| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2000-2002 Silicon Graphics, Inc.  All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or modify it | 
|  | 5 | * under the terms of version 2 of the GNU General Public License as | 
|  | 6 | * published by the Free Software Foundation. | 
|  | 7 | * | 
|  | 8 | * This program is distributed in the hope that it would be useful, but | 
|  | 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | 11 | * | 
|  | 12 | * Further, this software is distributed without any warranty that it is | 
|  | 13 | * free of the rightful claim of any third person regarding infringement | 
|  | 14 | * or the like.  Any license provided herein, whether implied or | 
|  | 15 | * otherwise, applies only to this software file.  Patent licenses, if | 
|  | 16 | * any, provided herein do not apply to combinations of this program with | 
|  | 17 | * other software, or any other product whatsoever. | 
|  | 18 | * | 
|  | 19 | * You should have received a copy of the GNU General Public License along | 
|  | 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 | 
|  | 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
|  | 22 | * | 
|  | 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | 
|  | 24 | * Mountain View, CA  94043, or: | 
|  | 25 | * | 
|  | 26 | * http://www.sgi.com | 
|  | 27 | * | 
|  | 28 | * For further information regarding this notice, see: | 
|  | 29 | * | 
|  | 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | 
|  | 31 | */ | 
|  | 32 |  | 
|  | 33 | /* | 
|  | 34 | * This file contains the implementation of the xfs_inode_log_item. | 
|  | 35 | * It contains the item operations used to manipulate the inode log | 
|  | 36 | * items as well as utility routines used by the inode specific | 
|  | 37 | * transaction routines. | 
|  | 38 | */ | 
|  | 39 | #include "xfs.h" | 
|  | 40 | #include "xfs_macros.h" | 
|  | 41 | #include "xfs_types.h" | 
|  | 42 | #include "xfs_inum.h" | 
|  | 43 | #include "xfs_log.h" | 
|  | 44 | #include "xfs_trans.h" | 
|  | 45 | #include "xfs_buf_item.h" | 
|  | 46 | #include "xfs_sb.h" | 
|  | 47 | #include "xfs_dir.h" | 
|  | 48 | #include "xfs_dir2.h" | 
|  | 49 | #include "xfs_dmapi.h" | 
|  | 50 | #include "xfs_mount.h" | 
|  | 51 | #include "xfs_trans_priv.h" | 
|  | 52 | #include "xfs_ag.h" | 
|  | 53 | #include "xfs_alloc_btree.h" | 
|  | 54 | #include "xfs_bmap_btree.h" | 
|  | 55 | #include "xfs_ialloc_btree.h" | 
|  | 56 | #include "xfs_btree.h" | 
|  | 57 | #include "xfs_ialloc.h" | 
|  | 58 | #include "xfs_attr_sf.h" | 
|  | 59 | #include "xfs_dir_sf.h" | 
|  | 60 | #include "xfs_dir2_sf.h" | 
|  | 61 | #include "xfs_dinode.h" | 
|  | 62 | #include "xfs_inode_item.h" | 
|  | 63 | #include "xfs_inode.h" | 
|  | 64 | #include "xfs_rw.h" | 
|  | 65 |  | 
|  | 66 |  | 
|  | 67 | kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */ | 
|  | 68 |  | 
|  | 69 | /* | 
|  | 70 | * This returns the number of iovecs needed to log the given inode item. | 
|  | 71 | * | 
|  | 72 | * We need one iovec for the inode log format structure, one for the | 
|  | 73 | * inode core, and possibly one for the inode data/extents/b-tree root | 
|  | 74 | * and one for the inode attribute data/extents/b-tree root. | 
|  | 75 | */ | 
|  | 76 | STATIC uint | 
|  | 77 | xfs_inode_item_size( | 
|  | 78 | xfs_inode_log_item_t	*iip) | 
|  | 79 | { | 
|  | 80 | uint		nvecs; | 
|  | 81 | xfs_inode_t	*ip; | 
|  | 82 |  | 
|  | 83 | ip = iip->ili_inode; | 
|  | 84 | nvecs = 2; | 
|  | 85 |  | 
|  | 86 | /* | 
|  | 87 | * Only log the data/extents/b-tree root if there is something | 
|  | 88 | * left to log. | 
|  | 89 | */ | 
|  | 90 | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; | 
|  | 91 |  | 
|  | 92 | switch (ip->i_d.di_format) { | 
|  | 93 | case XFS_DINODE_FMT_EXTENTS: | 
|  | 94 | iip->ili_format.ilf_fields &= | 
|  | 95 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | 96 | XFS_ILOG_DEV | XFS_ILOG_UUID); | 
|  | 97 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && | 
|  | 98 | (ip->i_d.di_nextents > 0) && | 
|  | 99 | (ip->i_df.if_bytes > 0)) { | 
|  | 100 | ASSERT(ip->i_df.if_u1.if_extents != NULL); | 
|  | 101 | nvecs++; | 
|  | 102 | } else { | 
|  | 103 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; | 
|  | 104 | } | 
|  | 105 | break; | 
|  | 106 |  | 
|  | 107 | case XFS_DINODE_FMT_BTREE: | 
|  | 108 | ASSERT(ip->i_df.if_ext_max == | 
|  | 109 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); | 
|  | 110 | iip->ili_format.ilf_fields &= | 
|  | 111 | ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | | 
|  | 112 | XFS_ILOG_DEV | XFS_ILOG_UUID); | 
|  | 113 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && | 
|  | 114 | (ip->i_df.if_broot_bytes > 0)) { | 
|  | 115 | ASSERT(ip->i_df.if_broot != NULL); | 
|  | 116 | nvecs++; | 
|  | 117 | } else { | 
|  | 118 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 119 | XFS_ILOG_DBROOT)); | 
|  | 120 | #ifdef XFS_TRANS_DEBUG | 
|  | 121 | if (iip->ili_root_size > 0) { | 
|  | 122 | ASSERT(iip->ili_root_size == | 
|  | 123 | ip->i_df.if_broot_bytes); | 
|  | 124 | ASSERT(memcmp(iip->ili_orig_root, | 
|  | 125 | ip->i_df.if_broot, | 
|  | 126 | iip->ili_root_size) == 0); | 
|  | 127 | } else { | 
|  | 128 | ASSERT(ip->i_df.if_broot_bytes == 0); | 
|  | 129 | } | 
|  | 130 | #endif | 
|  | 131 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; | 
|  | 132 | } | 
|  | 133 | break; | 
|  | 134 |  | 
|  | 135 | case XFS_DINODE_FMT_LOCAL: | 
|  | 136 | iip->ili_format.ilf_fields &= | 
