| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2000-2003 Silicon Graphics, Inc.  All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or modify it | 
|  | 5 | * under the terms of version 2 of the GNU General Public License as | 
|  | 6 | * published by the Free Software Foundation. | 
|  | 7 | * | 
|  | 8 | * This program is distributed in the hope that it would be useful, but | 
|  | 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | 11 | * | 
|  | 12 | * Further, this software is distributed without any warranty that it is | 
|  | 13 | * free of the rightful claim of any third person regarding infringement | 
|  | 14 | * or the like.  Any license provided herein, whether implied or | 
|  | 15 | * otherwise, applies only to this software file.  Patent licenses, if | 
|  | 16 | * any, provided herein do not apply to combinations of this program with | 
|  | 17 | * other software, or any other product whatsoever. | 
|  | 18 | * | 
|  | 19 | * You should have received a copy of the GNU General Public License along | 
|  | 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 | 
|  | 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
|  | 22 | * | 
|  | 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | 
|  | 24 | * Mountain View, CA  94043, or: | 
|  | 25 | * | 
|  | 26 | * http://www.sgi.com | 
|  | 27 | * | 
|  | 28 | * For further information regarding this notice, see: | 
|  | 29 | * | 
|  | 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | 
|  | 31 | */ | 
|  | 32 |  | 
|  | 33 | #include "xfs.h" | 
|  | 34 | #include "xfs_macros.h" | 
|  | 35 | #include "xfs_types.h" | 
|  | 36 | #include "xfs_inum.h" | 
|  | 37 | #include "xfs_log.h" | 
|  | 38 | #include "xfs_trans.h" | 
|  | 39 | #include "xfs_trans_priv.h" | 
|  | 40 | #include "xfs_sb.h" | 
|  | 41 | #include "xfs_ag.h" | 
|  | 42 | #include "xfs_dir.h" | 
|  | 43 | #include "xfs_dir2.h" | 
|  | 44 | #include "xfs_dmapi.h" | 
|  | 45 | #include "xfs_mount.h" | 
|  | 46 | #include "xfs_alloc_btree.h" | 
|  | 47 | #include "xfs_bmap_btree.h" | 
|  | 48 | #include "xfs_ialloc_btree.h" | 
|  | 49 | #include "xfs_btree.h" | 
|  | 50 | #include "xfs_imap.h" | 
|  | 51 | #include "xfs_alloc.h" | 
|  | 52 | #include "xfs_ialloc.h" | 
|  | 53 | #include "xfs_attr_sf.h" | 
|  | 54 | #include "xfs_dir_sf.h" | 
|  | 55 | #include "xfs_dir2_sf.h" | 
|  | 56 | #include "xfs_dinode.h" | 
|  | 57 | #include "xfs_inode_item.h" | 
|  | 58 | #include "xfs_inode.h" | 
|  | 59 | #include "xfs_bmap.h" | 
|  | 60 | #include "xfs_buf_item.h" | 
|  | 61 | #include "xfs_rw.h" | 
|  | 62 | #include "xfs_error.h" | 
|  | 63 | #include "xfs_bit.h" | 
|  | 64 | #include "xfs_utils.h" | 
|  | 65 | #include "xfs_dir2_trace.h" | 
|  | 66 | #include "xfs_quota.h" | 
|  | 67 | #include "xfs_mac.h" | 
|  | 68 | #include "xfs_acl.h" | 
|  | 69 |  | 
|  | 70 |  | 
|  | 71 | kmem_zone_t *xfs_ifork_zone; | 
|  | 72 | kmem_zone_t *xfs_inode_zone; | 
|  | 73 | kmem_zone_t *xfs_chashlist_zone; | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * Used in xfs_itruncate().  This is the maximum number of extents | 
|  | 77 | * freed from a file in a single transaction. | 
|  | 78 | */ | 
|  | 79 | #define	XFS_ITRUNC_MAX_EXTENTS	2 | 
|  | 80 |  | 
|  | 81 | STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); | 
|  | 82 | STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); | 
|  | 83 | STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); | 
|  | 84 | STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); | 
|  | 85 |  | 
|  | 86 |  | 
|  | 87 | #ifdef DEBUG | 
|  | 88 | /* | 
|  | 89 | * Make sure that the extents in the given memory buffer | 
|  | 90 | * are valid. | 
|  | 91 | */ | 
|  | 92 | STATIC void | 
|  | 93 | xfs_validate_extents( | 
|  | 94 | xfs_bmbt_rec_t		*ep, | 
|  | 95 | int			nrecs, | 
|  | 96 | int			disk, | 
|  | 97 | xfs_exntfmt_t		fmt) | 
|  | 98 | { | 
|  | 99 | xfs_bmbt_irec_t		irec; | 
|  | 100 | xfs_bmbt_rec_t		rec; | 
|  | 101 | int			i; | 
|  | 102 |  | 
|  | 103 | for (i = 0; i < nrecs; i++) { | 
|  | 104 | rec.l0 = get_unaligned((__uint64_t*)&ep->l0); | 
|  | 105 | rec.l1 = get_unaligned((__uint64_t*)&ep->l1); | 
|  | 106 | if (disk) | 
|  | 107 | xfs_bmbt_disk_get_all(&rec, &irec); | 
|  | 108 | else | 
|  | 109 | xfs_bmbt_get_all(&rec, &irec); | 
|  | 110 | if (fmt == XFS_EXTFMT_NOSTATE) | 
|  | 111 | ASSERT(irec.br_state == XFS_EXT_NORM); | 
|  | 112 | ep++; | 
|  | 113 | } | 
|  | 114 | } | 
|  | 115 | #else /* DEBUG */ | 
|  | 116 | #define xfs_validate_extents(ep, nrecs, disk, fmt) | 
|  | 117 | #endif /* DEBUG */ | 
|  | 118 |  | 
|  | 119 | /* | 
|  | 120 | * Check that none of the inode's in the buffer have a next | 
|  | 121 | * unlinked field of 0. | 
|  | 122 | */ | 
|  | 123 | #if defined(DEBUG) | 
|  | 124 | void | 
|  | 125 | xfs_inobp_check( | 
|  | 126 | xfs_mount_t	*mp, | 
|  | 127 | xfs_buf_t	*bp) | 
|  | 128 | { | 
|  | 129 | int		i; | 
|  | 130 | int		j; | 
|  | 131 | xfs_dinode_t	*dip; | 
|  | 132 |  | 
|  | 133 | j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; | 
|  | 134 |  | 
|  | 135 | for (i = 0; i < j; i++) { | 
|  | 136 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | 
|  | 137 | i * mp->m_sb.sb_inodesize); | 
|  | 138 | if (!dip->di_next_unlinked)  { | 
|  | 139 | xfs_fs_cmn_err(CE_ALERT, mp, | 
|  | 140 | "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.", | 
|  | 141 | bp); | 
|  | 142 | ASSERT(dip->di_next_unlinked); | 
|  | 143 | } | 
|  | 144 | } | 
|  | 145 | } | 
|  | 146 | #endif | 
|  | 147 |  | 
|  | 148 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 149 | * This routine is called to map an inode number within a file | 
|  | 150 | * system to the buffer containing the on-disk version of the | 
|  | 151 | * inode.  It returns a pointer to the buffer containing the | 
|  | 152 | * on-disk inode in the bpp parameter, and in the dip parameter | 
|  | 153 | * it returns a pointer to the on-disk inode within that buffer. | 
|  | 154 | * | 
|  | 155 | * If a non-zero error is returned, then the contents of bpp and | 
|  | 156 | * dipp are undefined. | 
|  | 157 | * | 
|  | 158 | * Use xfs_imap() to determine the size and location of the | 
|  | 159 | * buffer to read from disk. | 
|  | 160 | */ | 
| Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 161 | STATIC int | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 162 | xfs_inotobp( | 
|  | 163 | xfs_mount_t	*mp, | 
|  | 164 | xfs_trans_t	*tp, | 
|  | 165 | xfs_ino_t	ino, | 
|  | 166 | xfs_dinode_t	**dipp, | 
|  | 167 | xfs_buf_t	**bpp, | 
|  | 168 | int		*offset) | 
|  | 169 | { | 
|  | 170 | int		di_ok; | 
|  | 171 | xfs_imap_t	imap; | 
|  | 172 | xfs_buf_t	*bp; | 
|  | 173 | int		error; | 
|  | 174 | xfs_dinode_t	*dip; | 
|  | 175 |  | 
|  | 176 | /* | 
|  | 177 | * Call the space managment code to find the location of the | 
|  | 178 | * inode on disk. | 
|  | 179 | */ | 
|  | 180 | imap.im_blkno = 0; | 
|  | 181 | error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); | 
|  | 182 | if (error != 0) { | 
|  | 183 | cmn_err(CE_WARN, | 
|  | 184 | "xfs_inotobp: xfs_imap()  returned an " | 
|  | 185 | "error %d on %s.  Returning error.", error, mp->m_fsname); | 
|  | 186 | return error; | 
|  | 187 | } | 
|  | 188 |  | 
|  | 189 | /* | 
|  | 190 | * If the inode number maps to a block outside the bounds of the | 
|  | 191 | * file system then return NULL rather than calling read_buf | 
|  | 192 | * and panicing when we get an error from the driver. | 
|  | 193 | */ | 
|  | 194 | if ((imap.im_blkno + imap.im_len) > | 
|  | 195 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
|  | 196 | cmn_err(CE_WARN, | 
|  | 197 | "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds " | 
|  | 198 | "of the file system %s.  Returning EINVAL.", | 
|  | 199 | imap.im_blkno, imap.im_len,mp->m_fsname); | 
|  | 200 | return XFS_ERROR(EINVAL); | 
|  | 201 | } | 
|  | 202 |  | 
|  | 203 | /* | 
|  | 204 | * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will | 
|  | 205 | * default to just a read_buf() call. | 
|  | 206 | */ | 
|  | 207 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | 
|  | 208 | (int)imap.im_len, XFS_BUF_LOCK, &bp); | 
|  | 209 |  | 
|  | 210 | if (error) { | 
|  | 211 | cmn_err(CE_WARN, | 
|  | 212 | "xfs_inotobp: xfs_trans_read_buf()  returned an " | 
|  | 213 | "error %d on %s.  Returning error.", error, mp->m_fsname); | 
|  | 214 | return error; | 
|  | 215 | } | 
|  | 216 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); | 
|  | 217 | di_ok = | 
|  | 218 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | 
|  | 219 | XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | 
|  | 220 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | 
|  | 221 | XFS_RANDOM_ITOBP_INOTOBP))) { | 
|  | 222 | XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); | 
|  | 223 | xfs_trans_brelse(tp, bp); | 
|  | 224 | cmn_err(CE_WARN, | 
|  | 225 | "xfs_inotobp: XFS_TEST_ERROR()  returned an " | 
|  | 226 | "error on %s.  Returning EFSCORRUPTED.",  mp->m_fsname); | 
|  | 227 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | xfs_inobp_check(mp, bp); | 
|  | 231 |  | 
|  | 232 | /* | 
|  | 233 | * Set *dipp to point to the on-disk inode in the buffer. | 
|  | 234 | */ | 
|  | 235 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | 
|  | 236 | *bpp = bp; | 
|  | 237 | *offset = imap.im_boffset; | 
|  | 238 | return 0; | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 |  | 
|  | 242 | /* | 
|  | 243 | * This routine is called to map an inode to the buffer containing | 
|  | 244 | * the on-disk version of the inode.  It returns a pointer to the | 
|  | 245 | * buffer containing the on-disk inode in the bpp parameter, and in | 
|  | 246 | * the dip parameter it returns a pointer to the on-disk inode within | 
|  | 247 | * that buffer. | 
|  | 248 | * | 
|  | 249 | * If a non-zero error is returned, then the contents of bpp and | 
|  | 250 | * dipp are undefined. | 
|  | 251 | * | 
|  | 252 | * If the inode is new and has not yet been initialized, use xfs_imap() | 
|  | 253 | * to determine the size and location of the buffer to read from disk. | 
|  | 254 | * If the inode has already been mapped to its buffer and read in once, | 
|  | 255 | * then use the mapping information stored in the inode rather than | 
|  | 256 | * calling xfs_imap().  This allows us to avoid the overhead of looking | 
|  | 257 | * at the inode btree for small block file systems (see xfs_dilocate()). | 
|  | 258 | * We can tell whether the inode has been mapped in before by comparing | 
|  | 259 | * its disk block address to 0.  Only uninitialized inodes will have | 
|  | 260 | * 0 for the disk block address. | 
|  | 261 | */ | 
|  | 262 | int | 
|  | 263 | xfs_itobp( | 
|  | 264 | xfs_mount_t	*mp, | 
|  | 265 | xfs_trans_t	*tp, | 
|  | 266 | xfs_inode_t	*ip, | 
|  | 267 | xfs_dinode_t	**dipp, | 
|  | 268 | xfs_buf_t	**bpp, | 
|  | 269 | xfs_daddr_t	bno) | 
|  | 270 | { | 
|  | 271 | xfs_buf_t	*bp; | 
|  | 272 | int		error; | 
|  | 273 | xfs_imap_t	imap; | 
|  | 274 | #ifdef __KERNEL__ | 
|  | 275 | int		i; | 
|  | 276 | int		ni; | 
|  | 277 | #endif | 
|  | 278 |  | 
|  | 279 | if (ip->i_blkno == (xfs_daddr_t)0) { | 
|  | 280 | /* | 
|  | 281 | * Call the space management code to find the location of the | 
|  | 282 | * inode on disk. | 
|  | 283 | */ | 
|  | 284 | imap.im_blkno = bno; | 
|  | 285 | error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); | 
|  | 286 | if (error != 0) { | 
|  | 287 | return error; | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | /* | 
|  | 291 | * If the inode number maps to a block outside the bounds | 
|  | 292 | * of the file system then return NULL rather than calling | 
|  | 293 | * read_buf and panicing when we get an error from the | 
|  | 294 | * driver. | 
|  | 295 | */ | 
|  | 296 | if ((imap.im_blkno + imap.im_len) > | 
|  | 297 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | 
|  | 298 | #ifdef DEBUG | 
|  | 299 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | 
|  | 300 | "(imap.im_blkno (0x%llx) " | 
|  | 301 | "+ imap.im_len (0x%llx)) > " | 
|  | 302 | " XFS_FSB_TO_BB(mp, " | 
|  | 303 | "mp->m_sb.sb_dblocks) (0x%llx)", | 
|  | 304 | (unsigned long long) imap.im_blkno, | 
|  | 305 | (unsigned long long) imap.im_len, | 
|  | 306 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | 
|  | 307 | #endif /* DEBUG */ | 
|  | 308 | return XFS_ERROR(EINVAL); | 
|  | 309 | } | 
|  | 310 |  | 
|  | 311 | /* | 
|  | 312 | * Fill in the fields in the inode that will be used to | 
|  | 313 | * map the inode to its buffer from now on. | 
|  | 314 | */ | 
|  | 315 | ip->i_blkno = imap.im_blkno; | 
|  | 316 | ip->i_len = imap.im_len; | 
|  | 317 | ip->i_boffset = imap.im_boffset; | 
|  | 318 | } else { | 
|  | 319 | /* | 
|  | 320 | * We've already mapped the inode once, so just use the | 
|  | 321 | * mapping that we saved the first time. | 
|  | 322 | */ | 
|  | 323 | imap.im_blkno = ip->i_blkno; | 
|  | 324 | imap.im_len = ip->i_len; | 
|  | 325 | imap.im_boffset = ip->i_boffset; | 
|  | 326 | } | 
|  | 327 | ASSERT(bno == 0 || bno == imap.im_blkno); | 
|  | 328 |  | 
|  | 329 | /* | 
|  | 330 | * Read in the buffer.  If tp is NULL, xfs_trans_read_buf() will | 
|  | 331 | * default to just a read_buf() call. | 
|  | 332 | */ | 
|  | 333 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, | 
|  | 334 | (int)imap.im_len, XFS_BUF_LOCK, &bp); | 
|  | 335 |  | 
|  | 336 | if (error) { | 
|  | 337 | #ifdef DEBUG | 
|  | 338 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " | 
|  | 339 | "xfs_trans_read_buf() returned error %d, " | 
|  | 340 | "imap.im_blkno 0x%llx, imap.im_len 0x%llx", | 
|  | 341 | error, (unsigned long long) imap.im_blkno, | 
|  | 342 | (unsigned long long) imap.im_len); | 
|  | 343 | #endif /* DEBUG */ | 
|  | 344 | return error; | 
|  | 345 | } | 
|  | 346 | #ifdef __KERNEL__ | 
|  | 347 | /* | 
|  | 348 | * Validate the magic number and version of every inode in the buffer | 
|  | 349 | * (if DEBUG kernel) or the first inode in the buffer, otherwise. | 
|  | 350 | */ | 
|  | 351 | #ifdef DEBUG | 
|  | 352 | ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; | 
|  | 353 | #else | 
|  | 354 | ni = 1; | 
|  | 355 | #endif | 
|  | 356 | for (i = 0; i < ni; i++) { | 
|  | 357 | int		di_ok; | 
|  | 358 | xfs_dinode_t	*dip; | 
|  | 359 |  | 
|  | 360 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, | 
|  | 361 | (i << mp->m_sb.sb_inodelog)); | 
|  | 362 | di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && | 
|  | 363 | XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); | 
|  | 364 | if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, | 
|  | 365 | XFS_RANDOM_ITOBP_INOTOBP))) { | 
|  | 366 | #ifdef DEBUG | 
|  | 367 | prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)", | 
|  | 368 | mp->m_ddev_targp, | 
|  | 369 | (unsigned long long)imap.im_blkno, i, | 
|  | 370 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); | 
|  | 371 | #endif | 
|  | 372 | XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, | 
|  | 373 | mp, dip); | 
|  | 374 | xfs_trans_brelse(tp, bp); | 
|  | 375 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 376 | } | 
|  | 377 | } | 
|  | 378 | #endif	/* __KERNEL__ */ | 
|  | 379 |  | 
|  | 380 | xfs_inobp_check(mp, bp); | 
|  | 381 |  | 
|  | 382 | /* | 
|  | 383 | * Mark the buffer as an inode buffer now that it looks good | 
|  | 384 | */ | 
|  | 385 | XFS_BUF_SET_VTYPE(bp, B_FS_INO); | 
|  | 386 |  | 
|  | 387 | /* | 
|  | 388 | * Set *dipp to point to the on-disk inode in the buffer. | 
|  | 389 | */ | 
|  | 390 | *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | 
|  | 391 | *bpp = bp; | 
|  | 392 | return 0; | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | /* | 
|  | 396 | * Move inode type and inode format specific information from the | 
|  | 397 | * on-disk inode to the in-core inode.  For fifos, devs, and sockets | 
|  | 398 | * this means set if_rdev to the proper value.  For files, directories, | 
|  | 399 | * and symlinks this means to bring in the in-line data or extent | 
|  | 400 | * pointers.  For a file in B-tree format, only the root is immediately | 
|  | 401 | * brought in-core.  The rest will be in-lined in if_extents when it | 
|  | 402 | * is first referenced (see xfs_iread_extents()). | 
|  | 403 | */ | 
|  | 404 | STATIC int | 
|  | 405 | xfs_iformat( | 
|  | 406 | xfs_inode_t		*ip, | 
|  | 407 | xfs_dinode_t		*dip) | 
|  | 408 | { | 
|  | 409 | xfs_attr_shortform_t	*atp; | 
|  | 410 | int			size; | 
|  | 411 | int			error; | 
|  | 412 | xfs_fsize_t             di_size; | 
|  | 413 | ip->i_df.if_ext_max = | 
|  | 414 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 415 | error = 0; | 
|  | 416 |  | 
|  | 417 | if (unlikely( | 
|  | 418 | INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + | 
|  | 419 | INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > | 
|  | 420 | INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { | 
|  | 421 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
|  | 422 | "corrupt dinode %Lu, extent total = %d, nblocks = %Lu." | 
|  | 423 | "  Unmount and run xfs_repair.", | 
|  | 424 | (unsigned long long)ip->i_ino, | 
|  | 425 | (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) | 
|  | 426 | + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), | 
|  | 427 | (unsigned long long) | 
|  | 428 | INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); | 
|  | 429 | XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, | 
|  | 430 | ip->i_mount, dip); | 
|  | 431 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 432 | } | 
|  | 433 |  | 
|  | 434 | if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { | 
|  | 435 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
|  | 436 | "corrupt dinode %Lu, forkoff = 0x%x." | 
|  | 437 | "  Unmount and run xfs_repair.", | 
|  | 438 | (unsigned long long)ip->i_ino, | 
|  | 439 | (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); | 
|  | 440 | XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, | 
|  | 441 | ip->i_mount, dip); | 
|  | 442 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 443 | } | 
|  | 444 |  | 
|  | 445 | switch (ip->i_d.di_mode & S_IFMT) { | 
|  | 446 | case S_IFIFO: | 
|  | 447 | case S_IFCHR: | 
|  | 448 | case S_IFBLK: | 
|  | 449 | case S_IFSOCK: | 
|  | 450 | if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { | 
|  | 451 | XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, | 
|  | 452 | ip->i_mount, dip); | 
|  | 453 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 454 | } | 
|  | 455 | ip->i_d.di_size = 0; | 
|  | 456 | ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); | 
|  | 457 | break; | 
|  | 458 |  | 
|  | 459 | case S_IFREG: | 
|  | 460 | case S_IFLNK: | 
|  | 461 | case S_IFDIR: | 
|  | 462 | switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { | 
|  | 463 | case XFS_DINODE_FMT_LOCAL: | 
|  | 464 | /* | 
|  | 465 | * no local regular files yet | 
|  | 466 | */ | 
|  | 467 | if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) { | 
|  | 468 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
|  | 469 | "corrupt inode (local format for regular file) %Lu.  Unmount and run xfs_repair.", | 
|  | 470 | (unsigned long long) ip->i_ino); | 
|  | 471 | XFS_CORRUPTION_ERROR("xfs_iformat(4)", | 
|  | 472 | XFS_ERRLEVEL_LOW, | 
|  | 473 | ip->i_mount, dip); | 
|  | 474 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 475 | } | 
|  | 476 |  | 
|  | 477 | di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); | 
|  | 478 | if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) { | 
|  | 479 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
|  | 480 | "corrupt inode %Lu (bad size %Ld for local inode).  Unmount and run xfs_repair.", | 
|  | 481 | (unsigned long long) ip->i_ino, | 
|  | 482 | (long long) di_size); | 
|  | 483 | XFS_CORRUPTION_ERROR("xfs_iformat(5)", | 
|  | 484 | XFS_ERRLEVEL_LOW, | 
