| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * | 
 | 3 |  * Alchemy Au1x00 ethernet driver | 
 | 4 |  * | 
 | 5 |  * Copyright 2001,2002,2003 MontaVista Software Inc. | 
 | 6 |  * Copyright 2002 TimeSys Corp. | 
 | 7 |  * Added ethtool/mii-tool support, | 
 | 8 |  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> | 
 | 9 |  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de  | 
 | 10 |  * or riemer@riemer-nt.de: fixed the link beat detection with  | 
 | 11 |  * ioctls (SIOCGMIIPHY) | 
 | 12 |  * Author: MontaVista Software, Inc. | 
 | 13 |  *         	ppopov@mvista.com or source@mvista.com | 
 | 14 |  * | 
 | 15 |  * ######################################################################## | 
 | 16 |  * | 
 | 17 |  *  This program is free software; you can distribute it and/or modify it | 
 | 18 |  *  under the terms of the GNU General Public License (Version 2) as | 
 | 19 |  *  published by the Free Software Foundation. | 
 | 20 |  * | 
 | 21 |  *  This program is distributed in the hope it will be useful, but WITHOUT | 
 | 22 |  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 | 23 |  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 | 24 |  *  for more details. | 
 | 25 |  * | 
 | 26 |  *  You should have received a copy of the GNU General Public License along | 
 | 27 |  *  with this program; if not, write to the Free Software Foundation, Inc., | 
 | 28 |  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
 | 29 |  * | 
 | 30 |  * ######################################################################## | 
 | 31 |  * | 
 | 32 |  *  | 
 | 33 |  */ | 
 | 34 |  | 
 | 35 | #include <linux/module.h> | 
 | 36 | #include <linux/kernel.h> | 
 | 37 | #include <linux/sched.h> | 
 | 38 | #include <linux/string.h> | 
 | 39 | #include <linux/timer.h> | 
 | 40 | #include <linux/errno.h> | 
 | 41 | #include <linux/in.h> | 
 | 42 | #include <linux/ioport.h> | 
 | 43 | #include <linux/bitops.h> | 
 | 44 | #include <linux/slab.h> | 
 | 45 | #include <linux/interrupt.h> | 
 | 46 | #include <linux/pci.h> | 
 | 47 | #include <linux/init.h> | 
 | 48 | #include <linux/netdevice.h> | 
 | 49 | #include <linux/etherdevice.h> | 
 | 50 | #include <linux/ethtool.h> | 
 | 51 | #include <linux/mii.h> | 
 | 52 | #include <linux/skbuff.h> | 
 | 53 | #include <linux/delay.h> | 
 | 54 | #include <asm/mipsregs.h> | 
 | 55 | #include <asm/irq.h> | 
 | 56 | #include <asm/io.h> | 
 | 57 | #include <asm/processor.h> | 
 | 58 |  | 
 | 59 | #include <asm/mach-au1x00/au1000.h> | 
 | 60 | #include <asm/cpu.h> | 
 | 61 | #include "au1000_eth.h" | 
 | 62 |  | 
 | 63 | #ifdef AU1000_ETH_DEBUG | 
 | 64 | static int au1000_debug = 5; | 
 | 65 | #else | 
 | 66 | static int au1000_debug = 3; | 
 | 67 | #endif | 
 | 68 |  | 
 | 69 | #define DRV_NAME	"au1000eth" | 
 | 70 | #define DRV_VERSION	"1.5" | 
 | 71 | #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>" | 
 | 72 | #define DRV_DESC	"Au1xxx on-chip Ethernet driver" | 
 | 73 |  | 
 | 74 | MODULE_AUTHOR(DRV_AUTHOR); | 
 | 75 | MODULE_DESCRIPTION(DRV_DESC); | 
 | 76 | MODULE_LICENSE("GPL"); | 
 | 77 |  | 
 | 78 | // prototypes | 
 | 79 | static void hard_stop(struct net_device *); | 
 | 80 | static void enable_rx_tx(struct net_device *dev); | 
 | 81 | static struct net_device * au1000_probe(u32 ioaddr, int irq, int port_num); | 
 | 82 | static int au1000_init(struct net_device *); | 
 | 83 | static int au1000_open(struct net_device *); | 
 | 84 | static int au1000_close(struct net_device *); | 
 | 85 | static int au1000_tx(struct sk_buff *, struct net_device *); | 
 | 86 | static int au1000_rx(struct net_device *); | 
 | 87 | static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *); | 
 | 88 | static void au1000_tx_timeout(struct net_device *); | 
 | 89 | static int au1000_set_config(struct net_device *dev, struct ifmap *map); | 
 | 90 | static void set_rx_mode(struct net_device *); | 
 | 91 | static struct net_device_stats *au1000_get_stats(struct net_device *); | 
 | 92 | static inline void update_tx_stats(struct net_device *, u32, u32); | 
 | 93 | static inline void update_rx_stats(struct net_device *, u32); | 
 | 94 | static void au1000_timer(unsigned long); | 
 | 95 | static int au1000_ioctl(struct net_device *, struct ifreq *, int); | 
 | 96 | static int mdio_read(struct net_device *, int, int); | 
 | 97 | static void mdio_write(struct net_device *, int, int, u16); | 
 | 98 | static void dump_mii(struct net_device *dev, int phy_id); | 
 | 99 |  | 
 | 100 | // externs | 
 | 101 | extern  void ack_rise_edge_irq(unsigned int); | 
 | 102 | extern int get_ethernet_addr(char *ethernet_addr); | 
 | 103 | extern void str2eaddr(unsigned char *ea, unsigned char *str); | 
 | 104 | extern char * __init prom_getcmdline(void); | 
 | 105 |  | 
 | 106 | /* | 
 | 107 |  * Theory of operation | 
 | 108 |  * | 
 | 109 |  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.  | 
 | 110 |  * There are four receive and four transmit descriptors.  These  | 
 | 111 |  * descriptors are not in memory; rather, they are just a set of  | 
 | 112 |  * hardware registers. | 
 | 113 |  * | 
 | 114 |  * Since the Au1000 has a coherent data cache, the receive and | 
 | 115 |  * transmit buffers are allocated from the KSEG0 segment. The  | 
 | 116 |  * hardware registers, however, are still mapped at KSEG1 to | 
 | 117 |  * make sure there's no out-of-order writes, and that all writes | 
 | 118 |  * complete immediately. | 
 | 119 |  */ | 
 | 120 |  | 
 | 121 | /* These addresses are only used if yamon doesn't tell us what | 
 | 122 |  * the mac address is, and the mac address is not passed on the | 
 | 123 |  * command line. | 
 | 124 |  */ | 
 | 125 | static unsigned char au1000_mac_addr[6] __devinitdata = {  | 
 | 126 | 	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 | 
 | 127 | }; | 
 | 128 |  | 
 | 129 | #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0)) | 
 | 130 | #define RUN_AT(x) (jiffies + (x)) | 
 | 131 |  | 
 | 132 | // For reading/writing 32-bit words from/to DMA memory | 
 | 133 | #define cpu_to_dma32 cpu_to_be32 | 
 | 134 | #define dma32_to_cpu be32_to_cpu | 
 | 135 |  | 
 | 136 | struct au1000_private *au_macs[NUM_ETH_INTERFACES]; | 
 | 137 |  | 
 | 138 | /* FIXME  | 
 | 139 |  * All of the PHY code really should be detached from the MAC  | 
 | 140 |  * code. | 
 | 141 |  */ | 
 | 142 |  | 
 | 143 | /* Default advertise */ | 
 | 144 | #define GENMII_DEFAULT_ADVERTISE \ | 
 | 145 | 	ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ | 
 | 146 | 	ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ | 
 | 147 | 	ADVERTISED_Autoneg | 
 | 148 |  | 
 | 149 | #define GENMII_DEFAULT_FEATURES \ | 
 | 150 | 	SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ | 
 | 151 | 	SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ | 
 | 152 | 	SUPPORTED_Autoneg | 
 | 153 |  | 
 | 154 | static char *phy_link[] =  | 
 | 155 | {	"unknown",  | 
 | 156 | 	"10Base2", "10BaseT",  | 
 | 157 | 	"AUI", | 
 | 158 | 	"100BaseT", "100BaseTX", "100BaseFX" | 
 | 159 | }; | 
 | 160 |  | 
 | 161 | int bcm_5201_init(struct net_device *dev, int phy_addr) | 
 | 162 | { | 
 | 163 | 	s16 data; | 
 | 164 | 	 | 
 | 165 | 	/* Stop auto-negotiation */ | 
 | 166 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 167 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 | 168 |  | 
 | 169 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 170 | 	 * (full capabilities) */ | 
 | 171 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 172 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 173 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 174 | 	 | 
 | 175 | 	/* Restart auto-negotiation */ | 
 | 176 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 177 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 | 178 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 | 179 |  | 
 | 180 | 	if (au1000_debug > 4)  | 
 | 181 | 		dump_mii(dev, phy_addr); | 
 | 182 | 	return 0; | 
 | 183 | } | 
 | 184 |  | 
 | 185 | int bcm_5201_reset(struct net_device *dev, int phy_addr) | 
 | 186 | { | 
 | 187 | 	s16 mii_control, timeout; | 
 | 188 | 	 | 
 | 189 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 190 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 191 | 	mdelay(1); | 
 | 192 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 193 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 194 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 195 | 			break; | 
 | 196 | 		mdelay(1); | 
 | 197 | 	} | 
 | 198 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 199 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 200 | 		return -1; | 
 | 201 | 	} | 
 | 202 | 	return 0; | 
 | 203 | } | 
 | 204 |  | 
 | 205 | int  | 
 | 206 | bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 207 | { | 
 | 208 | 	u16 mii_data; | 
 | 209 | 	struct au1000_private *aup; | 
 | 210 |  | 
 | 211 | 	if (!dev) { | 
 | 212 | 		printk(KERN_ERR "bcm_5201_status error: NULL dev\n"); | 
 | 213 | 		return -1; | 
 | 214 | 	} | 
 | 215 | 	aup = (struct au1000_private *) dev->priv; | 
 | 216 |  | 
 | 217 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 218 | 	if (mii_data & MII_STAT_LINK) { | 
 | 219 | 		*link = 1; | 
 | 220 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); | 
 | 221 | 		if (mii_data & MII_AUX_100) { | 
 | 222 | 			if (mii_data & MII_AUX_FDX) { | 
 | 223 | 				*speed = IF_PORT_100BASEFX; | 
 | 224 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 225 | 			} | 
 | 226 | 			else { | 
 | 227 | 				*speed = IF_PORT_100BASETX; | 
 | 228 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 229 | 			} | 
 | 230 | 		} | 
 | 231 | 		else  { | 
 | 232 | 			*speed = IF_PORT_10BASET; | 
 | 233 | 			dev->if_port = IF_PORT_10BASET; | 
 | 234 | 		} | 
 | 235 |  | 
 | 236 | 	} | 
 | 237 | 	else { | 
 | 238 | 		*link = 0; | 
 | 239 | 		*speed = 0; | 
 | 240 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 241 | 	} | 
 | 242 | 	return 0; | 
 | 243 | } | 
 | 244 |  | 
 | 245 | int lsi_80227_init(struct net_device *dev, int phy_addr) | 
 | 246 | { | 
 | 247 | 	if (au1000_debug > 4) | 
 | 248 | 		printk("lsi_80227_init\n"); | 
 | 249 |  | 
 | 250 | 	/* restart auto-negotiation */ | 
 | 251 | 	mdio_write(dev, phy_addr, MII_CONTROL, | 
 | 252 | 		   MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX); | 
 | 253 | 	mdelay(1); | 
 | 254 |  | 
 | 255 | 	/* set up LEDs to correct display */ | 
 | 256 | #ifdef CONFIG_MIPS_MTX1 | 
 | 257 | 	mdio_write(dev, phy_addr, 17, 0xff80); | 
 | 258 | #else | 
 | 259 | 	mdio_write(dev, phy_addr, 17, 0xffc0); | 
 | 260 | #endif | 
 | 261 |  | 
 | 262 | 	if (au1000_debug > 4) | 
 | 263 | 		dump_mii(dev, phy_addr); | 
 | 264 | 	return 0; | 
 | 265 | } | 
 | 266 |  | 
