| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2000-2002 Silicon Graphics, Inc.  All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or modify it | 
|  | 5 | * under the terms of version 2 of the GNU General Public License as | 
|  | 6 | * published by the Free Software Foundation. | 
|  | 7 | * | 
|  | 8 | * This program is distributed in the hope that it would be useful, but | 
|  | 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | 11 | * | 
|  | 12 | * Further, this software is distributed without any warranty that it is | 
|  | 13 | * free of the rightful claim of any third person regarding infringement | 
|  | 14 | * or the like.  Any license provided herein, whether implied or | 
|  | 15 | * otherwise, applies only to this software file.  Patent licenses, if | 
|  | 16 | * any, provided herein do not apply to combinations of this program with | 
|  | 17 | * other software, or any other product whatsoever. | 
|  | 18 | * | 
|  | 19 | * You should have received a copy of the GNU General Public License along | 
|  | 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 | 
|  | 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
|  | 22 | * | 
|  | 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | 
|  | 24 | * Mountain View, CA  94043, or: | 
|  | 25 | * | 
|  | 26 | * http://www.sgi.com | 
|  | 27 | * | 
|  | 28 | * For further information regarding this notice, see: | 
|  | 29 | * | 
|  | 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | 
|  | 31 | */ | 
|  | 32 |  | 
|  | 33 | #include "xfs.h" | 
|  | 34 | #include "xfs_macros.h" | 
|  | 35 | #include "xfs_types.h" | 
|  | 36 | #include "xfs_inum.h" | 
|  | 37 | #include "xfs_log.h" | 
|  | 38 | #include "xfs_trans.h" | 
|  | 39 | #include "xfs_buf_item.h" | 
|  | 40 | #include "xfs_sb.h" | 
|  | 41 | #include "xfs_ag.h" | 
|  | 42 | #include "xfs_dir.h" | 
|  | 43 | #include "xfs_dmapi.h" | 
|  | 44 | #include "xfs_mount.h" | 
|  | 45 | #include "xfs_trans_priv.h" | 
|  | 46 | #include "xfs_error.h" | 
|  | 47 | #include "xfs_rw.h" | 
|  | 48 |  | 
|  | 49 |  | 
|  | 50 | STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *, | 
|  | 51 | xfs_daddr_t, int); | 
|  | 52 | STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *, | 
|  | 53 | xfs_daddr_t, int); | 
|  | 54 |  | 
|  | 55 |  | 
|  | 56 | /* | 
|  | 57 | * Get and lock the buffer for the caller if it is not already | 
|  | 58 | * locked within the given transaction.  If it is already locked | 
|  | 59 | * within the transaction, just increment its lock recursion count | 
|  | 60 | * and return a pointer to it. | 
|  | 61 | * | 
|  | 62 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | 
|  | 63 | * cache routine incore_match() to find the buffer | 
|  | 64 | * if it is already owned by this transaction. | 
|  | 65 | * | 
|  | 66 | * If we don't already own the buffer, use get_buf() to get it. | 
|  | 67 | * If it doesn't yet have an associated xfs_buf_log_item structure, | 
|  | 68 | * then allocate one and add the item to this transaction. | 
|  | 69 | * | 
|  | 70 | * If the transaction pointer is NULL, make this just a normal | 
|  | 71 | * get_buf() call. | 
|  | 72 | */ | 
|  | 73 | xfs_buf_t * | 
|  | 74 | xfs_trans_get_buf(xfs_trans_t	*tp, | 
|  | 75 | xfs_buftarg_t	*target_dev, | 
|  | 76 | xfs_daddr_t	blkno, | 
|  | 77 | int		len, | 
|  | 78 | uint		flags) | 
|  | 79 | { | 
|  | 80 | xfs_buf_t		*bp; | 
|  | 81 | xfs_buf_log_item_t	*bip; | 
|  | 82 |  | 
|  | 83 | if (flags == 0) | 
|  | 84 | flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; | 
|  | 85 |  | 
|  | 86 | /* | 
|  | 87 | * Default to a normal get_buf() call if the tp is NULL. | 
|  | 88 | */ | 
|  | 89 | if (tp == NULL) { | 