|  | 485 | ip->i_mount, dip); | 
|  | 486 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 487 | } | 
|  | 488 |  | 
|  | 489 | size = (int)di_size; | 
|  | 490 | error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); | 
|  | 491 | break; | 
|  | 492 | case XFS_DINODE_FMT_EXTENTS: | 
|  | 493 | error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); | 
|  | 494 | break; | 
|  | 495 | case XFS_DINODE_FMT_BTREE: | 
|  | 496 | error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); | 
|  | 497 | break; | 
|  | 498 | default: | 
|  | 499 | XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, | 
|  | 500 | ip->i_mount); | 
|  | 501 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 502 | } | 
|  | 503 | break; | 
|  | 504 |  | 
|  | 505 | default: | 
|  | 506 | XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); | 
|  | 507 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 508 | } | 
|  | 509 | if (error) { | 
|  | 510 | return error; | 
|  | 511 | } | 
|  | 512 | if (!XFS_DFORK_Q(dip)) | 
|  | 513 | return 0; | 
|  | 514 | ASSERT(ip->i_afp == NULL); | 
|  | 515 | ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); | 
|  | 516 | ip->i_afp->if_ext_max = | 
|  | 517 | XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 518 | switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { | 
|  | 519 | case XFS_DINODE_FMT_LOCAL: | 
|  | 520 | atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip); | 
|  | 521 | size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); | 
|  | 522 | error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); | 
|  | 523 | break; | 
|  | 524 | case XFS_DINODE_FMT_EXTENTS: | 
|  | 525 | error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); | 
|  | 526 | break; | 
|  | 527 | case XFS_DINODE_FMT_BTREE: | 
|  | 528 | error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); | 
|  | 529 | break; | 
|  | 530 | default: | 
|  | 531 | error = XFS_ERROR(EFSCORRUPTED); | 
|  | 532 | break; | 
|  | 533 | } | 
|  | 534 | if (error) { | 
|  | 535 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
|  | 536 | ip->i_afp = NULL; | 
|  | 537 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
|  | 538 | } | 
|  | 539 | return error; | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | /* | 
|  | 543 | * The file is in-lined in the on-disk inode. | 
|  | 544 | * If it fits into if_inline_data, then copy | 
|  | 545 | * it there, otherwise allocate a buffer for it | 
|  | 546 | * and copy the data there.  Either way, set | 
|  | 547 | * if_data to point at the data. | 
|  | 548 | * If we allocate a buffer for the data, make | 
|  | 549 | * sure that its size is a multiple of 4 and | 
|  | 550 | * record the real size in i_real_bytes. | 
|  | 551 | */ | 
|  | 552 | STATIC int | 
|  | 553 | xfs_iformat_local( | 
|  | 554 | xfs_inode_t	*ip, | 
|  | 555 | xfs_dinode_t	*dip, | 
|  | 556 | int		whichfork, | 
|  | 557 | int		size) | 
|  | 558 | { | 
|  | 559 | xfs_ifork_t	*ifp; | 
|  | 560 | int		real_size; | 
|  | 561 |  | 
|  | 562 | /* | 
|  | 563 | * If the size is unreasonable, then something | 
|  | 564 | * is wrong and we just bail out rather than crash in | 
|  | 565 | * kmem_alloc() or memcpy() below. | 
|  | 566 | */ | 
|  | 567 | if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
|  | 568 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
|  | 569 | "corrupt inode %Lu (bad size %d for local fork, size = %d).  Unmount and run xfs_repair.", | 
|  | 570 | (unsigned long long) ip->i_ino, size, | 
|  | 571 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); | 
|  | 572 | XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, | 
|  | 573 | ip->i_mount, dip); | 
|  | 574 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 575 | } | 
|  | 576 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 577 | real_size = 0; | 
|  | 578 | if (size == 0) | 
|  | 579 | ifp->if_u1.if_data = NULL; | 
|  | 580 | else if (size <= sizeof(ifp->if_u2.if_inline_data)) | 
|  | 581 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
|  | 582 | else { | 
|  | 583 | real_size = roundup(size, 4); | 
|  | 584 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
|  | 585 | } | 
|  | 586 | ifp->if_bytes = size; | 
|  | 587 | ifp->if_real_bytes = real_size; | 
|  | 588 | if (size) | 
|  | 589 | memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size); | 
|  | 590 | ifp->if_flags &= ~XFS_IFEXTENTS; | 
|  | 591 | ifp->if_flags |= XFS_IFINLINE; | 
|  | 592 | return 0; | 
|  | 593 | } | 
|  | 594 |  | 
|  | 595 | /* | 
|  | 596 | * The file consists of a set of extents all | 
|  | 597 | * of which fit into the on-disk inode. | 
|  | 598 | * If there are few enough extents to fit into | 
|  | 599 | * the if_inline_ext, then copy them there. | 
|  | 600 | * Otherwise allocate a buffer for them and copy | 
|  | 601 | * them into it.  Either way, set if_extents | 
|  | 602 | * to point at the extents. | 
|  | 603 | */ | 
|  | 604 | STATIC int | 
|  | 605 | xfs_iformat_extents( | 
|  | 606 | xfs_inode_t	*ip, | 
|  | 607 | xfs_dinode_t	*dip, | 
|  | 608 | int		whichfork) | 
|  | 609 | { | 
|  | 610 | xfs_bmbt_rec_t	*ep, *dp; | 
|  | 611 | xfs_ifork_t	*ifp; | 
|  | 612 | int		nex; | 
|  | 613 | int		real_size; | 
|  | 614 | int		size; | 
|  | 615 | int		i; | 
|  | 616 |  | 
|  | 617 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 618 | nex = XFS_DFORK_NEXTENTS(dip, whichfork); | 
|  | 619 | size = nex * (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 620 |  | 
|  | 621 | /* | 
|  | 622 | * If the number of extents is unreasonable, then something | 
|  | 623 | * is wrong and we just bail out rather than crash in | 
|  | 624 | * kmem_alloc() or memcpy() below. | 
|  | 625 | */ | 
|  | 626 | if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { | 
|  | 627 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
|  | 628 | "corrupt inode %Lu ((a)extents = %d).  Unmount and run xfs_repair.", | 
|  | 629 | (unsigned long long) ip->i_ino, nex); | 
|  | 630 | XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, | 
|  | 631 | ip->i_mount, dip); | 
|  | 632 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 633 | } | 
|  | 634 |  | 
|  | 635 | real_size = 0; | 
|  | 636 | if (nex == 0) | 
|  | 637 | ifp->if_u1.if_extents = NULL; | 
|  | 638 | else if (nex <= XFS_INLINE_EXTS) | 
|  | 639 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
|  | 640 | else { | 
|  | 641 | ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | 
|  | 642 | ASSERT(ifp->if_u1.if_extents != NULL); | 
|  | 643 | real_size = size; | 
|  | 644 | } | 
|  | 645 | ifp->if_bytes = size; | 
|  | 646 | ifp->if_real_bytes = real_size; | 
|  | 647 | if (size) { | 
|  | 648 | dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); | 
|  | 649 | xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); | 
|  | 650 | ep = ifp->if_u1.if_extents; | 
|  | 651 | for (i = 0; i < nex; i++, ep++, dp++) { | 
|  | 652 | ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), | 
|  | 653 | ARCH_CONVERT); | 
|  | 654 | ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), | 
|  | 655 | ARCH_CONVERT); | 
|  | 656 | } | 
|  | 657 | xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, | 
|  | 658 | whichfork); | 
|  | 659 | if (whichfork != XFS_DATA_FORK || | 
|  | 660 | XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) | 
|  | 661 | if (unlikely(xfs_check_nostate_extents( | 
|  | 662 | ifp->if_u1.if_extents, nex))) { | 
|  | 663 | XFS_ERROR_REPORT("xfs_iformat_extents(2)", | 
|  | 664 | XFS_ERRLEVEL_LOW, | 
|  | 665 | ip->i_mount); | 
|  | 666 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 667 | } | 
|  | 668 | } | 
|  | 669 | ifp->if_flags |= XFS_IFEXTENTS; | 
|  | 670 | return 0; | 
|  | 671 | } | 
|  | 672 |  | 
|  | 673 | /* | 
|  | 674 | * The file has too many extents to fit into | 
|  | 675 | * the inode, so they are in B-tree format. | 
|  | 676 | * Allocate a buffer for the root of the B-tree | 
|  | 677 | * and copy the root into it.  The i_extents | 
|  | 678 | * field will remain NULL until all of the | 
|  | 679 | * extents are read in (when they are needed). | 
|  | 680 | */ | 
|  | 681 | STATIC int | 
|  | 682 | xfs_iformat_btree( | 
|  | 683 | xfs_inode_t		*ip, | 
|  | 684 | xfs_dinode_t		*dip, | 
|  | 685 | int			whichfork) | 
|  | 686 | { | 
|  | 687 | xfs_bmdr_block_t	*dfp; | 
|  | 688 | xfs_ifork_t		*ifp; | 
|  | 689 | /* REFERENCED */ | 
|  | 690 | int			nrecs; | 
|  | 691 | int			size; | 
|  | 692 |  | 
|  | 693 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 694 | dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); | 
|  | 695 | size = XFS_BMAP_BROOT_SPACE(dfp); | 
|  | 696 | nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); | 
|  | 697 |  | 
|  | 698 | /* | 
|  | 699 | * blow out if -- fork has less extents than can fit in | 
|  | 700 | * fork (fork shouldn't be a btree format), root btree | 
|  | 701 | * block has more records than can fit into the fork, | 
|  | 702 | * or the number of extents is greater than the number of | 
|  | 703 | * blocks. | 
|  | 704 | */ | 
|  | 705 | if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max | 
|  | 706 | || XFS_BMDR_SPACE_CALC(nrecs) > | 
|  | 707 | XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) | 
|  | 708 | || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { | 
|  | 709 | xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
|  | 710 | "corrupt inode %Lu (btree).  Unmount and run xfs_repair.", | 
|  | 711 | (unsigned long long) ip->i_ino); | 
|  | 712 | XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, | 
|  | 713 | ip->i_mount); | 
|  | 714 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 715 | } | 
|  | 716 |  | 
|  | 717 | ifp->if_broot_bytes = size; | 
|  | 718 | ifp->if_broot = kmem_alloc(size, KM_SLEEP); | 
|  | 719 | ASSERT(ifp->if_broot != NULL); | 
|  | 720 | /* | 
|  | 721 | * Copy and convert from the on-disk structure | 
|  | 722 | * to the in-memory structure. | 
|  | 723 | */ | 
|  | 724 | xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), | 
|  | 725 | ifp->if_broot, size); | 
|  | 726 | ifp->if_flags &= ~XFS_IFEXTENTS; | 
|  | 727 | ifp->if_flags |= XFS_IFBROOT; | 
|  | 728 |  | 
|  | 729 | return 0; | 
|  | 730 | } | 
|  | 731 |  | 
|  | 732 | /* | 
|  | 733 | * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk | 
|  | 734 | * and native format | 
|  | 735 | * | 
|  | 736 | * buf  = on-disk representation | 
|  | 737 | * dip  = native representation | 
|  | 738 | * dir  = direction - +ve -> disk to native | 
|  | 739 | *                    -ve -> native to disk | 
|  | 740 | */ | 
|  | 741 | void | 
|  | 742 | xfs_xlate_dinode_core( | 
|  | 743 | xfs_caddr_t		buf, | 
|  | 744 | xfs_dinode_core_t	*dip, | 
|  | 745 | int			dir) | 
|  | 746 | { | 
|  | 747 | xfs_dinode_core_t	*buf_core = (xfs_dinode_core_t *)buf; | 
|  | 748 | xfs_dinode_core_t	*mem_core = (xfs_dinode_core_t *)dip; | 
|  | 749 | xfs_arch_t		arch = ARCH_CONVERT; | 
|  | 750 |  | 
|  | 751 | ASSERT(dir); | 
|  | 752 |  | 
|  | 753 | INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); | 
|  | 754 | INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); | 
|  | 755 | INT_XLATE(buf_core->di_version,	mem_core->di_version, dir, arch); | 
|  | 756 | INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); | 
|  | 757 | INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); | 
|  | 758 | INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); | 
|  | 759 | INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); | 
|  | 760 | INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); | 
|  | 761 | INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); | 
|  | 762 |  | 
|  | 763 | if (dir > 0) { | 
|  | 764 | memcpy(mem_core->di_pad, buf_core->di_pad, | 
|  | 765 | sizeof(buf_core->di_pad)); | 
|  | 766 | } else { | 
|  | 767 | memcpy(buf_core->di_pad, mem_core->di_pad, | 
|  | 768 | sizeof(buf_core->di_pad)); | 
|  | 769 | } | 
|  | 770 |  | 
|  | 771 | INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); | 
|  | 772 |  | 
|  | 773 | INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, | 
|  | 774 | dir, arch); | 
|  | 775 | INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, | 
|  | 776 | dir, arch); | 
|  | 777 | INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, | 
|  | 778 | dir, arch); | 
|  | 779 | INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, | 
|  | 780 | dir, arch); | 
|  | 781 | INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, | 
|  | 782 | dir, arch); | 
|  | 783 | INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, | 
|  | 784 | dir, arch); | 
|  | 785 | INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); | 
|  | 786 | INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); | 
|  | 787 | INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); | 
|  | 788 | INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); | 
|  | 789 | INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); | 
|  | 790 | INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); | 
|  | 791 | INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); | 
|  | 792 | INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); | 
|  | 793 | INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); | 
|  | 794 | INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); | 
|  | 795 | INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); | 
|  | 796 | } | 
|  | 797 |  | 
|  | 798 | STATIC uint | 
|  | 799 | _xfs_dic2xflags( | 
|  | 800 | xfs_dinode_core_t	*dic, | 
|  | 801 | __uint16_t		di_flags) | 
|  | 802 | { | 
|  | 803 | uint			flags = 0; | 
|  | 804 |  | 
|  | 805 | if (di_flags & XFS_DIFLAG_ANY) { | 
|  | 806 | if (di_flags & XFS_DIFLAG_REALTIME) | 
|  | 807 | flags |= XFS_XFLAG_REALTIME; | 
|  | 808 | if (di_flags & XFS_DIFLAG_PREALLOC) | 
|  | 809 | flags |= XFS_XFLAG_PREALLOC; | 
|  | 810 | if (di_flags & XFS_DIFLAG_IMMUTABLE) | 
|  | 811 | flags |= XFS_XFLAG_IMMUTABLE; | 
|  | 812 | if (di_flags & XFS_DIFLAG_APPEND) | 
|  | 813 | flags |= XFS_XFLAG_APPEND; | 
|  | 814 | if (di_flags & XFS_DIFLAG_SYNC) | 
|  | 815 | flags |= XFS_XFLAG_SYNC; | 
|  | 816 | if (di_flags & XFS_DIFLAG_NOATIME) | 
|  | 817 | flags |= XFS_XFLAG_NOATIME; | 
|  | 818 | if (di_flags & XFS_DIFLAG_NODUMP) | 
|  | 819 | flags |= XFS_XFLAG_NODUMP; | 
|  | 820 | if (di_flags & XFS_DIFLAG_RTINHERIT) | 
|  | 821 | flags |= XFS_XFLAG_RTINHERIT; | 
|  | 822 | if (di_flags & XFS_DIFLAG_PROJINHERIT) | 
|  | 823 | flags |= XFS_XFLAG_PROJINHERIT; | 
|  | 824 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) | 
|  | 825 | flags |= XFS_XFLAG_NOSYMLINKS; | 
|  | 826 | } | 
|  | 827 |  | 
|  | 828 | return flags; | 
|  | 829 | } | 
|  | 830 |  | 
|  | 831 | uint | 
|  | 832 | xfs_ip2xflags( | 
|  | 833 | xfs_inode_t		*ip) | 
|  | 834 | { | 
|  | 835 | xfs_dinode_core_t	*dic = &ip->i_d; | 
|  | 836 |  | 
|  | 837 | return _xfs_dic2xflags(dic, dic->di_flags) | | 
|  | 838 | (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0); | 
|  | 839 | } | 
|  | 840 |  | 
|  | 841 | uint | 
|  | 842 | xfs_dic2xflags( | 
|  | 843 | xfs_dinode_core_t	*dic) | 
|  | 844 | { | 
|  | 845 | return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) | | 
|  | 846 | (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0); | 
|  | 847 | } | 
|  | 848 |  | 
|  | 849 | /* | 
|  | 850 | * Given a mount structure and an inode number, return a pointer | 
|  | 851 | * to a newly allocated in-core inode coresponding to the given | 
|  | 852 | * inode number. | 
|  | 853 | * | 
|  | 854 | * Initialize the inode's attributes and extent pointers if it | 
|  | 855 | * already has them (it will not if the inode has no links). | 
|  | 856 | */ | 
|  | 857 | int | 
|  | 858 | xfs_iread( | 
|  | 859 | xfs_mount_t	*mp, | 
|  | 860 | xfs_trans_t	*tp, | 
|  | 861 | xfs_ino_t	ino, | 
|  | 862 | xfs_inode_t	**ipp, | 
|  | 863 | xfs_daddr_t	bno) | 
|  | 864 | { | 
|  | 865 | xfs_buf_t	*bp; | 
|  | 866 | xfs_dinode_t	*dip; | 
|  | 867 | xfs_inode_t	*ip; | 
|  | 868 | int		error; | 
|  | 869 |  | 
|  | 870 | ASSERT(xfs_inode_zone != NULL); | 
|  | 871 |  | 
|  | 872 | ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); | 
|  | 873 | ip->i_ino = ino; | 
|  | 874 | ip->i_mount = mp; | 
|  | 875 |  | 
|  | 876 | /* | 
|  | 877 | * Get pointer's to the on-disk inode and the buffer containing it. | 
|  | 878 | * If the inode number refers to a block outside the file system | 
|  | 879 | * then xfs_itobp() will return NULL.  In this case we should | 
|  | 880 | * return NULL as well.  Set i_blkno to 0 so that xfs_itobp() will | 
|  | 881 | * know that this is a new incore inode. | 
|  | 882 | */ | 
|  | 883 | error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); | 
|  | 884 |  | 
|  | 885 | if (error != 0) { | 
|  | 886 | kmem_zone_free(xfs_inode_zone, ip); | 
|  | 887 | return error; | 
|  | 888 | } | 
|  | 889 |  | 
|  | 890 | /* | 
|  | 891 | * Initialize inode's trace buffers. | 
|  | 892 | * Do this before xfs_iformat in case it adds entries. | 
|  | 893 | */ | 
|  | 894 | #ifdef XFS_BMAP_TRACE | 
|  | 895 | ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); | 
|  | 896 | #endif | 
|  | 897 | #ifdef XFS_BMBT_TRACE | 
|  | 898 | ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); | 
|  | 899 | #endif | 
|  | 900 | #ifdef XFS_RW_TRACE | 
|  | 901 | ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); | 
|  | 902 | #endif | 
|  | 903 | #ifdef XFS_ILOCK_TRACE | 
|  | 904 | ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); | 
|  | 905 | #endif | 
|  | 906 | #ifdef XFS_DIR2_TRACE | 
|  | 907 | ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); | 
|  | 908 | #endif | 
|  | 909 |  | 
|  | 910 | /* | 
|  | 911 | * If we got something that isn't an inode it means someone | 
|  | 912 | * (nfs or dmi) has a stale handle. | 
|  | 913 | */ | 
|  | 914 | if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { | 
|  | 915 | kmem_zone_free(xfs_inode_zone, ip); | 
|  | 916 | xfs_trans_brelse(tp, bp); | 
|  | 917 | #ifdef DEBUG | 
|  | 918 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | 
|  | 919 | "dip->di_core.di_magic (0x%x) != " | 
|  | 920 | "XFS_DINODE_MAGIC (0x%x)", | 
|  | 921 | INT_GET(dip->di_core.di_magic, ARCH_CONVERT), | 
|  | 922 | XFS_DINODE_MAGIC); | 
|  | 923 | #endif /* DEBUG */ | 
|  | 924 | return XFS_ERROR(EINVAL); | 
|  | 925 | } | 
|  | 926 |  | 
|  | 927 | /* | 
|  | 928 | * If the on-disk inode is already linked to a directory | 
|  | 929 | * entry, copy all of the inode into the in-core inode. | 
|  | 930 | * xfs_iformat() handles copying in the inode format | 
|  | 931 | * specific information. | 
|  | 932 | * Otherwise, just get the truly permanent information. | 
|  | 933 | */ | 
|  | 934 | if (dip->di_core.di_mode) { | 
|  | 935 | xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, | 
|  | 936 | &(ip->i_d), 1); | 
|  | 937 | error = xfs_iformat(ip, dip); | 
|  | 938 | if (error)  { | 
|  | 939 | kmem_zone_free(xfs_inode_zone, ip); | 
|  | 940 | xfs_trans_brelse(tp, bp); | 
|  | 941 | #ifdef DEBUG | 
|  | 942 | xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " | 
|  | 943 | "xfs_iformat() returned error %d", | 
|  | 944 | error); | 
|  | 945 | #endif /* DEBUG */ | 
|  | 946 | return error; | 
|  | 947 | } | 
|  | 948 | } else { | 
|  | 949 | ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); | 
|  | 950 | ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); | 
|  | 951 | ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); | 
|  | 952 | ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); | 
|  | 953 | /* | 
|  | 954 | * Make sure to pull in the mode here as well in | 
|  | 955 | * case the inode is released without being used. | 
|  | 956 | * This ensures that xfs_inactive() will see that | 
|  | 957 | * the inode is already free and not try to mess | 
|  | 958 | * with the uninitialized part of it. | 
|  | 959 | */ | 
|  | 960 | ip->i_d.di_mode = 0; | 
|  | 961 | /* | 