 | 267 | int lsi_80227_reset(struct net_device *dev, int phy_addr) | 
 | 268 | { | 
 | 269 | 	s16 mii_control, timeout; | 
 | 270 | 	 | 
 | 271 | 	if (au1000_debug > 4) { | 
 | 272 | 		printk("lsi_80227_reset\n"); | 
 | 273 | 		dump_mii(dev, phy_addr); | 
 | 274 | 	} | 
 | 275 |  | 
 | 276 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 277 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 278 | 	mdelay(1); | 
 | 279 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 280 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 281 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 282 | 			break; | 
 | 283 | 		mdelay(1); | 
 | 284 | 	} | 
 | 285 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 286 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 287 | 		return -1; | 
 | 288 | 	} | 
 | 289 | 	return 0; | 
 | 290 | } | 
 | 291 |  | 
 | 292 | int | 
 | 293 | lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 294 | { | 
 | 295 | 	u16 mii_data; | 
 | 296 | 	struct au1000_private *aup; | 
 | 297 |  | 
 | 298 | 	if (!dev) { | 
 | 299 | 		printk(KERN_ERR "lsi_80227_status error: NULL dev\n"); | 
 | 300 | 		return -1; | 
 | 301 | 	} | 
 | 302 | 	aup = (struct au1000_private *) dev->priv; | 
 | 303 |  | 
 | 304 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 305 | 	if (mii_data & MII_STAT_LINK) { | 
 | 306 | 		*link = 1; | 
 | 307 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT); | 
 | 308 | 		if (mii_data & MII_LSI_PHY_STAT_SPD) { | 
 | 309 | 			if (mii_data & MII_LSI_PHY_STAT_FDX) { | 
 | 310 | 				*speed = IF_PORT_100BASEFX; | 
 | 311 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 312 | 			} | 
 | 313 | 			else { | 
 | 314 | 				*speed = IF_PORT_100BASETX; | 
 | 315 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 316 | 			} | 
 | 317 | 		} | 
 | 318 | 		else  { | 
 | 319 | 			*speed = IF_PORT_10BASET; | 
 | 320 | 			dev->if_port = IF_PORT_10BASET; | 
 | 321 | 		} | 
 | 322 |  | 
 | 323 | 	} | 
 | 324 | 	else { | 
 | 325 | 		*link = 0; | 
 | 326 | 		*speed = 0; | 
 | 327 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 328 | 	} | 
 | 329 | 	return 0; | 
 | 330 | } | 
 | 331 |  | 
 | 332 | int am79c901_init(struct net_device *dev, int phy_addr) | 
 | 333 | { | 
 | 334 | 	printk("am79c901_init\n"); | 
 | 335 | 	return 0; | 
 | 336 | } | 
 | 337 |  | 
 | 338 | int am79c901_reset(struct net_device *dev, int phy_addr) | 
 | 339 | { | 
 | 340 | 	printk("am79c901_reset\n"); | 
 | 341 | 	return 0; | 
 | 342 | } | 
 | 343 |  | 
 | 344 | int  | 
 | 345 | am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 346 | { | 
 | 347 | 	return 0; | 
 | 348 | } | 
 | 349 |  | 
 | 350 | int am79c874_init(struct net_device *dev, int phy_addr) | 
 | 351 | { | 
 | 352 | 	s16 data; | 
 | 353 |  | 
 | 354 | 	/* 79c874 has quit resembled bit assignments to BCM5201 */ | 
 | 355 | 	if (au1000_debug > 4) | 
 | 356 | 		printk("am79c847_init\n"); | 
 | 357 |  | 
 | 358 | 	/* Stop auto-negotiation */ | 
 | 359 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 360 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 | 361 |  | 
 | 362 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 363 | 	 * (full capabilities) */ | 
 | 364 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 365 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 366 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 367 | 	 | 
 | 368 | 	/* Restart auto-negotiation */ | 
 | 369 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 370 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 | 371 |  | 
 | 372 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 | 373 |  | 
 | 374 | 	if (au1000_debug > 4) dump_mii(dev, phy_addr); | 
 | 375 | 	return 0; | 
 | 376 | } | 
 | 377 |  | 
 | 378 | int am79c874_reset(struct net_device *dev, int phy_addr) | 
 | 379 | { | 
 | 380 | 	s16 mii_control, timeout; | 
 | 381 | 	 | 
 | 382 | 	if (au1000_debug > 4) | 
 | 383 | 		printk("am79c874_reset\n"); | 
 | 384 |  | 
 | 385 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 386 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 387 | 	mdelay(1); | 
 | 388 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 389 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 390 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 391 | 			break; | 
 | 392 | 		mdelay(1); | 
 | 393 | 	} | 
 | 394 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 395 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 396 | 		return -1; | 
 | 397 | 	} | 
 | 398 | 	return 0; | 
 | 399 | } | 
 | 400 |  | 
 | 401 | int  | 
 | 402 | am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 403 | { | 
 | 404 | 	u16 mii_data; | 
 | 405 | 	struct au1000_private *aup; | 
 | 406 |  | 
 | 407 | 	// printk("am79c874_status\n"); | 
 | 408 | 	if (!dev) { | 
 | 409 | 		printk(KERN_ERR "am79c874_status error: NULL dev\n"); | 
 | 410 | 		return -1; | 
 | 411 | 	} | 
 | 412 |  | 
 | 413 | 	aup = (struct au1000_private *) dev->priv; | 
 | 414 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 415 |  | 
 | 416 | 	if (mii_data & MII_STAT_LINK) { | 
 | 417 | 		*link = 1; | 
 | 418 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT); | 
 | 419 | 		if (mii_data & MII_AMD_PHY_STAT_SPD) { | 
 | 420 | 			if (mii_data & MII_AMD_PHY_STAT_FDX) { | 
 | 421 | 				*speed = IF_PORT_100BASEFX; | 
 | 422 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 423 | 			} | 
 | 424 | 			else { | 
 | 425 | 				*speed = IF_PORT_100BASETX; | 
 | 426 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 427 | 			} | 
 | 428 | 		} | 
 | 429 | 		else { | 
 | 430 | 			*speed = IF_PORT_10BASET; | 
 | 431 | 			dev->if_port = IF_PORT_10BASET; | 
 | 432 | 		} | 
 | 433 |  | 
 | 434 | 	} | 
 | 435 | 	else { | 
 | 436 | 		*link = 0; | 
 | 437 | 		*speed = 0; | 
 | 438 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 439 | 	} | 
 | 440 | 	return 0; | 
 | 441 | } | 
 | 442 |  | 
 | 443 | int lxt971a_init(struct net_device *dev, int phy_addr) | 
 | 444 | { | 
 | 445 | 	if (au1000_debug > 4) | 
 | 446 | 		printk("lxt971a_init\n"); | 
 | 447 |  | 
 | 448 | 	/* restart auto-negotiation */ | 
 | 449 | 	mdio_write(dev, phy_addr, MII_CONTROL, | 
 | 450 | 		   MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX); | 
 | 451 |  | 
 | 452 | 	/* set up LEDs to correct display */ | 
 | 453 | 	mdio_write(dev, phy_addr, 20, 0x0422); | 
 | 454 |  | 
 | 455 | 	if (au1000_debug > 4) | 
 | 456 | 		dump_mii(dev, phy_addr); | 
 | 457 | 	return 0; | 
 | 458 | } | 
 | 459 |  | 
 | 460 | int lxt971a_reset(struct net_device *dev, int phy_addr) | 
 | 461 | { | 
 | 462 | 	s16 mii_control, timeout; | 
 | 463 | 	 | 
 | 464 | 	if (au1000_debug > 4) { | 
 | 465 | 		printk("lxt971a_reset\n"); | 
 | 466 | 		dump_mii(dev, phy_addr); | 
 | 467 | 	} | 
 | 468 |  | 
 | 469 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 470 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 471 | 	mdelay(1); | 
 | 472 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 473 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 474 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 475 | 			break; | 
 | 476 | 		mdelay(1); | 
 | 477 | 	} | 
 | 478 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 479 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 480 | 		return -1; | 
 | 481 | 	} | 
 | 482 | 	return 0; | 
 | 483 | } | 
 | 484 |  | 
 | 485 | int | 
 | 486 | lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 487 | { | 
 | 488 | 	u16 mii_data; | 
 | 489 | 	struct au1000_private *aup; | 
 | 490 |  | 
 | 491 | 	if (!dev) { | 
 | 492 | 		printk(KERN_ERR "lxt971a_status error: NULL dev\n"); | 
 | 493 | 		return -1; | 
 | 494 | 	} | 
 | 495 | 	aup = (struct au1000_private *) dev->priv; | 
 | 496 |  | 
 | 497 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 498 | 	if (mii_data & MII_STAT_LINK) { | 
 | 499 | 		*link = 1; | 
 | 500 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT); | 
 | 501 | 		if (mii_data & MII_INTEL_PHY_STAT_SPD) { | 
 | 502 | 			if (mii_data & MII_INTEL_PHY_STAT_FDX) { | 
 | 503 | 				*speed = IF_PORT_100BASEFX; | 
 | 504 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 505 | 			} | 
 | 506 | 			else { | 
 | 507 | 				*speed = IF_PORT_100BASETX; | 
 | 508 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 509 | 			} | 
 | 510 | 		} | 
 | 511 | 		else  { | 
 | 512 | 			*speed = IF_PORT_10BASET; | 
 | 513 | 			dev->if_port = IF_PORT_10BASET; | 
 | 514 | 		} | 
 | 515 |  | 
 | 516 | 	} | 
 | 517 | 	else { | 
 | 518 | 		*link = 0; | 
 | 519 | 		*speed = 0; | 
 | 520 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 521 | 	} | 
 | 522 | 	return 0; | 
 | 523 | } | 
 | 524 |  | 
 | 525 | int ks8995m_init(struct net_device *dev, int phy_addr) | 
 | 526 | { | 
 | 527 | 	s16 data; | 
 | 528 | 	 | 
 | 529 | //	printk("ks8995m_init\n"); | 
 | 530 | 	/* Stop auto-negotiation */ | 
 | 531 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 532 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 | 533 |  | 
 | 534 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 535 | 	 * (full capabilities) */ | 
 | 536 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 537 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 538 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 539 | 	 | 
 | 540 | 	/* Restart auto-negotiation */ | 
 | 541 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 542 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 | 543 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 | 544 |  | 
 | 545 | 	if (au1000_debug > 4) dump_mii(dev, phy_addr); | 
 | 546 |  | 
 | 547 | 	return 0; | 
 | 548 | } | 
 | 549 |  | 
 | 550 | int ks8995m_reset(struct net_device *dev, int phy_addr) | 
 | 551 | { | 
 | 552 | 	s16 mii_control, timeout; | 
 | 553 | 	 | 
 | 554 | //	printk("ks8995m_reset\n"); | 
 | 555 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 556 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 557 | 	mdelay(1); | 
 | 558 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 559 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 560 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 561 | 			break; | 
 | 562 | 		mdelay(1); | 
 | 563 | 	} | 
 | 564 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 565 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 566 | 		return -1; | 
 | 567 | 	} | 
 | 568 | 	return 0; | 
 | 569 | } | 
 | 570 |  | 
 | 571 | int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 572 | { | 
 | 573 | 	u16 mii_data; | 
 | 574 | 	struct au1000_private *aup; | 
 | 575 |  | 
 | 576 | 	if (!dev) { | 
 | 577 | 		printk(KERN_ERR "ks8995m_status error: NULL dev\n"); | 
 | 578 | 		return -1; | 
 | 579 | 	} | 
