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node) |
| 722 | ++neighbors; |
| 723 | if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node) |
| 724 | ++neighbors; |
| 725 | if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node) |
| 726 | ++neighbors; |
| 727 | if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node) |
| 728 | ++neighbors; |
| 729 | return neighbors; |
| 730 | } |
| 731 | |
| 732 | static void __init setup_numa_mapping(void) |
| 733 | { |
| 734 | int distance[MAX_NUMNODES][NR_CPUS]; |
| 735 | HV_Coord coord; |
| 736 | int cpu, node, cpus, i, x, y; |
| 737 | int num_nodes = num_online_nodes(); |
| 738 | struct cpumask unbound_cpus; |
| 739 | nodemask_t default_nodes; |
| 740 | |
| 741 | cpumask_clear(&unbound_cpus); |
| 742 | |
| 743 | /* Get set of nodes we will use for defaults */ |
| 744 | nodes_andnot(default_nodes, node_online_map, isolnodes); |
| 745 | if (nodes_empty(default_nodes)) { |
| 746 | BUG_ON(!node_isset(0, node_online_map)); |
| 747 | printk("Forcing NUMA node zero available as a default node\n"); |
| 748 | node_set(0, default_nodes); |
| 749 | } |
| 750 | |
| 751 | /* Populate the distance[] array */ |
| 752 | memset(distance, -1, sizeof(distance)); |
| 753 | cpu = 0; |
| 754 | for (coord.y = 0; coord.y < smp_height; ++coord.y) { |
| 755 | for (coord.x = 0; coord.x < smp_width; |
| 756 | ++coord.x, ++cpu) { |
| 757 | BUG_ON(cpu >= nr_cpu_ids); |
| 758 | if (!cpu_possible(cpu)) { |
| 759 | cpu_2_node[cpu] = -1; |
| 760 | continue; |
| 761 | } |
| 762 | for_each_node_mask(node, default_nodes) { |
| 763 | HV_MemoryControllerInfo info = |
| 764 | hv_inquire_memory_controller( |
| 765 | coord, node_controller[node]); |
| 766 | distance[node][cpu] = |
| 767 | ABS(info.coord.x) + ABS(info.coord.y); |
| 768 | } |
| 769 | cpumask_set_cpu(cpu, &unbound_cpus); |
| 770 | } |
| 771 | } |
| 772 | cpus = cpu; |
| 773 | |
| 774 | /* |
| 775 | * Round-robin through the NUMA nodes until all the cpus are |
| 776 | * assigned. We could be more clever here (e.g. create four |
| 777 | * sorted linked lists on the same set of cpu nodes, and pull |
| 778 | * off them in round-robin sequence, removing from all four |
| 779 | * lists each time) but given the relatively small numbers |
| 780 | * involved, O(n^2) seem OK for a one-time cost. |
| 781 | */ |
| 782 | node = first_node(default_nodes); |
| 783 | while (!cpumask_empty(&unbound_cpus)) { |
| 784 | int best_cpu = -1; |
| 785 | int best_distance = INT_MAX; |
| 786 | for (cpu = 0; cpu < cpus; ++cpu) { |
| 787 | if (cpumask_test_cpu(cpu, &unbound_cpus)) { |
| 788 | /* |
| 789 | * Compute metric, which is how much |
| 790 | * closer the cpu is to this memory |
| 791 | * controller than the others, shifted |
| 792 | * up, and then the number of |
| 793 | * neighbors already in the node as an |
| 794 | * epsilon adjustment to try to keep |
| 795 | * the nodes compact. |
| 796 | */ |
| 797 | int d = distance[node][cpu] * num_nodes; |
| 798 | for_each_node_mask(i, default_nodes) { |
| 799 | if (i != node) |
| 800 | d -= distance[i][cpu]; |
| 801 | } |
| 802 | d *= 8; /* allow space for epsilon */ |
| 803 | d -= node_neighbors(node, cpu, &unbound_cpus); |
| 804 | if (d < best_distance) { |
| 805 | best_cpu = cpu; |
| 806 | best_distance = d; |
| 807 | } |
| 808 | } |
| 809 | } |
| 810 | BUG_ON(best_cpu < 0); |
| 811 | cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]); |
| 812 | cpu_2_node[best_cpu] = node; |
| 813 | cpumask_clear_cpu(best_cpu, &unbound_cpus); |
| 814 | node = next_node(node, default_nodes); |
| 815 | if (node == MAX_NUMNODES) |
| 816 | node = first_node(default_nodes); |
| 817 | } |
| 818 | |