|  | 962 | * Initialize the per-fork minima and maxima for a new | 
|  | 963 | * inode here.  xfs_iformat will do it for old inodes. | 
|  | 964 | */ | 
|  | 965 | ip->i_df.if_ext_max = | 
|  | 966 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 967 | } | 
|  | 968 |  | 
|  | 969 | INIT_LIST_HEAD(&ip->i_reclaim); | 
|  | 970 |  | 
|  | 971 | /* | 
|  | 972 | * The inode format changed when we moved the link count and | 
|  | 973 | * made it 32 bits long.  If this is an old format inode, | 
|  | 974 | * convert it in memory to look like a new one.  If it gets | 
|  | 975 | * flushed to disk we will convert back before flushing or | 
|  | 976 | * logging it.  We zero out the new projid field and the old link | 
|  | 977 | * count field.  We'll handle clearing the pad field (the remains | 
|  | 978 | * of the old uuid field) when we actually convert the inode to | 
|  | 979 | * the new format. We don't change the version number so that we | 
|  | 980 | * can distinguish this from a real new format inode. | 
|  | 981 | */ | 
|  | 982 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
|  | 983 | ip->i_d.di_nlink = ip->i_d.di_onlink; | 
|  | 984 | ip->i_d.di_onlink = 0; | 
|  | 985 | ip->i_d.di_projid = 0; | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | ip->i_delayed_blks = 0; | 
|  | 989 |  | 
|  | 990 | /* | 
|  | 991 | * Mark the buffer containing the inode as something to keep | 
|  | 992 | * around for a while.  This helps to keep recently accessed | 
|  | 993 | * meta-data in-core longer. | 
|  | 994 | */ | 
|  | 995 | XFS_BUF_SET_REF(bp, XFS_INO_REF); | 
|  | 996 |  | 
|  | 997 | /* | 
|  | 998 | * Use xfs_trans_brelse() to release the buffer containing the | 
|  | 999 | * on-disk inode, because it was acquired with xfs_trans_read_buf() | 
|  | 1000 | * in xfs_itobp() above.  If tp is NULL, this is just a normal | 
|  | 1001 | * brelse().  If we're within a transaction, then xfs_trans_brelse() | 
|  | 1002 | * will only release the buffer if it is not dirty within the | 
|  | 1003 | * transaction.  It will be OK to release the buffer in this case, | 
|  | 1004 | * because inodes on disk are never destroyed and we will be | 
|  | 1005 | * locking the new in-core inode before putting it in the hash | 
|  | 1006 | * table where other processes can find it.  Thus we don't have | 
|  | 1007 | * to worry about the inode being changed just because we released | 
|  | 1008 | * the buffer. | 
|  | 1009 | */ | 
|  | 1010 | xfs_trans_brelse(tp, bp); | 
|  | 1011 | *ipp = ip; | 
|  | 1012 | return 0; | 
|  | 1013 | } | 
|  | 1014 |  | 
|  | 1015 | /* | 
|  | 1016 | * Read in extents from a btree-format inode. | 
|  | 1017 | * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c. | 
|  | 1018 | */ | 
|  | 1019 | int | 
|  | 1020 | xfs_iread_extents( | 
|  | 1021 | xfs_trans_t	*tp, | 
|  | 1022 | xfs_inode_t	*ip, | 
|  | 1023 | int		whichfork) | 
|  | 1024 | { | 
|  | 1025 | int		error; | 
|  | 1026 | xfs_ifork_t	*ifp; | 
|  | 1027 | size_t		size; | 
|  | 1028 |  | 
|  | 1029 | if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { | 
|  | 1030 | XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, | 
|  | 1031 | ip->i_mount); | 
|  | 1032 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 1033 | } | 
|  | 1034 | size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 1035 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 1036 | /* | 
|  | 1037 | * We know that the size is valid (it's checked in iformat_btree) | 
|  | 1038 | */ | 
|  | 1039 | ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); | 
|  | 1040 | ASSERT(ifp->if_u1.if_extents != NULL); | 
|  | 1041 | ifp->if_lastex = NULLEXTNUM; | 
|  | 1042 | ifp->if_bytes = ifp->if_real_bytes = (int)size; | 
|  | 1043 | ifp->if_flags |= XFS_IFEXTENTS; | 
|  | 1044 | error = xfs_bmap_read_extents(tp, ip, whichfork); | 
|  | 1045 | if (error) { | 
|  | 1046 | kmem_free(ifp->if_u1.if_extents, size); | 
|  | 1047 | ifp->if_u1.if_extents = NULL; | 
|  | 1048 | ifp->if_bytes = ifp->if_real_bytes = 0; | 
|  | 1049 | ifp->if_flags &= ~XFS_IFEXTENTS; | 
|  | 1050 | return error; | 
|  | 1051 | } | 
|  | 1052 | xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, | 
|  | 1053 | XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); | 
|  | 1054 | return 0; | 
|  | 1055 | } | 
|  | 1056 |  | 
|  | 1057 | /* | 
|  | 1058 | * Allocate an inode on disk and return a copy of its in-core version. | 
|  | 1059 | * The in-core inode is locked exclusively.  Set mode, nlink, and rdev | 
|  | 1060 | * appropriately within the inode.  The uid and gid for the inode are | 
|  | 1061 | * set according to the contents of the given cred structure. | 
|  | 1062 | * | 
|  | 1063 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() | 
|  | 1064 | * has a free inode available, call xfs_iget() | 
|  | 1065 | * to obtain the in-core version of the allocated inode.  Finally, | 
|  | 1066 | * fill in the inode and log its initial contents.  In this case, | 
|  | 1067 | * ialloc_context would be set to NULL and call_again set to false. | 
|  | 1068 | * | 
|  | 1069 | * If xfs_dialloc() does not have an available inode, | 
|  | 1070 | * it will replenish its supply by doing an allocation. Since we can | 
|  | 1071 | * only do one allocation within a transaction without deadlocks, we | 
|  | 1072 | * must commit the current transaction before returning the inode itself. | 
|  | 1073 | * In this case, therefore, we will set call_again to true and return. | 
|  | 1074 | * The caller should then commit the current transaction, start a new | 
|  | 1075 | * transaction, and call xfs_ialloc() again to actually get the inode. | 
|  | 1076 | * | 
|  | 1077 | * To ensure that some other process does not grab the inode that | 
|  | 1078 | * was allocated during the first call to xfs_ialloc(), this routine | 
|  | 1079 | * also returns the [locked] bp pointing to the head of the freelist | 
|  | 1080 | * as ialloc_context.  The caller should hold this buffer across | 
|  | 1081 | * the commit and pass it back into this routine on the second call. | 
|  | 1082 | */ | 
|  | 1083 | int | 
|  | 1084 | xfs_ialloc( | 
|  | 1085 | xfs_trans_t	*tp, | 
|  | 1086 | xfs_inode_t	*pip, | 
|  | 1087 | mode_t		mode, | 
| Nathan Scott | 31b084a | 2005-05-05 13:25:00 -0700 | [diff] [blame] | 1088 | xfs_nlink_t	nlink, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1089 | xfs_dev_t	rdev, | 
|  | 1090 | cred_t		*cr, | 
|  | 1091 | xfs_prid_t	prid, | 
|  | 1092 | int		okalloc, | 
|  | 1093 | xfs_buf_t	**ialloc_context, | 
|  | 1094 | boolean_t	*call_again, | 
|  | 1095 | xfs_inode_t	**ipp) | 
|  | 1096 | { | 
|  | 1097 | xfs_ino_t	ino; | 
|  | 1098 | xfs_inode_t	*ip; | 
|  | 1099 | vnode_t		*vp; | 
|  | 1100 | uint		flags; | 
|  | 1101 | int		error; | 
|  | 1102 |  | 
|  | 1103 | /* | 
|  | 1104 | * Call the space management code to pick | 
|  | 1105 | * the on-disk inode to be allocated. | 
|  | 1106 | */ | 
|  | 1107 | error = xfs_dialloc(tp, pip->i_ino, mode, okalloc, | 
|  | 1108 | ialloc_context, call_again, &ino); | 
|  | 1109 | if (error != 0) { | 
|  | 1110 | return error; | 
|  | 1111 | } | 
|  | 1112 | if (*call_again || ino == NULLFSINO) { | 
|  | 1113 | *ipp = NULL; | 
|  | 1114 | return 0; | 
|  | 1115 | } | 
|  | 1116 | ASSERT(*ialloc_context == NULL); | 
|  | 1117 |  | 
|  | 1118 | /* | 
|  | 1119 | * Get the in-core inode with the lock held exclusively. | 
|  | 1120 | * This is because we're setting fields here we need | 
|  | 1121 | * to prevent others from looking at until we're done. | 
|  | 1122 | */ | 
|  | 1123 | error = xfs_trans_iget(tp->t_mountp, tp, ino, | 
|  | 1124 | IGET_CREATE, XFS_ILOCK_EXCL, &ip); | 
|  | 1125 | if (error != 0) { | 
|  | 1126 | return error; | 
|  | 1127 | } | 
|  | 1128 | ASSERT(ip != NULL); | 
|  | 1129 |  | 
|  | 1130 | vp = XFS_ITOV(ip); | 
|  | 1131 | vp->v_type = IFTOVT(mode); | 
|  | 1132 | ip->i_d.di_mode = (__uint16_t)mode; | 
|  | 1133 | ip->i_d.di_onlink = 0; | 
|  | 1134 | ip->i_d.di_nlink = nlink; | 
|  | 1135 | ASSERT(ip->i_d.di_nlink == nlink); | 
|  | 1136 | ip->i_d.di_uid = current_fsuid(cr); | 
|  | 1137 | ip->i_d.di_gid = current_fsgid(cr); | 
|  | 1138 | ip->i_d.di_projid = prid; | 
|  | 1139 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
|  | 1140 |  | 
|  | 1141 | /* | 
|  | 1142 | * If the superblock version is up to where we support new format | 
|  | 1143 | * inodes and this is currently an old format inode, then change | 
|  | 1144 | * the inode version number now.  This way we only do the conversion | 
|  | 1145 | * here rather than here and in the flush/logging code. | 
|  | 1146 | */ | 
|  | 1147 | if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && | 
|  | 1148 | ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
|  | 1149 | ip->i_d.di_version = XFS_DINODE_VERSION_2; | 
|  | 1150 | /* | 
|  | 1151 | * We've already zeroed the old link count, the projid field, | 
|  | 1152 | * and the pad field. | 
|  | 1153 | */ | 
|  | 1154 | } | 
|  | 1155 |  | 
|  | 1156 | /* | 
|  | 1157 | * Project ids won't be stored on disk if we are using a version 1 inode. | 
|  | 1158 | */ | 
|  | 1159 | if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) | 
|  | 1160 | xfs_bump_ino_vers2(tp, ip); | 
|  | 1161 |  | 
|  | 1162 | if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { | 
|  | 1163 | ip->i_d.di_gid = pip->i_d.di_gid; | 
|  | 1164 | if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) { | 
|  | 1165 | ip->i_d.di_mode |= S_ISGID; | 
|  | 1166 | } | 
|  | 1167 | } | 
|  | 1168 |  | 
|  | 1169 | /* | 
|  | 1170 | * If the group ID of the new file does not match the effective group | 
|  | 1171 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared | 
|  | 1172 | * (and only if the irix_sgid_inherit compatibility variable is set). | 
|  | 1173 | */ | 
|  | 1174 | if ((irix_sgid_inherit) && | 
|  | 1175 | (ip->i_d.di_mode & S_ISGID) && | 
|  | 1176 | (!in_group_p((gid_t)ip->i_d.di_gid))) { | 
|  | 1177 | ip->i_d.di_mode &= ~S_ISGID; | 
|  | 1178 | } | 
|  | 1179 |  | 
|  | 1180 | ip->i_d.di_size = 0; | 
|  | 1181 | ip->i_d.di_nextents = 0; | 
|  | 1182 | ASSERT(ip->i_d.di_nblocks == 0); | 
|  | 1183 | xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); | 
|  | 1184 | /* | 
|  | 1185 | * di_gen will have been taken care of in xfs_iread. | 
|  | 1186 | */ | 
|  | 1187 | ip->i_d.di_extsize = 0; | 
|  | 1188 | ip->i_d.di_dmevmask = 0; | 
|  | 1189 | ip->i_d.di_dmstate = 0; | 
|  | 1190 | ip->i_d.di_flags = 0; | 
|  | 1191 | flags = XFS_ILOG_CORE; | 
|  | 1192 | switch (mode & S_IFMT) { | 
|  | 1193 | case S_IFIFO: | 
|  | 1194 | case S_IFCHR: | 
|  | 1195 | case S_IFBLK: | 
|  | 1196 | case S_IFSOCK: | 
|  | 1197 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; | 
|  | 1198 | ip->i_df.if_u2.if_rdev = rdev; | 
|  | 1199 | ip->i_df.if_flags = 0; | 
|  | 1200 | flags |= XFS_ILOG_DEV; | 
|  | 1201 | break; | 
|  | 1202 | case S_IFREG: | 
|  | 1203 | case S_IFDIR: | 
|  | 1204 | if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) { | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1205 | uint	di_flags = 0; | 
|  | 1206 |  | 
|  | 1207 | if ((mode & S_IFMT) == S_IFDIR) { | 
|  | 1208 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) | 
|  | 1209 | di_flags |= XFS_DIFLAG_RTINHERIT; | 
|  | 1210 | } else { | 
|  | 1211 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) { | 
|  | 1212 | di_flags |= XFS_DIFLAG_REALTIME; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1213 | ip->i_iocore.io_flags |= XFS_IOCORE_RT; | 
|  | 1214 | } | 
|  | 1215 | } | 
|  | 1216 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && | 
|  | 1217 | xfs_inherit_noatime) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1218 | di_flags |= XFS_DIFLAG_NOATIME; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1219 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && | 
|  | 1220 | xfs_inherit_nodump) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1221 | di_flags |= XFS_DIFLAG_NODUMP; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1222 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && | 
|  | 1223 | xfs_inherit_sync) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1224 | di_flags |= XFS_DIFLAG_SYNC; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1225 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && | 
|  | 1226 | xfs_inherit_nosymlinks) | 
| Nathan Scott | 365ca83 | 2005-06-21 15:39:12 +1000 | [diff] [blame] | 1227 | di_flags |= XFS_DIFLAG_NOSYMLINKS; | 
|  | 1228 | if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) | 
|  | 1229 | di_flags |= XFS_DIFLAG_PROJINHERIT; | 
|  | 1230 | ip->i_d.di_flags |= di_flags; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1231 | } | 
|  | 1232 | /* FALLTHROUGH */ | 
|  | 1233 | case S_IFLNK: | 
|  | 1234 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
|  | 1235 | ip->i_df.if_flags = XFS_IFEXTENTS; | 
|  | 1236 | ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; | 
|  | 1237 | ip->i_df.if_u1.if_extents = NULL; | 
|  | 1238 | break; | 
|  | 1239 | default: | 
|  | 1240 | ASSERT(0); | 
|  | 1241 | } | 
|  | 1242 | /* | 
|  | 1243 | * Attribute fork settings for new inode. | 
|  | 1244 | */ | 
|  | 1245 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
|  | 1246 | ip->i_d.di_anextents = 0; | 
|  | 1247 |  | 
|  | 1248 | /* | 
|  | 1249 | * Log the new values stuffed into the inode. | 
|  | 1250 | */ | 
|  | 1251 | xfs_trans_log_inode(tp, ip, flags); | 
|  | 1252 |  | 
|  | 1253 | /* now that we have a v_type we can set Linux inode ops (& unlock) */ | 
|  | 1254 | VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); | 
|  | 1255 |  | 
|  | 1256 | *ipp = ip; | 
|  | 1257 | return 0; | 
|  | 1258 | } | 
|  | 1259 |  | 
|  | 1260 | /* | 
|  | 1261 | * Check to make sure that there are no blocks allocated to the | 
|  | 1262 | * file beyond the size of the file.  We don't check this for | 
|  | 1263 | * files with fixed size extents or real time extents, but we | 
|  | 1264 | * at least do it for regular files. | 
|  | 1265 | */ | 
|  | 1266 | #ifdef DEBUG | 
|  | 1267 | void | 
|  | 1268 | xfs_isize_check( | 
|  | 1269 | xfs_mount_t	*mp, | 
|  | 1270 | xfs_inode_t	*ip, | 
|  | 1271 | xfs_fsize_t	isize) | 
|  | 1272 | { | 
|  | 1273 | xfs_fileoff_t	map_first; | 
|  | 1274 | int		nimaps; | 
|  | 1275 | xfs_bmbt_irec_t	imaps[2]; | 
|  | 1276 |  | 
|  | 1277 | if ((ip->i_d.di_mode & S_IFMT) != S_IFREG) | 
|  | 1278 | return; | 
|  | 1279 |  | 
|  | 1280 | if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) | 
|  | 1281 | return; | 
|  | 1282 |  | 
|  | 1283 | nimaps = 2; | 
|  | 1284 | map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); | 
|  | 1285 | /* | 
|  | 1286 | * The filesystem could be shutting down, so bmapi may return | 
|  | 1287 | * an error. | 
|  | 1288 | */ | 
|  | 1289 | if (xfs_bmapi(NULL, ip, map_first, | 
|  | 1290 | (XFS_B_TO_FSB(mp, | 
|  | 1291 | (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - | 
|  | 1292 | map_first), | 
|  | 1293 | XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, | 
|  | 1294 | NULL)) | 
|  | 1295 | return; | 
|  | 1296 | ASSERT(nimaps == 1); | 
|  | 1297 | ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); | 
|  | 1298 | } | 
|  | 1299 | #endif	/* DEBUG */ | 
|  | 1300 |  | 
|  | 1301 | /* | 
|  | 1302 | * Calculate the last possible buffered byte in a file.  This must | 
|  | 1303 | * include data that was buffered beyond the EOF by the write code. | 
|  | 1304 | * This also needs to deal with overflowing the xfs_fsize_t type | 
|  | 1305 | * which can happen for sizes near the limit. | 
|  | 1306 | * | 
|  | 1307 | * We also need to take into account any blocks beyond the EOF.  It | 
|  | 1308 | * may be the case that they were buffered by a write which failed. | 
|  | 1309 | * In that case the pages will still be in memory, but the inode size | 
|  | 1310 | * will never have been updated. | 
|  | 1311 | */ | 
|  | 1312 | xfs_fsize_t | 
|  | 1313 | xfs_file_last_byte( | 
|  | 1314 | xfs_inode_t	*ip) | 
|  | 1315 | { | 
|  | 1316 | xfs_mount_t	*mp; | 
|  | 1317 | xfs_fsize_t	last_byte; | 
|  | 1318 | xfs_fileoff_t	last_block; | 
|  | 1319 | xfs_fileoff_t	size_last_block; | 
|  | 1320 | int		error; | 
|  | 1321 |  | 
|  | 1322 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); | 
|  | 1323 |  | 
|  | 1324 | mp = ip->i_mount; | 
|  | 1325 | /* | 
|  | 1326 | * Only check for blocks beyond the EOF if the extents have | 
|  | 1327 | * been read in.  This eliminates the need for the inode lock, | 
|  | 1328 | * and it also saves us from looking when it really isn't | 
|  | 1329 | * necessary. | 
|  | 1330 | */ | 
|  | 1331 | if (ip->i_df.if_flags & XFS_IFEXTENTS) { | 
|  | 1332 | error = xfs_bmap_last_offset(NULL, ip, &last_block, | 
|  | 1333 | XFS_DATA_FORK); | 
|  | 1334 | if (error) { | 
|  | 1335 | last_block = 0; | 
|  | 1336 | } | 
|  | 1337 | } else { | 
|  | 1338 | last_block = 0; | 
|  | 1339 | } | 
|  | 1340 | size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); | 
|  | 1341 | last_block = XFS_FILEOFF_MAX(last_block, size_last_block); | 
|  | 1342 |  | 
|  | 1343 | last_byte = XFS_FSB_TO_B(mp, last_block); | 
|  | 1344 | if (last_byte < 0) { | 
|  | 1345 | return XFS_MAXIOFFSET(mp); | 
|  | 1346 | } | 
|  | 1347 | last_byte += (1 << mp->m_writeio_log); | 
|  | 1348 | if (last_byte < 0) { | 
|  | 1349 | return XFS_MAXIOFFSET(mp); | 
|  | 1350 | } | 
|  | 1351 | return last_byte; | 
|  | 1352 | } | 
|  | 1353 |  | 
|  | 1354 | #if defined(XFS_RW_TRACE) | 
|  | 1355 | STATIC void | 
|  | 1356 | xfs_itrunc_trace( | 
|  | 1357 | int		tag, | 
|  | 1358 | xfs_inode_t	*ip, | 
|  | 1359 | int		flag, | 
|  | 1360 | xfs_fsize_t	new_size, | 
|  | 1361 | xfs_off_t	toss_start, | 
|  | 1362 | xfs_off_t	toss_finish) | 
|  | 1363 | { | 
|  | 1364 | if (ip->i_rwtrace == NULL) { | 
|  | 1365 | return; | 
|  | 1366 | } | 
|  | 1367 |  | 
|  | 1368 | ktrace_enter(ip->i_rwtrace, | 
|  | 1369 | (void*)((long)tag), | 
|  | 1370 | (void*)ip, | 
|  | 1371 | (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff), | 
|  | 1372 | (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff), | 
|  | 1373 | (void*)((long)flag), | 
|  | 1374 | (void*)(unsigned long)((new_size >> 32) & 0xffffffff), | 
|  | 1375 | (void*)(unsigned long)(new_size & 0xffffffff), | 
|  | 1376 | (void*)(unsigned long)((toss_start >> 32) & 0xffffffff), | 
|  | 1377 | (void*)(unsigned long)(toss_start & 0xffffffff), | 
|  | 1378 | (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff), | 
|  | 1379 | (void*)(unsigned long)(toss_finish & 0xffffffff), | 
|  | 1380 | (void*)(unsigned long)current_cpu(), | 
|  | 1381 | (void*)0, | 
|  | 1382 | (void*)0, | 
|  | 1383 | (void*)0, | 
|  | 1384 | (void*)0); | 
|  | 1385 | } | 
|  | 1386 | #else | 
|  | 1387 | #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) | 
|  | 1388 | #endif | 
|  | 1389 |  | 
|  | 1390 | /* | 
|  | 1391 | * Start the truncation of the file to new_size.  The new size | 
|  | 1392 | * must be smaller than the current size.  This routine will | 
|  | 1393 | * clear the buffer and page caches of file data in the removed | 
|  | 1394 | * range, and xfs_itruncate_finish() will remove the underlying | 
|  | 1395 | * disk blocks. | 
|  | 1396 | * | 
|  | 1397 | * The inode must have its I/O lock locked EXCLUSIVELY, and it | 
|  | 1398 | * must NOT have the inode lock held at all.  This is because we're | 
|  | 1399 | * calling into the buffer/page cache code and we can't hold the | 
|  | 1400 | * inode lock when we do so. | 
|  | 1401 | * | 
|  | 1402 | * The flags parameter can have either the value XFS_ITRUNC_DEFINITE | 
|  | 1403 | * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used | 
|  | 1404 | * in the case that the caller is locking things out of order and | 
|  | 1405 | * may not be able to call xfs_itruncate_finish() with the inode lock | 
|  | 1406 | * held without dropping the I/O lock.  If the caller must drop the | 