|  | 90 | bp = xfs_buf_get_flags(target_dev, blkno, len, | 
|  | 91 | flags | BUF_BUSY); | 
|  | 92 | return(bp); | 
|  | 93 | } | 
|  | 94 |  | 
|  | 95 | /* | 
|  | 96 | * If we find the buffer in the cache with this transaction | 
|  | 97 | * pointer in its b_fsprivate2 field, then we know we already | 
|  | 98 | * have it locked.  In this case we just increment the lock | 
|  | 99 | * recursion count and return the buffer to the caller. | 
|  | 100 | */ | 
|  | 101 | if (tp->t_items.lic_next == NULL) { | 
|  | 102 | bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); | 
|  | 103 | } else { | 
|  | 104 | bp  = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len); | 
|  | 105 | } | 
|  | 106 | if (bp != NULL) { | 
|  | 107 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | 
|  | 108 | if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { | 
|  | 109 | xfs_buftrace("TRANS GET RECUR SHUT", bp); | 
|  | 110 | XFS_BUF_SUPER_STALE(bp); | 
|  | 111 | } | 
|  | 112 | /* | 
|  | 113 | * If the buffer is stale then it was binval'ed | 
|  | 114 | * since last read.  This doesn't matter since the | 
|  | 115 | * caller isn't allowed to use the data anyway. | 
|  | 116 | */ | 
|  | 117 | else if (XFS_BUF_ISSTALE(bp)) { | 
|  | 118 | xfs_buftrace("TRANS GET RECUR STALE", bp); | 
|  | 119 | ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); | 
|  | 120 | } | 
|  | 121 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 122 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 123 | ASSERT(bip != NULL); | 
|  | 124 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 125 | bip->bli_recur++; | 
|  | 126 | xfs_buftrace("TRANS GET RECUR", bp); | 
|  | 127 | xfs_buf_item_trace("GET RECUR", bip); | 
|  | 128 | return (bp); | 
|  | 129 | } | 
|  | 130 |  | 
|  | 131 | /* | 
|  | 132 | * We always specify the BUF_BUSY flag within a transaction so | 
|  | 133 | * that get_buf does not try to push out a delayed write buffer | 
|  | 134 | * which might cause another transaction to take place (if the | 
|  | 135 | * buffer was delayed alloc).  Such recursive transactions can | 
|  | 136 | * easily deadlock with our current transaction as well as cause | 
|  | 137 | * us to run out of stack space. | 
|  | 138 | */ | 
|  | 139 | bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY); | 
|  | 140 | if (bp == NULL) { | 
|  | 141 | return NULL; | 
|  | 142 | } | 
|  | 143 |  | 
|  | 144 | ASSERT(!XFS_BUF_GETERROR(bp)); | 
|  | 145 |  | 
|  | 146 | /* | 
|  | 147 | * The xfs_buf_log_item pointer is stored in b_fsprivate.  If | 
|  | 148 | * it doesn't have one yet, then allocate one and initialize it. | 
|  | 149 | * The checks to see if one is there are in xfs_buf_item_init(). | 
|  | 150 | */ | 
|  | 151 | xfs_buf_item_init(bp, tp->t_mountp); | 
|  | 152 |  | 
|  | 153 | /* | 
|  | 154 | * Set the recursion count for the buffer within this transaction | 
|  | 155 | * to 0. | 
|  | 156 | */ | 
|  | 157 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | 
|  | 158 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | 
|  | 159 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | 
|  | 160 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | 
|  | 161 | bip->bli_recur = 0; | 
|  | 162 |  | 
|  | 163 | /* | 
|  | 164 | * Take a reference for this transaction on the buf item. | 
|  | 165 | */ | 
|  | 166 | atomic_inc(&bip->bli_refcount); | 
|  | 167 |  | 
|  | 168 | /* | 
|  | 169 | * Get a log_item_desc to point at the new item. | 
|  | 170 | */ | 
|  | 171 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | 
|  | 172 |  | 
|  | 173 | /* | 
|  | 174 | * Initialize b_fsprivate2 so we can find it with incore_match() | 
|  | 175 | * above. | 