| 819 | /* Print out node assignments and set defaults for disabled cpus */ |
| 820 | cpu = 0; |
| 821 | for (y = 0; y < smp_height; ++y) { |
| 822 | printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y); |
| 823 | for (x = 0; x < smp_width; ++x, ++cpu) { |
| 824 | if (cpu_to_node(cpu) < 0) { |
| 825 | printk(" -"); |
| 826 | cpu_2_node[cpu] = first_node(default_nodes); |
| 827 | } else { |
| 828 | printk(" %d", cpu_to_node(cpu)); |
| 829 | } |
| 830 | } |
| 831 | printk("\n"); |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | static struct cpu cpu_devices[NR_CPUS]; |
| 836 | |
| 837 | static int __init topology_init(void) |
| 838 | { |
| 839 | int i; |
| 840 | |
| 841 | for_each_online_node(i) |
| 842 | register_one_node(i); |
| 843 | |
| 844 | for_each_present_cpu(i) |
| 845 | register_cpu(&cpu_devices[i], i); |
| 846 | |
| 847 | return 0; |
| 848 | } |
| 849 | |
| 850 | subsys_initcall(topology_init); |
| 851 | |
| 852 | #else /* !CONFIG_NUMA */ |
| 853 | |
| 854 | #define setup_numa_mapping() do { } while (0) |
| 855 | |
| 856 | #endif /* CONFIG_NUMA */ |
| 857 | |
| 858 | /** |
| 859 | * setup_mpls() - Allow the user-space code to access various SPRs. |
| 860 | * |
| 861 | * Also called from online_secondary(). |
| 862 | */ |
| 863 | void __cpuinit setup_mpls(void) |
| 864 | { |
| 865 | /* Allow asynchronous TLB interrupts. */ |
| 866 | #if CHIP_HAS_TILE_DMA() |
| 867 | raw_local_irq_unmask(INT_DMATLB_MISS); |
| 868 | raw_local_irq_unmask(INT_DMATLB_ACCESS); |
| 869 | #endif |
| 870 | #if CHIP_HAS_SN_PROC() |
| 871 | raw_local_irq_unmask(INT_SNITLB_MISS); |
| 872 | #endif |
| 873 | |
| 874 | /* |
| 875 | * Allow user access to many generic SPRs, like the cycle |
| 876 | * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc. |
| 877 | */ |
| 878 | __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1); |
| 879 | |
| 880 | #if CHIP_HAS_SN() |
| 881 | /* Static network is not restricted. */ |
| 882 | __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1); |
| 883 | #endif |
| 884 | #if CHIP_HAS_SN_PROC() |
| 885 | __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1); |
| 886 | __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1); |
| 887 | #endif |
| 888 | |
| 889 | /* |
| 890 | * Set the MPL for interrupt control 0 to user level. |
| 891 | * This includes access to the SYSTEM_SAVE and EX_CONTEXT SPRs, |
| 892 | * as well as the PL 0 interrupt mask. |
| 893 | */ |
| 894 | __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1); |
| 895 | } |
| 896 | |
| 897 | static int __initdata set_initramfs_file; |
| 898 | static char __initdata initramfs_file[128] = "initramfs.cpio.gz"; |
| 899 | |
| 900 | static int __init setup_initramfs_file(char *str) |
| 901 | { |
| 902 | if (str == NULL) |
| 903 | return -EINVAL; |
| 904 | strncpy(initramfs_file, str, sizeof(initramfs_file) - 1); |
| 905 | set_initramfs_file = 1; |
| 906 | |
| 907 | return 0; |
| 908 | } |
| 909 | early_param("initramfs_file", setup_initramfs_file); |
| 910 | |
| 911 | /* |
| 912 | * We look for an additional "initramfs.cpio.gz" file in the hvfs. |
| 913 | * If there is one, we allocate some memory for it and it will be |
| 914 | * unpacked to the initramfs after any built-in initramfs_data. |
| 915 | */ |
| 916 | static void __init load_hv_initrd(void) |
| 917 | { |
| 918 | HV_FS_StatInfo stat; |
| 919 | int fd, rc; |
| 920 | void *initrd; |
| 921 | |
| 922 | fd = hv_fs_findfile((HV_VirtAddr) initramfs_file); |
| 923 | if (fd == HV_ENOENT) { |
| 924 | if (set_initramfs_file) |
| 925 | printk("No such hvfs initramfs file '%s'\n", |
| 926 | initramfs_file); |
| 927 | return; |
| 928 | } |