|  | 1407 | * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() | 
|  | 1408 | * must be called again with all the same restrictions as the initial | 
|  | 1409 | * call. | 
|  | 1410 | */ | 
|  | 1411 | void | 
|  | 1412 | xfs_itruncate_start( | 
|  | 1413 | xfs_inode_t	*ip, | 
|  | 1414 | uint		flags, | 
|  | 1415 | xfs_fsize_t	new_size) | 
|  | 1416 | { | 
|  | 1417 | xfs_fsize_t	last_byte; | 
|  | 1418 | xfs_off_t	toss_start; | 
|  | 1419 | xfs_mount_t	*mp; | 
|  | 1420 | vnode_t		*vp; | 
|  | 1421 |  | 
|  | 1422 | ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | 
|  | 1423 | ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | 
|  | 1424 | ASSERT((flags == XFS_ITRUNC_DEFINITE) || | 
|  | 1425 | (flags == XFS_ITRUNC_MAYBE)); | 
|  | 1426 |  | 
|  | 1427 | mp = ip->i_mount; | 
|  | 1428 | vp = XFS_ITOV(ip); | 
|  | 1429 | /* | 
|  | 1430 | * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers | 
|  | 1431 | * overlapping the region being removed.  We have to use | 
|  | 1432 | * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the | 
|  | 1433 | * caller may not be able to finish the truncate without | 
|  | 1434 | * dropping the inode's I/O lock.  Make sure | 
|  | 1435 | * to catch any pages brought in by buffers overlapping | 
|  | 1436 | * the EOF by searching out beyond the isize by our | 
|  | 1437 | * block size. We round new_size up to a block boundary | 
|  | 1438 | * so that we don't toss things on the same block as | 
|  | 1439 | * new_size but before it. | 
|  | 1440 | * | 
|  | 1441 | * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to | 
|  | 1442 | * call remapf() over the same region if the file is mapped. | 
|  | 1443 | * This frees up mapped file references to the pages in the | 
|  | 1444 | * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures | 
|  | 1445 | * that we get the latest mapped changes flushed out. | 
|  | 1446 | */ | 
|  | 1447 | toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
|  | 1448 | toss_start = XFS_FSB_TO_B(mp, toss_start); | 
|  | 1449 | if (toss_start < 0) { | 
|  | 1450 | /* | 
|  | 1451 | * The place to start tossing is beyond our maximum | 
|  | 1452 | * file size, so there is no way that the data extended | 
|  | 1453 | * out there. | 
|  | 1454 | */ | 
|  | 1455 | return; | 
|  | 1456 | } | 
|  | 1457 | last_byte = xfs_file_last_byte(ip); | 
|  | 1458 | xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, | 
|  | 1459 | last_byte); | 
|  | 1460 | if (last_byte > toss_start) { | 
|  | 1461 | if (flags & XFS_ITRUNC_DEFINITE) { | 
|  | 1462 | VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | 
|  | 1463 | } else { | 
|  | 1464 | VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); | 
|  | 1465 | } | 
|  | 1466 | } | 
|  | 1467 |  | 
|  | 1468 | #ifdef DEBUG | 
|  | 1469 | if (new_size == 0) { | 
|  | 1470 | ASSERT(VN_CACHED(vp) == 0); | 
|  | 1471 | } | 
|  | 1472 | #endif | 
|  | 1473 | } | 
|  | 1474 |  | 
|  | 1475 | /* | 
|  | 1476 | * Shrink the file to the given new_size.  The new | 
|  | 1477 | * size must be smaller than the current size. | 
|  | 1478 | * This will free up the underlying blocks | 
|  | 1479 | * in the removed range after a call to xfs_itruncate_start() | 
|  | 1480 | * or xfs_atruncate_start(). | 
|  | 1481 | * | 
|  | 1482 | * The transaction passed to this routine must have made | 
|  | 1483 | * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. | 
|  | 1484 | * This routine may commit the given transaction and | 
|  | 1485 | * start new ones, so make sure everything involved in | 
|  | 1486 | * the transaction is tidy before calling here. | 
|  | 1487 | * Some transaction will be returned to the caller to be | 
|  | 1488 | * committed.  The incoming transaction must already include | 
|  | 1489 | * the inode, and both inode locks must be held exclusively. | 
|  | 1490 | * The inode must also be "held" within the transaction.  On | 
|  | 1491 | * return the inode will be "held" within the returned transaction. | 
|  | 1492 | * This routine does NOT require any disk space to be reserved | 
|  | 1493 | * for it within the transaction. | 
|  | 1494 | * | 
|  | 1495 | * The fork parameter must be either xfs_attr_fork or xfs_data_fork, | 
|  | 1496 | * and it indicates the fork which is to be truncated.  For the | 
|  | 1497 | * attribute fork we only support truncation to size 0. | 
|  | 1498 | * | 
|  | 1499 | * We use the sync parameter to indicate whether or not the first | 
|  | 1500 | * transaction we perform might have to be synchronous.  For the attr fork, | 
|  | 1501 | * it needs to be so if the unlink of the inode is not yet known to be | 
|  | 1502 | * permanent in the log.  This keeps us from freeing and reusing the | 
|  | 1503 | * blocks of the attribute fork before the unlink of the inode becomes | 
|  | 1504 | * permanent. | 
|  | 1505 | * | 
|  | 1506 | * For the data fork, we normally have to run synchronously if we're | 
|  | 1507 | * being called out of the inactive path or we're being called | 
|  | 1508 | * out of the create path where we're truncating an existing file. | 
|  | 1509 | * Either way, the truncate needs to be sync so blocks don't reappear | 
|  | 1510 | * in the file with altered data in case of a crash.  wsync filesystems | 
|  | 1511 | * can run the first case async because anything that shrinks the inode | 
|  | 1512 | * has to run sync so by the time we're called here from inactive, the | 
|  | 1513 | * inode size is permanently set to 0. | 
|  | 1514 | * | 
|  | 1515 | * Calls from the truncate path always need to be sync unless we're | 
|  | 1516 | * in a wsync filesystem and the file has already been unlinked. | 
|  | 1517 | * | 
|  | 1518 | * The caller is responsible for correctly setting the sync parameter. | 
|  | 1519 | * It gets too hard for us to guess here which path we're being called | 
|  | 1520 | * out of just based on inode state. | 
|  | 1521 | */ | 
|  | 1522 | int | 
|  | 1523 | xfs_itruncate_finish( | 
|  | 1524 | xfs_trans_t	**tp, | 
|  | 1525 | xfs_inode_t	*ip, | 
|  | 1526 | xfs_fsize_t	new_size, | 
|  | 1527 | int		fork, | 
|  | 1528 | int		sync) | 
|  | 1529 | { | 
|  | 1530 | xfs_fsblock_t	first_block; | 
|  | 1531 | xfs_fileoff_t	first_unmap_block; | 
|  | 1532 | xfs_fileoff_t	last_block; | 
|  | 1533 | xfs_filblks_t	unmap_len=0; | 
|  | 1534 | xfs_mount_t	*mp; | 
|  | 1535 | xfs_trans_t	*ntp; | 
|  | 1536 | int		done; | 
|  | 1537 | int		committed; | 
|  | 1538 | xfs_bmap_free_t	free_list; | 
|  | 1539 | int		error; | 
|  | 1540 |  | 
|  | 1541 | ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); | 
|  | 1542 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); | 
|  | 1543 | ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); | 
|  | 1544 | ASSERT(*tp != NULL); | 
|  | 1545 | ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); | 
|  | 1546 | ASSERT(ip->i_transp == *tp); | 
|  | 1547 | ASSERT(ip->i_itemp != NULL); | 
|  | 1548 | ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); | 
|  | 1549 |  | 
|  | 1550 |  | 
|  | 1551 | ntp = *tp; | 
|  | 1552 | mp = (ntp)->t_mountp; | 
|  | 1553 | ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); | 
|  | 1554 |  | 
|  | 1555 | /* | 
|  | 1556 | * We only support truncating the entire attribute fork. | 
|  | 1557 | */ | 
|  | 1558 | if (fork == XFS_ATTR_FORK) { | 
|  | 1559 | new_size = 0LL; | 
|  | 1560 | } | 
|  | 1561 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); | 
|  | 1562 | xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); | 
|  | 1563 | /* | 
|  | 1564 | * The first thing we do is set the size to new_size permanently | 
|  | 1565 | * on disk.  This way we don't have to worry about anyone ever | 
|  | 1566 | * being able to look at the data being freed even in the face | 
|  | 1567 | * of a crash.  What we're getting around here is the case where | 
|  | 1568 | * we free a block, it is allocated to another file, it is written | 
|  | 1569 | * to, and then we crash.  If the new data gets written to the | 
|  | 1570 | * file but the log buffers containing the free and reallocation | 
|  | 1571 | * don't, then we'd end up with garbage in the blocks being freed. | 
|  | 1572 | * As long as we make the new_size permanent before actually | 
|  | 1573 | * freeing any blocks it doesn't matter if they get writtten to. | 
|  | 1574 | * | 
|  | 1575 | * The callers must signal into us whether or not the size | 
|  | 1576 | * setting here must be synchronous.  There are a few cases | 
|  | 1577 | * where it doesn't have to be synchronous.  Those cases | 
|  | 1578 | * occur if the file is unlinked and we know the unlink is | 
|  | 1579 | * permanent or if the blocks being truncated are guaranteed | 
|  | 1580 | * to be beyond the inode eof (regardless of the link count) | 
|  | 1581 | * and the eof value is permanent.  Both of these cases occur | 
|  | 1582 | * only on wsync-mounted filesystems.  In those cases, we're | 
|  | 1583 | * guaranteed that no user will ever see the data in the blocks | 
|  | 1584 | * that are being truncated so the truncate can run async. | 
|  | 1585 | * In the free beyond eof case, the file may wind up with | 
|  | 1586 | * more blocks allocated to it than it needs if we crash | 
|  | 1587 | * and that won't get fixed until the next time the file | 
|  | 1588 | * is re-opened and closed but that's ok as that shouldn't | 
|  | 1589 | * be too many blocks. | 
|  | 1590 | * | 
|  | 1591 | * However, we can't just make all wsync xactions run async | 
|  | 1592 | * because there's one call out of the create path that needs | 
|  | 1593 | * to run sync where it's truncating an existing file to size | 
|  | 1594 | * 0 whose size is > 0. | 
|  | 1595 | * | 
|  | 1596 | * It's probably possible to come up with a test in this | 
|  | 1597 | * routine that would correctly distinguish all the above | 
|  | 1598 | * cases from the values of the function parameters and the | 
|  | 1599 | * inode state but for sanity's sake, I've decided to let the | 
|  | 1600 | * layers above just tell us.  It's simpler to correctly figure | 
|  | 1601 | * out in the layer above exactly under what conditions we | 
|  | 1602 | * can run async and I think it's easier for others read and | 
|  | 1603 | * follow the logic in case something has to be changed. | 
|  | 1604 | * cscope is your friend -- rcc. | 
|  | 1605 | * | 
|  | 1606 | * The attribute fork is much simpler. | 
|  | 1607 | * | 
|  | 1608 | * For the attribute fork we allow the caller to tell us whether | 
|  | 1609 | * the unlink of the inode that led to this call is yet permanent | 
|  | 1610 | * in the on disk log.  If it is not and we will be freeing extents | 
|  | 1611 | * in this inode then we make the first transaction synchronous | 
|  | 1612 | * to make sure that the unlink is permanent by the time we free | 
|  | 1613 | * the blocks. | 
|  | 1614 | */ | 
|  | 1615 | if (fork == XFS_DATA_FORK) { | 
|  | 1616 | if (ip->i_d.di_nextents > 0) { | 
|  | 1617 | ip->i_d.di_size = new_size; | 
|  | 1618 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
|  | 1619 | } | 
|  | 1620 | } else if (sync) { | 
|  | 1621 | ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); | 
|  | 1622 | if (ip->i_d.di_anextents > 0) | 
|  | 1623 | xfs_trans_set_sync(ntp); | 
|  | 1624 | } | 
|  | 1625 | ASSERT(fork == XFS_DATA_FORK || | 
|  | 1626 | (fork == XFS_ATTR_FORK && | 
|  | 1627 | ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || | 
|  | 1628 | (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); | 
|  | 1629 |  | 
|  | 1630 | /* | 
|  | 1631 | * Since it is possible for space to become allocated beyond | 
|  | 1632 | * the end of the file (in a crash where the space is allocated | 
|  | 1633 | * but the inode size is not yet updated), simply remove any | 
|  | 1634 | * blocks which show up between the new EOF and the maximum | 
|  | 1635 | * possible file size.  If the first block to be removed is | 
|  | 1636 | * beyond the maximum file size (ie it is the same as last_block), | 
|  | 1637 | * then there is nothing to do. | 
|  | 1638 | */ | 
|  | 1639 | last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); | 
|  | 1640 | ASSERT(first_unmap_block <= last_block); | 
|  | 1641 | done = 0; | 
|  | 1642 | if (last_block == first_unmap_block) { | 
|  | 1643 | done = 1; | 
|  | 1644 | } else { | 
|  | 1645 | unmap_len = last_block - first_unmap_block + 1; | 
|  | 1646 | } | 
|  | 1647 | while (!done) { | 
|  | 1648 | /* | 
|  | 1649 | * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi() | 
|  | 1650 | * will tell us whether it freed the entire range or | 
|  | 1651 | * not.  If this is a synchronous mount (wsync), | 
|  | 1652 | * then we can tell bunmapi to keep all the | 
|  | 1653 | * transactions asynchronous since the unlink | 
|  | 1654 | * transaction that made this inode inactive has | 
|  | 1655 | * already hit the disk.  There's no danger of | 
|  | 1656 | * the freed blocks being reused, there being a | 
|  | 1657 | * crash, and the reused blocks suddenly reappearing | 
|  | 1658 | * in this file with garbage in them once recovery | 
|  | 1659 | * runs. | 
|  | 1660 | */ | 
|  | 1661 | XFS_BMAP_INIT(&free_list, &first_block); | 
|  | 1662 | error = xfs_bunmapi(ntp, ip, first_unmap_block, | 
|  | 1663 | unmap_len, | 
|  | 1664 | XFS_BMAPI_AFLAG(fork) | | 
|  | 1665 | (sync ? 0 : XFS_BMAPI_ASYNC), | 
|  | 1666 | XFS_ITRUNC_MAX_EXTENTS, | 
|  | 1667 | &first_block, &free_list, &done); | 
|  | 1668 | if (error) { | 
|  | 1669 | /* | 
|  | 1670 | * If the bunmapi call encounters an error, | 
|  | 1671 | * return to the caller where the transaction | 
|  | 1672 | * can be properly aborted.  We just need to | 
|  | 1673 | * make sure we're not holding any resources | 
|  | 1674 | * that we were not when we came in. | 
|  | 1675 | */ | 
|  | 1676 | xfs_bmap_cancel(&free_list); | 
|  | 1677 | return error; | 
|  | 1678 | } | 
|  | 1679 |  | 
|  | 1680 | /* | 
|  | 1681 | * Duplicate the transaction that has the permanent | 
|  | 1682 | * reservation and commit the old transaction. | 
|  | 1683 | */ | 
|  | 1684 | error = xfs_bmap_finish(tp, &free_list, first_block, | 
|  | 1685 | &committed); | 
|  | 1686 | ntp = *tp; | 
|  | 1687 | if (error) { | 
|  | 1688 | /* | 
|  | 1689 | * If the bmap finish call encounters an error, | 
|  | 1690 | * return to the caller where the transaction | 
|  | 1691 | * can be properly aborted.  We just need to | 
|  | 1692 | * make sure we're not holding any resources | 
|  | 1693 | * that we were not when we came in. | 
|  | 1694 | * | 
|  | 1695 | * Aborting from this point might lose some | 
|  | 1696 | * blocks in the file system, but oh well. | 
|  | 1697 | */ | 
|  | 1698 | xfs_bmap_cancel(&free_list); | 
|  | 1699 | if (committed) { | 
|  | 1700 | /* | 
|  | 1701 | * If the passed in transaction committed | 
|  | 1702 | * in xfs_bmap_finish(), then we want to | 
|  | 1703 | * add the inode to this one before returning. | 
|  | 1704 | * This keeps things simple for the higher | 
|  | 1705 | * level code, because it always knows that | 
|  | 1706 | * the inode is locked and held in the | 
|  | 1707 | * transaction that returns to it whether | 
|  | 1708 | * errors occur or not.  We don't mark the | 
|  | 1709 | * inode dirty so that this transaction can | 
|  | 1710 | * be easily aborted if possible. | 
|  | 1711 | */ | 
|  | 1712 | xfs_trans_ijoin(ntp, ip, | 
|  | 1713 | XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
|  | 1714 | xfs_trans_ihold(ntp, ip); | 
|  | 1715 | } | 
|  | 1716 | return error; | 
|  | 1717 | } | 
|  | 1718 |  | 
|  | 1719 | if (committed) { | 
|  | 1720 | /* | 
|  | 1721 | * The first xact was committed, | 
|  | 1722 | * so add the inode to the new one. | 
|  | 1723 | * Mark it dirty so it will be logged | 
|  | 1724 | * and moved forward in the log as | 
|  | 1725 | * part of every commit. | 
|  | 1726 | */ | 
|  | 1727 | xfs_trans_ijoin(ntp, ip, | 
|  | 1728 | XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
|  | 1729 | xfs_trans_ihold(ntp, ip); | 
|  | 1730 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
|  | 1731 | } | 
|  | 1732 | ntp = xfs_trans_dup(ntp); | 
|  | 1733 | (void) xfs_trans_commit(*tp, 0, NULL); | 
|  | 1734 | *tp = ntp; | 
|  | 1735 | error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, | 
|  | 1736 | XFS_TRANS_PERM_LOG_RES, | 
|  | 1737 | XFS_ITRUNCATE_LOG_COUNT); | 
|  | 1738 | /* | 
|  | 1739 | * Add the inode being truncated to the next chained | 
|  | 1740 | * transaction. | 
|  | 1741 | */ | 
|  | 1742 | xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); | 
|  | 1743 | xfs_trans_ihold(ntp, ip); | 
|  | 1744 | if (error) | 
|  | 1745 | return (error); | 
|  | 1746 | } | 
|  | 1747 | /* | 
|  | 1748 | * Only update the size in the case of the data fork, but | 
|  | 1749 | * always re-log the inode so that our permanent transaction | 
|  | 1750 | * can keep on rolling it forward in the log. | 
|  | 1751 | */ | 
|  | 1752 | if (fork == XFS_DATA_FORK) { | 
|  | 1753 | xfs_isize_check(mp, ip, new_size); | 
|  | 1754 | ip->i_d.di_size = new_size; | 
|  | 1755 | } | 
|  | 1756 | xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); | 
|  | 1757 | ASSERT((new_size != 0) || | 
|  | 1758 | (fork == XFS_ATTR_FORK) || | 
|  | 1759 | (ip->i_delayed_blks == 0)); | 
|  | 1760 | ASSERT((new_size != 0) || | 
|  | 1761 | (fork == XFS_ATTR_FORK) || | 
|  | 1762 | (ip->i_d.di_nextents == 0)); | 
|  | 1763 | xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); | 
|  | 1764 | return 0; | 
|  | 1765 | } | 
|  | 1766 |  | 
|  | 1767 |  | 
|  | 1768 | /* | 
|  | 1769 | * xfs_igrow_start | 
|  | 1770 | * | 
|  | 1771 | * Do the first part of growing a file: zero any data in the last | 
|  | 1772 | * block that is beyond the old EOF.  We need to do this before | 
|  | 1773 | * the inode is joined to the transaction to modify the i_size. | 
|  | 1774 | * That way we can drop the inode lock and call into the buffer | 
|  | 1775 | * cache to get the buffer mapping the EOF. | 
|  | 1776 | */ | 
|  | 1777 | int | 
|  | 1778 | xfs_igrow_start( | 
|  | 1779 | xfs_inode_t	*ip, | 
|  | 1780 | xfs_fsize_t	new_size, | 
|  | 1781 | cred_t		*credp) | 
|  | 1782 | { | 
|  | 1783 | xfs_fsize_t	isize; | 
|  | 1784 | int		error; | 
|  | 1785 |  | 
|  | 1786 | ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | 
|  | 1787 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | 
|  | 1788 | ASSERT(new_size > ip->i_d.di_size); | 
|  | 1789 |  | 
|  | 1790 | error = 0; | 
|  | 1791 | isize = ip->i_d.di_size; | 
|  | 1792 | /* | 
|  | 1793 | * Zero any pages that may have been created by | 
|  | 1794 | * xfs_write_file() beyond the end of the file | 
|  | 1795 | * and any blocks between the old and new file sizes. | 
|  | 1796 | */ | 
|  | 1797 | error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, | 
|  | 1798 | new_size); | 
|  | 1799 | return error; | 
|  | 1800 | } | 
|  | 1801 |  | 
|  | 1802 | /* | 
|  | 1803 | * xfs_igrow_finish | 
|  | 1804 | * | 
|  | 1805 | * This routine is called to extend the size of a file. | 
|  | 1806 | * The inode must have both the iolock and the ilock locked | 
|  | 1807 | * for update and it must be a part of the current transaction. | 
|  | 1808 | * The xfs_igrow_start() function must have been called previously. | 
|  | 1809 | * If the change_flag is not zero, the inode change timestamp will | 
|  | 1810 | * be updated. | 
|  | 1811 | */ | 
|  | 1812 | void | 
|  | 1813 | xfs_igrow_finish( | 
|  | 1814 | xfs_trans_t	*tp, | 
|  | 1815 | xfs_inode_t	*ip, | 
|  | 1816 | xfs_fsize_t	new_size, | 
|  | 1817 | int		change_flag) | 
|  | 1818 | { | 
|  | 1819 | ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); | 
|  | 1820 | ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); | 
|  | 1821 | ASSERT(ip->i_transp == tp); | 
|  | 1822 | ASSERT(new_size > ip->i_d.di_size); | 
|  | 1823 |  | 
|  | 1824 | /* | 
|  | 1825 | * Update the file size.  Update the inode change timestamp | 
|  | 1826 | * if change_flag set. | 