|  | 176 | */ | 
|  | 177 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | 
|  | 178 |  | 
|  | 179 | xfs_buftrace("TRANS GET", bp); | 
|  | 180 | xfs_buf_item_trace("GET", bip); | 
|  | 181 | return (bp); | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | /* | 
|  | 185 | * Get and lock the superblock buffer of this file system for the | 
|  | 186 | * given transaction. | 
|  | 187 | * | 
|  | 188 | * We don't need to use incore_match() here, because the superblock | 
|  | 189 | * buffer is a private buffer which we keep a pointer to in the | 
|  | 190 | * mount structure. | 
|  | 191 | */ | 
|  | 192 | xfs_buf_t * | 
|  | 193 | xfs_trans_getsb(xfs_trans_t	*tp, | 
|  | 194 | struct xfs_mount *mp, | 
|  | 195 | int		flags) | 
|  | 196 | { | 
|  | 197 | xfs_buf_t		*bp; | 
|  | 198 | xfs_buf_log_item_t	*bip; | 
|  | 199 |  | 
|  | 200 | /* | 
|  | 201 | * Default to just trying to lock the superblock buffer | 
|  | 202 | * if tp is NULL. | 
|  | 203 | */ | 
|  | 204 | if (tp == NULL) { | 
|  | 205 | return (xfs_getsb(mp, flags)); | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 | /* | 
|  | 209 | * If the superblock buffer already has this transaction | 
|  | 210 | * pointer in its b_fsprivate2 field, then we know we already | 
|  | 211 | * have it locked.  In this case we just increment the lock | 
|  | 212 | * recursion count and return the buffer to the caller. | 
|  | 213 | */ | 
|  | 214 | bp = mp->m_sb_bp; | 
|  | 215 | if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { | 
|  | 216 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | 
|  | 217 | ASSERT(bip != NULL); | 
|  | 218 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 219 | bip->bli_recur++; | 
|  | 220 | xfs_buf_item_trace("GETSB RECUR", bip); | 
|  | 221 | return (bp); | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | bp = xfs_getsb(mp, flags); | 
|  | 225 | if (bp == NULL) { | 
|  | 226 | return NULL; | 
|  | 227 | } | 
|  | 228 |  | 
|  | 229 | /* | 
|  | 230 | * The xfs_buf_log_item pointer is stored in b_fsprivate.  If | 
|  | 231 | * it doesn't have one yet, then allocate one and initialize it. | 
|  | 232 | * The checks to see if one is there are in xfs_buf_item_init(). | 
|  | 233 | */ | 
|  | 234 | xfs_buf_item_init(bp, mp); | 
|  | 235 |  | 
|  | 236 | /* | 
|  | 237 | * Set the recursion count for the buffer within this transaction | 
|  | 238 | * to 0. | 
|  | 239 | */ | 
|  | 240 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | 
|  | 241 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | 
|  | 242 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | 
|  | 243 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | 
|  | 244 | bip->bli_recur = 0; | 
|  | 245 |  | 
|  | 246 | /* | 
|  | 247 | * Take a reference for this transaction on the buf item. | 
|  | 248 | */ | 
|  | 249 | atomic_inc(&bip->bli_refcount); | 
|  | 250 |  | 
|  | 251 | /* | 
|  | 252 | * Get a log_item_desc to point at the new item. | 
|  | 253 | */ | 
|  | 254 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | 
|  | 255 |  | 
|  | 256 | /* | 
|  | 257 | * Initialize b_fsprivate2 so we can find it with incore_match() | 
|  | 258 | * above. | 
|  | 259 | */ | 
|  | 260 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | 
|  | 261 |  | 
|  | 262 | xfs_buf_item_trace("GETSB", bip); | 
|  | 263 | return (bp); | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | #ifdef DEBUG | 
|  | 267 | xfs_buftarg_t *xfs_error_target; | 
|  | 268 | int	xfs_do_error; | 
|  | 269 | int	xfs_req_num; | 
|  | 270 | int	xfs_error_mod = 33; | 
|  | 271 | #endif | 
|  | 272 |  | 
|  | 273 | /* | 
|  | 274 | * Get and lock the buffer for the caller if it is not already | 