| 929 | BUG_ON(fd < 0); |
| 930 | stat = hv_fs_fstat(fd); |
| 931 | BUG_ON(stat.size < 0); |
| 932 | if (stat.flags & HV_FS_ISDIR) { |
| 933 | printk("Ignoring hvfs file '%s': it's a directory.\n", |
| 934 | initramfs_file); |
| 935 | return; |
| 936 | } |
| 937 | initrd = alloc_bootmem_pages(stat.size); |
| 938 | rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0); |
| 939 | if (rc != stat.size) { |
| 940 | printk("Error reading %d bytes from hvfs file '%s': %d\n", |
| 941 | stat.size, initramfs_file, rc); |
| 942 | free_bootmem((unsigned long) initrd, stat.size); |
| 943 | return; |
| 944 | } |
| 945 | initrd_start = (unsigned long) initrd; |
| 946 | initrd_end = initrd_start + stat.size; |
| 947 | } |
| 948 | |
| 949 | void __init free_initrd_mem(unsigned long begin, unsigned long end) |
| 950 | { |
| 951 | free_bootmem(begin, end - begin); |
| 952 | } |
| 953 | |
| 954 | static void __init validate_hv(void) |
| 955 | { |
| 956 | /* |
| 957 | * It may already be too late, but let's check our built-in |
| 958 | * configuration against what the hypervisor is providing. |
| 959 | */ |
| 960 | unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE); |
| 961 | int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL); |
| 962 | int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE); |
| 963 | HV_ASIDRange asid_range; |
| 964 | |
| 965 | #ifndef CONFIG_SMP |
| 966 | HV_Topology topology = hv_inquire_topology(); |
| 967 | BUG_ON(topology.coord.x != 0 || topology.coord.y != 0); |
| 968 | if (topology.width != 1 || topology.height != 1) { |
| 969 | printk("Warning: booting UP kernel on %dx%d grid;" |
| 970 | " will ignore all but first tile.\n", |
| 971 | topology.width, topology.height); |
| 972 | } |
| 973 | #endif |
| 974 | |
| 975 | if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text) |
| 976 | early_panic("Hypervisor glue size %ld is too big!\n", |
| 977 | glue_size); |
| 978 | if (hv_page_size != PAGE_SIZE) |
| 979 | early_panic("Hypervisor page size %#x != our %#lx\n", |
| 980 | hv_page_size, PAGE_SIZE); |
| 981 | if (hv_hpage_size != HPAGE_SIZE) |
| 982 | early_panic("Hypervisor huge page size %#x != our %#lx\n", |
| 983 | hv_hpage_size, HPAGE_SIZE); |
| 984 | |
| 985 | #ifdef CONFIG_SMP |
| 986 | /* |
| 987 | * Some hypervisor APIs take a pointer to a bitmap array |
| 988 | * whose size is at least the number of cpus on the chip. |
| 989 | * We use a struct cpumask for this, so it must be big enough. |
| 990 | */ |
| 991 | if ((smp_height * smp_width) > nr_cpu_ids) |
| 992 | early_panic("Hypervisor %d x %d grid too big for Linux" |
| 993 | " NR_CPUS %d\n", smp_height, smp_width, |
| 994 | nr_cpu_ids); |
| 995 | #endif |
| 996 | |
| 997 | /* |
| 998 | * Check that we're using allowed ASIDs, and initialize the |
| 999 | * various asid variables to their appropriate initial states. |
| 1000 | */ |
| 1001 | asid_range = hv_inquire_asid(0); |
| 1002 | __get_cpu_var(current_asid) = min_asid = asid_range.start; |
| 1003 | max_asid = asid_range.start + asid_range.size - 1; |
| 1004 | |
| 1005 | if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model, |
| 1006 | sizeof(chip_model)) < 0) { |
| 1007 | printk("Warning: HV_CONFSTR_CHIP_MODEL not available\n"); |
| 1008 | strlcpy(chip_model, "unknown", sizeof(chip_model)); |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | static void __init validate_va(void) |
| 1013 | { |
| 1014 | #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */ |
| 1015 | /* |
| 1016 | * Similarly, make sure we're only using allowed VAs. |
| 1017 | * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT, |
| 1018 | * and 0 .. KERNEL_HIGH_VADDR. |