 | 580 | 	aup = (struct au1000_private *) dev->priv; | 
 | 581 |  | 
 | 582 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 583 | 	if (mii_data & MII_STAT_LINK) { | 
 | 584 | 		*link = 1; | 
 | 585 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); | 
 | 586 | 		if (mii_data & MII_AUX_100) { | 
 | 587 | 			if (mii_data & MII_AUX_FDX) { | 
 | 588 | 				*speed = IF_PORT_100BASEFX; | 
 | 589 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 590 | 			} | 
 | 591 | 			else { | 
 | 592 | 				*speed = IF_PORT_100BASETX; | 
 | 593 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 594 | 			} | 
 | 595 | 		} | 
 | 596 | 		else  {											 | 
 | 597 | 			*speed = IF_PORT_10BASET; | 
 | 598 | 			dev->if_port = IF_PORT_10BASET; | 
 | 599 | 		} | 
 | 600 |  | 
 | 601 | 	} | 
 | 602 | 	else { | 
 | 603 | 		*link = 0; | 
 | 604 | 		*speed = 0; | 
 | 605 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 606 | 	} | 
 | 607 | 	return 0; | 
 | 608 | } | 
 | 609 |  | 
 | 610 | int | 
 | 611 | smsc_83C185_init (struct net_device *dev, int phy_addr) | 
 | 612 | { | 
 | 613 | 	s16 data; | 
 | 614 |  | 
 | 615 | 	if (au1000_debug > 4) | 
 | 616 | 		printk("smsc_83C185_init\n"); | 
 | 617 |  | 
 | 618 | 	/* Stop auto-negotiation */ | 
 | 619 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 620 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 | 621 |  | 
 | 622 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 623 | 	 * (full capabilities) */ | 
 | 624 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 625 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 626 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 627 | 	 | 
 | 628 | 	/* Restart auto-negotiation */ | 
 | 629 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 630 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 | 631 |  | 
 | 632 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 | 633 |  | 
 | 634 | 	if (au1000_debug > 4) dump_mii(dev, phy_addr); | 
 | 635 | 	return 0; | 
 | 636 | } | 
 | 637 |  | 
 | 638 | int | 
 | 639 | smsc_83C185_reset (struct net_device *dev, int phy_addr) | 
 | 640 | { | 
 | 641 | 	s16 mii_control, timeout; | 
 | 642 | 	 | 
 | 643 | 	if (au1000_debug > 4) | 
 | 644 | 		printk("smsc_83C185_reset\n"); | 
 | 645 |  | 
 | 646 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 647 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 648 | 	mdelay(1); | 
 | 649 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 650 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 651 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 652 | 			break; | 
 | 653 | 		mdelay(1); | 
 | 654 | 	} | 
 | 655 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 656 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 657 | 		return -1; | 
 | 658 | 	} | 
 | 659 | 	return 0; | 
 | 660 | } | 
 | 661 |  | 
 | 662 | int  | 
 | 663 | smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 664 | { | 
 | 665 | 	u16 mii_data; | 
 | 666 | 	struct au1000_private *aup; | 
 | 667 |  | 
 | 668 | 	if (!dev) { | 
 | 669 | 		printk(KERN_ERR "smsc_83C185_status error: NULL dev\n"); | 
 | 670 | 		return -1; | 
 | 671 | 	} | 
 | 672 |  | 
 | 673 | 	aup = (struct au1000_private *) dev->priv; | 
 | 674 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 675 |  | 
 | 676 | 	if (mii_data & MII_STAT_LINK) { | 
 | 677 | 		*link = 1; | 
 | 678 | 		mii_data = mdio_read(dev, aup->phy_addr, 0x1f); | 
 | 679 | 		if (mii_data & (1<<3)) { | 
 | 680 | 			if (mii_data & (1<<4)) { | 
 | 681 | 				*speed = IF_PORT_100BASEFX; | 
 | 682 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 683 | 			} | 
 | 684 | 			else { | 
 | 685 | 				*speed = IF_PORT_100BASETX; | 
 | 686 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 687 | 			} | 
 | 688 | 		} | 
 | 689 | 		else { | 
 | 690 | 			*speed = IF_PORT_10BASET; | 
 | 691 | 			dev->if_port = IF_PORT_10BASET; | 
 | 692 | 		} | 
 | 693 | 	} | 
 | 694 | 	else { | 
 | 695 | 		*link = 0; | 
 | 696 | 		*speed = 0; | 
 | 697 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 698 | 	} | 
 | 699 | 	return 0; | 
 | 700 | } | 
 | 701 |  | 
 | 702 |  | 
 | 703 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 704 | int stub_init(struct net_device *dev, int phy_addr) | 
 | 705 | { | 
 | 706 | 	//printk("PHY stub_init\n"); | 
 | 707 | 	return 0; | 
 | 708 | } | 
 | 709 |  | 
 | 710 | int stub_reset(struct net_device *dev, int phy_addr) | 
 | 711 | { | 
 | 712 | 	//printk("PHY stub_reset\n"); | 
 | 713 | 	return 0; | 
 | 714 | } | 
 | 715 |  | 
 | 716 | int  | 
 | 717 | stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | 718 | { | 
 | 719 | 	//printk("PHY stub_status\n"); | 
 | 720 | 	*link = 1; | 
 | 721 | 	/* hmmm, revisit */ | 
 | 722 | 	*speed = IF_PORT_100BASEFX; | 
 | 723 | 	dev->if_port = IF_PORT_100BASEFX; | 
 | 724 | 	return 0; | 
 | 725 | } | 
 | 726 | #endif | 
 | 727 |  | 
 | 728 | struct phy_ops bcm_5201_ops = { | 
 | 729 | 	bcm_5201_init, | 
 | 730 | 	bcm_5201_reset, | 
 | 731 | 	bcm_5201_status, | 
 | 732 | }; | 
 | 733 |  | 
 | 734 | struct phy_ops am79c874_ops = { | 
 | 735 | 	am79c874_init, | 
 | 736 | 	am79c874_reset, | 
 | 737 | 	am79c874_status, | 
 | 738 | }; | 
 | 739 |  | 
 | 740 | struct phy_ops am79c901_ops = { | 
 | 741 | 	am79c901_init, | 
 | 742 | 	am79c901_reset, | 
 | 743 | 	am79c901_status, | 
 | 744 | }; | 
 | 745 |  | 
 | 746 | struct phy_ops lsi_80227_ops = {  | 
 | 747 | 	lsi_80227_init, | 
 | 748 | 	lsi_80227_reset, | 
 | 749 | 	lsi_80227_status, | 
 | 750 | }; | 
 | 751 |  | 
 | 752 | struct phy_ops lxt971a_ops = {  | 
 | 753 | 	lxt971a_init, | 
 | 754 | 	lxt971a_reset, | 
 | 755 | 	lxt971a_status, | 
 | 756 | }; | 
 | 757 |  | 
 | 758 | struct phy_ops ks8995m_ops = { | 
 | 759 | 	ks8995m_init, | 
 | 760 | 	ks8995m_reset, | 
 | 761 | 	ks8995m_status, | 
 | 762 | }; | 
 | 763 |  | 
 | 764 | struct phy_ops smsc_83C185_ops = { | 
 | 765 | 	smsc_83C185_init, | 
 | 766 | 	smsc_83C185_reset, | 
 | 767 | 	smsc_83C185_status, | 
 | 768 | }; | 
 | 769 |  | 
 | 770 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 771 | struct phy_ops stub_ops = { | 
 | 772 | 	stub_init, | 
 | 773 | 	stub_reset, | 
 | 774 | 	stub_status, | 
 | 775 | }; | 
 | 776 | #endif | 
 | 777 |  | 
 | 778 | static struct mii_chip_info { | 
 | 779 | 	const char * name; | 
 | 780 | 	u16 phy_id0; | 
 | 781 | 	u16 phy_id1; | 
 | 782 | 	struct phy_ops *phy_ops;	 | 
 | 783 | 	int dual_phy; | 
 | 784 | } mii_chip_table[] = { | 
 | 785 | 	{"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0}, | 
 | 786 | 	{"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0}, | 
 | 787 | 	{"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1}, | 
 | 788 | 	{"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0}, | 
 | 789 | 	{"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0}, | 
 | 790 | 	{"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0}, | 
 | 791 | 	{"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0}, | 
 | 792 | 	{"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0}, | 
 | 793 | 	{"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0}, | 
 | 794 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 795 | 	{"Stub", 0x1234, 0x5678, &stub_ops }, | 
 | 796 | #endif | 
 | 797 | 	{0,}, | 
 | 798 | }; | 
 | 799 |  | 
 | 800 | static int mdio_read(struct net_device *dev, int phy_id, int reg) | 
 | 801 | { | 
 | 802 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 803 | 	volatile u32 *mii_control_reg; | 
 | 804 | 	volatile u32 *mii_data_reg; | 
 | 805 | 	u32 timedout = 20; | 
 | 806 | 	u32 mii_control; | 
 | 807 |  | 
 | 808 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 809 | 	/* First time we probe, it's for the mac0 phy. | 
 | 810 | 	 * Since we haven't determined yet that we have a dual phy, | 
 | 811 | 	 * aup->mii->mii_control_reg won't be setup and we'll | 
 | 812 | 	 * default to the else statement. | 
 | 813 | 	 * By the time we probe for the mac1 phy, the mii_control_reg | 
 | 814 | 	 * will be setup to be the address of the mac0 phy control since | 
 | 815 | 	 * both phys are controlled through mac0. | 
 | 816 | 	 */ | 
 | 817 | 	if (aup->mii && aup->mii->mii_control_reg) { | 
 | 818 | 		mii_control_reg = aup->mii->mii_control_reg; | 
 | 819 | 		mii_data_reg = aup->mii->mii_data_reg; | 
 | 820 | 	} | 
 | 821 | 	else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | 
 | 822 | 		/* assume both phys are controlled through mac0 */ | 
 | 823 | 		mii_control_reg = au_macs[0]->mii->mii_control_reg; | 
 | 824 | 		mii_data_reg = au_macs[0]->mii->mii_data_reg; | 
 | 825 | 	} | 
 | 826 | 	else  | 
 | 827 | 	#endif | 
 | 828 | 	{ | 
 | 829 | 		/* default control and data reg addresses */ | 
 | 830 | 		mii_control_reg = &aup->mac->mii_control; | 
 | 831 | 		mii_data_reg = &aup->mac->mii_data; | 
 | 832 | 	} | 
 | 833 |  | 
 | 834 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 835 | 		mdelay(1); | 
 | 836 | 		if (--timedout == 0) { | 
 | 837 | 			printk(KERN_ERR "%s: read_MII busy timeout!!\n",  | 
 | 838 | 					dev->name); | 
 | 839 | 			return -1; | 
 | 840 | 		} | 
 | 841 | 	} | 
 | 842 |  | 
 | 843 | 	mii_control = MAC_SET_MII_SELECT_REG(reg) |  | 
 | 844 | 		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ; | 
 | 845 |  | 
 | 846 | 	*mii_control_reg = mii_control; | 
 | 847 |  | 
 | 848 | 	timedout = 20; | 
 | 849 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 850 | 		mdelay(1); | 
 | 851 | 		if (--timedout == 0) { | 
 | 852 | 			printk(KERN_ERR "%s: mdio_read busy timeout!!\n",  | 
 | 853 | 					dev->name); | 
 | 854 | 			return -1; | 
 | 855 | 		} | 
 | 856 | 	} | 
 | 857 | 	return (int)*mii_data_reg; | 
 | 858 | } | 
 | 859 |  | 
 | 860 | static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value) | 
 | 861 | { | 
 | 862 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 863 | 	volatile u32 *mii_control_reg; | 
 | 864 | 	volatile u32 *mii_data_reg; | 
 | 865 | 	u32 timedout = 20; | 
 | 866 | 	u32 mii_control; | 
 | 867 |  | 
 | 868 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 869 | 	if (aup->mii && aup->mii->mii_control_reg) { | 
 | 870 | 		mii_control_reg = aup->mii->mii_control_reg; | 
 | 871 | 		mii_data_reg = aup->mii->mii_data_reg; | 
 | 872 | 	} | 
 | 873 | 	else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | 
 | 874 | 		/* assume both phys are controlled through mac0 */ | 
 | 875 | 		mii_control_reg = au_macs[0]->mii->mii_control_reg; | 
 | 876 | 		mii_data_reg = au_macs[0]->mii->mii_data_reg; | 
 | 877 | 	} | 
 | 878 | 	else  | 
 | 879 | 	#endif | 
 | 880 | 	{ | 
 | 881 | 		/* default control and data reg addresses */ | 
 | 882 | 		mii_control_reg = &aup->mac->mii_control; | 
 | 883 | 		mii_data_reg = &aup->mac->mii_data; | 
 | 884 | 	} | 