|  | 1827 | */ | 
|  | 1828 | ip->i_d.di_size = new_size; | 
|  | 1829 | if (change_flag) | 
|  | 1830 | xfs_ichgtime(ip, XFS_ICHGTIME_CHG); | 
|  | 1831 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | 1832 |  | 
|  | 1833 | } | 
|  | 1834 |  | 
|  | 1835 |  | 
|  | 1836 | /* | 
|  | 1837 | * This is called when the inode's link count goes to 0. | 
|  | 1838 | * We place the on-disk inode on a list in the AGI.  It | 
|  | 1839 | * will be pulled from this list when the inode is freed. | 
|  | 1840 | */ | 
|  | 1841 | int | 
|  | 1842 | xfs_iunlink( | 
|  | 1843 | xfs_trans_t	*tp, | 
|  | 1844 | xfs_inode_t	*ip) | 
|  | 1845 | { | 
|  | 1846 | xfs_mount_t	*mp; | 
|  | 1847 | xfs_agi_t	*agi; | 
|  | 1848 | xfs_dinode_t	*dip; | 
|  | 1849 | xfs_buf_t	*agibp; | 
|  | 1850 | xfs_buf_t	*ibp; | 
|  | 1851 | xfs_agnumber_t	agno; | 
|  | 1852 | xfs_daddr_t	agdaddr; | 
|  | 1853 | xfs_agino_t	agino; | 
|  | 1854 | short		bucket_index; | 
|  | 1855 | int		offset; | 
|  | 1856 | int		error; | 
|  | 1857 | int		agi_ok; | 
|  | 1858 |  | 
|  | 1859 | ASSERT(ip->i_d.di_nlink == 0); | 
|  | 1860 | ASSERT(ip->i_d.di_mode != 0); | 
|  | 1861 | ASSERT(ip->i_transp == tp); | 
|  | 1862 |  | 
|  | 1863 | mp = tp->t_mountp; | 
|  | 1864 |  | 
|  | 1865 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
|  | 1866 | agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | 
|  | 1867 |  | 
|  | 1868 | /* | 
|  | 1869 | * Get the agi buffer first.  It ensures lock ordering | 
|  | 1870 | * on the list. | 
|  | 1871 | */ | 
|  | 1872 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | 
|  | 1873 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); | 
|  | 1874 | if (error) { | 
|  | 1875 | return error; | 
|  | 1876 | } | 
|  | 1877 | /* | 
|  | 1878 | * Validate the magic number of the agi block. | 
|  | 1879 | */ | 
|  | 1880 | agi = XFS_BUF_TO_AGI(agibp); | 
|  | 1881 | agi_ok = | 
|  | 1882 | INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && | 
|  | 1883 | XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); | 
|  | 1884 | if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, | 
|  | 1885 | XFS_RANDOM_IUNLINK))) { | 
|  | 1886 | XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); | 
|  | 1887 | xfs_trans_brelse(tp, agibp); | 
|  | 1888 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 1889 | } | 
|  | 1890 | /* | 
|  | 1891 | * Get the index into the agi hash table for the | 
|  | 1892 | * list this inode will go on. | 
|  | 1893 | */ | 
|  | 1894 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
|  | 1895 | ASSERT(agino != 0); | 
|  | 1896 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
|  | 1897 | ASSERT(agi->agi_unlinked[bucket_index]); | 
|  | 1898 | ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino); | 
|  | 1899 |  | 
|  | 1900 | if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) { | 
|  | 1901 | /* | 
|  | 1902 | * There is already another inode in the bucket we need | 
|  | 1903 | * to add ourselves to.  Add us at the front of the list. | 
|  | 1904 | * Here we put the head pointer into our next pointer, | 
|  | 1905 | * and then we fall through to point the head at us. | 
|  | 1906 | */ | 
|  | 1907 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
|  | 1908 | if (error) { | 
|  | 1909 | return error; | 
|  | 1910 | } | 
|  | 1911 | ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); | 
|  | 1912 | ASSERT(dip->di_next_unlinked); | 
|  | 1913 | /* both on-disk, don't endian flip twice */ | 
|  | 1914 | dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; | 
|  | 1915 | offset = ip->i_boffset + | 
|  | 1916 | offsetof(xfs_dinode_t, di_next_unlinked); | 
|  | 1917 | xfs_trans_inode_buf(tp, ibp); | 
|  | 1918 | xfs_trans_log_buf(tp, ibp, offset, | 
|  | 1919 | (offset + sizeof(xfs_agino_t) - 1)); | 
|  | 1920 | xfs_inobp_check(mp, ibp); | 
|  | 1921 | } | 
|  | 1922 |  | 
|  | 1923 | /* | 
|  | 1924 | * Point the bucket head pointer at the inode being inserted. | 
|  | 1925 | */ | 
|  | 1926 | ASSERT(agino != 0); | 
|  | 1927 | INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino); | 
|  | 1928 | offset = offsetof(xfs_agi_t, agi_unlinked) + | 
|  | 1929 | (sizeof(xfs_agino_t) * bucket_index); | 
|  | 1930 | xfs_trans_log_buf(tp, agibp, offset, | 
|  | 1931 | (offset + sizeof(xfs_agino_t) - 1)); | 
|  | 1932 | return 0; | 
|  | 1933 | } | 
|  | 1934 |  | 
|  | 1935 | /* | 
|  | 1936 | * Pull the on-disk inode from the AGI unlinked list. | 
|  | 1937 | */ | 
|  | 1938 | STATIC int | 
|  | 1939 | xfs_iunlink_remove( | 
|  | 1940 | xfs_trans_t	*tp, | 
|  | 1941 | xfs_inode_t	*ip) | 
|  | 1942 | { | 
|  | 1943 | xfs_ino_t	next_ino; | 
|  | 1944 | xfs_mount_t	*mp; | 
|  | 1945 | xfs_agi_t	*agi; | 
|  | 1946 | xfs_dinode_t	*dip; | 
|  | 1947 | xfs_buf_t	*agibp; | 
|  | 1948 | xfs_buf_t	*ibp; | 
|  | 1949 | xfs_agnumber_t	agno; | 
|  | 1950 | xfs_daddr_t	agdaddr; | 
|  | 1951 | xfs_agino_t	agino; | 
|  | 1952 | xfs_agino_t	next_agino; | 
|  | 1953 | xfs_buf_t	*last_ibp; | 
|  | 1954 | xfs_dinode_t	*last_dip; | 
|  | 1955 | short		bucket_index; | 
|  | 1956 | int		offset, last_offset; | 
|  | 1957 | int		error; | 
|  | 1958 | int		agi_ok; | 
|  | 1959 |  | 
|  | 1960 | /* | 
|  | 1961 | * First pull the on-disk inode from the AGI unlinked list. | 
|  | 1962 | */ | 
|  | 1963 | mp = tp->t_mountp; | 
|  | 1964 |  | 
|  | 1965 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); | 
|  | 1966 | agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | 
|  | 1967 |  | 
|  | 1968 | /* | 
|  | 1969 | * Get the agi buffer first.  It ensures lock ordering | 
|  | 1970 | * on the list. | 
|  | 1971 | */ | 
|  | 1972 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, | 
|  | 1973 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); | 
|  | 1974 | if (error) { | 
|  | 1975 | cmn_err(CE_WARN, | 
|  | 1976 | "xfs_iunlink_remove: xfs_trans_read_buf()  returned an error %d on %s.  Returning error.", | 
|  | 1977 | error, mp->m_fsname); | 
|  | 1978 | return error; | 
|  | 1979 | } | 
|  | 1980 | /* | 
|  | 1981 | * Validate the magic number of the agi block. | 
|  | 1982 | */ | 
|  | 1983 | agi = XFS_BUF_TO_AGI(agibp); | 
|  | 1984 | agi_ok = | 
|  | 1985 | INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && | 
|  | 1986 | XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); | 
|  | 1987 | if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, | 
|  | 1988 | XFS_RANDOM_IUNLINK_REMOVE))) { | 
|  | 1989 | XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, | 
|  | 1990 | mp, agi); | 
|  | 1991 | xfs_trans_brelse(tp, agibp); | 
|  | 1992 | cmn_err(CE_WARN, | 
|  | 1993 | "xfs_iunlink_remove: XFS_TEST_ERROR()  returned an error on %s.  Returning EFSCORRUPTED.", | 
|  | 1994 | mp->m_fsname); | 
|  | 1995 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 1996 | } | 
|  | 1997 | /* | 
|  | 1998 | * Get the index into the agi hash table for the | 
|  | 1999 | * list this inode will go on. | 
|  | 2000 | */ | 
|  | 2001 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); | 
|  | 2002 | ASSERT(agino != 0); | 
|  | 2003 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; | 
|  | 2004 | ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO); | 
|  | 2005 | ASSERT(agi->agi_unlinked[bucket_index]); | 
|  | 2006 |  | 
|  | 2007 | if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) { | 
|  | 2008 | /* | 
|  | 2009 | * We're at the head of the list.  Get the inode's | 
|  | 2010 | * on-disk buffer to see if there is anyone after us | 
|  | 2011 | * on the list.  Only modify our next pointer if it | 
|  | 2012 | * is not already NULLAGINO.  This saves us the overhead | 
|  | 2013 | * of dealing with the buffer when there is no need to | 
|  | 2014 | * change it. | 
|  | 2015 | */ | 
|  | 2016 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
|  | 2017 | if (error) { | 
|  | 2018 | cmn_err(CE_WARN, | 
|  | 2019 | "xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.", | 
|  | 2020 | error, mp->m_fsname); | 
|  | 2021 | return error; | 
|  | 2022 | } | 
|  | 2023 | next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | 
|  | 2024 | ASSERT(next_agino != 0); | 
|  | 2025 | if (next_agino != NULLAGINO) { | 
|  | 2026 | INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | 
|  | 2027 | offset = ip->i_boffset + | 
|  | 2028 | offsetof(xfs_dinode_t, di_next_unlinked); | 
|  | 2029 | xfs_trans_inode_buf(tp, ibp); | 
|  | 2030 | xfs_trans_log_buf(tp, ibp, offset, | 
|  | 2031 | (offset + sizeof(xfs_agino_t) - 1)); | 
|  | 2032 | xfs_inobp_check(mp, ibp); | 
|  | 2033 | } else { | 
|  | 2034 | xfs_trans_brelse(tp, ibp); | 
|  | 2035 | } | 
|  | 2036 | /* | 
|  | 2037 | * Point the bucket head pointer at the next inode. | 
|  | 2038 | */ | 
|  | 2039 | ASSERT(next_agino != 0); | 
|  | 2040 | ASSERT(next_agino != agino); | 
|  | 2041 | INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino); | 
|  | 2042 | offset = offsetof(xfs_agi_t, agi_unlinked) + | 
|  | 2043 | (sizeof(xfs_agino_t) * bucket_index); | 
|  | 2044 | xfs_trans_log_buf(tp, agibp, offset, | 
|  | 2045 | (offset + sizeof(xfs_agino_t) - 1)); | 
|  | 2046 | } else { | 
|  | 2047 | /* | 
|  | 2048 | * We need to search the list for the inode being freed. | 
|  | 2049 | */ | 
|  | 2050 | next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT); | 
|  | 2051 | last_ibp = NULL; | 
|  | 2052 | while (next_agino != agino) { | 
|  | 2053 | /* | 
|  | 2054 | * If the last inode wasn't the one pointing to | 
|  | 2055 | * us, then release its buffer since we're not | 
|  | 2056 | * going to do anything with it. | 
|  | 2057 | */ | 
|  | 2058 | if (last_ibp != NULL) { | 
|  | 2059 | xfs_trans_brelse(tp, last_ibp); | 
|  | 2060 | } | 
|  | 2061 | next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); | 
|  | 2062 | error = xfs_inotobp(mp, tp, next_ino, &last_dip, | 
|  | 2063 | &last_ibp, &last_offset); | 
|  | 2064 | if (error) { | 
|  | 2065 | cmn_err(CE_WARN, | 
|  | 2066 | "xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.", | 
|  | 2067 | error, mp->m_fsname); | 
|  | 2068 | return error; | 
|  | 2069 | } | 
|  | 2070 | next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); | 
|  | 2071 | ASSERT(next_agino != NULLAGINO); | 
|  | 2072 | ASSERT(next_agino != 0); | 
|  | 2073 | } | 
|  | 2074 | /* | 
|  | 2075 | * Now last_ibp points to the buffer previous to us on | 
|  | 2076 | * the unlinked list.  Pull us from the list. | 
|  | 2077 | */ | 
|  | 2078 | error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); | 
|  | 2079 | if (error) { | 
|  | 2080 | cmn_err(CE_WARN, | 
|  | 2081 | "xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.", | 
|  | 2082 | error, mp->m_fsname); | 
|  | 2083 | return error; | 
|  | 2084 | } | 
|  | 2085 | next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); | 
|  | 2086 | ASSERT(next_agino != 0); | 
|  | 2087 | ASSERT(next_agino != agino); | 
|  | 2088 | if (next_agino != NULLAGINO) { | 
|  | 2089 | INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); | 
|  | 2090 | offset = ip->i_boffset + | 
|  | 2091 | offsetof(xfs_dinode_t, di_next_unlinked); | 
|  | 2092 | xfs_trans_inode_buf(tp, ibp); | 
|  | 2093 | xfs_trans_log_buf(tp, ibp, offset, | 
|  | 2094 | (offset + sizeof(xfs_agino_t) - 1)); | 
|  | 2095 | xfs_inobp_check(mp, ibp); | 
|  | 2096 | } else { | 
|  | 2097 | xfs_trans_brelse(tp, ibp); | 
|  | 2098 | } | 
|  | 2099 | /* | 
|  | 2100 | * Point the previous inode on the list to the next inode. | 
|  | 2101 | */ | 
|  | 2102 | INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); | 
|  | 2103 | ASSERT(next_agino != 0); | 
|  | 2104 | offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); | 
|  | 2105 | xfs_trans_inode_buf(tp, last_ibp); | 
|  | 2106 | xfs_trans_log_buf(tp, last_ibp, offset, | 
|  | 2107 | (offset + sizeof(xfs_agino_t) - 1)); | 
|  | 2108 | xfs_inobp_check(mp, last_ibp); | 
|  | 2109 | } | 
|  | 2110 | return 0; | 
|  | 2111 | } | 
|  | 2112 |  | 
|  | 2113 | static __inline__ int xfs_inode_clean(xfs_inode_t *ip) | 
|  | 2114 | { | 
|  | 2115 | return (((ip->i_itemp == NULL) || | 
|  | 2116 | !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && | 
|  | 2117 | (ip->i_update_core == 0)); | 
|  | 2118 | } | 
|  | 2119 |  | 
| Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 2120 | STATIC void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2121 | xfs_ifree_cluster( | 
|  | 2122 | xfs_inode_t	*free_ip, | 
|  | 2123 | xfs_trans_t	*tp, | 
|  | 2124 | xfs_ino_t	inum) | 
|  | 2125 | { | 
|  | 2126 | xfs_mount_t		*mp = free_ip->i_mount; | 
|  | 2127 | int			blks_per_cluster; | 
|  | 2128 | int			nbufs; | 
|  | 2129 | int			ninodes; | 
|  | 2130 | int			i, j, found, pre_flushed; | 
|  | 2131 | xfs_daddr_t		blkno; | 
|  | 2132 | xfs_buf_t		*bp; | 
|  | 2133 | xfs_ihash_t		*ih; | 
|  | 2134 | xfs_inode_t		*ip, **ip_found; | 
|  | 2135 | xfs_inode_log_item_t	*iip; | 
|  | 2136 | xfs_log_item_t		*lip; | 
|  | 2137 | SPLDECL(s); | 
|  | 2138 |  | 
|  | 2139 | if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) { | 
|  | 2140 | blks_per_cluster = 1; | 
|  | 2141 | ninodes = mp->m_sb.sb_inopblock; | 
|  | 2142 | nbufs = XFS_IALLOC_BLOCKS(mp); | 
|  | 2143 | } else { | 
|  | 2144 | blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) / | 
|  | 2145 | mp->m_sb.sb_blocksize; | 
|  | 2146 | ninodes = blks_per_cluster * mp->m_sb.sb_inopblock; | 
|  | 2147 | nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster; | 
|  | 2148 | } | 
|  | 2149 |  | 
|  | 2150 | ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS); | 
|  | 2151 |  | 
|  | 2152 | for (j = 0; j < nbufs; j++, inum += ninodes) { | 
|  | 2153 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), | 
|  | 2154 | XFS_INO_TO_AGBNO(mp, inum)); | 
|  | 2155 |  | 
|  | 2156 |  | 
|  | 2157 | /* | 
|  | 2158 | * Look for each inode in memory and attempt to lock it, | 
|  | 2159 | * we can be racing with flush and tail pushing here. | 
|  | 2160 | * any inode we get the locks on, add to an array of | 
|  | 2161 | * inode items to process later. | 
|  | 2162 | * | 
|  | 2163 | * The get the buffer lock, we could beat a flush | 
|  | 2164 | * or tail pushing thread to the lock here, in which | 
|  | 2165 | * case they will go looking for the inode buffer | 
|  | 2166 | * and fail, we need some other form of interlock | 
|  | 2167 | * here. | 
|  | 2168 | */ | 
|  | 2169 | found = 0; | 
|  | 2170 | for (i = 0; i < ninodes; i++) { | 
|  | 2171 | ih = XFS_IHASH(mp, inum + i); | 
|  | 2172 | read_lock(&ih->ih_lock); | 
|  | 2173 | for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { | 
|  | 2174 | if (ip->i_ino == inum + i) | 
|  | 2175 | break; | 
|  | 2176 | } | 
|  | 2177 |  | 
|  | 2178 | /* Inode not in memory or we found it already, | 
|  | 2179 | * nothing to do | 
|  | 2180 | */ | 
|  | 2181 | if (!ip || (ip->i_flags & XFS_ISTALE)) { | 
|  | 2182 | read_unlock(&ih->ih_lock); | 
|  | 2183 | continue; | 
|  | 2184 | } | 
|  | 2185 |  | 
|  | 2186 | if (xfs_inode_clean(ip)) { | 
|  | 2187 | read_unlock(&ih->ih_lock); | 
|  | 2188 | continue; | 
|  | 2189 | } | 
|  | 2190 |  | 
|  | 2191 | /* If we can get the locks then add it to the | 
|  | 2192 | * list, otherwise by the time we get the bp lock | 
|  | 2193 | * below it will already be attached to the | 
|  | 2194 | * inode buffer. | 
|  | 2195 | */ | 
|  | 2196 |  | 
|  | 2197 | /* This inode will already be locked - by us, lets | 
|  | 2198 | * keep it that way. | 
|  | 2199 | */ | 
|  | 2200 |  | 
|  | 2201 | if (ip == free_ip) { | 
|  | 2202 | if (xfs_iflock_nowait(ip)) { | 
|  | 2203 | ip->i_flags |= XFS_ISTALE; | 
|  | 2204 |  | 
|  | 2205 | if (xfs_inode_clean(ip)) { | 
|  | 2206 | xfs_ifunlock(ip); | 
|  | 2207 | } else { | 
|  | 2208 | ip_found[found++] = ip; | 
|  | 2209 | } | 
|  | 2210 | } | 
|  | 2211 | read_unlock(&ih->ih_lock); | 
|  | 2212 | continue; | 
|  | 2213 | } | 
|  | 2214 |  | 
|  | 2215 | if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { | 
|  | 2216 | if (xfs_iflock_nowait(ip)) { | 
|  | 2217 | ip->i_flags |= XFS_ISTALE; | 
|  | 2218 |  | 
|  | 2219 | if (xfs_inode_clean(ip)) { | 
|  | 2220 | xfs_ifunlock(ip); | 
|  | 2221 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 2222 | } else { | 
|  | 2223 | ip_found[found++] = ip; | 
|  | 2224 | } | 
|  | 2225 | } else { | 
|  | 2226 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 2227 | } | 
|  | 2228 | } | 
|  | 2229 |  | 
|  | 2230 | read_unlock(&ih->ih_lock); | 
|  | 2231 | } | 
|  | 2232 |  | 
|  | 2233 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, | 
|  | 2234 | mp->m_bsize * blks_per_cluster, | 
|  | 2235 | XFS_BUF_LOCK); | 
|  | 2236 |  | 
|  | 2237 | pre_flushed = 0; | 
|  | 2238 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | 
|  | 2239 | while (lip) { | 
|  | 2240 | if (lip->li_type == XFS_LI_INODE) { | 
|  | 2241 | iip = (xfs_inode_log_item_t *)lip; | 
|  | 2242 | ASSERT(iip->ili_logged == 1); | 
|  | 2243 | lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done; | 
|  | 2244 | AIL_LOCK(mp,s); | 
|  | 2245 | iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
|  | 2246 | AIL_UNLOCK(mp, s); | 
|  | 2247 | iip->ili_inode->i_flags |= XFS_ISTALE; | 
|  | 2248 | pre_flushed++; | 
|  | 2249 | } | 
|  | 2250 | lip = lip->li_bio_list; | 
|  | 2251 | } | 
|  | 2252 |  | 
|  | 2253 | for (i = 0; i < found; i++) { | 
|  | 2254 | ip = ip_found[i]; | 
|  | 2255 | iip = ip->i_itemp; | 
|  | 2256 |  | 
|  | 2257 | if (!iip) { | 
|  | 2258 | ip->i_update_core = 0; | 
|  | 2259 | xfs_ifunlock(ip); | 
|  | 2260 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 2261 | continue; | 
|  | 2262 | } | 
|  | 2263 |  | 
|  | 2264 | iip->ili_last_fields = iip->ili_format.ilf_fields; | 
|  | 2265 | iip->ili_format.ilf_fields = 0; | 
|  | 2266 | iip->ili_logged = 1; | 
|  | 2267 | AIL_LOCK(mp,s); | 
|  | 2268 | iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
|  | 2269 | AIL_UNLOCK(mp, s); | 
|  | 2270 |  | 
|  | 2271 | xfs_buf_attach_iodone(bp, | 
|  | 2272 | (void(*)(xfs_buf_t*,xfs_log_item_t*)) | 
|  | 2273 | xfs_istale_done, (xfs_log_item_t *)iip); | 
|  | 2274 | if (ip != free_ip) { | 
|  | 2275 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | 2276 | } | 
|  | 2277 | } | 
|  | 2278 |  | 
|  | 2279 | if (found || pre_flushed) | 
|  | 2280 | xfs_trans_stale_inode_buf(tp, bp); | 
|  | 2281 | xfs_trans_binval(tp, bp); | 
|  | 2282 | } | 
|  | 2283 |  | 
|  | 2284 | kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *)); | 
|  | 2285 | } | 
|  | 2286 |  | 
|  | 2287 | /* | 
|  | 2288 | * This is called to return an inode to the inode free list. | 
|  | 2289 | * The inode should already be truncated to 0 length and have | 
|  | 2290 | * no pages associated with it.  This routine also assumes that | 
|  | 2291 | * the inode is already a part of the transaction. | 
|  | 2292 | * | 
|  | 2293 | * The on-disk copy of the inode will have been added to the list | 
|  | 2294 | * of unlinked inodes in the AGI. We need to remove the inode from | 
|  | 2295 | * that list atomically with respect to freeing it here. | 
|  | 2296 | */ | 
|  | 2297 | int | 
|  | 2298 | xfs_ifree( | 
|  | 2299 | xfs_trans_t	*tp, | 
|  | 2300 | xfs_inode_t	*ip, | 
|  | 2301 | xfs_bmap_free_t	*flist) | 
|  | 2302 | { | 
|  | 2303 | int			error; | 
|  | 2304 | int			delete; | 
|  | 2305 | xfs_ino_t		first_ino; | 
|  | 2306 |  | 
|  | 2307 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | 
|  | 2308 | ASSERT(ip->i_transp == tp); | 
|  | 2309 | ASSERT(ip->i_d.di_nlink == 0); | 
|  | 2310 | ASSERT(ip->i_d.di_nextents == 0); | 
|  | 2311 | ASSERT(ip->i_d.di_anextents == 0); | 
|  | 2312 | ASSERT((ip->i_d.di_size == 0) || | 
|  | 2313 | ((ip->i_d.di_mode & S_IFMT) != S_IFREG)); | 
|  | 2314 | ASSERT(ip->i_d.di_nblocks == 0); | 
|  | 2315 |  | 
|  | 2316 | /* | 
|  | 2317 | * Pull the on-disk inode from the AGI unlinked list. | 
|  | 2318 | */ | 
|  | 2319 | error = xfs_iunlink_remove(tp, ip); | 
|  | 2320 | if (error != 0) { | 
|  | 2321 | return error; | 