|  | 137 | ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | | 
|  | 138 | XFS_ILOG_DEV | XFS_ILOG_UUID); | 
|  | 139 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && | 
|  | 140 | (ip->i_df.if_bytes > 0)) { | 
|  | 141 | ASSERT(ip->i_df.if_u1.if_data != NULL); | 
|  | 142 | ASSERT(ip->i_d.di_size > 0); | 
|  | 143 | nvecs++; | 
|  | 144 | } else { | 
|  | 145 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; | 
|  | 146 | } | 
|  | 147 | break; | 
|  | 148 |  | 
|  | 149 | case XFS_DINODE_FMT_DEV: | 
|  | 150 | iip->ili_format.ilf_fields &= | 
|  | 151 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | 152 | XFS_ILOG_DEXT | XFS_ILOG_UUID); | 
|  | 153 | break; | 
|  | 154 |  | 
|  | 155 | case XFS_DINODE_FMT_UUID: | 
|  | 156 | iip->ili_format.ilf_fields &= | 
|  | 157 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | 158 | XFS_ILOG_DEXT | XFS_ILOG_DEV); | 
|  | 159 | break; | 
|  | 160 |  | 
|  | 161 | default: | 
|  | 162 | ASSERT(0); | 
|  | 163 | break; | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | /* | 
|  | 167 | * If there are no attributes associated with this file, | 
|  | 168 | * then there cannot be anything more to log. | 
|  | 169 | * Clear all attribute-related log flags. | 
|  | 170 | */ | 
|  | 171 | if (!XFS_IFORK_Q(ip)) { | 
|  | 172 | iip->ili_format.ilf_fields &= | 
|  | 173 | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); | 
|  | 174 | return nvecs; | 
|  | 175 | } | 
|  | 176 |  | 
|  | 177 | /* | 
|  | 178 | * Log any necessary attribute data. | 
|  | 179 | */ | 
|  | 180 | switch (ip->i_d.di_aformat) { | 
|  | 181 | case XFS_DINODE_FMT_EXTENTS: | 
|  | 182 | iip->ili_format.ilf_fields &= | 
|  | 183 | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); | 
|  | 184 | if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && | 
|  | 185 | (ip->i_d.di_anextents > 0) && | 
|  | 186 | (ip->i_afp->if_bytes > 0)) { | 
|  | 187 | ASSERT(ip->i_afp->if_u1.if_extents != NULL); | 
|  | 188 | nvecs++; | 
|  | 189 | } else { | 
|  | 190 | iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; | 
|  | 191 | } | 
|  | 192 | break; | 
|  | 193 |  | 
|  | 194 | case XFS_DINODE_FMT_BTREE: | 
|  | 195 | iip->ili_format.ilf_fields &= | 
|  | 196 | ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); | 
|  | 197 | if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && | 
|  | 198 | (ip->i_afp->if_broot_bytes > 0)) { | 
|  | 199 | ASSERT(ip->i_afp->if_broot != NULL); | 
|  | 200 | nvecs++; | 
|  | 201 | } else { | 
|  | 202 | iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; | 
|  | 203 | } | 
|  | 204 | break; | 
|  | 205 |  | 
|  | 206 | case XFS_DINODE_FMT_LOCAL: | 
|  | 207 | iip->ili_format.ilf_fields &= | 
|  | 208 | ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); | 
|  | 209 | if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && | 
|  | 210 | (ip->i_afp->if_bytes > 0)) { | 
|  | 211 | ASSERT(ip->i_afp->if_u1.if_data != NULL); | 
|  | 212 | nvecs++; | 
|  | 213 | } else { | 
|  | 214 | iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; | 
|  | 215 | } | 
|  | 216 | break; | 
|  | 217 |  | 
|  | 218 | default: | 
|  | 219 | ASSERT(0); | 
|  | 220 | break; | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | return nvecs; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | /* | 
|  | 227 | * This is called to fill in the vector of log iovecs for the | 
|  | 228 | * given inode log item.  It fills the first item with an inode | 
|  | 229 | * log format structure, the second with the on-disk inode structure, | 
|  | 230 | * and a possible third and/or fourth with the inode data/extents/b-tree | 
|  | 231 | * root and inode attributes data/extents/b-tree root. | 
|  | 232 | */ | 
|  | 233 | STATIC void | 
|  | 234 | xfs_inode_item_format( | 
|  | 235 | xfs_inode_log_item_t	*iip, | 
|  | 236 | xfs_log_iovec_t		*log_vector) | 
|  | 237 | { | 
|  | 238 | uint			nvecs; | 
|  | 239 | xfs_log_iovec_t		*vecp; | 
|  | 240 | xfs_inode_t		*ip; | 
|  | 241 | size_t			data_bytes; | 
|  | 242 | xfs_bmbt_rec_t		*ext_buffer; | 
|  | 243 | int			nrecs; | 
|  | 244 | xfs_mount_t		*mp; | 
|  | 245 |  | 
|  | 246 | ip = iip->ili_inode; | 
|  | 247 | vecp = log_vector; | 
|  | 248 |  | 
|  | 249 | vecp->i_addr = (xfs_caddr_t)&iip->ili_format; | 
|  | 250 | vecp->i_len  = sizeof(xfs_inode_log_format_t); | 
|  | 251 | vecp++; | 
|  | 252 | nvecs	     = 1; | 
|  | 253 |  | 
|  | 254 | /* | 
|  | 255 | * Clear i_update_core if the timestamps (or any other | 
|  | 256 | * non-transactional modification) need flushing/logging | 
|  | 257 | * and we're about to log them with the rest of the core. | 
|  | 258 | * | 
|  | 259 | * This is the same logic as xfs_iflush() but this code can't | 
|  | 260 | * run at the same time as xfs_iflush because we're in commit | 
|  | 261 | * processing here and so we have the inode lock held in | 
|  | 262 | * exclusive mode.  Although it doesn't really matter | 
|  | 263 | * for the timestamps if both routines were to grab the | 
|  | 264 | * timestamps or not.  That would be ok. | 
|  | 265 | * | 
|  | 266 | * We clear i_update_core before copying out the data. | 
|  | 267 | * This is for coordination with our timestamp updates | 
|  | 268 | * that don't hold the inode lock. They will always | 
|  | 269 | * update the timestamps BEFORE setting i_update_core, | 
|  | 270 | * so if we clear i_update_core after they set it we | 
|  | 271 | * are guaranteed to see their updates to the timestamps | 