 | 885 |  | 
 | 886 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 887 | 		mdelay(1); | 
 | 888 | 		if (--timedout == 0) { | 
 | 889 | 			printk(KERN_ERR "%s: mdio_write busy timeout!!\n",  | 
 | 890 | 					dev->name); | 
 | 891 | 			return; | 
 | 892 | 		} | 
 | 893 | 	} | 
 | 894 |  | 
 | 895 | 	mii_control = MAC_SET_MII_SELECT_REG(reg) |  | 
 | 896 | 		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE; | 
 | 897 |  | 
 | 898 | 	*mii_data_reg = value; | 
 | 899 | 	*mii_control_reg = mii_control; | 
 | 900 | } | 
 | 901 |  | 
 | 902 |  | 
 | 903 | static void dump_mii(struct net_device *dev, int phy_id) | 
 | 904 | { | 
 | 905 | 	int i, val; | 
 | 906 |  | 
 | 907 | 	for (i = 0; i < 7; i++) { | 
 | 908 | 		if ((val = mdio_read(dev, phy_id, i)) >= 0) | 
 | 909 | 			printk("%s: MII Reg %d=%x\n", dev->name, i, val); | 
 | 910 | 	} | 
 | 911 | 	for (i = 16; i < 25; i++) { | 
 | 912 | 		if ((val = mdio_read(dev, phy_id, i)) >= 0) | 
 | 913 | 			printk("%s: MII Reg %d=%x\n", dev->name, i, val); | 
 | 914 | 	} | 
 | 915 | } | 
 | 916 |  | 
 | 917 | static int mii_probe (struct net_device * dev) | 
 | 918 | { | 
 | 919 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 920 | 	int phy_addr; | 
 | 921 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 922 | 	int phy_found=0; | 
 | 923 | #endif | 
 | 924 |  | 
 | 925 | 	/* search for total of 32 possible mii phy addresses */ | 
 | 926 | 	for (phy_addr = 0; phy_addr < 32; phy_addr++) { | 
 | 927 | 		u16 mii_status; | 
 | 928 | 		u16 phy_id0, phy_id1; | 
 | 929 | 		int i; | 
 | 930 |  | 
 | 931 | 		#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 932 | 		/* Mask the already found phy, try next one */ | 
 | 933 | 		if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | 
 | 934 | 			if (au_macs[0]->phy_addr == phy_addr) | 
 | 935 | 				continue; | 
 | 936 | 		} | 
 | 937 | 		#endif | 
 | 938 |  | 
 | 939 | 		mii_status = mdio_read(dev, phy_addr, MII_STATUS); | 
 | 940 | 		if (mii_status == 0xffff || mii_status == 0x0000) | 
 | 941 | 			/* the mii is not accessable, try next one */ | 
 | 942 | 			continue; | 
 | 943 |  | 
 | 944 | 		phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0); | 
 | 945 | 		phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1); | 
 | 946 |  | 
 | 947 | 		/* search our mii table for the current mii */  | 
 | 948 | 		for (i = 0; mii_chip_table[i].phy_id1; i++) { | 
 | 949 | 			if (phy_id0 == mii_chip_table[i].phy_id0 && | 
 | 950 | 			    phy_id1 == mii_chip_table[i].phy_id1) { | 
 | 951 | 				struct mii_phy * mii_phy = aup->mii; | 
 | 952 |  | 
 | 953 | 				printk(KERN_INFO "%s: %s at phy address %d\n", | 
 | 954 | 				       dev->name, mii_chip_table[i].name,  | 
 | 955 | 				       phy_addr); | 
 | 956 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 957 | 				phy_found = 1; | 
 | 958 | #endif | 
 | 959 | 				mii_phy->chip_info = mii_chip_table+i; | 
 | 960 | 				aup->phy_addr = phy_addr; | 
 | 961 | 				aup->want_autoneg = 1; | 
 | 962 | 				aup->phy_ops = mii_chip_table[i].phy_ops; | 
 | 963 | 				aup->phy_ops->phy_init(dev,phy_addr); | 
 | 964 |  | 
 | 965 | 				// Check for dual-phy and then store required  | 
 | 966 | 				// values and set indicators. We need to do  | 
 | 967 | 				// this now since mdio_{read,write} need the  | 
 | 968 | 				// control and data register addresses. | 
 | 969 | 				#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 970 | 				if ( mii_chip_table[i].dual_phy) { | 
 | 971 |  | 
 | 972 | 					/* assume both phys are controlled  | 
 | 973 | 					 * through MAC0. Board specific? */ | 
 | 974 | 					 | 
 | 975 | 					/* sanity check */ | 
 | 976 | 					if (!au_macs[0] || !au_macs[0]->mii) | 
 | 977 | 						return -1; | 
 | 978 | 					aup->mii->mii_control_reg = (u32 *) | 
 | 979 | 						&au_macs[0]->mac->mii_control; | 
 | 980 | 					aup->mii->mii_data_reg = (u32 *) | 
 | 981 | 						&au_macs[0]->mac->mii_data; | 
 | 982 | 				} | 
 | 983 | 				#endif | 
 | 984 | 				goto found; | 
 | 985 | 			} | 
 | 986 | 		} | 
 | 987 | 	} | 
 | 988 | found: | 
 | 989 |  | 
 | 990 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 991 | 	/* This is a workaround for the Micrel/Kendin 5 port switch | 
 | 992 | 	   The second MAC doesn't see a PHY connected... so we need to | 
 | 993 | 	   trick it into thinking we have one. | 
 | 994 | 		 | 
 | 995 | 	   If this kernel is run on another Au1500 development board | 
 | 996 | 	   the stub will be found as well as the actual PHY. However, | 
 | 997 | 	   the last found PHY will be used... usually at Addr 31 (Db1500).	 | 
 | 998 | 	*/ | 
 | 999 | 	if ( (!phy_found) ) | 
 | 1000 | 	{ | 
 | 1001 | 		u16 phy_id0, phy_id1; | 
 | 1002 | 		int i; | 
 | 1003 |  | 
 | 1004 | 		phy_id0 = 0x1234; | 
 | 1005 | 		phy_id1 = 0x5678; | 
 | 1006 |  | 
 | 1007 | 		/* search our mii table for the current mii */  | 
 | 1008 | 		for (i = 0; mii_chip_table[i].phy_id1; i++) { | 
 | 1009 | 			if (phy_id0 == mii_chip_table[i].phy_id0 && | 
 | 1010 | 			    phy_id1 == mii_chip_table[i].phy_id1) { | 
 | 1011 | 				struct mii_phy * mii_phy; | 
 | 1012 |  | 
 | 1013 | 				printk(KERN_INFO "%s: %s at phy address %d\n", | 
 | 1014 | 				       dev->name, mii_chip_table[i].name,  | 
 | 1015 | 				       phy_addr); | 
 | 1016 | 				mii_phy = kmalloc(sizeof(struct mii_phy),  | 
 | 1017 | 						GFP_KERNEL); | 
 | 1018 | 				if (mii_phy) { | 
 | 1019 | 					mii_phy->chip_info = mii_chip_table+i; | 
 | 1020 | 					aup->phy_addr = phy_addr; | 
 | 1021 | 					mii_phy->next = aup->mii; | 
 | 1022 | 					aup->phy_ops =  | 
 | 1023 | 						mii_chip_table[i].phy_ops; | 
 | 1024 | 					aup->mii = mii_phy; | 
 | 1025 | 					aup->phy_ops->phy_init(dev,phy_addr); | 
 | 1026 | 				} else { | 
 | 1027 | 					printk(KERN_ERR "%s: out of memory\n",  | 
 | 1028 | 							dev->name); | 
 | 1029 | 					return -1; | 
 | 1030 | 				} | 
 | 1031 | 				mii_phy->chip_info = mii_chip_table+i; | 
 | 1032 | 				aup->phy_addr = phy_addr; | 
 | 1033 | 				aup->phy_ops = mii_chip_table[i].phy_ops; | 
 | 1034 | 				aup->phy_ops->phy_init(dev,phy_addr); | 
 | 1035 | 				break; | 
 | 1036 | 			} | 
 | 1037 | 		} | 
 | 1038 | 	} | 
 | 1039 | 	if (aup->mac_id == 0) { | 
 | 1040 | 		/* the Bosporus phy responds to addresses 0-5 but  | 
 | 1041 | 		 * 5 is the correct one. | 
 | 1042 | 		 */ | 
 | 1043 | 		aup->phy_addr = 5; | 
 | 1044 | 	} | 
 | 1045 | #endif | 
 | 1046 |  | 
 | 1047 | 	if (aup->mii->chip_info == NULL) { | 
 | 1048 | 		printk(KERN_ERR "%s: Au1x No MII transceivers found!\n", | 
 | 1049 | 				dev->name); | 
 | 1050 | 		return -1; | 
 | 1051 | 	} | 
 | 1052 |  | 
 | 1053 | 	printk(KERN_INFO "%s: Using %s as default\n",  | 
 | 1054 | 			dev->name, aup->mii->chip_info->name); | 
 | 1055 |  | 
 | 1056 | 	return 0; | 
 | 1057 | } | 
 | 1058 |  | 
 | 1059 |  | 
 | 1060 | /* | 
 | 1061 |  * Buffer allocation/deallocation routines. The buffer descriptor returned | 
 | 1062 |  * has the virtual and dma address of a buffer suitable for  | 
 | 1063 |  * both, receive and transmit operations. | 
 | 1064 |  */ | 
 | 1065 | static db_dest_t *GetFreeDB(struct au1000_private *aup) | 
 | 1066 | { | 
 | 1067 | 	db_dest_t *pDB; | 
 | 1068 | 	pDB = aup->pDBfree; | 
 | 1069 |  | 
 | 1070 | 	if (pDB) { | 
 | 1071 | 		aup->pDBfree = pDB->pnext; | 
 | 1072 | 	} | 
 | 1073 | 	return pDB; | 
 | 1074 | } | 
 | 1075 |  | 
 | 1076 | void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) | 
 | 1077 | { | 
 | 1078 | 	db_dest_t *pDBfree = aup->pDBfree; | 
 | 1079 | 	if (pDBfree) | 
 | 1080 | 		pDBfree->pnext = pDB; | 
 | 1081 | 	aup->pDBfree = pDB; | 
 | 1082 | } | 
 | 1083 |  | 
 | 1084 | static void enable_rx_tx(struct net_device *dev) | 
 | 1085 | { | 
 | 1086 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1087 |  | 
 | 1088 | 	if (au1000_debug > 4) | 
 | 1089 | 		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); | 
 | 1090 |  | 
 | 1091 | 	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); | 
 | 1092 | 	au_sync_delay(10); | 
 | 1093 | } | 
 | 1094 |  | 
 | 1095 | static void hard_stop(struct net_device *dev) | 
 | 1096 | { | 
 | 1097 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1098 |  | 
 | 1099 | 	if (au1000_debug > 4) | 
 | 1100 | 		printk(KERN_INFO "%s: hard stop\n", dev->name); | 
 | 1101 |  | 
 | 1102 | 	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); | 
 | 1103 | 	au_sync_delay(10); | 
 | 1104 | } | 
 | 1105 |  | 
 | 1106 |  | 
 | 1107 | static void reset_mac(struct net_device *dev) | 
 | 1108 | { | 
 | 1109 | 	int i; | 
 | 1110 | 	u32 flags; | 
 | 1111 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1112 |  | 
 | 1113 | 	if (au1000_debug > 4)  | 
 | 1114 | 		printk(KERN_INFO "%s: reset mac, aup %x\n",  | 
 | 1115 | 				dev->name, (unsigned)aup); | 
 | 1116 |  | 
 | 1117 | 	spin_lock_irqsave(&aup->lock, flags); | 
 | 1118 | 	if (aup->timer.function == &au1000_timer) {/* check if timer initted */ | 
 | 1119 | 		del_timer(&aup->timer); | 
 | 1120 | 	} | 
 | 1121 |  | 
 | 1122 | 	hard_stop(dev); | 
 | 1123 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 1124 | 	if (aup->mac_id != 0) { | 
 | 1125 | 	#endif | 
 | 1126 | 		/* If BCM5222, we can't leave MAC0 in reset because then  | 
 | 1127 | 		 * we can't access the dual phy for ETH1 */ | 
 | 1128 | 		*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 | 1129 | 		au_sync_delay(2); | 
 | 1130 | 		*aup->enable = 0; | 
 | 1131 | 		au_sync_delay(2); | 
 | 1132 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 1133 | 	} | 
 | 1134 | 	#endif | 
 | 1135 | 	aup->tx_full = 0; | 
 | 1136 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 1137 | 		/* reset control bits */ | 
 | 1138 | 		aup->rx_dma_ring[i]->buff_stat &= ~0xf; | 
 | 1139 | 	} | 
 | 1140 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 1141 | 		/* reset control bits */ | 
 | 1142 | 		aup->tx_dma_ring[i]->buff_stat &= ~0xf; | 
 | 1143 | 	} | 
 | 1144 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | 1145 | } | 
 | 1146 |  | 
 | 1147 |  | 
 | 1148 | /*  | 
 | 1149 |  * Setup the receive and transmit "rings".  These pointers are the addresses | 
 | 1150 |  * of the rx and tx MAC DMA registers so they are fixed by the hardware -- | 
 | 1151 |  * these are not descriptors sitting in memory. | 
 | 1152 |  */ | 
 | 1153 | static void  | 
 | 1154 | setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) | 
 | 1155 | { | 
 | 1156 | 	int i; | 
 | 1157 |  | 
 | 1158 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 1159 | 		aup->rx_dma_ring[i] =  | 
 | 1160 | 			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); | 
 | 1161 | 	} | 
 | 1162 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 1163 | 		aup->tx_dma_ring[i] =  | 