|  | 275 | * locked within the given transaction.  If it has not yet been | 
|  | 276 | * read in, read it from disk. If it is already locked | 
|  | 277 | * within the transaction and already read in, just increment its | 
|  | 278 | * lock recursion count and return a pointer to it. | 
|  | 279 | * | 
|  | 280 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | 
|  | 281 | * cache routine incore_match() to find the buffer | 
|  | 282 | * if it is already owned by this transaction. | 
|  | 283 | * | 
|  | 284 | * If we don't already own the buffer, use read_buf() to get it. | 
|  | 285 | * If it doesn't yet have an associated xfs_buf_log_item structure, | 
|  | 286 | * then allocate one and add the item to this transaction. | 
|  | 287 | * | 
|  | 288 | * If the transaction pointer is NULL, make this just a normal | 
|  | 289 | * read_buf() call. | 
|  | 290 | */ | 
|  | 291 | int | 
|  | 292 | xfs_trans_read_buf( | 
|  | 293 | xfs_mount_t	*mp, | 
|  | 294 | xfs_trans_t	*tp, | 
|  | 295 | xfs_buftarg_t	*target, | 
|  | 296 | xfs_daddr_t	blkno, | 
|  | 297 | int		len, | 
|  | 298 | uint		flags, | 
|  | 299 | xfs_buf_t	**bpp) | 
|  | 300 | { | 
|  | 301 | xfs_buf_t		*bp; | 
|  | 302 | xfs_buf_log_item_t	*bip; | 
|  | 303 | int			error; | 
|  | 304 |  | 
|  | 305 | if (flags == 0) | 
|  | 306 | flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; | 
|  | 307 |  | 
|  | 308 | /* | 
|  | 309 | * Default to a normal get_buf() call if the tp is NULL. | 
|  | 310 | */ | 
|  | 311 | if (tp == NULL) { | 
|  | 312 | bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); | 
|  | 313 | if (!bp) | 
|  | 314 | return XFS_ERROR(ENOMEM); | 
|  | 315 |  | 
|  | 316 | if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) { | 
|  | 317 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | 
|  | 318 | bp, blkno); | 
|  | 319 | error = XFS_BUF_GETERROR(bp); | 
|  | 320 | xfs_buf_relse(bp); | 
|  | 321 | return error; | 
|  | 322 | } | 
|  | 323 | #ifdef DEBUG | 
|  | 324 | if (xfs_do_error && (bp != NULL)) { | 
|  | 325 | if (xfs_error_target == target) { | 
|  | 326 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | 
|  | 327 | xfs_buf_relse(bp); | 
|  | 328 | printk("Returning error!\n"); | 
|  | 329 | return XFS_ERROR(EIO); | 
|  | 330 | } | 
|  | 331 | } | 
|  | 332 | } | 
|  | 333 | #endif | 
|  | 334 | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | 335 | goto shutdown_abort; | 
|  | 336 | *bpp = bp; | 
|  | 337 | return 0; | 
|  | 338 | } | 
|  | 339 |  | 
|  | 340 | /* | 
|  | 341 | * If we find the buffer in the cache with this transaction | 
|  | 342 | * pointer in its b_fsprivate2 field, then we know we already | 
|  | 343 | * have it locked.  If it is already read in we just increment | 
|  | 344 | * the lock recursion count and return the buffer to the caller. | 
|  | 345 | * If the buffer is not yet read in, then we read it in, increment | 
|  | 346 | * the lock recursion count, and return it to the caller. | 
|  | 347 | */ | 
|  | 348 | if (tp->t_items.lic_next == NULL) { | 
|  | 349 | bp = xfs_trans_buf_item_match(tp, target, blkno, len); | 
|  | 350 | } else { | 
|  | 351 | bp = xfs_trans_buf_item_match_all(tp, target, blkno, len); | 
|  | 352 | } | 
|  | 353 | if (bp != NULL) { | 
|  | 354 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | 
|  | 355 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 356 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 357 | ASSERT((XFS_BUF_ISERROR(bp)) == 0); | 
|  | 358 | if (!(XFS_BUF_ISDONE(bp))) { | 
|  | 359 | xfs_buftrace("READ_BUF_INCORE !DONE", bp); | 
|  | 360 | ASSERT(!XFS_BUF_ISASYNC(bp)); | 
|  | 361 | XFS_BUF_READ(bp); | 
|  | 362 | xfsbdstrat(tp->t_mountp, bp); | 