|  | 272 | * either here.  Likewise, if they set it after we clear it | 
|  | 273 | * here, we'll see it either on the next commit of this | 
|  | 274 | * inode or the next time the inode gets flushed via | 
|  | 275 | * xfs_iflush().  This depends on strongly ordered memory | 
|  | 276 | * semantics, but we have that.  We use the SYNCHRONIZE | 
|  | 277 | * macro to make sure that the compiler does not reorder | 
|  | 278 | * the i_update_core access below the data copy below. | 
|  | 279 | */ | 
|  | 280 | if (ip->i_update_core)  { | 
|  | 281 | ip->i_update_core = 0; | 
|  | 282 | SYNCHRONIZE(); | 
|  | 283 | } | 
|  | 284 |  | 
|  | 285 | /* | 
|  | 286 | * We don't have to worry about re-ordering here because | 
|  | 287 | * the update_size field is protected by the inode lock | 
|  | 288 | * and we have that held in exclusive mode. | 
|  | 289 | */ | 
|  | 290 | if (ip->i_update_size) | 
|  | 291 | ip->i_update_size = 0; | 
|  | 292 |  | 
|  | 293 | vecp->i_addr = (xfs_caddr_t)&ip->i_d; | 
|  | 294 | vecp->i_len  = sizeof(xfs_dinode_core_t); | 
|  | 295 | vecp++; | 
|  | 296 | nvecs++; | 
|  | 297 | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; | 
|  | 298 |  | 
|  | 299 | /* | 
|  | 300 | * If this is really an old format inode, then we need to | 
|  | 301 | * log it as such.  This means that we have to copy the link | 
|  | 302 | * count from the new field to the old.  We don't have to worry | 
|  | 303 | * about the new fields, because nothing trusts them as long as | 
|  | 304 | * the old inode version number is there.  If the superblock already | 
|  | 305 | * has a new version number, then we don't bother converting back. | 
|  | 306 | */ | 
|  | 307 | mp = ip->i_mount; | 
|  | 308 | ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || | 
|  | 309 | XFS_SB_VERSION_HASNLINK(&mp->m_sb)); | 
|  | 310 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { | 
|  | 311 | if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { | 
|  | 312 | /* | 
|  | 313 | * Convert it back. | 
|  | 314 | */ | 
|  | 315 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | 
|  | 316 | ip->i_d.di_onlink = ip->i_d.di_nlink; | 
|  | 317 | } else { | 
|  | 318 | /* | 
|  | 319 | * The superblock version has already been bumped, | 
|  | 320 | * so just make the conversion to the new inode | 
|  | 321 | * format permanent. | 
|  | 322 | */ | 
|  | 323 | ip->i_d.di_version = XFS_DINODE_VERSION_2; | 
|  | 324 | ip->i_d.di_onlink = 0; | 
|  | 325 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
|  | 326 | } | 
|  | 327 | } | 
|  | 328 |  | 
|  | 329 | switch (ip->i_d.di_format) { | 
|  | 330 | case XFS_DINODE_FMT_EXTENTS: | 
|  | 331 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 332 | (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | 333 | XFS_ILOG_DEV | XFS_ILOG_UUID))); | 
|  | 334 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { | 
|  | 335 | ASSERT(ip->i_df.if_bytes > 0); | 
|  | 336 | ASSERT(ip->i_df.if_u1.if_extents != NULL); | 
|  | 337 | ASSERT(ip->i_d.di_nextents > 0); | 
|  | 338 | ASSERT(iip->ili_extents_buf == NULL); | 
|  | 339 | nrecs = ip->i_df.if_bytes / | 
|  | 340 | (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 341 | ASSERT(nrecs > 0); | 
|  | 342 | #if __BYTE_ORDER == __BIG_ENDIAN | 
|  | 343 | if (nrecs == ip->i_d.di_nextents) { | 
|  | 344 | /* | 
|  | 345 | * There are no delayed allocation | 
|  | 346 | * extents, so just point to the | 
|  | 347 | * real extents array. | 
|  | 348 | */ | 
|  | 349 | vecp->i_addr = | 
|  | 350 | (char *)(ip->i_df.if_u1.if_extents); | 
|  | 351 | vecp->i_len = ip->i_df.if_bytes; | 
|  | 352 | } else | 
|  | 353 | #endif | 
|  | 354 | { | 
|  | 355 | /* | 
|  | 356 | * There are delayed allocation extents | 
|  | 357 | * in the inode, or we need to convert | 
|  | 358 | * the extents to on disk format. | 
|  | 359 | * Use xfs_iextents_copy() | 
|  | 360 | * to copy only the real extents into | 
|  | 361 | * a separate buffer.  We'll free the | 
|  | 362 | * buffer in the unlock routine. | 
|  | 363 | */ | 
|  | 364 | ext_buffer = kmem_alloc(ip->i_df.if_bytes, | 
|  | 365 | KM_SLEEP); | 
|  | 366 | iip->ili_extents_buf = ext_buffer; | 
|  | 367 | vecp->i_addr = (xfs_caddr_t)ext_buffer; | 
|  | 368 | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, | 
|  | 369 | XFS_DATA_FORK); | 
|  | 370 | } | 
|  | 371 | ASSERT(vecp->i_len <= ip->i_df.if_bytes); | 
|  | 372 | iip->ili_format.ilf_dsize = vecp->i_len; | 
|  | 373 | vecp++; | 
|  | 374 | nvecs++; | 
|  | 375 | } | 
|  | 376 | break; | 
|  | 377 |  | 
|  | 378 | case XFS_DINODE_FMT_BTREE: | 
|  | 379 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 380 | (XFS_ILOG_DDATA | XFS_ILOG_DEXT | | 
|  | 381 | XFS_ILOG_DEV | XFS_ILOG_UUID))); | 
|  | 382 | if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { | 
|  | 383 | ASSERT(ip->i_df.if_broot_bytes > 0); | 
|  | 384 | ASSERT(ip->i_df.if_broot != NULL); | 
|  | 385 | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; | 
|  | 386 | vecp->i_len = ip->i_df.if_broot_bytes; | 
|  | 387 | vecp++; | 
|  | 388 | nvecs++; | 
|  | 389 | iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; | 
|  | 390 | } | 
|  | 391 | break; | 
|  | 392 |  | 
|  | 393 | case XFS_DINODE_FMT_LOCAL: | 
|  | 394 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 395 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | 
|  | 396 | XFS_ILOG_DEV | XFS_ILOG_UUID))); | 
|  | 397 | if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { | 
|  | 398 | ASSERT(ip->i_df.if_bytes > 0); | 