 | 1164 | 			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); | 
 | 1165 | 	} | 
 | 1166 | } | 
 | 1167 |  | 
 | 1168 | static struct { | 
 | 1169 | 	int port; | 
 | 1170 | 	u32 base_addr; | 
 | 1171 | 	u32 macen_addr; | 
 | 1172 | 	int irq; | 
 | 1173 | 	struct net_device *dev; | 
 | 1174 | } iflist[2]; | 
 | 1175 |  | 
 | 1176 | static int num_ifs; | 
 | 1177 |  | 
 | 1178 | /* | 
 | 1179 |  * Setup the base address and interupt of the Au1xxx ethernet macs | 
 | 1180 |  * based on cpu type and whether the interface is enabled in sys_pinfunc | 
 | 1181 |  * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0. | 
 | 1182 |  */ | 
 | 1183 | static int __init au1000_init_module(void) | 
 | 1184 | { | 
 | 1185 | 	struct cpuinfo_mips *c = ¤t_cpu_data; | 
 | 1186 | 	int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); | 
 | 1187 | 	struct net_device *dev; | 
 | 1188 | 	int i, found_one = 0; | 
 | 1189 |  | 
 | 1190 | 	switch (c->cputype) { | 
 | 1191 | #ifdef CONFIG_SOC_AU1000 | 
 | 1192 | 	case CPU_AU1000: | 
 | 1193 | 		num_ifs = 2 - ni; | 
 | 1194 | 		iflist[0].base_addr = AU1000_ETH0_BASE; | 
 | 1195 | 		iflist[1].base_addr = AU1000_ETH1_BASE; | 
 | 1196 | 		iflist[0].macen_addr = AU1000_MAC0_ENABLE; | 
 | 1197 | 		iflist[1].macen_addr = AU1000_MAC1_ENABLE; | 
 | 1198 | 		iflist[0].irq = AU1000_MAC0_DMA_INT; | 
 | 1199 | 		iflist[1].irq = AU1000_MAC1_DMA_INT; | 
 | 1200 | 		break; | 
 | 1201 | #endif | 
 | 1202 | #ifdef CONFIG_SOC_AU1100 | 
 | 1203 | 	case CPU_AU1100: | 
 | 1204 | 		num_ifs = 1 - ni; | 
 | 1205 | 		iflist[0].base_addr = AU1100_ETH0_BASE; | 
 | 1206 | 		iflist[0].macen_addr = AU1100_MAC0_ENABLE; | 
 | 1207 | 		iflist[0].irq = AU1100_MAC0_DMA_INT; | 
 | 1208 | 		break; | 
 | 1209 | #endif | 
 | 1210 | #ifdef CONFIG_SOC_AU1500 | 
 | 1211 | 	case CPU_AU1500: | 
 | 1212 | 		num_ifs = 2 - ni; | 
 | 1213 | 		iflist[0].base_addr = AU1500_ETH0_BASE; | 
 | 1214 | 		iflist[1].base_addr = AU1500_ETH1_BASE; | 
 | 1215 | 		iflist[0].macen_addr = AU1500_MAC0_ENABLE; | 
 | 1216 | 		iflist[1].macen_addr = AU1500_MAC1_ENABLE; | 
 | 1217 | 		iflist[0].irq = AU1500_MAC0_DMA_INT; | 
 | 1218 | 		iflist[1].irq = AU1500_MAC1_DMA_INT; | 
 | 1219 | 		break; | 
 | 1220 | #endif | 
 | 1221 | #ifdef CONFIG_SOC_AU1550 | 
 | 1222 | 	case CPU_AU1550: | 
 | 1223 | 		num_ifs = 2 - ni; | 
 | 1224 | 		iflist[0].base_addr = AU1550_ETH0_BASE; | 
 | 1225 | 		iflist[1].base_addr = AU1550_ETH1_BASE; | 
 | 1226 | 		iflist[0].macen_addr = AU1550_MAC0_ENABLE; | 
 | 1227 | 		iflist[1].macen_addr = AU1550_MAC1_ENABLE; | 
 | 1228 | 		iflist[0].irq = AU1550_MAC0_DMA_INT; | 
 | 1229 | 		iflist[1].irq = AU1550_MAC1_DMA_INT; | 
 | 1230 | 		break; | 
 | 1231 | #endif | 
 | 1232 | 	default: | 
 | 1233 | 		num_ifs = 0; | 
 | 1234 | 	} | 
 | 1235 | 	for(i = 0; i < num_ifs; i++) { | 
 | 1236 | 		dev = au1000_probe(iflist[i].base_addr, iflist[i].irq, i); | 
 | 1237 | 		iflist[i].dev = dev; | 
 | 1238 | 		if (dev) | 
 | 1239 | 			found_one++; | 
 | 1240 | 	} | 
 | 1241 | 	if (!found_one) | 
 | 1242 | 		return -ENODEV; | 
 | 1243 | 	return 0; | 
 | 1244 | } | 
 | 1245 |  | 
 | 1246 | static int au1000_setup_aneg(struct net_device *dev, u32 advertise) | 
 | 1247 | { | 
 | 1248 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 1249 | 	u16 ctl, adv; | 
 | 1250 |  | 
 | 1251 | 	/* Setup standard advertise */ | 
 | 1252 | 	adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE); | 
 | 1253 | 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); | 
 | 1254 | 	if (advertise & ADVERTISED_10baseT_Half) | 
 | 1255 | 		adv |= ADVERTISE_10HALF; | 
 | 1256 | 	if (advertise & ADVERTISED_10baseT_Full) | 
 | 1257 | 		adv |= ADVERTISE_10FULL; | 
 | 1258 | 	if (advertise & ADVERTISED_100baseT_Half) | 
 | 1259 | 		adv |= ADVERTISE_100HALF; | 
 | 1260 | 	if (advertise & ADVERTISED_100baseT_Full) | 
 | 1261 | 		adv |= ADVERTISE_100FULL; | 
 | 1262 | 	mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv); | 
 | 1263 |  | 
 | 1264 | 	/* Start/Restart aneg */ | 
 | 1265 | 	ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); | 
 | 1266 | 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); | 
 | 1267 | 	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); | 
 | 1268 |  | 
 | 1269 | 	return 0; | 
 | 1270 | } | 
 | 1271 |  | 
 | 1272 | static int au1000_setup_forced(struct net_device *dev, int speed, int fd) | 
 | 1273 | { | 
 | 1274 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 1275 | 	u16 ctl; | 
 | 1276 |  | 
 | 1277 | 	ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); | 
 | 1278 | 	ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE); | 
 | 1279 |  | 
 | 1280 | 	/* First reset the PHY */ | 
 | 1281 | 	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET); | 
 | 1282 |  | 
 | 1283 | 	/* Select speed & duplex */ | 
 | 1284 | 	switch (speed) { | 
 | 1285 | 		case SPEED_10: | 
 | 1286 | 			break; | 
 | 1287 | 		case SPEED_100: | 
 | 1288 | 			ctl |= BMCR_SPEED100; | 
 | 1289 | 			break; | 
 | 1290 | 		case SPEED_1000: | 
 | 1291 | 		default: | 
 | 1292 | 			return -EINVAL; | 
 | 1293 | 	} | 
 | 1294 | 	if (fd == DUPLEX_FULL) | 
 | 1295 | 		ctl |= BMCR_FULLDPLX; | 
 | 1296 | 	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); | 
 | 1297 |  | 
 | 1298 | 	return 0; | 
 | 1299 | } | 
 | 1300 |  | 
 | 1301 |  | 
 | 1302 | static void | 
 | 1303 | au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | 1304 | { | 
 | 1305 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 1306 | 	u32 advertise; | 
 | 1307 | 	int autoneg; | 
 | 1308 | 	int forced_speed; | 
 | 1309 | 	int forced_duplex; | 
 | 1310 |  | 
 | 1311 | 	/* Default advertise */ | 
 | 1312 | 	advertise = GENMII_DEFAULT_ADVERTISE; | 
 | 1313 | 	autoneg = aup->want_autoneg; | 
 | 1314 | 	forced_speed = SPEED_100; | 
 | 1315 | 	forced_duplex = DUPLEX_FULL; | 
 | 1316 |  | 
 | 1317 | 	/* Setup link parameters */ | 
 | 1318 | 	if (cmd) { | 
 | 1319 | 		if (cmd->autoneg == AUTONEG_ENABLE) { | 
 | 1320 | 			advertise = cmd->advertising; | 
 | 1321 | 			autoneg = 1; | 
 | 1322 | 		} else { | 
 | 1323 | 			autoneg = 0; | 
 | 1324 |  | 
 | 1325 | 			forced_speed = cmd->speed; | 
 | 1326 | 			forced_duplex = cmd->duplex; | 
 | 1327 | 		} | 
 | 1328 | 	} | 
 | 1329 |  | 
 | 1330 | 	/* Configure PHY & start aneg */ | 
 | 1331 | 	aup->want_autoneg = autoneg; | 
 | 1332 | 	if (autoneg) | 
 | 1333 | 		au1000_setup_aneg(dev, advertise); | 
 | 1334 | 	else | 
 | 1335 | 		au1000_setup_forced(dev, forced_speed, forced_duplex); | 
 | 1336 | 	mod_timer(&aup->timer, jiffies + HZ); | 
 | 1337 | } | 
 | 1338 |  | 
 | 1339 | static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | 1340 | { | 
 | 1341 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 1342 | 	u16 link, speed; | 
 | 1343 |  | 
 | 1344 | 	cmd->supported = GENMII_DEFAULT_FEATURES; | 
 | 1345 | 	cmd->advertising = GENMII_DEFAULT_ADVERTISE; | 
 | 1346 | 	cmd->port = PORT_MII; | 
 | 1347 | 	cmd->transceiver = XCVR_EXTERNAL; | 
 | 1348 | 	cmd->phy_address = aup->phy_addr; | 
 | 1349 | 	spin_lock_irq(&aup->lock); | 
 | 1350 | 	cmd->autoneg = aup->want_autoneg; | 
 | 1351 | 	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); | 
 | 1352 | 	if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX)) | 
 | 1353 | 		cmd->speed = SPEED_100; | 
 | 1354 | 	else if (speed == IF_PORT_10BASET) | 
 | 1355 | 		cmd->speed = SPEED_10; | 
 | 1356 | 	if (link && (dev->if_port == IF_PORT_100BASEFX)) | 
 | 1357 | 		cmd->duplex = DUPLEX_FULL; | 
 | 1358 | 	else | 
 | 1359 | 		cmd->duplex = DUPLEX_HALF; | 
 | 1360 | 	spin_unlock_irq(&aup->lock); | 
 | 1361 | 	return 0; | 
 | 1362 | } | 
 | 1363 |  | 
 | 1364 | static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | 1365 | { | 
 | 1366 | 	 struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 1367 | 	  unsigned long features = GENMII_DEFAULT_FEATURES; | 
 | 1368 |  | 
 | 1369 | 	 if (!capable(CAP_NET_ADMIN)) | 
 | 1370 | 		 return -EPERM; | 
 | 1371 |  | 
 | 1372 | 	 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) | 
 | 1373 | 		 return -EINVAL; | 
 | 1374 | 	 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) | 
 | 1375 | 		 return -EINVAL; | 
 | 1376 | 	 if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) | 
 | 1377 | 		 return -EINVAL; | 
 | 1378 | 	 if (cmd->autoneg == AUTONEG_DISABLE) | 
 | 1379 | 		 switch (cmd->speed) { | 
 | 1380 | 		 case SPEED_10: | 
 | 1381 | 			 if (cmd->duplex == DUPLEX_HALF && | 
 | 1382 | 				 (features & SUPPORTED_10baseT_Half) == 0) | 
 | 1383 | 				 return -EINVAL; | 
 | 1384 | 			 if (cmd->duplex == DUPLEX_FULL && | 
 | 1385 | 				 (features & SUPPORTED_10baseT_Full) == 0) | 
 | 1386 | 				 return -EINVAL; | 
 | 1387 | 			 break; | 
 | 1388 | 		 case SPEED_100: | 
 | 1389 | 			 if (cmd->duplex == DUPLEX_HALF && | 
 | 1390 | 				 (features & SUPPORTED_100baseT_Half) == 0) | 
 | 1391 | 				 return -EINVAL; | 
 | 1392 | 			 if (cmd->duplex == DUPLEX_FULL && | 
 | 1393 | 				 (features & SUPPORTED_100baseT_Full) == 0) | 
 | 1394 | 				 return -EINVAL; | 
 | 1395 | 			 break; | 
 | 1396 | 		 default: | 
 | 1397 | 			 return -EINVAL; | 
 | 1398 | 		 } | 
 | 1399 | 	 else if ((features & SUPPORTED_Autoneg) == 0) | 
 | 1400 | 		 return -EINVAL; | 
 | 1401 |  | 
 | 1402 | 	 spin_lock_irq(&aup->lock); | 
 | 1403 | 	 au1000_start_link(dev, cmd); | 
 | 1404 | 	 spin_unlock_irq(&aup->lock); | 
 | 1405 | 	 return 0; | 
 | 1406 | } | 
 | 1407 |  | 
 | 1408 | static int au1000_nway_reset(struct net_device *dev) | 
 | 1409 | { | 
 | 1410 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 1411 |  | 
 | 1412 | 	if (!aup->want_autoneg) | 
 | 1413 | 		return -EINVAL; | 
 | 1414 | 	spin_lock_irq(&aup->lock); | 
 | 1415 | 	au1000_start_link(dev, NULL); | 
 | 1416 | 	spin_unlock_irq(&aup->lock); | 
 | 1417 | 	return 0; | 
 | 1418 | } | 
 | 1419 |  | 
 | 1420 | static void | 
 | 1421 | au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
 | 1422 | { | 
 | 1423 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 1424 |  | 
 | 1425 | 	strcpy(info->driver, DRV_NAME); | 
 | 1426 | 	strcpy(info->version, DRV_VERSION); | 
 | 1427 | 	info->fw_version[0] = '\0'; | 
 | 1428 | 	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); | 
 | 1429 | 	info->regdump_len = 0; | 
 | 1430 | } | 
 | 1431 |  | 
 | 1432 | static u32 au1000_get_link(struct net_device *dev) | 
 | 1433 | { | 
 | 1434 | 	return netif_carrier_ok(dev); | 
 | 1435 | } | 
 | 1436 |  | 
 | 1437 | static struct ethtool_ops au1000_ethtool_ops = { | 
 | 1438 | 	.get_settings = au1000_get_settings, | 
 | 1439 | 	.set_settings = au1000_set_settings, | 
 | 1440 | 	.get_drvinfo = au1000_get_drvinfo, | 
 | 1441 | 	.nway_reset = au1000_nway_reset, | 
 | 1442 | 	.get_link = au1000_get_link | 
 | 1443 | }; | 
 | 1444 |  | 
 | 1445 | static struct net_device * | 