|  | 363 | xfs_iowait(bp); | 
|  | 364 | if (XFS_BUF_GETERROR(bp) != 0) { | 
|  | 365 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | 
|  | 366 | bp, blkno); | 
|  | 367 | error = XFS_BUF_GETERROR(bp); | 
|  | 368 | xfs_buf_relse(bp); | 
|  | 369 | /* | 
|  | 370 | * We can gracefully recover from most | 
|  | 371 | * read errors. Ones we can't are those | 
|  | 372 | * that happen after the transaction's | 
|  | 373 | * already dirty. | 
|  | 374 | */ | 
|  | 375 | if (tp->t_flags & XFS_TRANS_DIRTY) | 
|  | 376 | xfs_force_shutdown(tp->t_mountp, | 
|  | 377 | XFS_METADATA_IO_ERROR); | 
|  | 378 | return error; | 
|  | 379 | } | 
|  | 380 | } | 
|  | 381 | /* | 
|  | 382 | * We never locked this buf ourselves, so we shouldn't | 
|  | 383 | * brelse it either. Just get out. | 
|  | 384 | */ | 
|  | 385 | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | 386 | xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp); | 
|  | 387 | *bpp = NULL; | 
|  | 388 | return XFS_ERROR(EIO); | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 |  | 
|  | 392 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | 
|  | 393 | bip->bli_recur++; | 
|  | 394 |  | 
|  | 395 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 396 | xfs_buf_item_trace("READ RECUR", bip); | 
|  | 397 | *bpp = bp; | 
|  | 398 | return 0; | 
|  | 399 | } | 
|  | 400 |  | 
|  | 401 | /* | 
|  | 402 | * We always specify the BUF_BUSY flag within a transaction so | 
|  | 403 | * that get_buf does not try to push out a delayed write buffer | 
|  | 404 | * which might cause another transaction to take place (if the | 
|  | 405 | * buffer was delayed alloc).  Such recursive transactions can | 
|  | 406 | * easily deadlock with our current transaction as well as cause | 
|  | 407 | * us to run out of stack space. | 
|  | 408 | */ | 
|  | 409 | bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); | 
|  | 410 | if (bp == NULL) { | 
|  | 411 | *bpp = NULL; | 
|  | 412 | return 0; | 
|  | 413 | } | 
|  | 414 | if (XFS_BUF_GETERROR(bp) != 0) { | 
|  | 415 | XFS_BUF_SUPER_STALE(bp); | 
|  | 416 | xfs_buftrace("READ ERROR", bp); | 
|  | 417 | error = XFS_BUF_GETERROR(bp); | 
|  | 418 |  | 
|  | 419 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | 
|  | 420 | bp, blkno); | 
|  | 421 | if (tp->t_flags & XFS_TRANS_DIRTY) | 
|  | 422 | xfs_force_shutdown(tp->t_mountp, XFS_METADATA_IO_ERROR); | 
|  | 423 | xfs_buf_relse(bp); | 
|  | 424 | return error; | 
|  | 425 | } | 
|  | 426 | #ifdef DEBUG | 
|  | 427 | if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { | 
|  | 428 | if (xfs_error_target == target) { | 
|  | 429 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | 
|  | 430 | xfs_force_shutdown(tp->t_mountp, | 
|  | 431 | XFS_METADATA_IO_ERROR); | 
|  | 432 | xfs_buf_relse(bp); | 
|  | 433 | printk("Returning error in trans!\n"); | 
|  | 434 | return XFS_ERROR(EIO); | 
|  | 435 | } | 
|  | 436 | } | 
|  | 437 | } | 
|  | 438 | #endif | 
|  | 439 | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | 440 | goto shutdown_abort; | 
|  | 441 |  | 
|  | 442 | /* | 
|  | 443 | * The xfs_buf_log_item pointer is stored in b_fsprivate.  If | 
|  | 444 | * it doesn't have one yet, then allocate one and initialize it. | 
|  | 445 | * The checks to see if one is there are in xfs_buf_item_init(). | 
|  | 446 | */ | 
|  | 447 | xfs_buf_item_init(bp, tp->t_mountp); | 
|  | 448 |  | 
|  | 449 | /* | 
|  | 450 | * Set the recursion count for the buffer within this transaction | 
|  | 451 | * to 0. | 
|  | 452 | */ | 
|  | 453 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | 
|  | 454 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | 
|  | 455 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | 