|  | 399 | ASSERT(ip->i_df.if_u1.if_data != NULL); | 
|  | 400 | ASSERT(ip->i_d.di_size > 0); | 
|  | 401 |  | 
|  | 402 | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; | 
|  | 403 | /* | 
|  | 404 | * Round i_bytes up to a word boundary. | 
|  | 405 | * The underlying memory is guaranteed to | 
|  | 406 | * to be there by xfs_idata_realloc(). | 
|  | 407 | */ | 
|  | 408 | data_bytes = roundup(ip->i_df.if_bytes, 4); | 
|  | 409 | ASSERT((ip->i_df.if_real_bytes == 0) || | 
|  | 410 | (ip->i_df.if_real_bytes == data_bytes)); | 
|  | 411 | vecp->i_len = (int)data_bytes; | 
|  | 412 | vecp++; | 
|  | 413 | nvecs++; | 
|  | 414 | iip->ili_format.ilf_dsize = (unsigned)data_bytes; | 
|  | 415 | } | 
|  | 416 | break; | 
|  | 417 |  | 
|  | 418 | case XFS_DINODE_FMT_DEV: | 
|  | 419 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 420 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | 
|  | 421 | XFS_ILOG_DDATA | XFS_ILOG_UUID))); | 
|  | 422 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | 
|  | 423 | iip->ili_format.ilf_u.ilfu_rdev = | 
|  | 424 | ip->i_df.if_u2.if_rdev; | 
|  | 425 | } | 
|  | 426 | break; | 
|  | 427 |  | 
|  | 428 | case XFS_DINODE_FMT_UUID: | 
|  | 429 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 430 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | 
|  | 431 | XFS_ILOG_DDATA | XFS_ILOG_DEV))); | 
|  | 432 | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | 
|  | 433 | iip->ili_format.ilf_u.ilfu_uuid = | 
|  | 434 | ip->i_df.if_u2.if_uuid; | 
|  | 435 | } | 
|  | 436 | break; | 
|  | 437 |  | 
|  | 438 | default: | 
|  | 439 | ASSERT(0); | 
|  | 440 | break; | 
|  | 441 | } | 
|  | 442 |  | 
|  | 443 | /* | 
|  | 444 | * If there are no attributes associated with the file, | 
|  | 445 | * then we're done. | 
|  | 446 | * Assert that no attribute-related log flags are set. | 
|  | 447 | */ | 
|  | 448 | if (!XFS_IFORK_Q(ip)) { | 
|  | 449 | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); | 
|  | 450 | iip->ili_format.ilf_size = nvecs; | 
|  | 451 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 452 | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); | 
|  | 453 | return; | 
|  | 454 | } | 
|  | 455 |  | 
|  | 456 | switch (ip->i_d.di_aformat) { | 
|  | 457 | case XFS_DINODE_FMT_EXTENTS: | 
|  | 458 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 459 | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); | 
|  | 460 | if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { | 
|  | 461 | ASSERT(ip->i_afp->if_bytes > 0); | 
|  | 462 | ASSERT(ip->i_afp->if_u1.if_extents != NULL); | 
|  | 463 | ASSERT(ip->i_d.di_anextents > 0); | 
|  | 464 | #ifdef DEBUG | 
|  | 465 | nrecs = ip->i_afp->if_bytes / | 
|  | 466 | (uint)sizeof(xfs_bmbt_rec_t); | 
|  | 467 | #endif | 
|  | 468 | ASSERT(nrecs > 0); | 
|  | 469 | ASSERT(nrecs == ip->i_d.di_anextents); | 
|  | 470 | #if __BYTE_ORDER == __BIG_ENDIAN | 
|  | 471 | /* | 
|  | 472 | * There are not delayed allocation extents | 
|  | 473 | * for attributes, so just point at the array. | 
|  | 474 | */ | 
|  | 475 | vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); | 
|  | 476 | vecp->i_len = ip->i_afp->if_bytes; | 
|  | 477 | #else | 
|  | 478 | ASSERT(iip->ili_aextents_buf == NULL); | 
|  | 479 | /* | 
|  | 480 | * Need to endian flip before logging | 
|  | 481 | */ | 
|  | 482 | ext_buffer = kmem_alloc(ip->i_afp->if_bytes, | 
|  | 483 | KM_SLEEP); | 
|  | 484 | iip->ili_aextents_buf = ext_buffer; | 
|  | 485 | vecp->i_addr = (xfs_caddr_t)ext_buffer; | 
|  | 486 | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, | 
|  | 487 | XFS_ATTR_FORK); | 
|  | 488 | #endif | 
|  | 489 | iip->ili_format.ilf_asize = vecp->i_len; | 
|  | 490 | vecp++; | 
|  | 491 | nvecs++; | 
|  | 492 | } | 
|  | 493 | break; | 
|  | 494 |  | 
|  | 495 | case XFS_DINODE_FMT_BTREE: | 
|  | 496 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 497 | (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); | 
|  | 498 | if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { | 
|  | 499 | ASSERT(ip->i_afp->if_broot_bytes > 0); | 
|  | 500 | ASSERT(ip->i_afp->if_broot != NULL); | 
|  | 501 | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; | 
|  | 502 | vecp->i_len = ip->i_afp->if_broot_bytes; | 
|  | 503 | vecp++; | 
|  | 504 | nvecs++; | 
|  | 505 | iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; | 
|  | 506 | } | 
|  | 507 | break; | 
|  | 508 |  | 
|  | 509 | case XFS_DINODE_FMT_LOCAL: | 
|  | 510 | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | 511 | (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); | 
|  | 512 | if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { | 
|  | 513 | ASSERT(ip->i_afp->if_bytes > 0); | 
|  | 514 | ASSERT(ip->i_afp->if_u1.if_data != NULL); | 
|  | 515 |  | 
|  | 516 | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; | 
|  | 517 | /* | 
|  | 518 | * Round i_bytes up to a word boundary. | 
|  | 519 | * The underlying memory is guaranteed to | 
|  | 520 | * to be there by xfs_idata_realloc(). | 
|  | 521 | */ | 
|  | 522 | data_bytes = roundup(ip->i_afp->if_bytes, 4); | 
|  | 523 | ASSERT((ip->i_afp->if_real_bytes == 0) || | 
|  | 524 | (ip->i_afp->if_real_bytes == data_bytes)); | 
|  | 525 | vecp->i_len = (int)data_bytes; | 
|  | 526 | vecp++; | 
|  | 527 | nvecs++; | 
|  | 528 | iip->ili_format.ilf_asize = (unsigned)data_bytes; | 
|  | 529 | } | 
|  | 530 | break; | 
|  | 531 |  | 
|  | 532 | default: | 
|  | 533 | ASSERT(0); | 
|  | 534 | break; | 
|  | 535 | } | 
|  | 536 |  | 