| 1019 | * In addition, make sure we CAN'T use the end of memory, since |
| 1020 | * we use the last chunk of each pgd for the pgd_list. |
| 1021 | */ |
| 1022 | int i, fc_fd_ok = 0; |
| 1023 | unsigned long max_va = 0; |
| 1024 | unsigned long list_va = |
| 1025 | ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT); |
| 1026 | |
| 1027 | for (i = 0; ; ++i) { |
| 1028 | HV_VirtAddrRange range = hv_inquire_virtual(i); |
| 1029 | if (range.size == 0) |
| 1030 | break; |
| 1031 | if (range.start <= MEM_USER_INTRPT && |
| 1032 | range.start + range.size >= MEM_HV_INTRPT) |
| 1033 | fc_fd_ok = 1; |
| 1034 | if (range.start == 0) |
| 1035 | max_va = range.size; |
| 1036 | BUG_ON(range.start + range.size > list_va); |
| 1037 | } |
| 1038 | if (!fc_fd_ok) |
| 1039 | early_panic("Hypervisor not configured for VAs 0xfc/0xfd\n"); |
| 1040 | if (max_va == 0) |
| 1041 | early_panic("Hypervisor not configured for low VAs\n"); |
| 1042 | if (max_va < KERNEL_HIGH_VADDR) |
| 1043 | early_panic("Hypervisor max VA %#lx smaller than %#lx\n", |
| 1044 | max_va, KERNEL_HIGH_VADDR); |
| 1045 | |
| 1046 | /* Kernel PCs must have their high bit set; see intvec.S. */ |
| 1047 | if ((long)VMALLOC_START >= 0) |
| 1048 | early_panic( |
| 1049 | "Linux VMALLOC region below the 2GB line (%#lx)!\n" |
| 1050 | "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n" |
| 1051 | "or smaller VMALLOC_RESERVE.\n", |
| 1052 | VMALLOC_START); |
| 1053 | #endif |
| 1054 | } |
| 1055 | |
| 1056 | /* |
| 1057 | * cpu_lotar_map lists all the cpus that are valid for the supervisor |
| 1058 | * to cache data on at a page level, i.e. what cpus can be placed in |
| 1059 | * the LOTAR field of a PTE. It is equivalent to the set of possible |
| 1060 | * cpus plus any other cpus that are willing to share their cache. |
| 1061 | * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR). |
| 1062 | */ |
| 1063 | struct cpumask __write_once cpu_lotar_map; |
| 1064 | EXPORT_SYMBOL(cpu_lotar_map); |
| 1065 | |
| 1066 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 1067 | /* |
| 1068 | * hash_for_home_map lists all the tiles that hash-for-home data |
| 1069 | * will be cached on. Note that this may includes tiles that are not |
| 1070 | * valid for this supervisor to use otherwise (e.g. if a hypervisor |
| 1071 | * device is being shared between multiple supervisors). |
| 1072 | * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE). |
| 1073 | */ |
| 1074 | struct cpumask hash_for_home_map; |
| 1075 | EXPORT_SYMBOL(hash_for_home_map); |
| 1076 | #endif |
| 1077 | |
| 1078 | /* |
| 1079 | * cpu_cacheable_map lists all the cpus whose caches the hypervisor can |
| 1080 | * flush on our behalf. It is set to cpu_possible_map OR'ed with |
| 1081 | * hash_for_home_map, and it is what should be passed to |
| 1082 | * hv_flush_remote() to flush all caches. Note that if there are |
| 1083 | * dedicated hypervisor driver tiles that have authorized use of their |
| 1084 | * cache, those tiles will only appear in cpu_lotar_map, NOT in |
| 1085 | * cpu_cacheable_map, as they are a special case. |
| 1086 | */ |
| 1087 | struct cpumask __write_once cpu_cacheable_map; |
| 1088 | EXPORT_SYMBOL(cpu_cacheable_map); |
| 1089 | |
| 1090 | static __initdata struct cpumask disabled_map; |
| 1091 | |
| 1092 | static int __init disabled_cpus(char *str) |
| 1093 | { |
| 1094 | int boot_cpu = smp_processor_id(); |
| 1095 | |
| 1096 | if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0) |
| 1097 | return -EINVAL; |
| 1098 | if (cpumask_test_cpu(boot_cpu, &disabled_map)) { |
| 1099 | printk("disabled_cpus: can't disable boot cpu %d\n", boot_cpu); |