 | 1446 | au1000_probe(u32 ioaddr, int irq, int port_num) | 
 | 1447 | { | 
 | 1448 | 	static unsigned version_printed = 0; | 
 | 1449 | 	struct au1000_private *aup = NULL; | 
 | 1450 | 	struct net_device *dev = NULL; | 
 | 1451 | 	db_dest_t *pDB, *pDBfree; | 
 | 1452 | 	char *pmac, *argptr; | 
 | 1453 | 	char ethaddr[6]; | 
 | 1454 | 	int i, err; | 
 | 1455 |  | 
 | 1456 | 	if (!request_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE, "Au1x00 ENET")) | 
 | 1457 | 		return NULL; | 
 | 1458 |  | 
 | 1459 | 	if (version_printed++ == 0)  | 
 | 1460 | 		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); | 
 | 1461 |  | 
 | 1462 | 	dev = alloc_etherdev(sizeof(struct au1000_private)); | 
 | 1463 | 	if (!dev) { | 
 | 1464 | 		printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n");   | 
 | 1465 | 		return NULL; | 
 | 1466 | 	} | 
 | 1467 |  | 
 | 1468 | 	if ((err = register_netdev(dev))) { | 
 | 1469 | 		printk(KERN_ERR "Au1x_eth Cannot register net device err %d\n", | 
 | 1470 | 				err); | 
 | 1471 | 		free_netdev(dev); | 
 | 1472 | 		return NULL; | 
 | 1473 | 	} | 
 | 1474 |  | 
 | 1475 | 	printk("%s: Au1x Ethernet found at 0x%x, irq %d\n",  | 
 | 1476 | 			dev->name, ioaddr, irq); | 
 | 1477 |  | 
 | 1478 | 	aup = dev->priv; | 
 | 1479 |  | 
 | 1480 | 	/* Allocate the data buffers */ | 
 | 1481 | 	/* Snooping works fine with eth on all au1xxx */ | 
 | 1482 | 	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, | 
 | 1483 | 			MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | 
 | 1484 | 			&aup->dma_addr, | 
 | 1485 | 			0); | 
 | 1486 | 	if (!aup->vaddr) { | 
 | 1487 | 		free_netdev(dev); | 
 | 1488 | 		release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); | 
 | 1489 | 		return NULL; | 
 | 1490 | 	} | 
 | 1491 |  | 
 | 1492 | 	/* aup->mac is the base address of the MAC's registers */ | 
 | 1493 | 	aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr); | 
 | 1494 | 	/* Setup some variables for quick register address access */ | 
 | 1495 | 	if (ioaddr == iflist[0].base_addr) | 
 | 1496 | 	{ | 
 | 1497 | 		/* check env variables first */ | 
 | 1498 | 		if (!get_ethernet_addr(ethaddr)) {  | 
 | 1499 | 			memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); | 
 | 1500 | 		} else { | 
 | 1501 | 			/* Check command line */ | 
 | 1502 | 			argptr = prom_getcmdline(); | 
 | 1503 | 			if ((pmac = strstr(argptr, "ethaddr=")) == NULL) { | 
 | 1504 | 				printk(KERN_INFO "%s: No mac address found\n",  | 
 | 1505 | 						dev->name); | 
 | 1506 | 				/* use the hard coded mac addresses */ | 
 | 1507 | 			} else { | 
 | 1508 | 				str2eaddr(ethaddr, pmac + strlen("ethaddr=")); | 
 | 1509 | 				memcpy(au1000_mac_addr, ethaddr,  | 
 | 1510 | 						sizeof(au1000_mac_addr)); | 
 | 1511 | 			} | 
 | 1512 | 		} | 
 | 1513 | 			aup->enable = (volatile u32 *)  | 
 | 1514 | 				((unsigned long)iflist[0].macen_addr); | 
 | 1515 | 		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); | 
 | 1516 | 		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); | 
 | 1517 | 		aup->mac_id = 0; | 
 | 1518 | 		au_macs[0] = aup; | 
 | 1519 | 	} | 
 | 1520 | 		else | 
 | 1521 | 	if (ioaddr == iflist[1].base_addr) | 
 | 1522 | 	{ | 
 | 1523 | 			aup->enable = (volatile u32 *)  | 
 | 1524 | 				((unsigned long)iflist[1].macen_addr); | 
 | 1525 | 		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); | 
 | 1526 | 		dev->dev_addr[4] += 0x10; | 
 | 1527 | 		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); | 
 | 1528 | 		aup->mac_id = 1; | 
 | 1529 | 		au_macs[1] = aup; | 
 | 1530 | 	} | 
 | 1531 | 	else | 
 | 1532 | 	{ | 
 | 1533 | 		printk(KERN_ERR "%s: bad ioaddr\n", dev->name); | 
 | 1534 | 	} | 
 | 1535 |  | 
 | 1536 | 	/* bring the device out of reset, otherwise probing the mii | 
 | 1537 | 	 * will hang */ | 
 | 1538 | 	*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 | 1539 | 	au_sync_delay(2); | 
 | 1540 | 	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |  | 
 | 1541 | 		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; | 
 | 1542 | 	au_sync_delay(2); | 
 | 1543 |  | 
 | 1544 | 	aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL); | 
 | 1545 | 	if (!aup->mii) { | 
 | 1546 | 		printk(KERN_ERR "%s: out of memory\n", dev->name); | 
 | 1547 | 		goto err_out; | 
 | 1548 | 	} | 
 | 1549 | 	aup->mii->mii_control_reg = 0; | 
 | 1550 | 	aup->mii->mii_data_reg = 0; | 
 | 1551 |  | 
 | 1552 | 	if (mii_probe(dev) != 0) { | 
 | 1553 | 		goto err_out; | 
 | 1554 | 	} | 
 | 1555 |  | 
 | 1556 | 	pDBfree = NULL; | 
 | 1557 | 	/* setup the data buffer descriptors and attach a buffer to each one */ | 
 | 1558 | 	pDB = aup->db; | 
 | 1559 | 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { | 
 | 1560 | 		pDB->pnext = pDBfree; | 
 | 1561 | 		pDBfree = pDB; | 
 | 1562 | 		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); | 
 | 1563 | 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); | 
 | 1564 | 		pDB++; | 
 | 1565 | 	} | 
 | 1566 | 	aup->pDBfree = pDBfree; | 
 | 1567 |  | 
 | 1568 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 1569 | 		pDB = GetFreeDB(aup); | 
 | 1570 | 		if (!pDB) { | 
 | 1571 | 			goto err_out; | 
 | 1572 | 		} | 
 | 1573 | 		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | 
 | 1574 | 		aup->rx_db_inuse[i] = pDB; | 
 | 1575 | 	} | 
 | 1576 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 1577 | 		pDB = GetFreeDB(aup); | 
 | 1578 | 		if (!pDB) { | 
 | 1579 | 			goto err_out; | 
 | 1580 | 		} | 
 | 1581 | 		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | 
 | 1582 | 		aup->tx_dma_ring[i]->len = 0; | 
 | 1583 | 		aup->tx_db_inuse[i] = pDB; | 
 | 1584 | 	} | 
 | 1585 |  | 
 | 1586 | 	spin_lock_init(&aup->lock); | 
 | 1587 | 	dev->base_addr = ioaddr; | 
 | 1588 | 	dev->irq = irq; | 
 | 1589 | 	dev->open = au1000_open; | 
 | 1590 | 	dev->hard_start_xmit = au1000_tx; | 
 | 1591 | 	dev->stop = au1000_close; | 
 | 1592 | 	dev->get_stats = au1000_get_stats; | 
 | 1593 | 	dev->set_multicast_list = &set_rx_mode; | 
 | 1594 | 	dev->do_ioctl = &au1000_ioctl; | 
 | 1595 | 	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); | 
 | 1596 | 	dev->set_config = &au1000_set_config; | 
 | 1597 | 	dev->tx_timeout = au1000_tx_timeout; | 
 | 1598 | 	dev->watchdog_timeo = ETH_TX_TIMEOUT; | 
 | 1599 |  | 
 | 1600 | 	/*  | 
 | 1601 | 	 * The boot code uses the ethernet controller, so reset it to start  | 
 | 1602 | 	 * fresh.  au1000_init() expects that the device is in reset state. | 
 | 1603 | 	 */ | 
 | 1604 | 	reset_mac(dev); | 
 | 1605 |  | 
 | 1606 | 	return dev; | 
 | 1607 |  | 
 | 1608 | err_out: | 
 | 1609 | 	/* here we should have a valid dev plus aup-> register addresses | 
 | 1610 | 	 * so we can reset the mac properly.*/ | 
 | 1611 | 	reset_mac(dev); | 
 | 1612 | 	if (aup->mii) | 
 | 1613 | 		kfree(aup->mii); | 
 | 1614 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 1615 | 		if (aup->rx_db_inuse[i]) | 
 | 1616 | 			ReleaseDB(aup, aup->rx_db_inuse[i]); | 
 | 1617 | 	} | 
 | 1618 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 1619 | 		if (aup->tx_db_inuse[i]) | 
 | 1620 | 			ReleaseDB(aup, aup->tx_db_inuse[i]); | 
 | 1621 | 	} | 
 | 1622 | 	dma_free_noncoherent(NULL, | 
 | 1623 | 			MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | 
 | 1624 | 			(void *)aup->vaddr, | 
 | 1625 | 			aup->dma_addr); | 
 | 1626 | 	unregister_netdev(dev); | 
 | 1627 | 	free_netdev(dev); | 
 | 1628 | 	release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); | 
 | 1629 | 	return NULL; | 
 | 1630 | } | 
 | 1631 |  | 
 | 1632 | /*  | 
 | 1633 |  * Initialize the interface. | 
 | 1634 |  * | 
 | 1635 |  * When the device powers up, the clocks are disabled and the | 
 | 1636 |  * mac is in reset state.  When the interface is closed, we | 
 | 1637 |  * do the same -- reset the device and disable the clocks to | 
 | 1638 |  * conserve power. Thus, whenever au1000_init() is called, | 
 | 1639 |  * the device should already be in reset state. | 
 | 1640 |  */ | 
 | 1641 | static int au1000_init(struct net_device *dev) | 
 | 1642 | { | 
 | 1643 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1644 | 	u32 flags; | 
 | 1645 | 	int i; | 
 | 1646 | 	u32 control; | 
 | 1647 | 	u16 link, speed; | 
 | 1648 |  | 
 | 1649 | 	if (au1000_debug > 4)  | 
 | 1650 | 		printk("%s: au1000_init\n", dev->name); | 
 | 1651 |  | 
 | 1652 | 	spin_lock_irqsave(&aup->lock, flags); | 
 | 1653 |  | 
 | 1654 | 	/* bring the device out of reset */ | 
 | 1655 | 	*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 | 1656 |         au_sync_delay(2); | 
 | 1657 | 	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |  | 
 | 1658 | 		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; | 
 | 1659 | 	au_sync_delay(20); | 
 | 1660 |  | 
 | 1661 | 	aup->mac->control = 0; | 
 | 1662 | 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; | 
 | 1663 | 	aup->tx_tail = aup->tx_head; | 
 | 1664 | 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; | 
 | 1665 |  | 
 | 1666 | 	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; | 
 | 1667 | 	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | | 
 | 1668 | 		dev->dev_addr[1]<<8 | dev->dev_addr[0]; | 
 | 1669 |  | 
 | 1670 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 1671 | 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; | 
 | 1672 | 	} | 
 | 1673 | 	au_sync(); | 
 | 1674 |  | 
 | 1675 | 	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); | 
 | 1676 | 	control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE; | 
 | 1677 | #ifndef CONFIG_CPU_LITTLE_ENDIAN | 
 | 1678 | 	control |= MAC_BIG_ENDIAN; | 
 | 1679 | #endif | 
 | 1680 | 	if (link && (dev->if_port == IF_PORT_100BASEFX)) { | 
 | 1681 | 		control |= MAC_FULL_DUPLEX; | 
 | 1682 | 	} | 
 | 1683 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1684 | 	aup->mac->control = control; | 
 | 1685 | 	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ | 
 | 1686 | 	au_sync(); | 
 | 1687 |  | 
 | 1688 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | 1689 | 	return 0; | 
 | 1690 | } | 
 | 1691 |  | 
 | 1692 | static void au1000_timer(unsigned long data) | 
 | 1693 | { | 
 | 1694 | 	struct net_device *dev = (struct net_device *)data; | 
 | 1695 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1696 | 	unsigned char if_port; | 
 | 1697 | 	u16 link, speed; | 
 | 1698 |  | 
 | 1699 | 	if (!dev) { | 
 | 1700 | 		/* fatal error, don't restart the timer */ | 
 | 1701 | 		printk(KERN_ERR "au1000_timer error: NULL dev\n"); | 
 | 1702 | 		return; | 
 | 1703 | 	} | 
 | 1704 |  | 
 | 1705 | 	if_port = dev->if_port; | 
 | 1706 | 	if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) { | 
 | 1707 | 		if (link) { | 