|  | 2322 | } | 
|  | 2323 |  | 
|  | 2324 | error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino); | 
|  | 2325 | if (error != 0) { | 
|  | 2326 | return error; | 
|  | 2327 | } | 
|  | 2328 | ip->i_d.di_mode = 0;		/* mark incore inode as free */ | 
|  | 2329 | ip->i_d.di_flags = 0; | 
|  | 2330 | ip->i_d.di_dmevmask = 0; | 
|  | 2331 | ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */ | 
|  | 2332 | ip->i_df.if_ext_max = | 
|  | 2333 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 2334 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; | 
|  | 2335 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
|  | 2336 | /* | 
|  | 2337 | * Bump the generation count so no one will be confused | 
|  | 2338 | * by reincarnations of this inode. | 
|  | 2339 | */ | 
|  | 2340 | ip->i_d.di_gen++; | 
|  | 2341 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | 2342 |  | 
|  | 2343 | if (delete) { | 
|  | 2344 | xfs_ifree_cluster(ip, tp, first_ino); | 
|  | 2345 | } | 
|  | 2346 |  | 
|  | 2347 | return 0; | 
|  | 2348 | } | 
|  | 2349 |  | 
|  | 2350 | /* | 
|  | 2351 | * Reallocate the space for if_broot based on the number of records | 
|  | 2352 | * being added or deleted as indicated in rec_diff.  Move the records | 
|  | 2353 | * and pointers in if_broot to fit the new size.  When shrinking this | 
|  | 2354 | * will eliminate holes between the records and pointers created by | 
|  | 2355 | * the caller.  When growing this will create holes to be filled in | 
|  | 2356 | * by the caller. | 
|  | 2357 | * | 
|  | 2358 | * The caller must not request to add more records than would fit in | 
|  | 2359 | * the on-disk inode root.  If the if_broot is currently NULL, then | 
|  | 2360 | * if we adding records one will be allocated.  The caller must also | 
|  | 2361 | * not request that the number of records go below zero, although | 
|  | 2362 | * it can go to zero. | 
|  | 2363 | * | 
|  | 2364 | * ip -- the inode whose if_broot area is changing | 
|  | 2365 | * ext_diff -- the change in the number of records, positive or negative, | 
|  | 2366 | *	 requested for the if_broot array. | 
|  | 2367 | */ | 
|  | 2368 | void | 
|  | 2369 | xfs_iroot_realloc( | 
|  | 2370 | xfs_inode_t		*ip, | 
|  | 2371 | int			rec_diff, | 
|  | 2372 | int			whichfork) | 
|  | 2373 | { | 
|  | 2374 | int			cur_max; | 
|  | 2375 | xfs_ifork_t		*ifp; | 
|  | 2376 | xfs_bmbt_block_t	*new_broot; | 
|  | 2377 | int			new_max; | 
|  | 2378 | size_t			new_size; | 
|  | 2379 | char			*np; | 
|  | 2380 | char			*op; | 
|  | 2381 |  | 
|  | 2382 | /* | 
|  | 2383 | * Handle the degenerate case quietly. | 
|  | 2384 | */ | 
|  | 2385 | if (rec_diff == 0) { | 
|  | 2386 | return; | 
|  | 2387 | } | 
|  | 2388 |  | 
|  | 2389 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 2390 | if (rec_diff > 0) { | 
|  | 2391 | /* | 
|  | 2392 | * If there wasn't any memory allocated before, just | 
|  | 2393 | * allocate it now and get out. | 
|  | 2394 | */ | 
|  | 2395 | if (ifp->if_broot_bytes == 0) { | 
|  | 2396 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); | 
|  | 2397 | ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, | 
|  | 2398 | KM_SLEEP); | 
|  | 2399 | ifp->if_broot_bytes = (int)new_size; | 
|  | 2400 | return; | 
|  | 2401 | } | 
|  | 2402 |  | 
|  | 2403 | /* | 
|  | 2404 | * If there is already an existing if_broot, then we need | 
|  | 2405 | * to realloc() it and shift the pointers to their new | 
|  | 2406 | * location.  The records don't change location because | 
|  | 2407 | * they are kept butted up against the btree block header. | 
|  | 2408 | */ | 
|  | 2409 | cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | 
|  | 2410 | new_max = cur_max + rec_diff; | 
|  | 2411 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | 
|  | 2412 | ifp->if_broot = (xfs_bmbt_block_t *) | 
|  | 2413 | kmem_realloc(ifp->if_broot, | 
|  | 2414 | new_size, | 
|  | 2415 | (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ | 
|  | 2416 | KM_SLEEP); | 
|  | 2417 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
|  | 2418 | ifp->if_broot_bytes); | 
|  | 2419 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
|  | 2420 | (int)new_size); | 
|  | 2421 | ifp->if_broot_bytes = (int)new_size; | 
|  | 2422 | ASSERT(ifp->if_broot_bytes <= | 
|  | 2423 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | 
|  | 2424 | memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); | 
|  | 2425 | return; | 
|  | 2426 | } | 
|  | 2427 |  | 
|  | 2428 | /* | 
|  | 2429 | * rec_diff is less than 0.  In this case, we are shrinking the | 
|  | 2430 | * if_broot buffer.  It must already exist.  If we go to zero | 
|  | 2431 | * records, just get rid of the root and clear the status bit. | 
|  | 2432 | */ | 
|  | 2433 | ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); | 
|  | 2434 | cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); | 
|  | 2435 | new_max = cur_max + rec_diff; | 
|  | 2436 | ASSERT(new_max >= 0); | 
|  | 2437 | if (new_max > 0) | 
|  | 2438 | new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); | 
|  | 2439 | else | 
|  | 2440 | new_size = 0; | 
|  | 2441 | if (new_size > 0) { | 
|  | 2442 | new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); | 
|  | 2443 | /* | 
|  | 2444 | * First copy over the btree block header. | 
|  | 2445 | */ | 
|  | 2446 | memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); | 
|  | 2447 | } else { | 
|  | 2448 | new_broot = NULL; | 
|  | 2449 | ifp->if_flags &= ~XFS_IFBROOT; | 
|  | 2450 | } | 
|  | 2451 |  | 
|  | 2452 | /* | 
|  | 2453 | * Only copy the records and pointers if there are any. | 
|  | 2454 | */ | 
|  | 2455 | if (new_max > 0) { | 
|  | 2456 | /* | 
|  | 2457 | * First copy the records. | 
|  | 2458 | */ | 
|  | 2459 | op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, | 
|  | 2460 | ifp->if_broot_bytes); | 
|  | 2461 | np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, | 
|  | 2462 | (int)new_size); | 
|  | 2463 | memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); | 
|  | 2464 |  | 
|  | 2465 | /* | 
|  | 2466 | * Then copy the pointers. | 
|  | 2467 | */ | 
|  | 2468 | op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, | 
|  | 2469 | ifp->if_broot_bytes); | 
|  | 2470 | np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, | 
|  | 2471 | (int)new_size); | 
|  | 2472 | memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); | 
|  | 2473 | } | 
|  | 2474 | kmem_free(ifp->if_broot, ifp->if_broot_bytes); | 
|  | 2475 | ifp->if_broot = new_broot; | 
|  | 2476 | ifp->if_broot_bytes = (int)new_size; | 
|  | 2477 | ASSERT(ifp->if_broot_bytes <= | 
|  | 2478 | XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); | 
|  | 2479 | return; | 
|  | 2480 | } | 
|  | 2481 |  | 
|  | 2482 |  | 
|  | 2483 | /* | 
|  | 2484 | * This is called when the amount of space needed for if_extents | 
|  | 2485 | * is increased or decreased.  The change in size is indicated by | 
|  | 2486 | * the number of extents that need to be added or deleted in the | 
|  | 2487 | * ext_diff parameter. | 
|  | 2488 | * | 
|  | 2489 | * If the amount of space needed has decreased below the size of the | 
|  | 2490 | * inline buffer, then switch to using the inline buffer.  Otherwise, | 
|  | 2491 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | 
|  | 2492 | * to what is needed. | 
|  | 2493 | * | 
|  | 2494 | * ip -- the inode whose if_extents area is changing | 
|  | 2495 | * ext_diff -- the change in the number of extents, positive or negative, | 
|  | 2496 | *	 requested for the if_extents array. | 
|  | 2497 | */ | 
|  | 2498 | void | 
|  | 2499 | xfs_iext_realloc( | 
|  | 2500 | xfs_inode_t	*ip, | 
|  | 2501 | int		ext_diff, | 
|  | 2502 | int		whichfork) | 
|  | 2503 | { | 
|  | 2504 | int		byte_diff; | 
|  | 2505 | xfs_ifork_t	*ifp; | 
|  | 2506 | int		new_size; | 
|  | 2507 | uint		rnew_size; | 
|  | 2508 |  | 
|  | 2509 | if (ext_diff == 0) { | 
|  | 2510 | return; | 
|  | 2511 | } | 
|  | 2512 |  | 
|  | 2513 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 2514 | byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 2515 | new_size = (int)ifp->if_bytes + byte_diff; | 
|  | 2516 | ASSERT(new_size >= 0); | 
|  | 2517 |  | 
|  | 2518 | if (new_size == 0) { | 
|  | 2519 | if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | 
|  | 2520 | ASSERT(ifp->if_real_bytes != 0); | 
|  | 2521 | kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | 
|  | 2522 | } | 
|  | 2523 | ifp->if_u1.if_extents = NULL; | 
|  | 2524 | rnew_size = 0; | 
|  | 2525 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { | 
|  | 2526 | /* | 
|  | 2527 | * If the valid extents can fit in if_inline_ext, | 
|  | 2528 | * copy them from the malloc'd vector and free it. | 
|  | 2529 | */ | 
|  | 2530 | if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { | 
|  | 2531 | /* | 
|  | 2532 | * For now, empty files are format EXTENTS, | 
|  | 2533 | * so the if_extents pointer is null. | 
|  | 2534 | */ | 
|  | 2535 | if (ifp->if_u1.if_extents) { | 
|  | 2536 | memcpy(ifp->if_u2.if_inline_ext, | 
|  | 2537 | ifp->if_u1.if_extents, new_size); | 
|  | 2538 | kmem_free(ifp->if_u1.if_extents, | 
|  | 2539 | ifp->if_real_bytes); | 
|  | 2540 | } | 
|  | 2541 | ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; | 
|  | 2542 | } | 
|  | 2543 | rnew_size = 0; | 
|  | 2544 | } else { | 
|  | 2545 | rnew_size = new_size; | 
|  | 2546 | if ((rnew_size & (rnew_size - 1)) != 0) | 
|  | 2547 | rnew_size = xfs_iroundup(rnew_size); | 
|  | 2548 | /* | 
|  | 2549 | * Stuck with malloc/realloc. | 
|  | 2550 | */ | 
|  | 2551 | if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { | 
|  | 2552 | ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | 
|  | 2553 | kmem_alloc(rnew_size, KM_SLEEP); | 
|  | 2554 | memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, | 
|  | 2555 | sizeof(ifp->if_u2.if_inline_ext)); | 
|  | 2556 | } else if (rnew_size != ifp->if_real_bytes) { | 
|  | 2557 | ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) | 
|  | 2558 | kmem_realloc(ifp->if_u1.if_extents, | 
|  | 2559 | rnew_size, | 
|  | 2560 | ifp->if_real_bytes, | 
|  | 2561 | KM_NOFS); | 
|  | 2562 | } | 
|  | 2563 | } | 
|  | 2564 | ifp->if_real_bytes = rnew_size; | 
|  | 2565 | ifp->if_bytes = new_size; | 
|  | 2566 | } | 
|  | 2567 |  | 
|  | 2568 |  | 
|  | 2569 | /* | 
|  | 2570 | * This is called when the amount of space needed for if_data | 
|  | 2571 | * is increased or decreased.  The change in size is indicated by | 
|  | 2572 | * the number of bytes that need to be added or deleted in the | 
|  | 2573 | * byte_diff parameter. | 
|  | 2574 | * | 
|  | 2575 | * If the amount of space needed has decreased below the size of the | 
|  | 2576 | * inline buffer, then switch to using the inline buffer.  Otherwise, | 
|  | 2577 | * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer | 
|  | 2578 | * to what is needed. | 
|  | 2579 | * | 
|  | 2580 | * ip -- the inode whose if_data area is changing | 
|  | 2581 | * byte_diff -- the change in the number of bytes, positive or negative, | 
|  | 2582 | *	 requested for the if_data array. | 
|  | 2583 | */ | 
|  | 2584 | void | 
|  | 2585 | xfs_idata_realloc( | 
|  | 2586 | xfs_inode_t	*ip, | 
|  | 2587 | int		byte_diff, | 
|  | 2588 | int		whichfork) | 
|  | 2589 | { | 
|  | 2590 | xfs_ifork_t	*ifp; | 
|  | 2591 | int		new_size; | 
|  | 2592 | int		real_size; | 
|  | 2593 |  | 
|  | 2594 | if (byte_diff == 0) { | 
|  | 2595 | return; | 
|  | 2596 | } | 
|  | 2597 |  | 
|  | 2598 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 2599 | new_size = (int)ifp->if_bytes + byte_diff; | 
|  | 2600 | ASSERT(new_size >= 0); | 
|  | 2601 |  | 
|  | 2602 | if (new_size == 0) { | 
|  | 2603 | if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
|  | 2604 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
|  | 2605 | } | 
|  | 2606 | ifp->if_u1.if_data = NULL; | 
|  | 2607 | real_size = 0; | 
|  | 2608 | } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { | 
|  | 2609 | /* | 
|  | 2610 | * If the valid extents/data can fit in if_inline_ext/data, | 
|  | 2611 | * copy them from the malloc'd vector and free it. | 
|  | 2612 | */ | 
|  | 2613 | if (ifp->if_u1.if_data == NULL) { | 
|  | 2614 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
|  | 2615 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
|  | 2616 | ASSERT(ifp->if_real_bytes != 0); | 
|  | 2617 | memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, | 
|  | 2618 | new_size); | 
|  | 2619 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
|  | 2620 | ifp->if_u1.if_data = ifp->if_u2.if_inline_data; | 
|  | 2621 | } | 
|  | 2622 | real_size = 0; | 
|  | 2623 | } else { | 
|  | 2624 | /* | 
|  | 2625 | * Stuck with malloc/realloc. | 
|  | 2626 | * For inline data, the underlying buffer must be | 
|  | 2627 | * a multiple of 4 bytes in size so that it can be | 
|  | 2628 | * logged and stay on word boundaries.  We enforce | 
|  | 2629 | * that here. | 
|  | 2630 | */ | 
|  | 2631 | real_size = roundup(new_size, 4); | 
|  | 2632 | if (ifp->if_u1.if_data == NULL) { | 
|  | 2633 | ASSERT(ifp->if_real_bytes == 0); | 
|  | 2634 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
|  | 2635 | } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { | 
|  | 2636 | /* | 
|  | 2637 | * Only do the realloc if the underlying size | 
|  | 2638 | * is really changing. | 
|  | 2639 | */ | 
|  | 2640 | if (ifp->if_real_bytes != real_size) { | 
|  | 2641 | ifp->if_u1.if_data = | 
|  | 2642 | kmem_realloc(ifp->if_u1.if_data, | 
|  | 2643 | real_size, | 
|  | 2644 | ifp->if_real_bytes, | 
|  | 2645 | KM_SLEEP); | 
|  | 2646 | } | 
|  | 2647 | } else { | 
|  | 2648 | ASSERT(ifp->if_real_bytes == 0); | 
|  | 2649 | ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); | 
|  | 2650 | memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, | 
|  | 2651 | ifp->if_bytes); | 
|  | 2652 | } | 
|  | 2653 | } | 
|  | 2654 | ifp->if_real_bytes = real_size; | 
|  | 2655 | ifp->if_bytes = new_size; | 
|  | 2656 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
|  | 2657 | } | 
|  | 2658 |  | 
|  | 2659 |  | 
|  | 2660 |  | 
|  | 2661 |  | 
|  | 2662 | /* | 
|  | 2663 | * Map inode to disk block and offset. | 
|  | 2664 | * | 
|  | 2665 | * mp -- the mount point structure for the current file system | 
|  | 2666 | * tp -- the current transaction | 
|  | 2667 | * ino -- the inode number of the inode to be located | 
|  | 2668 | * imap -- this structure is filled in with the information necessary | 
|  | 2669 | *	 to retrieve the given inode from disk | 
|  | 2670 | * flags -- flags to pass to xfs_dilocate indicating whether or not | 
|  | 2671 | *	 lookups in the inode btree were OK or not | 
|  | 2672 | */ | 
|  | 2673 | int | 
|  | 2674 | xfs_imap( | 
|  | 2675 | xfs_mount_t	*mp, | 
|  | 2676 | xfs_trans_t	*tp, | 
|  | 2677 | xfs_ino_t	ino, | 
|  | 2678 | xfs_imap_t	*imap, | 
|  | 2679 | uint		flags) | 
|  | 2680 | { | 
|  | 2681 | xfs_fsblock_t	fsbno; | 
|  | 2682 | int		len; | 
|  | 2683 | int		off; | 
|  | 2684 | int		error; | 
|  | 2685 |  | 
|  | 2686 | fsbno = imap->im_blkno ? | 
|  | 2687 | XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; | 
|  | 2688 | error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); | 
|  | 2689 | if (error != 0) { | 
|  | 2690 | return error; | 
|  | 2691 | } | 
|  | 2692 | imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); | 
|  | 2693 | imap->im_len = XFS_FSB_TO_BB(mp, len); | 
|  | 2694 | imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); | 
|  | 2695 | imap->im_ioffset = (ushort)off; | 
|  | 2696 | imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); | 
|  | 2697 | return 0; | 
|  | 2698 | } | 
|  | 2699 |  | 
|  | 2700 | void | 
|  | 2701 | xfs_idestroy_fork( | 
|  | 2702 | xfs_inode_t	*ip, | 
|  | 2703 | int		whichfork) | 
|  | 2704 | { | 
|  | 2705 | xfs_ifork_t	*ifp; | 
|  | 2706 |  | 
|  | 2707 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 2708 | if (ifp->if_broot != NULL) { | 
|  | 2709 | kmem_free(ifp->if_broot, ifp->if_broot_bytes); | 
|  | 2710 | ifp->if_broot = NULL; | 
|  | 2711 | } | 
|  | 2712 |  | 
|  | 2713 | /* | 
|  | 2714 | * If the format is local, then we can't have an extents | 
|  | 2715 | * array so just look for an inline data array.  If we're | 
|  | 2716 | * not local then we may or may not have an extents list, | 
|  | 2717 | * so check and free it up if we do. | 
|  | 2718 | */ | 
|  | 2719 | if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { | 
|  | 2720 | if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && | 
|  | 2721 | (ifp->if_u1.if_data != NULL)) { | 
|  | 2722 | ASSERT(ifp->if_real_bytes != 0); | 
|  | 2723 | kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); | 
|  | 2724 | ifp->if_u1.if_data = NULL; | 
|  | 2725 | ifp->if_real_bytes = 0; | 
|  | 2726 | } | 
|  | 2727 | } else if ((ifp->if_flags & XFS_IFEXTENTS) && | 
|  | 2728 | (ifp->if_u1.if_extents != NULL) && | 
|  | 2729 | (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { | 
|  | 2730 | ASSERT(ifp->if_real_bytes != 0); | 
|  | 2731 | kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); | 
|  | 2732 | ifp->if_u1.if_extents = NULL; | 
|  | 2733 | ifp->if_real_bytes = 0; | 
|  | 2734 | } | 
|  | 2735 | ASSERT(ifp->if_u1.if_extents == NULL || | 
|  | 2736 | ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); | 
|  | 2737 | ASSERT(ifp->if_real_bytes == 0); | 
|  | 2738 | if (whichfork == XFS_ATTR_FORK) { | 
|  | 2739 | kmem_zone_free(xfs_ifork_zone, ip->i_afp); | 
|  | 2740 | ip->i_afp = NULL; | 
|  | 2741 | } | 
|  | 2742 | } | 
|  | 2743 |  | 
|  | 2744 | /* | 
|  | 2745 | * This is called free all the memory associated with an inode. | 
|  | 2746 | * It must free the inode itself and any buffers allocated for | 
|  | 2747 | * if_extents/if_data and if_broot.  It must also free the lock | 
|  | 2748 | * associated with the inode. | 
|  | 2749 | */ | 
|  | 2750 | void | 
|  | 2751 | xfs_idestroy( | 
|  | 2752 | xfs_inode_t	*ip) | 
|  | 2753 | { | 
|  | 2754 |  | 
|  | 2755 | switch (ip->i_d.di_mode & S_IFMT) { | 
|  | 2756 | case S_IFREG: | 
|  | 2757 | case S_IFDIR: | 
|  | 2758 | case S_IFLNK: | 
|  | 2759 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | 
|  | 2760 | break; | 
|  | 2761 | } | 
|  | 2762 | if (ip->i_afp) | 
|  | 2763 | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
|  | 2764 | mrfree(&ip->i_lock); | 
|  | 2765 | mrfree(&ip->i_iolock); | 
|  | 2766 | freesema(&ip->i_flock); | 
|  | 2767 | #ifdef XFS_BMAP_TRACE | 
|  | 2768 | ktrace_free(ip->i_xtrace); | 
|  | 2769 | #endif | 
|  | 2770 | #ifdef XFS_BMBT_TRACE | 
|  | 2771 | ktrace_free(ip->i_btrace); | 
|  | 2772 | #endif | 
|  | 2773 | #ifdef XFS_RW_TRACE | 
|  | 2774 | ktrace_free(ip->i_rwtrace); | 
|  | 2775 | #endif | 
|  | 2776 | #ifdef XFS_ILOCK_TRACE | 
|  | 2777 | ktrace_free(ip->i_lock_trace); | 
|  | 2778 | #endif | 
|  | 2779 | #ifdef XFS_DIR2_TRACE | 
|  | 2780 | ktrace_free(ip->i_dir_trace); | 
|  | 2781 | #endif | 
|  | 2782 | if (ip->i_itemp) { | 
|  | 2783 | /* XXXdpd should be able to assert this but shutdown | 
|  | 2784 | * is leaving the AIL behind. */ | 
|  | 2785 | ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || | 
|  | 2786 | XFS_FORCED_SHUTDOWN(ip->i_mount)); | 
|  | 2787 | xfs_inode_item_destroy(ip); | 
|  | 2788 | } | 
|  | 2789 | kmem_zone_free(xfs_inode_zone, ip); | 
|  | 2790 | } | 
|  | 2791 |  | 
|  | 2792 |  | 
|  | 2793 | /* | 
|  | 2794 | * Increment the pin count of the given buffer. | 
|  | 2795 | * This value is protected by ipinlock spinlock in the mount structure. | 
|  | 2796 | */ | 
|  | 2797 | void | 
|  | 2798 | xfs_ipin( | 
|  | 2799 | xfs_inode_t	*ip) | 
|  | 2800 | { | 
|  | 2801 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); | 
|  | 2802 |  | 
|  | 2803 | atomic_inc(&ip->i_pincount); | 
|  | 2804 | } | 
|  | 2805 |  | 
|  | 2806 | /* | 