| 1100 | cpumask_clear_cpu(boot_cpu, &disabled_map); |
| 1101 | } |
| 1102 | return 0; |
| 1103 | } |
| 1104 | |
| 1105 | early_param("disabled_cpus", disabled_cpus); |
| 1106 | |
| 1107 | void __init print_disabled_cpus() |
| 1108 | { |
| 1109 | if (!cpumask_empty(&disabled_map)) { |
| 1110 | char buf[100]; |
| 1111 | cpulist_scnprintf(buf, sizeof(buf), &disabled_map); |
| 1112 | printk(KERN_INFO "CPUs not available for Linux: %s\n", buf); |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | static void __init setup_cpu_maps(void) |
| 1117 | { |
| 1118 | struct cpumask hv_disabled_map, cpu_possible_init; |
| 1119 | int boot_cpu = smp_processor_id(); |
| 1120 | int cpus, i, rc; |
| 1121 | |
| 1122 | /* Learn which cpus are allowed by the hypervisor. */ |
| 1123 | rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL, |
| 1124 | (HV_VirtAddr) cpumask_bits(&cpu_possible_init), |
| 1125 | sizeof(cpu_cacheable_map)); |
| 1126 | if (rc < 0) |
| 1127 | early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc); |
| 1128 | if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init)) |
| 1129 | early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu); |
| 1130 | |
| 1131 | /* Compute the cpus disabled by the hvconfig file. */ |
| 1132 | cpumask_complement(&hv_disabled_map, &cpu_possible_init); |
| 1133 | |
| 1134 | /* Include them with the cpus disabled by "disabled_cpus". */ |
| 1135 | cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map); |
| 1136 | |
| 1137 | /* |
| 1138 | * Disable every cpu after "setup_max_cpus". But don't mark |
| 1139 | * as disabled the cpus that are outside of our initial rectangle, |
| 1140 | * since that turns out to be confusing. |
| 1141 | */ |
| 1142 | cpus = 1; /* this cpu */ |
| 1143 | cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */ |
| 1144 | for (i = 0; cpus < setup_max_cpus; ++i) |
| 1145 | if (!cpumask_test_cpu(i, &disabled_map)) |
| 1146 | ++cpus; |
| 1147 | for (; i < smp_height * smp_width; ++i) |
| 1148 | cpumask_set_cpu(i, &disabled_map); |
| 1149 | cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */ |
| 1150 | for (i = smp_height * smp_width; i < NR_CPUS; ++i) |
| 1151 | cpumask_clear_cpu(i, &disabled_map); |
| 1152 | |
| 1153 | /* |
| 1154 | * Setup cpu_possible map as every cpu allocated to us, minus |
| 1155 | * the results of any "disabled_cpus" settings. |
| 1156 | */ |
| 1157 | cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map); |
| 1158 | init_cpu_possible(&cpu_possible_init); |
| 1159 | |
| 1160 | /* Learn which cpus are valid for LOTAR caching. */ |
| 1161 | rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR, |
| 1162 | (HV_VirtAddr) cpumask_bits(&cpu_lotar_map), |
| 1163 | sizeof(cpu_lotar_map)); |
| 1164 | if (rc < 0) { |
| 1165 | printk("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n"); |
| 1166 | cpu_lotar_map = cpu_possible_map; |
| 1167 | } |
| 1168 | |
| 1169 | #if CHIP_HAS_CBOX_HOME_MAP() |
| 1170 | /* Retrieve set of CPUs used for hash-for-home caching */ |
| 1171 | rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE, |
| 1172 | (HV_VirtAddr) hash_for_home_map.bits, |
| 1173 | sizeof(hash_for_home_map)); |
| 1174 | if (rc < 0) |
| 1175 | early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc); |
| 1176 | cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map); |
| 1177 | #else |
| 1178 | cpu_cacheable_map = cpu_possible_map; |
| 1179 | #endif |
| 1180 | } |
| 1181 | |
| 1182 | |
| 1183 | static int __init dataplane(char *str) |
| 1184 | { |
| 1185 | printk("WARNING: dataplane support disabled in this kernel\n"); |
| 1186 | return 0; |
| 1187 | } |
| 1188 | |