 | 7d17c1d | 2005-05-12 19:45:25 -0400 | [diff] [blame] | 1708 | 			if (!netif_carrier_ok(dev)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1709 | 				netif_carrier_on(dev); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1710 | 				printk(KERN_INFO "%s: link up\n", dev->name); | 
 | 1711 | 			} | 
 | 1712 | 		} | 
 | 1713 | 		else { | 
 | 7d17c1d | 2005-05-12 19:45:25 -0400 | [diff] [blame] | 1714 | 			if (netif_carrier_ok(dev)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1715 | 				netif_carrier_off(dev); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1716 | 				dev->if_port = 0; | 
 | 1717 | 				printk(KERN_INFO "%s: link down\n", dev->name); | 
 | 1718 | 			} | 
 | 1719 | 		} | 
 | 1720 | 	} | 
 | 1721 |  | 
 | 1722 | 	if (link && (dev->if_port != if_port) &&  | 
 | 1723 | 			(dev->if_port != IF_PORT_UNKNOWN)) { | 
 | 1724 | 		hard_stop(dev); | 
 | 1725 | 		if (dev->if_port == IF_PORT_100BASEFX) { | 
 | 1726 | 			printk(KERN_INFO "%s: going to full duplex\n",  | 
 | 1727 | 					dev->name); | 
 | 1728 | 			aup->mac->control |= MAC_FULL_DUPLEX; | 
 | 1729 | 			au_sync_delay(1); | 
 | 1730 | 		} | 
 | 1731 | 		else { | 
 | 1732 | 			aup->mac->control &= ~MAC_FULL_DUPLEX; | 
 | 1733 | 			au_sync_delay(1); | 
 | 1734 | 		} | 
 | 1735 | 		enable_rx_tx(dev); | 
 | 1736 | 	} | 
 | 1737 |  | 
 | 1738 | 	aup->timer.expires = RUN_AT((1*HZ));  | 
 | 1739 | 	aup->timer.data = (unsigned long)dev; | 
 | 1740 | 	aup->timer.function = &au1000_timer; /* timer handler */ | 
 | 1741 | 	add_timer(&aup->timer); | 
 | 1742 |  | 
 | 1743 | } | 
 | 1744 |  | 
 | 1745 | static int au1000_open(struct net_device *dev) | 
 | 1746 | { | 
 | 1747 | 	int retval; | 
 | 1748 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1749 |  | 
 | 1750 | 	if (au1000_debug > 4) | 
 | 1751 | 		printk("%s: open: dev=%p\n", dev->name, dev); | 
 | 1752 |  | 
 | 1753 | 	if ((retval = au1000_init(dev))) { | 
 | 1754 | 		printk(KERN_ERR "%s: error in au1000_init\n", dev->name); | 
 | 1755 | 		free_irq(dev->irq, dev); | 
 | 1756 | 		return retval; | 
 | 1757 | 	} | 
 | 1758 | 	netif_start_queue(dev); | 
 | 1759 |  | 
 | 1760 | 	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,  | 
 | 1761 | 					dev->name, dev))) { | 
 | 1762 | 		printk(KERN_ERR "%s: unable to get IRQ %d\n",  | 
 | 1763 | 				dev->name, dev->irq); | 
 | 1764 | 		return retval; | 
 | 1765 | 	} | 
 | 1766 |  | 
 | 1767 | 	init_timer(&aup->timer); /* used in ioctl() */ | 
 | 1768 | 	aup->timer.expires = RUN_AT((3*HZ));  | 
 | 1769 | 	aup->timer.data = (unsigned long)dev; | 
 | 1770 | 	aup->timer.function = &au1000_timer; /* timer handler */ | 
 | 1771 | 	add_timer(&aup->timer); | 
 | 1772 |  | 
 | 1773 | 	if (au1000_debug > 4) | 
 | 1774 | 		printk("%s: open: Initialization done.\n", dev->name); | 
 | 1775 |  | 
 | 1776 | 	return 0; | 
 | 1777 | } | 
 | 1778 |  | 
 | 1779 | static int au1000_close(struct net_device *dev) | 
 | 1780 | { | 
 | 1781 | 	u32 flags; | 
 | 1782 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1783 |  | 
 | 1784 | 	if (au1000_debug > 4) | 
 | 1785 | 		printk("%s: close: dev=%p\n", dev->name, dev); | 
 | 1786 |  | 
 | 1787 | 	reset_mac(dev); | 
 | 1788 |  | 
 | 1789 | 	spin_lock_irqsave(&aup->lock, flags); | 
 | 1790 | 	 | 
 | 1791 | 	/* stop the device */ | 
 | 1792 | 	netif_stop_queue(dev); | 
 | 1793 |  | 
 | 1794 | 	/* disable the interrupt */ | 
 | 1795 | 	free_irq(dev->irq, dev); | 
 | 1796 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | 1797 |  | 
 | 1798 | 	return 0; | 
 | 1799 | } | 
 | 1800 |  | 
 | 1801 | static void __exit au1000_cleanup_module(void) | 
 | 1802 | { | 
 | 1803 | 	int i, j; | 
 | 1804 | 	struct net_device *dev; | 
 | 1805 | 	struct au1000_private *aup; | 
 | 1806 |  | 
 | 1807 | 	for (i = 0; i < num_ifs; i++) { | 
 | 1808 | 		dev = iflist[i].dev; | 
 | 1809 | 		if (dev) { | 
 | 1810 | 			aup = (struct au1000_private *) dev->priv; | 
 | 1811 | 			unregister_netdev(dev); | 
 | 1812 | 			if (aup->mii) | 
 | 1813 | 				kfree(aup->mii); | 
 | 1814 | 			for (j = 0; j < NUM_RX_DMA; j++) { | 
 | 1815 | 				if (aup->rx_db_inuse[j]) | 
 | 1816 | 					ReleaseDB(aup, aup->rx_db_inuse[j]); | 
 | 1817 | 			} | 
 | 1818 | 			for (j = 0; j < NUM_TX_DMA; j++) { | 
 | 1819 | 				if (aup->tx_db_inuse[j]) | 
 | 1820 | 					ReleaseDB(aup, aup->tx_db_inuse[j]); | 
 | 1821 | 			} | 
 | 1822 | 			dma_free_noncoherent(NULL, | 
 | 1823 | 					MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | 
 | 1824 | 					(void *)aup->vaddr, | 
 | 1825 | 					aup->dma_addr); | 
 | 1826 | 			free_netdev(dev); | 
 | 1827 | 			release_mem_region(CPHYSADDR(iflist[i].base_addr), MAC_IOSIZE); | 
 | 1828 | 		} | 
 | 1829 | 	} | 
 | 1830 | } | 
 | 1831 |  | 
 | 1832 |  | 
 | 1833 | static inline void  | 
 | 1834 | update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len) | 
 | 1835 | { | 
 | 1836 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1837 | 	struct net_device_stats *ps = &aup->stats; | 
 | 1838 |  | 
 | 1839 | 	ps->tx_packets++; | 
 | 1840 | 	ps->tx_bytes += pkt_len; | 
 | 1841 |  | 
 | 1842 | 	if (status & TX_FRAME_ABORTED) { | 
 | 1843 | 		if (dev->if_port == IF_PORT_100BASEFX) { | 
 | 1844 | 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { | 
 | 1845 | 				/* any other tx errors are only valid | 
 | 1846 | 				 * in half duplex mode */ | 
 | 1847 | 				ps->tx_errors++; | 
 | 1848 | 				ps->tx_aborted_errors++; | 
 | 1849 | 			} | 
 | 1850 | 		} | 
 | 1851 | 		else { | 
 | 1852 | 			ps->tx_errors++; | 
 | 1853 | 			ps->tx_aborted_errors++; | 
 | 1854 | 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) | 
 | 1855 | 				ps->tx_carrier_errors++; | 
 | 1856 | 		} | 
 | 1857 | 	} | 
 | 1858 | } | 
 | 1859 |  | 
 | 1860 |  | 
 | 1861 | /* | 
 | 1862 |  * Called from the interrupt service routine to acknowledge | 
 | 1863 |  * the TX DONE bits.  This is a must if the irq is setup as | 
 | 1864 |  * edge triggered. | 
 | 1865 |  */ | 
 | 1866 | static void au1000_tx_ack(struct net_device *dev) | 
 | 1867 | { | 
 | 1868 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1869 | 	volatile tx_dma_t *ptxd; | 
 | 1870 |  | 
 | 1871 | 	ptxd = aup->tx_dma_ring[aup->tx_tail]; | 
 | 1872 |  | 
 | 1873 | 	while (ptxd->buff_stat & TX_T_DONE) { | 
 | 1874 | 		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff); | 
 | 1875 | 		ptxd->buff_stat &= ~TX_T_DONE; | 
 | 1876 | 		ptxd->len = 0; | 
 | 1877 | 		au_sync(); | 
 | 1878 |  | 
 | 1879 | 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); | 
 | 1880 | 		ptxd = aup->tx_dma_ring[aup->tx_tail]; | 
 | 1881 |  | 
 | 1882 | 		if (aup->tx_full) { | 
 | 1883 | 			aup->tx_full = 0; | 
 | 1884 | 			netif_wake_queue(dev); | 
 | 1885 | 		} | 
 | 1886 | 	} | 
 | 1887 | } | 
 | 1888 |  | 
 | 1889 |  | 
 | 1890 | /* | 
 | 1891 |  * Au1000 transmit routine. | 
 | 1892 |  */ | 
 | 1893 | static int au1000_tx(struct sk_buff *skb, struct net_device *dev) | 
 | 1894 | { | 
 | 1895 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1896 | 	volatile tx_dma_t *ptxd; | 
 | 1897 | 	u32 buff_stat; | 
 | 1898 | 	db_dest_t *pDB; | 
 | 1899 | 	int i; | 
 | 1900 |  | 
 | 1901 | 	if (au1000_debug > 5) | 
 | 1902 | 		printk("%s: tx: aup %x len=%d, data=%p, head %d\n",  | 
 | 1903 | 				dev->name, (unsigned)aup, skb->len,  | 
 | 1904 | 				skb->data, aup->tx_head); | 
 | 1905 |  | 
 | 1906 | 	ptxd = aup->tx_dma_ring[aup->tx_head]; | 
 | 1907 | 	buff_stat = ptxd->buff_stat; | 
 | 1908 | 	if (buff_stat & TX_DMA_ENABLE) { | 
 | 1909 | 		/* We've wrapped around and the transmitter is still busy */ | 
 | 1910 | 		netif_stop_queue(dev); | 
 | 1911 | 		aup->tx_full = 1; | 
 | 1912 | 		return 1; | 
 | 1913 | 	} | 
 | 1914 | 	else if (buff_stat & TX_T_DONE) { | 
 | 1915 | 		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff); | 
 | 1916 | 		ptxd->len = 0; | 
 | 1917 | 	} | 
 | 1918 |  | 
 | 1919 | 	if (aup->tx_full) { | 
 | 1920 | 		aup->tx_full = 0; | 
 | 1921 | 		netif_wake_queue(dev); | 
 | 1922 | 	} | 
 | 1923 |  | 
 | 1924 | 	pDB = aup->tx_db_inuse[aup->tx_head]; | 
 | 1925 | 	memcpy((void *)pDB->vaddr, skb->data, skb->len); | 
 | 1926 | 	if (skb->len < ETH_ZLEN) { | 
 | 1927 | 		for (i=skb->len; i<ETH_ZLEN; i++) {  | 
 | 1928 | 			((char *)pDB->vaddr)[i] = 0; | 
 | 1929 | 		} | 
 | 1930 | 		ptxd->len = ETH_ZLEN; | 
 | 1931 | 	} | 
 | 1932 | 	else | 
 | 1933 | 		ptxd->len = skb->len; | 
 | 1934 |  | 
 | 1935 | 	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; | 
 | 1936 | 	au_sync(); | 
 | 1937 | 	dev_kfree_skb(skb); | 
 | 1938 | 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); | 
 | 1939 | 	dev->trans_start = jiffies; | 
 | 1940 | 	return 0; | 
 | 1941 | } | 
 | 1942 |  | 
 | 1943 |  | 
 | 1944 | static inline void update_rx_stats(struct net_device *dev, u32 status) | 
 | 1945 | { | 
 | 1946 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1947 | 	struct net_device_stats *ps = &aup->stats; | 
 | 1948 |  | 
 | 1949 | 	ps->rx_packets++; | 
 | 1950 | 	if (status & RX_MCAST_FRAME) | 
 | 1951 | 		ps->multicast++; | 
 | 1952 |  | 
 | 1953 | 	if (status & RX_ERROR) { | 
 | 1954 | 		ps->rx_errors++; | 
 | 1955 | 		if (status & RX_MISSED_FRAME) | 
 | 1956 | 			ps->rx_missed_errors++; | 
 | 1957 | 		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) | 
 | 1958 | 			ps->rx_length_errors++; | 
 | 1959 | 		if (status & RX_CRC_ERROR) | 
 | 1960 | 			ps->rx_crc_errors++; | 
 | 1961 | 		if (status & RX_COLL) | 
 | 1962 | 			ps->collisions++; | 
 | 1963 | 	} | 
 | 1964 | 	else  | 
 | 1965 | 		ps->rx_bytes += status & RX_FRAME_LEN_MASK; | 
 | 1966 |  | 
 | 1967 | } | 
 | 1968 |  | 
 | 1969 | /* | 
 | 1970 |  * Au1000 receive routine. | 
 | 1971 |  */ | 
 | 1972 | static int au1000_rx(struct net_device *dev) | 
 | 1973 | { | 
 | 1974 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 1975 | 	struct sk_buff *skb; | 
 | 1976 | 	volatile rx_dma_t *prxd; | 
 | 1977 | 	u32 buff_stat, status; | 
 | 1978 | 	db_dest_t *pDB; | 
 | 1979 | 	u32	frmlen; | 
 | 1980 |  | 
 | 1981 | 	if (au1000_debug > 5) | 
 | 1982 | 		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); | 
 | 1983 |  | 
 | 1984 | 	prxd = aup->rx_dma_ring[aup->rx_head]; | 
 | 1985 | 	buff_stat = prxd->buff_stat; | 
 | 1986 | 	while (buff_stat & RX_T_DONE)  { | 
 | 1987 | 		status = prxd->status; | 
 | 1988 | 		pDB = aup->rx_db_inuse[aup->rx_head]; | 
 | 1989 | 		update_rx_stats(dev, status); | 
 | 1990 | 		if (!(status & RX_ERROR))  { | 
 | 1991 |  | 
 | 1992 | 			/* good frame */ | 
 | 1993 | 			frmlen = (status & RX_FRAME_LEN_MASK); | 
 | 1994 | 			frmlen -= 4; /* Remove FCS */ | 
 | 1995 | 			skb = dev_alloc_skb(frmlen + 2); | 
 | 1996 | 			if (skb == NULL) { | 
 | 1997 | 				printk(KERN_ERR | 
 | 1998 | 				       "%s: Memory squeeze, dropping packet.\n", | 