|  | 2807 | * Decrement the pin count of the given inode, and wake up | 
|  | 2808 | * anyone in xfs_iwait_unpin() if the count goes to 0.  The | 
|  | 2809 | * inode must have been previoulsy pinned with a call to xfs_ipin(). | 
|  | 2810 | */ | 
|  | 2811 | void | 
|  | 2812 | xfs_iunpin( | 
|  | 2813 | xfs_inode_t	*ip) | 
|  | 2814 | { | 
|  | 2815 | ASSERT(atomic_read(&ip->i_pincount) > 0); | 
|  | 2816 |  | 
|  | 2817 | if (atomic_dec_and_test(&ip->i_pincount)) { | 
|  | 2818 | vnode_t	*vp = XFS_ITOV_NULL(ip); | 
|  | 2819 |  | 
|  | 2820 | /* make sync come back and flush this inode */ | 
|  | 2821 | if (vp) { | 
|  | 2822 | struct inode	*inode = LINVFS_GET_IP(vp); | 
|  | 2823 |  | 
|  | 2824 | if (!(inode->i_state & I_NEW)) | 
|  | 2825 | mark_inode_dirty_sync(inode); | 
|  | 2826 | } | 
|  | 2827 |  | 
|  | 2828 | wake_up(&ip->i_ipin_wait); | 
|  | 2829 | } | 
|  | 2830 | } | 
|  | 2831 |  | 
|  | 2832 | /* | 
|  | 2833 | * This is called to wait for the given inode to be unpinned. | 
|  | 2834 | * It will sleep until this happens.  The caller must have the | 
|  | 2835 | * inode locked in at least shared mode so that the buffer cannot | 
|  | 2836 | * be subsequently pinned once someone is waiting for it to be | 
|  | 2837 | * unpinned. | 
|  | 2838 | */ | 
| Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 2839 | STATIC void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2840 | xfs_iunpin_wait( | 
|  | 2841 | xfs_inode_t	*ip) | 
|  | 2842 | { | 
|  | 2843 | xfs_inode_log_item_t	*iip; | 
|  | 2844 | xfs_lsn_t	lsn; | 
|  | 2845 |  | 
|  | 2846 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); | 
|  | 2847 |  | 
|  | 2848 | if (atomic_read(&ip->i_pincount) == 0) { | 
|  | 2849 | return; | 
|  | 2850 | } | 
|  | 2851 |  | 
|  | 2852 | iip = ip->i_itemp; | 
|  | 2853 | if (iip && iip->ili_last_lsn) { | 
|  | 2854 | lsn = iip->ili_last_lsn; | 
|  | 2855 | } else { | 
|  | 2856 | lsn = (xfs_lsn_t)0; | 
|  | 2857 | } | 
|  | 2858 |  | 
|  | 2859 | /* | 
|  | 2860 | * Give the log a push so we don't wait here too long. | 
|  | 2861 | */ | 
|  | 2862 | xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); | 
|  | 2863 |  | 
|  | 2864 | wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); | 
|  | 2865 | } | 
|  | 2866 |  | 
|  | 2867 |  | 
|  | 2868 | /* | 
|  | 2869 | * xfs_iextents_copy() | 
|  | 2870 | * | 
|  | 2871 | * This is called to copy the REAL extents (as opposed to the delayed | 
|  | 2872 | * allocation extents) from the inode into the given buffer.  It | 
|  | 2873 | * returns the number of bytes copied into the buffer. | 
|  | 2874 | * | 
|  | 2875 | * If there are no delayed allocation extents, then we can just | 
|  | 2876 | * memcpy() the extents into the buffer.  Otherwise, we need to | 
|  | 2877 | * examine each extent in turn and skip those which are delayed. | 
|  | 2878 | */ | 
|  | 2879 | int | 
|  | 2880 | xfs_iextents_copy( | 
|  | 2881 | xfs_inode_t		*ip, | 
|  | 2882 | xfs_bmbt_rec_t		*buffer, | 
|  | 2883 | int			whichfork) | 
|  | 2884 | { | 
|  | 2885 | int			copied; | 
|  | 2886 | xfs_bmbt_rec_t		*dest_ep; | 
|  | 2887 | xfs_bmbt_rec_t		*ep; | 
|  | 2888 | #ifdef XFS_BMAP_TRACE | 
|  | 2889 | static char		fname[] = "xfs_iextents_copy"; | 
|  | 2890 | #endif | 
|  | 2891 | int			i; | 
|  | 2892 | xfs_ifork_t		*ifp; | 
|  | 2893 | int			nrecs; | 
|  | 2894 | xfs_fsblock_t		start_block; | 
|  | 2895 |  | 
|  | 2896 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 2897 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
|  | 2898 | ASSERT(ifp->if_bytes > 0); | 
|  | 2899 |  | 
|  | 2900 | nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 2901 | xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); | 
|  | 2902 | ASSERT(nrecs > 0); | 
|  | 2903 |  | 
|  | 2904 | /* | 
|  | 2905 | * There are some delayed allocation extents in the | 
|  | 2906 | * inode, so copy the extents one at a time and skip | 
|  | 2907 | * the delayed ones.  There must be at least one | 
|  | 2908 | * non-delayed extent. | 
|  | 2909 | */ | 
|  | 2910 | ep = ifp->if_u1.if_extents; | 
|  | 2911 | dest_ep = buffer; | 
|  | 2912 | copied = 0; | 
|  | 2913 | for (i = 0; i < nrecs; i++) { | 
|  | 2914 | start_block = xfs_bmbt_get_startblock(ep); | 
|  | 2915 | if (ISNULLSTARTBLOCK(start_block)) { | 
|  | 2916 | /* | 
|  | 2917 | * It's a delayed allocation extent, so skip it. | 
|  | 2918 | */ | 
|  | 2919 | ep++; | 
|  | 2920 | continue; | 
|  | 2921 | } | 
|  | 2922 |  | 
|  | 2923 | /* Translate to on disk format */ | 
|  | 2924 | put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), | 
|  | 2925 | (__uint64_t*)&dest_ep->l0); | 
|  | 2926 | put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), | 
|  | 2927 | (__uint64_t*)&dest_ep->l1); | 
|  | 2928 | dest_ep++; | 
|  | 2929 | ep++; | 
|  | 2930 | copied++; | 
|  | 2931 | } | 
|  | 2932 | ASSERT(copied != 0); | 
|  | 2933 | xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); | 
|  | 2934 |  | 
|  | 2935 | return (copied * (uint)sizeof(xfs_bmbt_rec_t)); | 
|  | 2936 | } | 
|  | 2937 |  | 
|  | 2938 | /* | 
|  | 2939 | * Each of the following cases stores data into the same region | 
|  | 2940 | * of the on-disk inode, so only one of them can be valid at | 
|  | 2941 | * any given time. While it is possible to have conflicting formats | 
|  | 2942 | * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is | 
|  | 2943 | * in EXTENTS format, this can only happen when the fork has | 
|  | 2944 | * changed formats after being modified but before being flushed. | 
|  | 2945 | * In these cases, the format always takes precedence, because the | 
|  | 2946 | * format indicates the current state of the fork. | 
|  | 2947 | */ | 
|  | 2948 | /*ARGSUSED*/ | 
|  | 2949 | STATIC int | 
|  | 2950 | xfs_iflush_fork( | 
|  | 2951 | xfs_inode_t		*ip, | 
|  | 2952 | xfs_dinode_t		*dip, | 
|  | 2953 | xfs_inode_log_item_t	*iip, | 
|  | 2954 | int			whichfork, | 
|  | 2955 | xfs_buf_t		*bp) | 
|  | 2956 | { | 
|  | 2957 | char			*cp; | 
|  | 2958 | xfs_ifork_t		*ifp; | 
|  | 2959 | xfs_mount_t		*mp; | 
|  | 2960 | #ifdef XFS_TRANS_DEBUG | 
|  | 2961 | int			first; | 
|  | 2962 | #endif | 
|  | 2963 | static const short	brootflag[2] = | 
|  | 2964 | { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; | 
|  | 2965 | static const short	dataflag[2] = | 
|  | 2966 | { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; | 
|  | 2967 | static const short	extflag[2] = | 
|  | 2968 | { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; | 
|  | 2969 |  | 
|  | 2970 | if (iip == NULL) | 
|  | 2971 | return 0; | 
|  | 2972 | ifp = XFS_IFORK_PTR(ip, whichfork); | 
|  | 2973 | /* | 
|  | 2974 | * This can happen if we gave up in iformat in an error path, | 
|  | 2975 | * for the attribute fork. | 
|  | 2976 | */ | 
|  | 2977 | if (ifp == NULL) { | 
|  | 2978 | ASSERT(whichfork == XFS_ATTR_FORK); | 
|  | 2979 | return 0; | 
|  | 2980 | } | 
|  | 2981 | cp = XFS_DFORK_PTR(dip, whichfork); | 
|  | 2982 | mp = ip->i_mount; | 
|  | 2983 | switch (XFS_IFORK_FORMAT(ip, whichfork)) { | 
|  | 2984 | case XFS_DINODE_FMT_LOCAL: | 
|  | 2985 | if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && | 
|  | 2986 | (ifp->if_bytes > 0)) { | 
|  | 2987 | ASSERT(ifp->if_u1.if_data != NULL); | 
|  | 2988 | ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); | 
|  | 2989 | memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); | 
|  | 2990 | } | 
|  | 2991 | if (whichfork == XFS_DATA_FORK) { | 
|  | 2992 | if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { | 
|  | 2993 | XFS_ERROR_REPORT("xfs_iflush_fork", | 
|  | 2994 | XFS_ERRLEVEL_LOW, mp); | 
|  | 2995 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 2996 | } | 
|  | 2997 | } | 
|  | 2998 | break; | 
|  | 2999 |  | 
|  | 3000 | case XFS_DINODE_FMT_EXTENTS: | 
|  | 3001 | ASSERT((ifp->if_flags & XFS_IFEXTENTS) || | 
|  | 3002 | !(iip->ili_format.ilf_fields & extflag[whichfork])); | 
|  | 3003 | ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); | 
|  | 3004 | ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); | 
|  | 3005 | if ((iip->ili_format.ilf_fields & extflag[whichfork]) && | 
|  | 3006 | (ifp->if_bytes > 0)) { | 
|  | 3007 | ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); | 
|  | 3008 | (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, | 
|  | 3009 | whichfork); | 
|  | 3010 | } | 
|  | 3011 | break; | 
|  | 3012 |  | 
|  | 3013 | case XFS_DINODE_FMT_BTREE: | 
|  | 3014 | if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && | 
|  | 3015 | (ifp->if_broot_bytes > 0)) { | 
|  | 3016 | ASSERT(ifp->if_broot != NULL); | 
|  | 3017 | ASSERT(ifp->if_broot_bytes <= | 
|  | 3018 | (XFS_IFORK_SIZE(ip, whichfork) + | 
|  | 3019 | XFS_BROOT_SIZE_ADJ)); | 
|  | 3020 | xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, | 
|  | 3021 | (xfs_bmdr_block_t *)cp, | 
|  | 3022 | XFS_DFORK_SIZE(dip, mp, whichfork)); | 
|  | 3023 | } | 
|  | 3024 | break; | 
|  | 3025 |  | 
|  | 3026 | case XFS_DINODE_FMT_DEV: | 
|  | 3027 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | 
|  | 3028 | ASSERT(whichfork == XFS_DATA_FORK); | 
|  | 3029 | INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); | 
|  | 3030 | } | 
|  | 3031 | break; | 
|  | 3032 |  | 
|  | 3033 | case XFS_DINODE_FMT_UUID: | 
|  | 3034 | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | 
|  | 3035 | ASSERT(whichfork == XFS_DATA_FORK); | 
|  | 3036 | memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, | 
|  | 3037 | sizeof(uuid_t)); | 
|  | 3038 | } | 
|  | 3039 | break; | 
|  | 3040 |  | 
|  | 3041 | default: | 
|  | 3042 | ASSERT(0); | 
|  | 3043 | break; | 
|  | 3044 | } | 
|  | 3045 |  | 
|  | 3046 | return 0; | 
|  | 3047 | } | 
|  | 3048 |  | 
|  | 3049 | /* | 
|  | 3050 | * xfs_iflush() will write a modified inode's changes out to the | 
|  | 3051 | * inode's on disk home.  The caller must have the inode lock held | 
|  | 3052 | * in at least shared mode and the inode flush semaphore must be | 
|  | 3053 | * held as well.  The inode lock will still be held upon return from | 
|  | 3054 | * the call and the caller is free to unlock it. | 
|  | 3055 | * The inode flush lock will be unlocked when the inode reaches the disk. | 
|  | 3056 | * The flags indicate how the inode's buffer should be written out. | 
|  | 3057 | */ | 
|  | 3058 | int | 
|  | 3059 | xfs_iflush( | 
|  | 3060 | xfs_inode_t		*ip, | 
|  | 3061 | uint			flags) | 
|  | 3062 | { | 
|  | 3063 | xfs_inode_log_item_t	*iip; | 
|  | 3064 | xfs_buf_t		*bp; | 
|  | 3065 | xfs_dinode_t		*dip; | 
|  | 3066 | xfs_mount_t		*mp; | 
|  | 3067 | int			error; | 
|  | 3068 | /* REFERENCED */ | 
|  | 3069 | xfs_chash_t		*ch; | 
|  | 3070 | xfs_inode_t		*iq; | 
|  | 3071 | int			clcount;	/* count of inodes clustered */ | 
|  | 3072 | int			bufwasdelwri; | 
|  | 3073 | enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; | 
|  | 3074 | SPLDECL(s); | 
|  | 3075 |  | 
|  | 3076 | XFS_STATS_INC(xs_iflush_count); | 
|  | 3077 |  | 
|  | 3078 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
|  | 3079 | ASSERT(valusema(&ip->i_flock) <= 0); | 
|  | 3080 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
|  | 3081 | ip->i_d.di_nextents > ip->i_df.if_ext_max); | 
|  | 3082 |  | 
|  | 3083 | iip = ip->i_itemp; | 
|  | 3084 | mp = ip->i_mount; | 
|  | 3085 |  | 
|  | 3086 | /* | 
|  | 3087 | * If the inode isn't dirty, then just release the inode | 
|  | 3088 | * flush lock and do nothing. | 
|  | 3089 | */ | 
|  | 3090 | if ((ip->i_update_core == 0) && | 
|  | 3091 | ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
|  | 3092 | ASSERT((iip != NULL) ? | 
|  | 3093 | !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); | 
|  | 3094 | xfs_ifunlock(ip); | 
|  | 3095 | return 0; | 
|  | 3096 | } | 
|  | 3097 |  | 
|  | 3098 | /* | 
|  | 3099 | * We can't flush the inode until it is unpinned, so | 
|  | 3100 | * wait for it.  We know noone new can pin it, because | 
|  | 3101 | * we are holding the inode lock shared and you need | 
|  | 3102 | * to hold it exclusively to pin the inode. | 
|  | 3103 | */ | 
|  | 3104 | xfs_iunpin_wait(ip); | 
|  | 3105 |  | 
|  | 3106 | /* | 
|  | 3107 | * This may have been unpinned because the filesystem is shutting | 
|  | 3108 | * down forcibly. If that's the case we must not write this inode | 
|  | 3109 | * to disk, because the log record didn't make it to disk! | 
|  | 3110 | */ | 
|  | 3111 | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | 3112 | ip->i_update_core = 0; | 
|  | 3113 | if (iip) | 
|  | 3114 | iip->ili_format.ilf_fields = 0; | 
|  | 3115 | xfs_ifunlock(ip); | 
|  | 3116 | return XFS_ERROR(EIO); | 
|  | 3117 | } | 
|  | 3118 |  | 
|  | 3119 | /* | 
|  | 3120 | * Get the buffer containing the on-disk inode. | 
|  | 3121 | */ | 
|  | 3122 | error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); | 
|  | 3123 | if (error != 0) { | 
|  | 3124 | xfs_ifunlock(ip); | 
|  | 3125 | return error; | 
|  | 3126 | } | 
|  | 3127 |  | 
|  | 3128 | /* | 
|  | 3129 | * Decide how buffer will be flushed out.  This is done before | 
|  | 3130 | * the call to xfs_iflush_int because this field is zeroed by it. | 
|  | 3131 | */ | 
|  | 3132 | if (iip != NULL && iip->ili_format.ilf_fields != 0) { | 
|  | 3133 | /* | 
|  | 3134 | * Flush out the inode buffer according to the directions | 
|  | 3135 | * of the caller.  In the cases where the caller has given | 
|  | 3136 | * us a choice choose the non-delwri case.  This is because | 
|  | 3137 | * the inode is in the AIL and we need to get it out soon. | 
|  | 3138 | */ | 
|  | 3139 | switch (flags) { | 
|  | 3140 | case XFS_IFLUSH_SYNC: | 
|  | 3141 | case XFS_IFLUSH_DELWRI_ELSE_SYNC: | 
|  | 3142 | flags = 0; | 
|  | 3143 | break; | 
|  | 3144 | case XFS_IFLUSH_ASYNC: | 
|  | 3145 | case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | 
|  | 3146 | flags = INT_ASYNC; | 
|  | 3147 | break; | 
|  | 3148 | case XFS_IFLUSH_DELWRI: | 
|  | 3149 | flags = INT_DELWRI; | 
|  | 3150 | break; | 
|  | 3151 | default: | 
|  | 3152 | ASSERT(0); | 
|  | 3153 | flags = 0; | 
|  | 3154 | break; | 
|  | 3155 | } | 
|  | 3156 | } else { | 
|  | 3157 | switch (flags) { | 
|  | 3158 | case XFS_IFLUSH_DELWRI_ELSE_SYNC: | 
|  | 3159 | case XFS_IFLUSH_DELWRI_ELSE_ASYNC: | 
|  | 3160 | case XFS_IFLUSH_DELWRI: | 
|  | 3161 | flags = INT_DELWRI; | 
|  | 3162 | break; | 
|  | 3163 | case XFS_IFLUSH_ASYNC: | 
|  | 3164 | flags = INT_ASYNC; | 
|  | 3165 | break; | 
|  | 3166 | case XFS_IFLUSH_SYNC: | 
|  | 3167 | flags = 0; | 
|  | 3168 | break; | 
|  | 3169 | default: | 
|  | 3170 | ASSERT(0); | 
|  | 3171 | flags = 0; | 
|  | 3172 | break; | 
|  | 3173 | } | 
|  | 3174 | } | 
|  | 3175 |  | 
|  | 3176 | /* | 
|  | 3177 | * First flush out the inode that xfs_iflush was called with. | 
|  | 3178 | */ | 
|  | 3179 | error = xfs_iflush_int(ip, bp); | 
|  | 3180 | if (error) { | 
|  | 3181 | goto corrupt_out; | 
|  | 3182 | } | 
|  | 3183 |  | 
|  | 3184 | /* | 
|  | 3185 | * inode clustering: | 
|  | 3186 | * see if other inodes can be gathered into this write | 
|  | 3187 | */ | 
|  | 3188 |  | 
|  | 3189 | ip->i_chash->chl_buf = bp; | 
|  | 3190 |  | 
|  | 3191 | ch = XFS_CHASH(mp, ip->i_blkno); | 
|  | 3192 | s = mutex_spinlock(&ch->ch_lock); | 
|  | 3193 |  | 
|  | 3194 | clcount = 0; | 
|  | 3195 | for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { | 
|  | 3196 | /* | 
|  | 3197 | * Do an un-protected check to see if the inode is dirty and | 
|  | 3198 | * is a candidate for flushing.  These checks will be repeated | 
|  | 3199 | * later after the appropriate locks are acquired. | 
|  | 3200 | */ | 
|  | 3201 | iip = iq->i_itemp; | 
|  | 3202 | if ((iq->i_update_core == 0) && | 
|  | 3203 | ((iip == NULL) || | 
|  | 3204 | !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && | 
|  | 3205 | xfs_ipincount(iq) == 0) { | 
|  | 3206 | continue; | 
|  | 3207 | } | 
|  | 3208 |  | 
|  | 3209 | /* | 
|  | 3210 | * Try to get locks.  If any are unavailable, | 
|  | 3211 | * then this inode cannot be flushed and is skipped. | 
|  | 3212 | */ | 
|  | 3213 |  | 
|  | 3214 | /* get inode locks (just i_lock) */ | 
|  | 3215 | if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { | 
|  | 3216 | /* get inode flush lock */ | 
|  | 3217 | if (xfs_iflock_nowait(iq)) { | 
|  | 3218 | /* check if pinned */ | 
|  | 3219 | if (xfs_ipincount(iq) == 0) { | 
|  | 3220 | /* arriving here means that | 
|  | 3221 | * this inode can be flushed. | 
|  | 3222 | * first re-check that it's | 
|  | 3223 | * dirty | 
|  | 3224 | */ | 
|  | 3225 | iip = iq->i_itemp; | 
|  | 3226 | if ((iq->i_update_core != 0)|| | 
|  | 3227 | ((iip != NULL) && | 
|  | 3228 | (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
|  | 3229 | clcount++; | 
|  | 3230 | error = xfs_iflush_int(iq, bp); | 
|  | 3231 | if (error) { | 
|  | 3232 | xfs_iunlock(iq, | 
|  | 3233 | XFS_ILOCK_SHARED); | 
|  | 3234 | goto cluster_corrupt_out; | 
|  | 3235 | } | 
|  | 3236 | } else { | 
|  | 3237 | xfs_ifunlock(iq); | 
|  | 3238 | } | 
|  | 3239 | } else { | 
|  | 3240 | xfs_ifunlock(iq); | 
|  | 3241 | } | 
|  | 3242 | } | 
|  | 3243 | xfs_iunlock(iq, XFS_ILOCK_SHARED); | 
|  | 3244 | } | 
|  | 3245 | } | 
|  | 3246 | mutex_spinunlock(&ch->ch_lock, s); | 
|  | 3247 |  | 
|  | 3248 | if (clcount) { | 
|  | 3249 | XFS_STATS_INC(xs_icluster_flushcnt); | 
|  | 3250 | XFS_STATS_ADD(xs_icluster_flushinode, clcount); | 
|  | 3251 | } | 
|  | 3252 |  | 
|  | 3253 | /* | 
|  | 3254 | * If the buffer is pinned then push on the log so we won't | 
|  | 3255 | * get stuck waiting in the write for too long. | 
|  | 3256 | */ | 
|  | 3257 | if (XFS_BUF_ISPINNED(bp)){ | 
|  | 3258 | xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); | 
|  | 3259 | } | 
|  | 3260 |  | 
|  | 3261 | if (flags & INT_DELWRI) { | 
|  | 3262 | xfs_bdwrite(mp, bp); | 
|  | 3263 | } else if (flags & INT_ASYNC) { | 
|  | 3264 | xfs_bawrite(mp, bp); | 
|  | 3265 | } else { | 
|  | 3266 | error = xfs_bwrite(mp, bp); | 
|  | 3267 | } | 
|  | 3268 | return error; | 
|  | 3269 |  | 
|  | 3270 | corrupt_out: | 
|  | 3271 | xfs_buf_relse(bp); | 
|  | 3272 | xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | 
|  | 3273 | xfs_iflush_abort(ip); | 
|  | 3274 | /* | 
|  | 3275 | * Unlocks the flush lock | 
|  | 3276 | */ | 
|  | 3277 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 3278 |  | 
|  | 3279 | cluster_corrupt_out: | 
|  | 3280 | /* Corruption detected in the clustering loop.  Invalidate the | 
|  | 3281 | * inode buffer and shut down the filesystem. | 
|  | 3282 | */ | 
|  | 3283 | mutex_spinunlock(&ch->ch_lock, s); | 
|  | 3284 |  | 
|  | 3285 | /* | 
|  | 3286 | * Clean up the buffer.  If it was B_DELWRI, just release it -- | 
|  | 3287 | * brelse can handle it with no problems.  If not, shut down the | 
|  | 3288 | * filesystem before releasing the buffer. | 
|  | 3289 | */ | 
|  | 3290 | if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { | 
|  | 3291 | xfs_buf_relse(bp); | 
|  | 3292 | } | 
|  | 3293 |  | 
|  | 3294 | xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); | 
|  | 3295 |  | 
|  | 3296 | if(!bufwasdelwri)  { | 
|  | 3297 | /* | 
|  | 3298 | * Just like incore_relse: if we have b_iodone functions, | 
|  | 3299 | * mark the buffer as an error and call them.  Otherwise | 
|  | 3300 | * mark it as stale and brelse. | 
|  | 3301 | */ | 
|  | 3302 | if (XFS_BUF_IODONE_FUNC(bp)) { | 
|  | 3303 | XFS_BUF_CLR_BDSTRAT_FUNC(bp); | 
|  | 3304 | XFS_BUF_UNDONE(bp); | 
|  | 3305 | XFS_BUF_STALE(bp); | 
|  | 3306 | XFS_BUF_SHUT(bp); | 
|  | 3307 | XFS_BUF_ERROR(bp,EIO); | 
|  | 3308 | xfs_biodone(bp); | 
|  | 3309 | } else { | 
|  | 3310 | XFS_BUF_STALE(bp); | 
|  | 3311 | xfs_buf_relse(bp); | 
|  | 3312 | } | 
|  | 3313 | } | 
|  | 3314 |  | 
|  | 3315 | xfs_iflush_abort(iq); | 
|  | 3316 | /* | 
|  | 3317 | * Unlocks the flush lock | 
|  | 3318 | */ | 
|  | 3319 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 3320 | } | 
|  | 3321 |  | 
|  | 3322 |  | 
|  | 3323 | STATIC int | 
|  | 3324 | xfs_iflush_int( | 