| 1189 | early_param("dataplane", dataplane); |
| 1190 | |
| 1191 | #ifdef CONFIG_CMDLINE_BOOL |
| 1192 | static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; |
| 1193 | #endif |
| 1194 | |
| 1195 | void __init setup_arch(char **cmdline_p) |
| 1196 | { |
| 1197 | int len; |
| 1198 | |
| 1199 | #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE) |
| 1200 | len = hv_get_command_line((HV_VirtAddr) boot_command_line, |
| 1201 | COMMAND_LINE_SIZE); |
| 1202 | if (boot_command_line[0]) |
| 1203 | printk("WARNING: ignoring dynamic command line \"%s\"\n", |
| 1204 | boot_command_line); |
| 1205 | strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); |
| 1206 | #else |
| 1207 | char *hv_cmdline; |
| 1208 | #if defined(CONFIG_CMDLINE_BOOL) |
| 1209 | if (builtin_cmdline[0]) { |
| 1210 | int builtin_len = strlcpy(boot_command_line, builtin_cmdline, |
| 1211 | COMMAND_LINE_SIZE); |
| 1212 | if (builtin_len < COMMAND_LINE_SIZE-1) |
| 1213 | boot_command_line[builtin_len++] = ' '; |
| 1214 | hv_cmdline = &boot_command_line[builtin_len]; |
| 1215 | len = COMMAND_LINE_SIZE - builtin_len; |
| 1216 | } else |
| 1217 | #endif |
| 1218 | { |
| 1219 | hv_cmdline = boot_command_line; |
| 1220 | len = COMMAND_LINE_SIZE; |
| 1221 | } |
| 1222 | len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len); |
| 1223 | if (len < 0 || len > COMMAND_LINE_SIZE) |
| 1224 | early_panic("hv_get_command_line failed: %d\n", len); |
| 1225 | #endif |
| 1226 | |
| 1227 | *cmdline_p = boot_command_line; |
| 1228 | |
| 1229 | /* Set disabled_map and setup_max_cpus very early */ |
| 1230 | parse_early_param(); |
| 1231 | |
| 1232 | /* Make sure the kernel is compatible with the hypervisor. */ |
| 1233 | validate_hv(); |
| 1234 | validate_va(); |
| 1235 | |
| 1236 | setup_cpu_maps(); |
| 1237 | |
| 1238 | |
| 1239 | #ifdef CONFIG_PCI |
| 1240 | /* |
| 1241 | * Initialize the PCI structures. This is done before memory |
| 1242 | * setup so that we know whether or not a pci_reserve region |
| 1243 | * is necessary. |
| 1244 | */ |
| 1245 | if (tile_pci_init() == 0) |
| 1246 | pci_reserve_mb = 0; |
| 1247 | |
| 1248 | /* PCI systems reserve a region just below 4GB for mapping iomem. */ |
| 1249 | pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT)); |
| 1250 | pci_reserve_start_pfn = pci_reserve_end_pfn - |
| 1251 | (pci_reserve_mb << (20 - PAGE_SHIFT)); |
| 1252 | #endif |
| 1253 | |
| 1254 | init_mm.start_code = (unsigned long) _text; |
| 1255 | init_mm.end_code = (unsigned long) _etext; |
| 1256 | init_mm.end_data = (unsigned long) _edata; |
| 1257 | init_mm.brk = (unsigned long) _end; |
| 1258 | |
| 1259 | setup_memory(); |
| 1260 | store_permanent_mappings(); |
| 1261 | setup_bootmem_allocator(); |
| 1262 | |
| 1263 | /* |
| 1264 | * NOTE: before this point _nobody_ is allowed to allocate |
| 1265 | * any memory using the bootmem allocator. |
| 1266 | */ |
| 1267 | |
| 1268 | paging_init(); |
| 1269 | setup_numa_mapping(); |
| 1270 | zone_sizes_init(); |
| 1271 | set_page_homes(); |
| 1272 | setup_mpls(); |
| 1273 | setup_clock(); |
| 1274 | load_hv_initrd(); |
| 1275 | } |
| 1276 | |
| 1277 | |
| 1278 | /* |
| 1279 | * Set up per-cpu memory. |
| 1280 | */ |
| 1281 | |
| 1282 | unsigned long __per_cpu_offset[NR_CPUS] __write_once; |
| 1283 | EXPORT_SYMBOL(__per_cpu_offset); |
| 1284 | |
| 1285 | static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 }; |
| 1286 | static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 }; |
| 1287 | |
| 1288 | /* |
| 1289 | * As the percpu code allocates pages, we return the pages from the |
| 1290 | * end of the node for the specified cpu. |
| 1291 | */ |