|  | 537 | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); | 
|  | 538 | iip->ili_format.ilf_size = nvecs; | 
|  | 539 | } | 
|  | 540 |  | 
|  | 541 |  | 
|  | 542 | /* | 
|  | 543 | * This is called to pin the inode associated with the inode log | 
|  | 544 | * item in memory so it cannot be written out.  Do this by calling | 
|  | 545 | * xfs_ipin() to bump the pin count in the inode while holding the | 
|  | 546 | * inode pin lock. | 
|  | 547 | */ | 
|  | 548 | STATIC void | 
|  | 549 | xfs_inode_item_pin( | 
|  | 550 | xfs_inode_log_item_t	*iip) | 
|  | 551 | { | 
|  | 552 | ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); | 
|  | 553 | xfs_ipin(iip->ili_inode); | 
|  | 554 | } | 
|  | 555 |  | 
|  | 556 |  | 
|  | 557 | /* | 
|  | 558 | * This is called to unpin the inode associated with the inode log | 
|  | 559 | * item which was previously pinned with a call to xfs_inode_item_pin(). | 
|  | 560 | * Just call xfs_iunpin() on the inode to do this. | 
|  | 561 | */ | 
|  | 562 | /* ARGSUSED */ | 
|  | 563 | STATIC void | 
|  | 564 | xfs_inode_item_unpin( | 
|  | 565 | xfs_inode_log_item_t	*iip, | 
|  | 566 | int			stale) | 
|  | 567 | { | 
|  | 568 | xfs_iunpin(iip->ili_inode); | 
|  | 569 | } | 
|  | 570 |  | 
|  | 571 | /* ARGSUSED */ | 
|  | 572 | STATIC void | 
|  | 573 | xfs_inode_item_unpin_remove( | 
|  | 574 | xfs_inode_log_item_t	*iip, | 
|  | 575 | xfs_trans_t		*tp) | 
|  | 576 | { | 
|  | 577 | xfs_iunpin(iip->ili_inode); | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | /* | 
|  | 581 | * This is called to attempt to lock the inode associated with this | 
|  | 582 | * inode log item, in preparation for the push routine which does the actual | 
|  | 583 | * iflush.  Don't sleep on the inode lock or the flush lock. | 
|  | 584 | * | 
|  | 585 | * If the flush lock is already held, indicating that the inode has | 
|  | 586 | * been or is in the process of being flushed, then (ideally) we'd like to | 
|  | 587 | * see if the inode's buffer is still incore, and if so give it a nudge. | 
|  | 588 | * We delay doing so until the pushbuf routine, though, to avoid holding | 
|  | 589 | * the AIL lock across a call to the blackhole which is the buffercache. | 
|  | 590 | * Also we don't want to sleep in any device strategy routines, which can happen | 
|  | 591 | * if we do the subsequent bawrite in here. | 
|  | 592 | */ | 
|  | 593 | STATIC uint | 
|  | 594 | xfs_inode_item_trylock( | 
|  | 595 | xfs_inode_log_item_t	*iip) | 
|  | 596 | { | 
|  | 597 | register xfs_inode_t	*ip; | 
|  | 598 |  | 
|  | 599 | ip = iip->ili_inode; | 
|  | 600 |  | 
|  | 601 | if (xfs_ipincount(ip) > 0) { | 
|  | 602 | return XFS_ITEM_PINNED; | 
|  | 603 | } | 
|  | 604 |  | 
|  | 605 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | 
|  | 606 | return XFS_ITEM_LOCKED; | 
|  | 607 | } | 
|  | 608 |  | 
|  | 609 | if (!xfs_iflock_nowait(ip)) { | 
|  | 610 | /* | 
|  | 611 | * If someone else isn't already trying to push the inode | 
|  | 612 | * buffer, we get to do it. | 
|  | 613 | */ | 
|  | 614 | if (iip->ili_pushbuf_flag == 0) { | 
|  | 615 | iip->ili_pushbuf_flag = 1; | 
|  | 616 | #ifdef DEBUG | 
|  | 617 | iip->ili_push_owner = get_thread_id(); | 
|  | 618 | #endif | 
|  | 619 | /* | 
|  | 620 | * Inode is left locked in shared mode. | 
|  | 621 | * Pushbuf routine gets to unlock it. | 
|  | 622 | */ | 
|  | 623 | return XFS_ITEM_PUSHBUF; | 
|  | 624 | } else { | 
|  | 625 | /* | 
|  | 626 | * We hold the AIL_LOCK, so we must specify the | 
|  | 627 | * NONOTIFY flag so that we won't double trip. | 
|  | 628 | */ | 
|  | 629 | xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); | 
|  | 630 | return XFS_ITEM_FLUSHING; | 
|  | 631 | } | 
|  | 632 | /* NOTREACHED */ | 
|  | 633 | } | 
|  | 634 |  | 
|  | 635 | /* Stale items should force out the iclog */ | 
|  | 636 | if (ip->i_flags & XFS_ISTALE) { | 
|  | 637 | xfs_ifunlock(ip); | 
|  | 638 | xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); | 
|  | 639 | return XFS_ITEM_PINNED; | 
|  | 640 | } | 
|  | 641 |  | 
|  | 642 | #ifdef DEBUG | 
|  | 643 | if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
|  | 644 | ASSERT(iip->ili_format.ilf_fields != 0); | 
|  | 645 | ASSERT(iip->ili_logged == 0); | 
|  | 646 | ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); | 
|  | 647 | } | 
|  | 648 | #endif | 
|  | 649 | return XFS_ITEM_SUCCESS; | 
|  | 650 | } | 
|  | 651 |  | 
|  | 652 | /* | 
|  | 653 | * Unlock the inode associated with the inode log item. | 
|  | 654 | * Clear the fields of the inode and inode log item that | 
|  | 655 | * are specific to the current transaction.  If the | 
|  | 656 | * hold flags is set, do not unlock the inode. | 
|  | 657 | */ | 
|  | 658 | STATIC void | 
|  | 659 | xfs_inode_item_unlock( | 
|  | 660 | xfs_inode_log_item_t	*iip) | 
|  | 661 | { | 
|  | 662 | uint		hold; | 
|  | 663 | uint		iolocked; | 
|  | 664 | uint		lock_flags; | 
|  | 665 | xfs_inode_t	*ip; | 
|  | 666 |  | 
|  | 667 | ASSERT(iip != NULL); | 
|  | 668 | ASSERT(iip->ili_inode->i_itemp != NULL); | 
|  | 669 | ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); | 
|  | 670 | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & | 
|  | 671 | XFS_ILI_IOLOCKED_EXCL)) || | 
|  | 672 | ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); | 
|  | 673 | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & | 
|  | 674 | XFS_ILI_IOLOCKED_SHARED)) || | 
|  | 675 | ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); | 
|  | 676 | /* | 