|  | 456 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | 
|  | 457 | bip->bli_recur = 0; | 
|  | 458 |  | 
|  | 459 | /* | 
|  | 460 | * Take a reference for this transaction on the buf item. | 
|  | 461 | */ | 
|  | 462 | atomic_inc(&bip->bli_refcount); | 
|  | 463 |  | 
|  | 464 | /* | 
|  | 465 | * Get a log_item_desc to point at the new item. | 
|  | 466 | */ | 
|  | 467 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | 
|  | 468 |  | 
|  | 469 | /* | 
|  | 470 | * Initialize b_fsprivate2 so we can find it with incore_match() | 
|  | 471 | * above. | 
|  | 472 | */ | 
|  | 473 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | 
|  | 474 |  | 
|  | 475 | xfs_buftrace("TRANS READ", bp); | 
|  | 476 | xfs_buf_item_trace("READ", bip); | 
|  | 477 | *bpp = bp; | 
|  | 478 | return 0; | 
|  | 479 |  | 
|  | 480 | shutdown_abort: | 
|  | 481 | /* | 
|  | 482 | * the theory here is that buffer is good but we're | 
|  | 483 | * bailing out because the filesystem is being forcibly | 
|  | 484 | * shut down.  So we should leave the b_flags alone since | 
|  | 485 | * the buffer's not staled and just get out. | 
|  | 486 | */ | 
|  | 487 | #if defined(DEBUG) | 
|  | 488 | if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) | 
|  | 489 | cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); | 
|  | 490 | #endif | 
|  | 491 | ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) != | 
|  | 492 | (XFS_B_STALE|XFS_B_DELWRI)); | 
|  | 493 |  | 
|  | 494 | xfs_buftrace("READ_BUF XFSSHUTDN", bp); | 
|  | 495 | xfs_buf_relse(bp); | 
|  | 496 | *bpp = NULL; | 
|  | 497 | return XFS_ERROR(EIO); | 
|  | 498 | } | 
|  | 499 |  | 
|  | 500 |  | 
|  | 501 | /* | 
|  | 502 | * Release the buffer bp which was previously acquired with one of the | 
|  | 503 | * xfs_trans_... buffer allocation routines if the buffer has not | 
|  | 504 | * been modified within this transaction.  If the buffer is modified | 
|  | 505 | * within this transaction, do decrement the recursion count but do | 
|  | 506 | * not release the buffer even if the count goes to 0.  If the buffer is not | 
|  | 507 | * modified within the transaction, decrement the recursion count and | 
|  | 508 | * release the buffer if the recursion count goes to 0. | 
|  | 509 | * | 
|  | 510 | * If the buffer is to be released and it was not modified before | 
|  | 511 | * this transaction began, then free the buf_log_item associated with it. | 
|  | 512 | * | 
|  | 513 | * If the transaction pointer is NULL, make this just a normal | 
|  | 514 | * brelse() call. | 
|  | 515 | */ | 
|  | 516 | void | 
|  | 517 | xfs_trans_brelse(xfs_trans_t	*tp, | 
|  | 518 | xfs_buf_t	*bp) | 
|  | 519 | { | 
|  | 520 | xfs_buf_log_item_t	*bip; | 
|  | 521 | xfs_log_item_t		*lip; | 
|  | 522 | xfs_log_item_desc_t	*lidp; | 
|  | 523 |  | 
|  | 524 | /* | 
|  | 525 | * Default to a normal brelse() call if the tp is NULL. | 
|  | 526 | */ | 
|  | 527 | if (tp == NULL) { | 
|  | 528 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | 
|  | 529 | /* | 
|  | 530 | * If there's a buf log item attached to the buffer, | 
|  | 531 | * then let the AIL know that the buffer is being | 
|  | 532 | * unlocked. | 
|  | 533 | */ | 
|  | 534 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | 
|  | 535 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | 
|  | 536 | if (lip->li_type == XFS_LI_BUF) { | 
|  | 537 | bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); | 
|  | 538 | xfs_trans_unlocked_item( | 
|  | 539 | bip->bli_item.li_mountp, | 
|  | 540 | lip); | 
|  | 541 | } | 
|  | 542 | } | 
|  | 543 | xfs_buf_relse(bp); | 
|  | 544 | return; | 
|  | 545 | } | 
|  | 546 |  | 