| 1292 | static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) |
| 1293 | { |
| 1294 | int nid = cpu_to_node(cpu); |
| 1295 | unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid]; |
| 1296 | |
| 1297 | BUG_ON(size % PAGE_SIZE != 0); |
| 1298 | pfn_offset[nid] += size / PAGE_SIZE; |
| 1299 | if (percpu_pfn[cpu] == 0) |
| 1300 | percpu_pfn[cpu] = pfn; |
| 1301 | return pfn_to_kaddr(pfn); |
| 1302 | } |
| 1303 | |
| 1304 | /* |
| 1305 | * Pages reserved for percpu memory are not freeable, and in any case we are |
| 1306 | * on a short path to panic() in setup_per_cpu_area() at this point anyway. |
| 1307 | */ |
| 1308 | static void __init pcpu_fc_free(void *ptr, size_t size) |
| 1309 | { |
| 1310 | } |
| 1311 | |
| 1312 | /* |
| 1313 | * Set up vmalloc page tables using bootmem for the percpu code. |
| 1314 | */ |
| 1315 | static void __init pcpu_fc_populate_pte(unsigned long addr) |
| 1316 | { |
| 1317 | pgd_t *pgd; |
| 1318 | pud_t *pud; |
| 1319 | pmd_t *pmd; |
| 1320 | pte_t *pte; |
| 1321 | |
| 1322 | BUG_ON(pgd_addr_invalid(addr)); |
| 1323 | |
| 1324 | pgd = swapper_pg_dir + pgd_index(addr); |
| 1325 | pud = pud_offset(pgd, addr); |
| 1326 | BUG_ON(!pud_present(*pud)); |
| 1327 | pmd = pmd_offset(pud, addr); |
| 1328 | if (pmd_present(*pmd)) { |
| 1329 | BUG_ON(pmd_huge_page(*pmd)); |
| 1330 | } else { |
| 1331 | pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, |
| 1332 | HV_PAGE_TABLE_ALIGN, 0); |
| 1333 | pmd_populate_kernel(&init_mm, pmd, pte); |
| 1334 | } |
| 1335 | } |
| 1336 | |
| 1337 | void __init setup_per_cpu_areas(void) |
| 1338 | { |
| 1339 | struct page *pg; |
| 1340 | unsigned long delta, pfn, lowmem_va; |
| 1341 | unsigned long size = percpu_size(); |
| 1342 | char *ptr; |
| 1343 | int rc, cpu, i; |
| 1344 | |
| 1345 | rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc, |
| 1346 | pcpu_fc_free, pcpu_fc_populate_pte); |
| 1347 | if (rc < 0) |
| 1348 | panic("Cannot initialize percpu area (err=%d)", rc); |
| 1349 | |
| 1350 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| 1351 | for_each_possible_cpu(cpu) { |
| 1352 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
| 1353 | |
| 1354 | /* finv the copy out of cache so we can change homecache */ |
| 1355 | ptr = pcpu_base_addr + pcpu_unit_offsets[cpu]; |
| 1356 | __finv_buffer(ptr, size); |
| 1357 | pfn = percpu_pfn[cpu]; |
| 1358 | |
| 1359 | /* Rewrite the page tables to cache on that cpu */ |
| 1360 | pg = pfn_to_page(pfn); |
| 1361 | for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) { |
| 1362 | |
| 1363 | /* Update the vmalloc mapping and page home. */ |
| 1364 | pte_t *ptep = |
| 1365 | virt_to_pte(NULL, (unsigned long)ptr + i); |
| 1366 | pte_t pte = *ptep; |
| 1367 | BUG_ON(pfn != pte_pfn(pte)); |
| 1368 | pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3); |
| 1369 | pte = set_remote_cache_cpu(pte, cpu); |
| 1370 | set_pte(ptep, pte); |
| 1371 | |
| 1372 | /* Update the lowmem mapping for consistency. */ |
| 1373 | lowmem_va = (unsigned long)pfn_to_kaddr(pfn); |
| 1374 | ptep = virt_to_pte(NULL, lowmem_va); |
| 1375 | if (pte_huge(*ptep)) { |
| 1376 | printk(KERN_DEBUG "early shatter of huge page" |
| 1377 | " at %#lx\n", lowmem_va); |
| 1378 | shatter_pmd((pmd_t *)ptep); |
| 1379 | ptep = virt_to_pte(NULL, lowmem_va); |
| 1380 | BUG_ON(pte_huge(*ptep)); |
| 1381 | } |
| 1382 | BUG_ON(pfn != pte_pfn(*ptep)); |
| 1383 | set_pte(ptep, pte); |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | /* Set our thread pointer appropriately. */ |
| 1388 | set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]); |
| 1389 | |
| 1390 | /* Make sure the finv's have completed. */ |
| 1391 | mb_incoherent(); |