|  | 677 | * Clear the transaction pointer in the inode. | 
|  | 678 | */ | 
|  | 679 | ip = iip->ili_inode; | 
|  | 680 | ip->i_transp = NULL; | 
|  | 681 |  | 
|  | 682 | /* | 
|  | 683 | * If the inode needed a separate buffer with which to log | 
|  | 684 | * its extents, then free it now. | 
|  | 685 | */ | 
|  | 686 | if (iip->ili_extents_buf != NULL) { | 
|  | 687 | ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); | 
|  | 688 | ASSERT(ip->i_d.di_nextents > 0); | 
|  | 689 | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); | 
|  | 690 | ASSERT(ip->i_df.if_bytes > 0); | 
|  | 691 | kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); | 
|  | 692 | iip->ili_extents_buf = NULL; | 
|  | 693 | } | 
|  | 694 | if (iip->ili_aextents_buf != NULL) { | 
|  | 695 | ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); | 
|  | 696 | ASSERT(ip->i_d.di_anextents > 0); | 
|  | 697 | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); | 
|  | 698 | ASSERT(ip->i_afp->if_bytes > 0); | 
|  | 699 | kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); | 
|  | 700 | iip->ili_aextents_buf = NULL; | 
|  | 701 | } | 
|  | 702 |  | 
|  | 703 | /* | 
|  | 704 | * Figure out if we should unlock the inode or not. | 
|  | 705 | */ | 
|  | 706 | hold = iip->ili_flags & XFS_ILI_HOLD; | 
|  | 707 |  | 
|  | 708 | /* | 
|  | 709 | * Before clearing out the flags, remember whether we | 
|  | 710 | * are holding the inode's IO lock. | 
|  | 711 | */ | 
|  | 712 | iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; | 
|  | 713 |  | 
|  | 714 | /* | 
|  | 715 | * Clear out the fields of the inode log item particular | 
|  | 716 | * to the current transaction. | 
|  | 717 | */ | 
|  | 718 | iip->ili_ilock_recur = 0; | 
|  | 719 | iip->ili_iolock_recur = 0; | 
|  | 720 | iip->ili_flags = 0; | 
|  | 721 |  | 
|  | 722 | /* | 
|  | 723 | * Unlock the inode if XFS_ILI_HOLD was not set. | 
|  | 724 | */ | 
|  | 725 | if (!hold) { | 
|  | 726 | lock_flags = XFS_ILOCK_EXCL; | 
|  | 727 | if (iolocked & XFS_ILI_IOLOCKED_EXCL) { | 
|  | 728 | lock_flags |= XFS_IOLOCK_EXCL; | 
|  | 729 | } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { | 
|  | 730 | lock_flags |= XFS_IOLOCK_SHARED; | 
|  | 731 | } | 
|  | 732 | xfs_iput(iip->ili_inode, lock_flags); | 
|  | 733 | } | 
|  | 734 | } | 
|  | 735 |  | 
|  | 736 | /* | 
|  | 737 | * This is called to find out where the oldest active copy of the | 
|  | 738 | * inode log item in the on disk log resides now that the last log | 
|  | 739 | * write of it completed at the given lsn.  Since we always re-log | 
|  | 740 | * all dirty data in an inode, the latest copy in the on disk log | 
|  | 741 | * is the only one that matters.  Therefore, simply return the | 
|  | 742 | * given lsn. | 
|  | 743 | */ | 
|  | 744 | /*ARGSUSED*/ | 
|  | 745 | STATIC xfs_lsn_t | 
|  | 746 | xfs_inode_item_committed( | 
|  | 747 | xfs_inode_log_item_t	*iip, | 
|  | 748 | xfs_lsn_t		lsn) | 
|  | 749 | { | 
|  | 750 | return (lsn); | 
|  | 751 | } | 
|  | 752 |  | 
|  | 753 | /* | 
|  | 754 | * The transaction with the inode locked has aborted.  The inode | 
|  | 755 | * must not be dirty within the transaction (unless we're forcibly | 
|  | 756 | * shutting down).  We simply unlock just as if the transaction | 
|  | 757 | * had been cancelled. | 
|  | 758 | */ | 
|  | 759 | STATIC void | 
|  | 760 | xfs_inode_item_abort( | 
|  | 761 | xfs_inode_log_item_t	*iip) | 
|  | 762 | { | 
|  | 763 | xfs_inode_item_unlock(iip); | 
|  | 764 | return; | 
|  | 765 | } | 
|  | 766 |  | 
|  | 767 |  | 
|  | 768 | /* | 
|  | 769 | * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK | 
|  | 770 | * failed to get the inode flush lock but did get the inode locked SHARED. | 
|  | 771 | * Here we're trying to see if the inode buffer is incore, and if so whether it's | 
|  | 772 | * marked delayed write. If that's the case, we'll initiate a bawrite on that | 
|  | 773 | * buffer to expedite the process. | 
|  | 774 | * | 
|  | 775 | * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, | 
|  | 776 | * so it is inherently race-y. | 
|  | 777 | */ | 
|  | 778 | STATIC void | 
|  | 779 | xfs_inode_item_pushbuf( | 
|  | 780 | xfs_inode_log_item_t	*iip) | 
|  | 781 | { | 
|  | 782 | xfs_inode_t	*ip; | 
|  | 783 | xfs_mount_t	*mp; | 
|  | 784 | xfs_buf_t	*bp; | 
|  | 785 | uint		dopush; | 
|  | 786 |  | 
|  | 787 | ip = iip->ili_inode; | 
|  | 788 |  | 
|  | 789 | ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); | 
|  | 790 |  | 
|  | 791 | /* | 
|  | 792 | * The ili_pushbuf_flag keeps others from | 
|  | 793 | * trying to duplicate our effort. | 
|  | 794 | */ | 
|  | 795 | ASSERT(iip->ili_pushbuf_flag != 0); | 
|  | 796 | ASSERT(iip->ili_push_owner == get_thread_id()); | 
|  | 797 |  | 
|  | 798 | /* | 
|  | 799 | * If flushlock isn't locked anymore, chances are that the | 
|  | 800 | * inode flush completed and the inode was taken off the AIL. | 
|  | 801 | * So, just get out. | 
|  | 802 | */ | 
|  | 803 | if ((valusema(&(ip->i_flock)) > 0)  || | 
|  | 804 | ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { | 
|  | 805 | iip->ili_pushbuf_flag = 0; | 
|  | 806 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | 807 | return; | 
|  | 808 | } | 
|  | 809 |  | 
|  | 810 | mp = ip->i_mount; | 
|  | 811 | bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, | 
|  | 812 | iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); | 
|  | 813 |  | 
|  | 814 | if (bp != NULL) { | 
|  | 815 | if (XFS_BUF_ISDELAYWRITE(bp)) { | 
|  | 816 | /* | 