|  | 3325 | xfs_inode_t		*ip, | 
|  | 3326 | xfs_buf_t		*bp) | 
|  | 3327 | { | 
|  | 3328 | xfs_inode_log_item_t	*iip; | 
|  | 3329 | xfs_dinode_t		*dip; | 
|  | 3330 | xfs_mount_t		*mp; | 
|  | 3331 | #ifdef XFS_TRANS_DEBUG | 
|  | 3332 | int			first; | 
|  | 3333 | #endif | 
|  | 3334 | SPLDECL(s); | 
|  | 3335 |  | 
|  | 3336 | ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); | 
|  | 3337 | ASSERT(valusema(&ip->i_flock) <= 0); | 
|  | 3338 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
|  | 3339 | ip->i_d.di_nextents > ip->i_df.if_ext_max); | 
|  | 3340 |  | 
|  | 3341 | iip = ip->i_itemp; | 
|  | 3342 | mp = ip->i_mount; | 
|  | 3343 |  | 
|  | 3344 |  | 
|  | 3345 | /* | 
|  | 3346 | * If the inode isn't dirty, then just release the inode | 
|  | 3347 | * flush lock and do nothing. | 
|  | 3348 | */ | 
|  | 3349 | if ((ip->i_update_core == 0) && | 
|  | 3350 | ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { | 
|  | 3351 | xfs_ifunlock(ip); | 
|  | 3352 | return 0; | 
|  | 3353 | } | 
|  | 3354 |  | 
|  | 3355 | /* set *dip = inode's place in the buffer */ | 
|  | 3356 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); | 
|  | 3357 |  | 
|  | 3358 | /* | 
|  | 3359 | * Clear i_update_core before copying out the data. | 
|  | 3360 | * This is for coordination with our timestamp updates | 
|  | 3361 | * that don't hold the inode lock. They will always | 
|  | 3362 | * update the timestamps BEFORE setting i_update_core, | 
|  | 3363 | * so if we clear i_update_core after they set it we | 
|  | 3364 | * are guaranteed to see their updates to the timestamps. | 
|  | 3365 | * I believe that this depends on strongly ordered memory | 
|  | 3366 | * semantics, but we have that.  We use the SYNCHRONIZE | 
|  | 3367 | * macro to make sure that the compiler does not reorder | 
|  | 3368 | * the i_update_core access below the data copy below. | 
|  | 3369 | */ | 
|  | 3370 | ip->i_update_core = 0; | 
|  | 3371 | SYNCHRONIZE(); | 
|  | 3372 |  | 
|  | 3373 | if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, | 
|  | 3374 | mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { | 
|  | 3375 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
|  | 3376 | "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", | 
|  | 3377 | ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); | 
|  | 3378 | goto corrupt_out; | 
|  | 3379 | } | 
|  | 3380 | if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, | 
|  | 3381 | mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { | 
|  | 3382 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
|  | 3383 | "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", | 
|  | 3384 | ip->i_ino, ip, ip->i_d.di_magic); | 
|  | 3385 | goto corrupt_out; | 
|  | 3386 | } | 
|  | 3387 | if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) { | 
|  | 3388 | if (XFS_TEST_ERROR( | 
|  | 3389 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
|  | 3390 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), | 
|  | 3391 | mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { | 
|  | 3392 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
|  | 3393 | "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", | 
|  | 3394 | ip->i_ino, ip); | 
|  | 3395 | goto corrupt_out; | 
|  | 3396 | } | 
|  | 3397 | } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { | 
|  | 3398 | if (XFS_TEST_ERROR( | 
|  | 3399 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && | 
|  | 3400 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
|  | 3401 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), | 
|  | 3402 | mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { | 
|  | 3403 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
|  | 3404 | "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", | 
|  | 3405 | ip->i_ino, ip); | 
|  | 3406 | goto corrupt_out; | 
|  | 3407 | } | 
|  | 3408 | } | 
|  | 3409 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > | 
|  | 3410 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, | 
|  | 3411 | XFS_RANDOM_IFLUSH_5)) { | 
|  | 3412 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
|  | 3413 | "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", | 
|  | 3414 | ip->i_ino, | 
|  | 3415 | ip->i_d.di_nextents + ip->i_d.di_anextents, | 
|  | 3416 | ip->i_d.di_nblocks, | 
|  | 3417 | ip); | 
|  | 3418 | goto corrupt_out; | 
|  | 3419 | } | 
|  | 3420 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, | 
|  | 3421 | mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { | 
|  | 3422 | xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, | 
|  | 3423 | "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", | 
|  | 3424 | ip->i_ino, ip->i_d.di_forkoff, ip); | 
|  | 3425 | goto corrupt_out; | 
|  | 3426 | } | 
|  | 3427 | /* | 
|  | 3428 | * bump the flush iteration count, used to detect flushes which | 
|  | 3429 | * postdate a log record during recovery. | 
|  | 3430 | */ | 
|  | 3431 |  | 
|  | 3432 | ip->i_d.di_flushiter++; | 
|  | 3433 |  | 
|  | 3434 | /* | 
|  | 3435 | * Copy the dirty parts of the inode into the on-disk | 
|  | 3436 | * inode.  We always copy out the core of the inode, | 
|  | 3437 | * because if the inode is dirty at all the core must | 
|  | 3438 | * be. | 
|  | 3439 | */ | 
|  | 3440 | xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1); | 
|  | 3441 |  | 
|  | 3442 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ | 
|  | 3443 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) | 
|  | 3444 | ip->i_d.di_flushiter = 0; | 
|  | 3445 |  | 
|  | 3446 | /* | 
|  | 3447 | * If this is really an old format inode and the superblock version | 
|  | 3448 | * has not been updated to support only new format inodes, then | 
|  | 3449 | * convert back to the old inode format.  If the superblock version | 
|  | 3450 | * has been updated, then make the conversion permanent. | 
|  | 3451 | */ | 
|  | 3452 | ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || | 
|  | 3453 | XFS_SB_VERSION_HASNLINK(&mp->m_sb)); | 
|  | 3454 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
|  | 3455 | if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { | 
|  | 3456 | /* | 
|  | 3457 | * Convert it back. | 
|  | 3458 | */ | 
|  | 3459 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | 
|  | 3460 | INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); | 
|  | 3461 | } else { | 
|  | 3462 | /* | 
|  | 3463 | * The superblock version has already been bumped, | 
|  | 3464 | * so just make the conversion to the new inode | 
|  | 3465 | * format permanent. | 
|  | 3466 | */ | 
|  | 3467 | ip->i_d.di_version = XFS_DINODE_VERSION_2; | 
|  | 3468 | INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); | 
|  | 3469 | ip->i_d.di_onlink = 0; | 
|  | 3470 | dip->di_core.di_onlink = 0; | 
|  | 3471 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
|  | 3472 | memset(&(dip->di_core.di_pad[0]), 0, | 
|  | 3473 | sizeof(dip->di_core.di_pad)); | 
|  | 3474 | ASSERT(ip->i_d.di_projid == 0); | 
|  | 3475 | } | 
|  | 3476 | } | 
|  | 3477 |  | 
|  | 3478 | if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { | 
|  | 3479 | goto corrupt_out; | 
|  | 3480 | } | 
|  | 3481 |  | 
|  | 3482 | if (XFS_IFORK_Q(ip)) { | 
|  | 3483 | /* | 
|  | 3484 | * The only error from xfs_iflush_fork is on the data fork. | 
|  | 3485 | */ | 
|  | 3486 | (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); | 
|  | 3487 | } | 
|  | 3488 | xfs_inobp_check(mp, bp); | 
|  | 3489 |  | 
|  | 3490 | /* | 
|  | 3491 | * We've recorded everything logged in the inode, so we'd | 
|  | 3492 | * like to clear the ilf_fields bits so we don't log and | 
|  | 3493 | * flush things unnecessarily.  However, we can't stop | 
|  | 3494 | * logging all this information until the data we've copied | 
|  | 3495 | * into the disk buffer is written to disk.  If we did we might | 
|  | 3496 | * overwrite the copy of the inode in the log with all the | 
|  | 3497 | * data after re-logging only part of it, and in the face of | 
|  | 3498 | * a crash we wouldn't have all the data we need to recover. | 
|  | 3499 | * | 
|  | 3500 | * What we do is move the bits to the ili_last_fields field. | 
|  | 3501 | * When logging the inode, these bits are moved back to the | 
|  | 3502 | * ilf_fields field.  In the xfs_iflush_done() routine we | 
|  | 3503 | * clear ili_last_fields, since we know that the information | 
|  | 3504 | * those bits represent is permanently on disk.  As long as | 
|  | 3505 | * the flush completes before the inode is logged again, then | 
|  | 3506 | * both ilf_fields and ili_last_fields will be cleared. | 
|  | 3507 | * | 
|  | 3508 | * We can play with the ilf_fields bits here, because the inode | 
|  | 3509 | * lock must be held exclusively in order to set bits there | 
|  | 3510 | * and the flush lock protects the ili_last_fields bits. | 
|  | 3511 | * Set ili_logged so the flush done | 
|  | 3512 | * routine can tell whether or not to look in the AIL. | 
|  | 3513 | * Also, store the current LSN of the inode so that we can tell | 
|  | 3514 | * whether the item has moved in the AIL from xfs_iflush_done(). | 
|  | 3515 | * In order to read the lsn we need the AIL lock, because | 
|  | 3516 | * it is a 64 bit value that cannot be read atomically. | 
|  | 3517 | */ | 
|  | 3518 | if (iip != NULL && iip->ili_format.ilf_fields != 0) { | 
|  | 3519 | iip->ili_last_fields = iip->ili_format.ilf_fields; | 
|  | 3520 | iip->ili_format.ilf_fields = 0; | 
|  | 3521 | iip->ili_logged = 1; | 
|  | 3522 |  | 
|  | 3523 | ASSERT(sizeof(xfs_lsn_t) == 8);	/* don't lock if it shrinks */ | 
|  | 3524 | AIL_LOCK(mp,s); | 
|  | 3525 | iip->ili_flush_lsn = iip->ili_item.li_lsn; | 
|  | 3526 | AIL_UNLOCK(mp, s); | 
|  | 3527 |  | 
|  | 3528 | /* | 
|  | 3529 | * Attach the function xfs_iflush_done to the inode's | 
|  | 3530 | * buffer.  This will remove the inode from the AIL | 
|  | 3531 | * and unlock the inode's flush lock when the inode is | 
|  | 3532 | * completely written to disk. | 
|  | 3533 | */ | 
|  | 3534 | xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) | 
|  | 3535 | xfs_iflush_done, (xfs_log_item_t *)iip); | 
|  | 3536 |  | 
|  | 3537 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 3538 | ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); | 
|  | 3539 | } else { | 
|  | 3540 | /* | 
|  | 3541 | * We're flushing an inode which is not in the AIL and has | 
|  | 3542 | * not been logged but has i_update_core set.  For this | 
|  | 3543 | * case we can use a B_DELWRI flush and immediately drop | 
|  | 3544 | * the inode flush lock because we can avoid the whole | 
|  | 3545 | * AIL state thing.  It's OK to drop the flush lock now, | 
|  | 3546 | * because we've already locked the buffer and to do anything | 
|  | 3547 | * you really need both. | 
|  | 3548 | */ | 
|  | 3549 | if (iip != NULL) { | 
|  | 3550 | ASSERT(iip->ili_logged == 0); | 
|  | 3551 | ASSERT(iip->ili_last_fields == 0); | 
|  | 3552 | ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); | 
|  | 3553 | } | 
|  | 3554 | xfs_ifunlock(ip); | 
|  | 3555 | } | 
|  | 3556 |  | 
|  | 3557 | return 0; | 
|  | 3558 |  | 
|  | 3559 | corrupt_out: | 
|  | 3560 | return XFS_ERROR(EFSCORRUPTED); | 
|  | 3561 | } | 
|  | 3562 |  | 
|  | 3563 |  | 
|  | 3564 | /* | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3565 | * Flush all inactive inodes in mp. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3566 | */ | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3567 | void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3568 | xfs_iflush_all( | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3569 | xfs_mount_t	*mp) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3570 | { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3571 | xfs_inode_t	*ip; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3572 | vnode_t		*vp; | 
|  | 3573 |  | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3574 | again: | 
|  | 3575 | XFS_MOUNT_ILOCK(mp); | 
|  | 3576 | ip = mp->m_inodes; | 
|  | 3577 | if (ip == NULL) | 
|  | 3578 | goto out; | 
|  | 3579 |  | 
|  | 3580 | do { | 
|  | 3581 | /* Make sure we skip markers inserted by sync */ | 
|  | 3582 | if (ip->i_mount == NULL) { | 
|  | 3583 | ip = ip->i_mnext; | 
|  | 3584 | continue; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3585 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3586 |  | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3587 | vp = XFS_ITOV_NULL(ip); | 
|  | 3588 | if (!vp) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3589 | XFS_MOUNT_IUNLOCK(mp); | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3590 | xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); | 
|  | 3591 | goto again; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3592 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3593 |  | 
| Christoph Hellwig | efa8027 | 2005-06-21 15:37:17 +1000 | [diff] [blame] | 3594 | ASSERT(vn_count(vp) == 0); | 
|  | 3595 |  | 
|  | 3596 | ip = ip->i_mnext; | 
|  | 3597 | } while (ip != mp->m_inodes); | 
|  | 3598 | out: | 
|  | 3599 | XFS_MOUNT_IUNLOCK(mp); | 
|  | 3600 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3601 |  | 
|  | 3602 | /* | 
|  | 3603 | * xfs_iaccess: check accessibility of inode for mode. | 
|  | 3604 | */ | 
|  | 3605 | int | 
|  | 3606 | xfs_iaccess( | 
|  | 3607 | xfs_inode_t	*ip, | 
|  | 3608 | mode_t		mode, | 
|  | 3609 | cred_t		*cr) | 
|  | 3610 | { | 
|  | 3611 | int		error; | 
|  | 3612 | mode_t		orgmode = mode; | 
|  | 3613 | struct inode	*inode = LINVFS_GET_IP(XFS_ITOV(ip)); | 
|  | 3614 |  | 
|  | 3615 | if (mode & S_IWUSR) { | 
|  | 3616 | umode_t		imode = inode->i_mode; | 
|  | 3617 |  | 
|  | 3618 | if (IS_RDONLY(inode) && | 
|  | 3619 | (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) | 
|  | 3620 | return XFS_ERROR(EROFS); | 
|  | 3621 |  | 
|  | 3622 | if (IS_IMMUTABLE(inode)) | 
|  | 3623 | return XFS_ERROR(EACCES); | 
|  | 3624 | } | 
|  | 3625 |  | 
|  | 3626 | /* | 
|  | 3627 | * If there's an Access Control List it's used instead of | 
|  | 3628 | * the mode bits. | 
|  | 3629 | */ | 
|  | 3630 | if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) | 
|  | 3631 | return error ? XFS_ERROR(error) : 0; | 
|  | 3632 |  | 
|  | 3633 | if (current_fsuid(cr) != ip->i_d.di_uid) { | 
|  | 3634 | mode >>= 3; | 
|  | 3635 | if (!in_group_p((gid_t)ip->i_d.di_gid)) | 
|  | 3636 | mode >>= 3; | 
|  | 3637 | } | 
|  | 3638 |  | 
|  | 3639 | /* | 
|  | 3640 | * If the DACs are ok we don't need any capability check. | 
|  | 3641 | */ | 
|  | 3642 | if ((ip->i_d.di_mode & mode) == mode) | 
|  | 3643 | return 0; | 
|  | 3644 | /* | 
|  | 3645 | * Read/write DACs are always overridable. | 
|  | 3646 | * Executable DACs are overridable if at least one exec bit is set. | 
|  | 3647 | */ | 
|  | 3648 | if (!(orgmode & S_IXUSR) || | 
|  | 3649 | (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) | 
|  | 3650 | if (capable_cred(cr, CAP_DAC_OVERRIDE)) | 
|  | 3651 | return 0; | 
|  | 3652 |  | 
|  | 3653 | if ((orgmode == S_IRUSR) || | 
|  | 3654 | (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) { | 
|  | 3655 | if (capable_cred(cr, CAP_DAC_READ_SEARCH)) | 
|  | 3656 | return 0; | 
|  | 3657 | #ifdef	NOISE | 
|  | 3658 | cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); | 
|  | 3659 | #endif	/* NOISE */ | 
|  | 3660 | return XFS_ERROR(EACCES); | 
|  | 3661 | } | 
|  | 3662 | return XFS_ERROR(EACCES); | 
|  | 3663 | } | 
|  | 3664 |  | 
|  | 3665 | /* | 
|  | 3666 | * xfs_iroundup: round up argument to next power of two | 
|  | 3667 | */ | 
|  | 3668 | uint | 
|  | 3669 | xfs_iroundup( | 
|  | 3670 | uint	v) | 
|  | 3671 | { | 
|  | 3672 | int i; | 
|  | 3673 | uint m; | 
|  | 3674 |  | 
|  | 3675 | if ((v & (v - 1)) == 0) | 
|  | 3676 | return v; | 
|  | 3677 | ASSERT((v & 0x80000000) == 0); | 
|  | 3678 | if ((v & (v + 1)) == 0) | 
|  | 3679 | return v + 1; | 
|  | 3680 | for (i = 0, m = 1; i < 31; i++, m <<= 1) { | 
|  | 3681 | if (v & m) | 
|  | 3682 | continue; | 
|  | 3683 | v |= m; | 
|  | 3684 | if ((v & (v + 1)) == 0) | 
|  | 3685 | return v + 1; | 
|  | 3686 | } | 
|  | 3687 | ASSERT(0); | 
|  | 3688 | return( 0 ); | 
|  | 3689 | } | 
|  | 3690 |  | 
|  | 3691 | /* | 
|  | 3692 | * Change the requested timestamp in the given inode. | 
|  | 3693 | * We don't lock across timestamp updates, and we don't log them but | 
|  | 3694 | * we do record the fact that there is dirty information in core. | 
|  | 3695 | * | 
|  | 3696 | * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG | 
|  | 3697 | *		with XFS_ICHGTIME_ACC to be sure that access time | 
|  | 3698 | *		update will take.  Calling first with XFS_ICHGTIME_ACC | 
|  | 3699 | *		and then XFS_ICHGTIME_MOD may fail to modify the access | 
|  | 3700 | *		timestamp if the filesystem is mounted noacctm. | 
|  | 3701 | */ | 
|  | 3702 | void | 
|  | 3703 | xfs_ichgtime(xfs_inode_t *ip, | 
|  | 3704 | int flags) | 
|  | 3705 | { | 
|  | 3706 | timespec_t	tv; | 
|  | 3707 | vnode_t		*vp = XFS_ITOV(ip); | 
|  | 3708 | struct inode	*inode = LINVFS_GET_IP(vp); | 
|  | 3709 |  | 
|  | 3710 | /* | 
|  | 3711 | * We're not supposed to change timestamps in readonly-mounted | 
|  | 3712 | * filesystems.  Throw it away if anyone asks us. | 
|  | 3713 | */ | 
|  | 3714 | if (unlikely(vp->v_vfsp->vfs_flag & VFS_RDONLY)) | 
|  | 3715 | return; | 
|  | 3716 |  | 
|  | 3717 | /* | 
|  | 3718 | * Don't update access timestamps on reads if mounted "noatime" | 
|  | 3719 | * Throw it away if anyone asks us. | 
|  | 3720 | */ | 
|  | 3721 | if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) && | 
|  | 3722 | ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG)) | 
|  | 3723 | == XFS_ICHGTIME_ACC)) | 
|  | 3724 | return; | 
|  | 3725 |  | 
|  | 3726 | nanotime(&tv); | 
|  | 3727 | if (flags & XFS_ICHGTIME_MOD) { | 
|  | 3728 | VN_MTIMESET(vp, &tv); | 
|  | 3729 | ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; | 
|  | 3730 | ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; | 
|  | 3731 | } | 
|  | 3732 | if (flags & XFS_ICHGTIME_ACC) { | 
|  | 3733 | VN_ATIMESET(vp, &tv); | 
|  | 3734 | ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec; | 
|  | 3735 | ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec; | 
|  | 3736 | } | 
|  | 3737 | if (flags & XFS_ICHGTIME_CHG) { | 
|  | 3738 | VN_CTIMESET(vp, &tv); | 
|  | 3739 | ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec; | 
|  | 3740 | ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec; | 
|  | 3741 | } | 
|  | 3742 |  | 
|  | 3743 | /* | 
|  | 3744 | * We update the i_update_core field _after_ changing | 
|  | 3745 | * the timestamps in order to coordinate properly with | 
|  | 3746 | * xfs_iflush() so that we don't lose timestamp updates. | 
|  | 3747 | * This keeps us from having to hold the inode lock | 
|  | 3748 | * while doing this.  We use the SYNCHRONIZE macro to | 
|  | 3749 | * ensure that the compiler does not reorder the update | 
|  | 3750 | * of i_update_core above the timestamp updates above. | 
|  | 3751 | */ | 
|  | 3752 | SYNCHRONIZE(); | 
|  | 3753 | ip->i_update_core = 1; | 
|  | 3754 | if (!(inode->i_state & I_LOCK)) | 
|  | 3755 | mark_inode_dirty_sync(inode); | 
|  | 3756 | } | 
|  | 3757 |  | 
|  | 3758 | #ifdef XFS_ILOCK_TRACE | 
|  | 3759 | ktrace_t	*xfs_ilock_trace_buf; | 
|  | 3760 |  | 
|  | 3761 | void | 
|  | 3762 | xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) | 
|  | 3763 | { | 
|  | 3764 | ktrace_enter(ip->i_lock_trace, | 
|  | 3765 | (void *)ip, | 
|  | 3766 | (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */ | 
|  | 3767 | (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */ | 
|  | 3768 | (void *)ra,		/* caller of ilock */ | 
|  | 3769 | (void *)(unsigned long)current_cpu(), | 
|  | 3770 | (void *)(unsigned long)current_pid(), | 
|  | 3771 | NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL); | 
|  | 3772 | } | 
|  | 3773 | #endif |