| 1392 | |
| 1393 | /* Flush the TLB so we reference it properly from here on out. */ |
| 1394 | local_flush_tlb_all(); |
| 1395 | } |
| 1396 | |
| 1397 | static struct resource data_resource = { |
| 1398 | .name = "Kernel data", |
| 1399 | .start = 0, |
| 1400 | .end = 0, |
| 1401 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| 1402 | }; |
| 1403 | |
| 1404 | static struct resource code_resource = { |
| 1405 | .name = "Kernel code", |
| 1406 | .start = 0, |
| 1407 | .end = 0, |
| 1408 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
| 1409 | }; |
| 1410 | |
| 1411 | /* |
| 1412 | * We reserve all resources above 4GB so that PCI won't try to put |
| 1413 | * mappings above 4GB; the standard allows that for some devices but |
| 1414 | * the probing code trunates values to 32 bits. |
| 1415 | */ |
| 1416 | #ifdef CONFIG_PCI |
| 1417 | static struct resource* __init |
| 1418 | insert_non_bus_resource(void) |
| 1419 | { |
| 1420 | struct resource *res = |
| 1421 | kzalloc(sizeof(struct resource), GFP_ATOMIC); |
| 1422 | res->name = "Non-Bus Physical Address Space"; |
| 1423 | res->start = (1ULL << 32); |
| 1424 | res->end = -1LL; |
| 1425 | res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; |
| 1426 | if (insert_resource(&iomem_resource, res)) { |
| 1427 | kfree(res); |
| 1428 | return NULL; |
| 1429 | } |
| 1430 | return res; |
| 1431 | } |
| 1432 | #endif |
| 1433 | |
| 1434 | static struct resource* __init |
| 1435 | insert_ram_resource(u64 start_pfn, u64 end_pfn) |
| 1436 | { |
| 1437 | struct resource *res = |
| 1438 | kzalloc(sizeof(struct resource), GFP_ATOMIC); |
| 1439 | res->name = "System RAM"; |
| 1440 | res->start = start_pfn << PAGE_SHIFT; |
| 1441 | res->end = (end_pfn << PAGE_SHIFT) - 1; |
| 1442 | res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; |
| 1443 | if (insert_resource(&iomem_resource, res)) { |
| 1444 | kfree(res); |
| 1445 | return NULL; |
| 1446 | } |
| 1447 | return res; |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * Request address space for all standard resources |
| 1452 | * |
| 1453 | * If the system includes PCI root complex drivers, we need to create |
| 1454 | * a window just below 4GB where PCI BARs can be mapped. |
| 1455 | */ |
| 1456 | static int __init request_standard_resources(void) |
| 1457 | { |
| 1458 | int i; |
| 1459 | enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET }; |
| 1460 | |
| 1461 | iomem_resource.end = -1LL; |
| 1462 | #ifdef CONFIG_PCI |
| 1463 | insert_non_bus_resource(); |
| 1464 | #endif |
| 1465 | |
| 1466 | for_each_online_node(i) { |
| 1467 | u64 start_pfn = node_start_pfn[i]; |
| 1468 | u64 end_pfn = node_end_pfn[i]; |
| 1469 | |
| 1470 | #ifdef CONFIG_PCI |
| 1471 | if (start_pfn <= pci_reserve_start_pfn && |
| 1472 | end_pfn > pci_reserve_start_pfn) { |
| 1473 | if (end_pfn > pci_reserve_end_pfn) |
| 1474 | insert_ram_resource(pci_reserve_end_pfn, |
| 1475 | end_pfn); |
| 1476 | end_pfn = pci_reserve_start_pfn; |
| 1477 | } |
| 1478 | #endif |
| 1479 | insert_ram_resource(start_pfn, end_pfn); |
| 1480 | } |
| 1481 | |
| 1482 | code_resource.start = __pa(_text - CODE_DELTA); |
| 1483 | code_resource.end = __pa(_etext - CODE_DELTA)-1; |
| 1484 | data_resource.start = __pa(_sdata); |
| 1485 | data_resource.end = __pa(_end)-1; |
| 1486 | |
| 1487 | insert_resource(&iomem_resource, &code_resource); |
| 1488 | insert_resource(&iomem_resource, &data_resource); |
| 1489 | |
| 1490 | #ifdef CONFIG_KEXEC |
| 1491 | insert_resource(&iomem_resource, &crashk_res); |
| 1492 | #endif |
| 1493 | |
| 1494 | return 0; |
| 1495 | } |
| 1496 | |
| 1497 | subsys_initcall(request_standard_resources); |