|  | 817 | * We were racing with iflush because we don't hold | 
|  | 818 | * the AIL_LOCK or the flush lock. However, at this point, | 
|  | 819 | * we have the buffer, and we know that it's dirty. | 
|  | 820 | * So, it's possible that iflush raced with us, and | 
|  | 821 | * this item is already taken off the AIL. | 
|  | 822 | * If not, we can flush it async. | 
|  | 823 | */ | 
|  | 824 | dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && | 
|  | 825 | (valusema(&(ip->i_flock)) <= 0)); | 
|  | 826 | iip->ili_pushbuf_flag = 0; | 
|  | 827 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | 828 | xfs_buftrace("INODE ITEM PUSH", bp); | 
|  | 829 | if (XFS_BUF_ISPINNED(bp)) { | 
|  | 830 | xfs_log_force(mp, (xfs_lsn_t)0, | 
|  | 831 | XFS_LOG_FORCE); | 
|  | 832 | } | 
|  | 833 | if (dopush) { | 
|  | 834 | xfs_bawrite(mp, bp); | 
|  | 835 | } else { | 
|  | 836 | xfs_buf_relse(bp); | 
|  | 837 | } | 
|  | 838 | } else { | 
|  | 839 | iip->ili_pushbuf_flag = 0; | 
|  | 840 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | 841 | xfs_buf_relse(bp); | 
|  | 842 | } | 
|  | 843 | return; | 
|  | 844 | } | 
|  | 845 | /* | 
|  | 846 | * We have to be careful about resetting pushbuf flag too early (above). | 
|  | 847 | * Even though in theory we can do it as soon as we have the buflock, | 
|  | 848 | * we don't want others to be doing work needlessly. They'll come to | 
|  | 849 | * this function thinking that pushing the buffer is their | 
|  | 850 | * responsibility only to find that the buffer is still locked by | 
|  | 851 | * another doing the same thing | 
|  | 852 | */ | 
|  | 853 | iip->ili_pushbuf_flag = 0; | 
|  | 854 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | 855 | return; | 
|  | 856 | } | 
|  | 857 |  | 
|  | 858 |  | 
|  | 859 | /* | 
|  | 860 | * This is called to asynchronously write the inode associated with this | 
|  | 861 | * inode log item out to disk. The inode will already have been locked by | 
|  | 862 | * a successful call to xfs_inode_item_trylock(). | 
|  | 863 | */ | 
|  | 864 | STATIC void | 
|  | 865 | xfs_inode_item_push( | 
|  | 866 | xfs_inode_log_item_t	*iip) | 
|  | 867 | { | 
|  | 868 | xfs_inode_t	*ip; | 
|  | 869 |  | 
|  | 870 | ip = iip->ili_inode; | 
|  | 871 |  | 
|  | 872 | ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); | 
|  | 873 | ASSERT(valusema(&(ip->i_flock)) <= 0); | 
|  | 874 | /* | 
|  | 875 | * Since we were able to lock the inode's flush lock and | 
|  | 876 | * we found it on the AIL, the inode must be dirty.  This | 
|  | 877 | * is because the inode is removed from the AIL while still | 
|  | 878 | * holding the flush lock in xfs_iflush_done().  Thus, if | 
|  | 879 | * we found it in the AIL and were able to obtain the flush | 
|  | 880 | * lock without sleeping, then there must not have been | 
|  | 881 | * anyone in the process of flushing the inode. | 
|  | 882 | */ | 
|  | 883 | ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || | 
|  | 884 | iip->ili_format.ilf_fields != 0); | 
|  | 885 |  | 
|  | 886 | /* | 
|  | 887 | * Write out the inode.  The completion routine ('iflush_done') will | 
|  | 888 | * pull it from the AIL, mark it clean, unlock the flush lock. | 
|  | 889 | */ | 
|  | 890 | (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); | 
|  | 891 | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | 892 |  | 
|  | 893 | return; | 
|  | 894 | } | 
|  | 895 |  | 
|  | 896 | /* | 
|  | 897 | * XXX rcc - this one really has to do something.  Probably needs | 
|  | 898 | * to stamp in a new field in the incore inode. | 
|  | 899 | */ | 
|  | 900 | /* ARGSUSED */ | 
|  | 901 | STATIC void | 
|  | 902 | xfs_inode_item_committing( | 
|  | 903 | xfs_inode_log_item_t	*iip, | 
|  | 904 | xfs_lsn_t		lsn) | 
|  | 905 | { | 
|  | 906 | iip->ili_last_lsn = lsn; | 
|  | 907 | return; | 
|  | 908 | } | 
|  | 909 |  | 
|  | 910 | /* | 
|  | 911 | * This is the ops vector shared by all buf log items. | 
|  | 912 | */ | 
| Christoph Hellwig | ba0f32d | 2005-06-21 15:36:52 +1000 | [diff] [blame] | 913 | STATIC struct xfs_item_ops xfs_inode_item_ops = { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 914 | .iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size, | 
|  | 915 | .iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | 
|  | 916 | xfs_inode_item_format, | 
|  | 917 | .iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin, | 
|  | 918 | .iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, | 
|  | 919 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) | 
|  | 920 | xfs_inode_item_unpin_remove, | 
|  | 921 | .iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, | 
|  | 922 | .iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, | 
|  | 923 | .iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | 924 | xfs_inode_item_committed, | 
|  | 925 | .iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push, | 
|  | 926 | .iop_abort	= (void(*)(xfs_log_item_t*))xfs_inode_item_abort, | 
|  | 927 | .iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, | 
|  | 928 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | 929 | xfs_inode_item_committing | 
|  | 930 | }; | 
|  | 931 |  | 
|  | 932 |  | 
|  | 933 | /* | 
|  | 934 | * Initialize the inode log item for a newly allocated (in-core) inode. | 
|  | 935 | */ | 
|  | 936 | void | 
|  | 937 | xfs_inode_item_init( | 
|  | 938 | xfs_inode_t	*ip, | 
|  | 939 | xfs_mount_t	*mp) | 
|  | 940 | { | 
|  | 941 | xfs_inode_log_item_t	*iip; | 
|  | 942 |  | 