 | 1999 | 				       dev->name); | 
 | 2000 | 				aup->stats.rx_dropped++; | 
 | 2001 | 				continue; | 
 | 2002 | 			} | 
 | 2003 | 			skb->dev = dev; | 
 | 2004 | 			skb_reserve(skb, 2);	/* 16 byte IP header align */ | 
 | 2005 | 			eth_copy_and_sum(skb, | 
 | 2006 | 				(unsigned char *)pDB->vaddr, frmlen, 0); | 
 | 2007 | 			skb_put(skb, frmlen); | 
 | 2008 | 			skb->protocol = eth_type_trans(skb, dev); | 
 | 2009 | 			netif_rx(skb);	/* pass the packet to upper layers */ | 
 | 2010 | 		} | 
 | 2011 | 		else { | 
 | 2012 | 			if (au1000_debug > 4) { | 
 | 2013 | 				if (status & RX_MISSED_FRAME)  | 
 | 2014 | 					printk("rx miss\n"); | 
 | 2015 | 				if (status & RX_WDOG_TIMER)  | 
 | 2016 | 					printk("rx wdog\n"); | 
 | 2017 | 				if (status & RX_RUNT)  | 
 | 2018 | 					printk("rx runt\n"); | 
 | 2019 | 				if (status & RX_OVERLEN)  | 
 | 2020 | 					printk("rx overlen\n"); | 
 | 2021 | 				if (status & RX_COLL) | 
 | 2022 | 					printk("rx coll\n"); | 
 | 2023 | 				if (status & RX_MII_ERROR) | 
 | 2024 | 					printk("rx mii error\n"); | 
 | 2025 | 				if (status & RX_CRC_ERROR) | 
 | 2026 | 					printk("rx crc error\n"); | 
 | 2027 | 				if (status & RX_LEN_ERROR) | 
 | 2028 | 					printk("rx len error\n"); | 
 | 2029 | 				if (status & RX_U_CNTRL_FRAME) | 
 | 2030 | 					printk("rx u control frame\n"); | 
 | 2031 | 				if (status & RX_MISSED_FRAME) | 
 | 2032 | 					printk("rx miss\n"); | 
 | 2033 | 			} | 
 | 2034 | 		} | 
 | 2035 | 		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); | 
 | 2036 | 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); | 
 | 2037 | 		au_sync(); | 
 | 2038 |  | 
 | 2039 | 		/* next descriptor */ | 
 | 2040 | 		prxd = aup->rx_dma_ring[aup->rx_head]; | 
 | 2041 | 		buff_stat = prxd->buff_stat; | 
 | 2042 | 		dev->last_rx = jiffies; | 
 | 2043 | 	} | 
 | 2044 | 	return 0; | 
 | 2045 | } | 
 | 2046 |  | 
 | 2047 |  | 
 | 2048 | /* | 
 | 2049 |  * Au1000 interrupt service routine. | 
 | 2050 |  */ | 
 | 2051 | static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | 2052 | { | 
 | 2053 | 	struct net_device *dev = (struct net_device *) dev_id; | 
 | 2054 |  | 
 | 2055 | 	if (dev == NULL) { | 
 | 2056 | 		printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name); | 
 | 2057 | 		return IRQ_RETVAL(1); | 
 | 2058 | 	} | 
 | 2059 |  | 
 | 2060 | 	/* Handle RX interrupts first to minimize chance of overrun */ | 
 | 2061 |  | 
 | 2062 | 	au1000_rx(dev); | 
 | 2063 | 	au1000_tx_ack(dev); | 
 | 2064 | 	return IRQ_RETVAL(1); | 
 | 2065 | } | 
 | 2066 |  | 
 | 2067 |  | 
 | 2068 | /* | 
 | 2069 |  * The Tx ring has been full longer than the watchdog timeout | 
 | 2070 |  * value. The transmitter must be hung? | 
 | 2071 |  */ | 
 | 2072 | static void au1000_tx_timeout(struct net_device *dev) | 
 | 2073 | { | 
 | 2074 | 	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); | 
 | 2075 | 	reset_mac(dev); | 
 | 2076 | 	au1000_init(dev); | 
 | 2077 | 	dev->trans_start = jiffies; | 
 | 2078 | 	netif_wake_queue(dev); | 
 | 2079 | } | 
 | 2080 |  | 
 | 2081 |  | 
 | 2082 | static unsigned const ethernet_polynomial = 0x04c11db7U; | 
 | 2083 | static inline u32 ether_crc(int length, unsigned char *data) | 
 | 2084 | { | 
 | 2085 |     int crc = -1; | 
 | 2086 |  | 
 | 2087 |     while(--length >= 0) { | 
 | 2088 | 		unsigned char current_octet = *data++; | 
 | 2089 | 		int bit; | 
 | 2090 | 		for (bit = 0; bit < 8; bit++, current_octet >>= 1) | 
 | 2091 | 			crc = (crc << 1) ^ | 
 | 2092 | 				((crc < 0) ^ (current_octet & 1) ?  | 
 | 2093 | 				 ethernet_polynomial : 0); | 
 | 2094 |     } | 
 | 2095 |     return crc; | 
 | 2096 | } | 
 | 2097 |  | 
 | 2098 | static void set_rx_mode(struct net_device *dev) | 
 | 2099 | { | 
 | 2100 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 2101 |  | 
 | 2102 | 	if (au1000_debug > 4)  | 
 | 2103 | 		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); | 
 | 2104 |  | 
 | 2105 | 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */ | 
 | 2106 | 		aup->mac->control |= MAC_PROMISCUOUS; | 
 | 2107 | 		printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); | 
 | 2108 | 	} else if ((dev->flags & IFF_ALLMULTI)  || | 
 | 2109 | 			   dev->mc_count > MULTICAST_FILTER_LIMIT) { | 
 | 2110 | 		aup->mac->control |= MAC_PASS_ALL_MULTI; | 
 | 2111 | 		aup->mac->control &= ~MAC_PROMISCUOUS; | 
 | 2112 | 		printk(KERN_INFO "%s: Pass all multicast\n", dev->name); | 
 | 2113 | 	} else { | 
 | 2114 | 		int i; | 
 | 2115 | 		struct dev_mc_list *mclist; | 
 | 2116 | 		u32 mc_filter[2];	/* Multicast hash filter */ | 
 | 2117 |  | 
 | 2118 | 		mc_filter[1] = mc_filter[0] = 0; | 
 | 2119 | 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | 
 | 2120 | 			 i++, mclist = mclist->next) { | 
 | 2121 | 			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,  | 
 | 2122 | 					(long *)mc_filter); | 
 | 2123 | 		} | 
 | 2124 | 		aup->mac->multi_hash_high = mc_filter[1]; | 
 | 2125 | 		aup->mac->multi_hash_low = mc_filter[0]; | 
 | 2126 | 		aup->mac->control &= ~MAC_PROMISCUOUS; | 
 | 2127 | 		aup->mac->control |= MAC_HASH_MODE; | 
 | 2128 | 	} | 
 | 2129 | } | 
 | 2130 |  | 
 | 2131 |  | 
 | 2132 | static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | 2133 | { | 
 | 2134 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 2135 | 	u16 *data = (u16 *)&rq->ifr_ifru; | 
 | 2136 |  | 
 | 2137 | 	switch(cmd) {  | 
 | 2138 | 		case SIOCDEVPRIVATE:	/* Get the address of the PHY in use. */ | 
 | 2139 | 		case SIOCGMIIPHY: | 
 | 2140 | 		        if (!netif_running(dev)) return -EINVAL; | 
 | 2141 | 			data[0] = aup->phy_addr; | 
 | 2142 | 		case SIOCDEVPRIVATE+1:	/* Read the specified MII register. */ | 
 | 2143 | 		case SIOCGMIIREG: | 
 | 2144 | 			data[3] =  mdio_read(dev, data[0], data[1]);  | 
 | 2145 | 			return 0; | 
 | 2146 | 		case SIOCDEVPRIVATE+2:	/* Write the specified MII register */ | 
 | 2147 | 		case SIOCSMIIREG:  | 
 | 2148 | 			if (!capable(CAP_NET_ADMIN)) | 
 | 2149 | 				return -EPERM; | 
 | 2150 | 			mdio_write(dev, data[0], data[1],data[2]); | 
 | 2151 | 			return 0; | 
 | 2152 | 		default: | 
 | 2153 | 			return -EOPNOTSUPP; | 
 | 2154 | 	} | 
 | 2155 |  | 
 | 2156 | } | 
 | 2157 |  | 
 | 2158 |  | 
 | 2159 | static int au1000_set_config(struct net_device *dev, struct ifmap *map) | 
 | 2160 | { | 
 | 2161 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 2162 | 	u16 control; | 
 | 2163 |  | 
 | 2164 | 	if (au1000_debug > 4)  { | 
 | 2165 | 		printk("%s: set_config called: dev->if_port %d map->port %x\n",  | 
 | 2166 | 				dev->name, dev->if_port, map->port); | 
 | 2167 | 	} | 
 | 2168 |  | 
 | 2169 | 	switch(map->port){ | 
 | 2170 | 		case IF_PORT_UNKNOWN: /* use auto here */    | 
 | 2171 | 			printk(KERN_INFO "%s: config phy for aneg\n",  | 
 | 2172 | 					dev->name); | 
 | 2173 | 			dev->if_port = map->port; | 
 | 2174 | 			/* Link Down: the timer will bring it up */ | 
 | 2175 | 			netif_carrier_off(dev); | 
 | 2176 | 	 | 
 | 2177 | 			/* read current control */ | 
 | 2178 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 2179 | 			control &= ~(MII_CNTL_FDX | MII_CNTL_F100); | 
 | 2180 |  | 
 | 2181 | 			/* enable auto negotiation and reset the negotiation */ | 
 | 2182 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL,  | 
 | 2183 | 					control | MII_CNTL_AUTO |  | 
 | 2184 | 					MII_CNTL_RST_AUTO); | 
 | 2185 |  | 
 | 2186 | 			break; | 
 | 2187 |      | 
 | 2188 | 		case IF_PORT_10BASET: /* 10BaseT */          | 
 | 2189 | 			printk(KERN_INFO "%s: config phy for 10BaseT\n",  | 
 | 2190 | 					dev->name); | 
 | 2191 | 			dev->if_port = map->port; | 
 | 2192 | 	 | 
 | 2193 | 			/* Link Down: the timer will bring it up */ | 
 | 2194 | 			netif_carrier_off(dev); | 
 | 2195 |  | 
 | 2196 | 			/* set Speed to 10Mbps, Half Duplex */ | 
 | 2197 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 2198 | 			control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO |  | 
 | 2199 | 					MII_CNTL_FDX); | 
 | 2200 | 	 | 
 | 2201 | 			/* disable auto negotiation and force 10M/HD mode*/ | 
 | 2202 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | 
 | 2203 | 			break; | 
 | 2204 |      | 
 | 2205 | 		case IF_PORT_100BASET: /* 100BaseT */ | 
 | 2206 | 		case IF_PORT_100BASETX: /* 100BaseTx */  | 
 | 2207 | 			printk(KERN_INFO "%s: config phy for 100BaseTX\n",  | 
 | 2208 | 					dev->name); | 
 | 2209 | 			dev->if_port = map->port; | 
 | 2210 | 	 | 
 | 2211 | 			/* Link Down: the timer will bring it up */ | 
 | 2212 | 			netif_carrier_off(dev); | 
 | 2213 | 	 | 
 | 2214 | 			/* set Speed to 100Mbps, Half Duplex */ | 
 | 2215 | 			/* disable auto negotiation and enable 100MBit Mode */ | 
 | 2216 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 2217 | 			control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX); | 
 | 2218 | 			control |= MII_CNTL_F100; | 
 | 2219 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | 
 | 2220 | 			break; | 
 | 2221 |      | 
 | 2222 | 		case IF_PORT_100BASEFX: /* 100BaseFx */ | 
 | 2223 | 			printk(KERN_INFO "%s: config phy for 100BaseFX\n",  | 
 | 2224 | 					dev->name); | 
 | 2225 | 			dev->if_port = map->port; | 
 | 2226 | 	 | 
 | 2227 | 			/* Link Down: the timer will bring it up */ | 
 | 2228 | 			netif_carrier_off(dev); | 
 | 2229 | 	 | 
 | 2230 | 			/* set Speed to 100Mbps, Full Duplex */ | 
 | 2231 | 			/* disable auto negotiation and enable 100MBit Mode */ | 
 | 2232 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 2233 | 			control &= ~MII_CNTL_AUTO; | 
 | 2234 | 			control |=  MII_CNTL_F100 | MII_CNTL_FDX; | 
 | 2235 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | 
 | 2236 | 			break; | 
 | 2237 | 		case IF_PORT_10BASE2: /* 10Base2 */ | 
 | 2238 | 		case IF_PORT_AUI: /* AUI */ | 
 | 2239 | 		/* These Modes are not supported (are they?)*/ | 
 | 2240 | 			printk(KERN_ERR "%s: 10Base2/AUI not supported",  | 
 | 2241 | 					dev->name); | 
 | 2242 | 			return -EOPNOTSUPP; | 
 | 2243 | 			break; | 
 | 2244 |      | 
 | 2245 | 		default: | 
 | 2246 | 			printk(KERN_ERR "%s: Invalid media selected",  | 
 | 2247 | 					dev->name); | 
 | 2248 | 			return -EINVAL; | 
 | 2249 | 	} | 
 | 2250 | 	return 0; | 
 | 2251 | } | 
 | 2252 |  | 
 | 2253 | static struct net_device_stats *au1000_get_stats(struct net_device *dev) | 
 | 2254 | { | 
 | 2255 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 2256 |  | 
 | 2257 | 	if (au1000_debug > 4) | 
 | 2258 | 		printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev); | 
 | 2259 |  | 
 | 2260 | 	if (netif_device_present(dev)) { | 
 | 2261 | 		return &aup->stats; | 
 | 2262 | 	} | 
 | 2263 | 	return 0; | 
 | 2264 | } | 
 | 2265 |  | 
 | 2266 | module_init(au1000_init_module); | 
 | 2267 | module_exit(au1000_cleanup_module); |