|  | 943 | ASSERT(ip->i_itemp == NULL); | 
|  | 944 | iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); | 
|  | 945 |  | 
|  | 946 | iip->ili_item.li_type = XFS_LI_INODE; | 
|  | 947 | iip->ili_item.li_ops = &xfs_inode_item_ops; | 
|  | 948 | iip->ili_item.li_mountp = mp; | 
|  | 949 | iip->ili_inode = ip; | 
|  | 950 |  | 
|  | 951 | /* | 
|  | 952 | We have zeroed memory. No need ... | 
|  | 953 | iip->ili_extents_buf = NULL; | 
|  | 954 | iip->ili_pushbuf_flag = 0; | 
|  | 955 | */ | 
|  | 956 |  | 
|  | 957 | iip->ili_format.ilf_type = XFS_LI_INODE; | 
|  | 958 | iip->ili_format.ilf_ino = ip->i_ino; | 
|  | 959 | iip->ili_format.ilf_blkno = ip->i_blkno; | 
|  | 960 | iip->ili_format.ilf_len = ip->i_len; | 
|  | 961 | iip->ili_format.ilf_boffset = ip->i_boffset; | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | /* | 
|  | 965 | * Free the inode log item and any memory hanging off of it. | 
|  | 966 | */ | 
|  | 967 | void | 
|  | 968 | xfs_inode_item_destroy( | 
|  | 969 | xfs_inode_t	*ip) | 
|  | 970 | { | 
|  | 971 | #ifdef XFS_TRANS_DEBUG | 
|  | 972 | if (ip->i_itemp->ili_root_size != 0) { | 
|  | 973 | kmem_free(ip->i_itemp->ili_orig_root, | 
|  | 974 | ip->i_itemp->ili_root_size); | 
|  | 975 | } | 
|  | 976 | #endif | 
|  | 977 | kmem_zone_free(xfs_ili_zone, ip->i_itemp); | 
|  | 978 | } | 
|  | 979 |  | 
|  | 980 |  | 
|  | 981 | /* | 
|  | 982 | * This is the inode flushing I/O completion routine.  It is called | 
|  | 983 | * from interrupt level when the buffer containing the inode is | 
|  | 984 | * flushed to disk.  It is responsible for removing the inode item | 
|  | 985 | * from the AIL if it has not been re-logged, and unlocking the inode's | 
|  | 986 | * flush lock. | 
|  | 987 | */ | 
|  | 988 | /*ARGSUSED*/ | 
|  | 989 | void | 
|  | 990 | xfs_iflush_done( | 
|  | 991 | xfs_buf_t		*bp, | 
|  | 992 | xfs_inode_log_item_t	*iip) | 
|  | 993 | { | 
|  | 994 | xfs_inode_t	*ip; | 
|  | 995 | SPLDECL(s); | 
|  | 996 |  | 
|  | 997 | ip = iip->ili_inode; | 
|  | 998 |  | 
|  | 999 | /* | 
|  | 1000 | * We only want to pull the item from the AIL if it is | 
|  | 1001 | * actually there and its location in the log has not | 
|  | 1002 | * changed since we started the flush.  Thus, we only bother | 
|  | 1003 | * if the ili_logged flag is set and the inode's lsn has not | 
|  | 1004 | * changed.  First we check the lsn outside | 
|  | 1005 | * the lock since it's cheaper, and then we recheck while | 
|  | 1006 | * holding the lock before removing the inode from the AIL. | 
|  | 1007 | */ | 
|  | 1008 | if (iip->ili_logged && | 
|  | 1009 | (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { | 
|  | 1010 | AIL_LOCK(ip->i_mount, s); | 
|  | 1011 | if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { | 
|  | 1012 | /* | 
|  | 1013 | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | 1014 | */ | 
|  | 1015 | xfs_trans_delete_ail(ip->i_mount, | 
|  | 1016 | (xfs_log_item_t*)iip, s); | 
|  | 1017 | } else { | 
|  | 1018 | AIL_UNLOCK(ip->i_mount, s); | 
|  | 1019 | } | 
|  | 1020 | } | 
|  | 1021 |  | 
|  | 1022 | iip->ili_logged = 0; | 
|  | 1023 |  | 
|  | 1024 | /* | 
|  | 1025 | * Clear the ili_last_fields bits now that we know that the | 
|  | 1026 | * data corresponding to them is safely on disk. | 
|  | 1027 | */ | 
|  | 1028 | iip->ili_last_fields = 0; | 
|  | 1029 |  | 
|  | 1030 | /* | 
|  | 1031 | * Release the inode's flush lock since we're done with it. | 
|  | 1032 | */ | 
|  | 1033 | xfs_ifunlock(ip); | 
|  | 1034 |  | 
|  | 1035 | return; | 
|  | 1036 | } | 
|  | 1037 |  | 
|  | 1038 | /* | 
|  | 1039 | * This is the inode flushing abort routine.  It is called | 
|  | 1040 | * from xfs_iflush when the filesystem is shutting down to clean | 
|  | 1041 | * up the inode state. | 
|  | 1042 | * It is responsible for removing the inode item | 
|  | 1043 | * from the AIL if it has not been re-logged, and unlocking the inode's | 
|  | 1044 | * flush lock. | 
|  | 1045 | */ | 
|  | 1046 | void | 
|  | 1047 | xfs_iflush_abort( | 
|  | 1048 | xfs_inode_t		*ip) | 
|  | 1049 | { | 
|  | 1050 | xfs_inode_log_item_t	*iip; | 
|  | 1051 | xfs_mount_t		*mp; | 
|  | 1052 | SPLDECL(s); | 
|  | 1053 |  | 
|  | 1054 | iip = ip->i_itemp; | 
|  | 1055 | mp = ip->i_mount; | 
|  | 1056 | if (iip) { | 
|  | 1057 | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | 
|  | 1058 | AIL_LOCK(mp, s); | 
|  | 1059 | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | 
|  | 1060 | /* | 
|  | 1061 | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | 1062 | */ | 
|  | 1063 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, | 
|  | 1064 | s); | 
|  | 1065 | } else | 
|  | 1066 | AIL_UNLOCK(mp, s); | 
|  | 1067 | } | 
|  | 1068 | iip->ili_logged = 0; | 
|  | 1069 | /* | 
|  | 1070 | * Clear the ili_last_fields bits now that we know that the | 
|  | 1071 | * data corresponding to them is safely on disk. | 
|  | 1072 | */ | 
|  | 1073 | iip->ili_last_fields = 0; | 
|  | 1074 | /* | 
|  | 1075 | * Clear the inode logging fields so no more flushes are | 
|  | 1076 | * attempted. | 
|  | 1077 | */ | 
|  | 1078 | iip->ili_format.ilf_fields = 0; | 
|  | 1079 | } | 
|  | 1080 | /* | 
|  | 1081 | * Release the inode's flush lock since we're done with it. | 
|  | 1082 | */ | 
|  | 1083 | xfs_ifunlock(ip); | 
|  | 1084 | } | 
|  | 1085 |  | 
|  | 1086 | void | 
|  | 1087 | xfs_istale_done( | 
|  | 1088 | xfs_buf_t		*bp, | 
|  | 1089 | xfs_inode_log_item_t	*iip) | 
|  | 1090 | { | 
|  | 1091 | xfs_iflush_abort(iip->ili_inode); | 
|  | 1092 | } |