|  | 547 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 548 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 549 | ASSERT(bip->bli_item.li_type == XFS_LI_BUF); | 
|  | 550 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | 
|  | 551 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | 
|  | 552 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 553 |  | 
|  | 554 | /* | 
|  | 555 | * Find the item descriptor pointing to this buffer's | 
|  | 556 | * log item.  It must be there. | 
|  | 557 | */ | 
|  | 558 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | 
|  | 559 | ASSERT(lidp != NULL); | 
|  | 560 |  | 
|  | 561 | /* | 
|  | 562 | * If the release is just for a recursive lock, | 
|  | 563 | * then decrement the count and return. | 
|  | 564 | */ | 
|  | 565 | if (bip->bli_recur > 0) { | 
|  | 566 | bip->bli_recur--; | 
|  | 567 | xfs_buf_item_trace("RELSE RECUR", bip); | 
|  | 568 | return; | 
|  | 569 | } | 
|  | 570 |  | 
|  | 571 | /* | 
|  | 572 | * If the buffer is dirty within this transaction, we can't | 
|  | 573 | * release it until we commit. | 
|  | 574 | */ | 
|  | 575 | if (lidp->lid_flags & XFS_LID_DIRTY) { | 
|  | 576 | xfs_buf_item_trace("RELSE DIRTY", bip); | 
|  | 577 | return; | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | /* | 
|  | 581 | * If the buffer has been invalidated, then we can't release | 
|  | 582 | * it until the transaction commits to disk unless it is re-dirtied | 
|  | 583 | * as part of this transaction.  This prevents us from pulling | 
|  | 584 | * the item from the AIL before we should. | 
|  | 585 | */ | 
|  | 586 | if (bip->bli_flags & XFS_BLI_STALE) { | 
|  | 587 | xfs_buf_item_trace("RELSE STALE", bip); | 
|  | 588 | return; | 
|  | 589 | } | 
|  | 590 |  | 
|  | 591 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | 
|  | 592 | xfs_buf_item_trace("RELSE", bip); | 
|  | 593 |  | 
|  | 594 | /* | 
|  | 595 | * Free up the log item descriptor tracking the released item. | 
|  | 596 | */ | 
|  | 597 | xfs_trans_free_item(tp, lidp); | 
|  | 598 |  | 
|  | 599 | /* | 
|  | 600 | * Clear the hold flag in the buf log item if it is set. | 
|  | 601 | * We wouldn't want the next user of the buffer to | 
|  | 602 | * get confused. | 
|  | 603 | */ | 
|  | 604 | if (bip->bli_flags & XFS_BLI_HOLD) { | 
|  | 605 | bip->bli_flags &= ~XFS_BLI_HOLD; | 
|  | 606 | } | 
|  | 607 |  | 
|  | 608 | /* | 
|  | 609 | * Drop our reference to the buf log item. | 
|  | 610 | */ | 
|  | 611 | atomic_dec(&bip->bli_refcount); | 
|  | 612 |  | 
|  | 613 | /* | 
|  | 614 | * If the buf item is not tracking data in the log, then | 
|  | 615 | * we must free it before releasing the buffer back to the | 
|  | 616 | * free pool.  Before releasing the buffer to the free pool, | 
|  | 617 | * clear the transaction pointer in b_fsprivate2 to dissolve | 
|  | 618 | * its relation to this transaction. | 
|  | 619 | */ | 
|  | 620 | if (!xfs_buf_item_dirty(bip)) { | 
|  | 621 | /*** | 
|  | 622 | ASSERT(bp->b_pincount == 0); | 
|  | 623 | ***/ | 
|  | 624 | ASSERT(atomic_read(&bip->bli_refcount) == 0); | 
|  | 625 | ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); | 
|  | 626 | ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); | 
|  | 627 | xfs_buf_item_relse(bp); | 
|  | 628 | bip = NULL; | 
|  | 629 | } | 
|  | 630 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | 
|  | 631 |  | 
|  | 632 | /* | 
|  | 633 | * If we've still got a buf log item on the buffer, then | 
|  | 634 | * tell the AIL that the buffer is being unlocked. | 
|  | 635 | */ | 
|  | 636 | if (bip != NULL) { | 
|  | 637 | xfs_trans_unlocked_item(bip->bli_item.li_mountp, | 
|  | 638 | (xfs_log_item_t*)bip); | 
|  | 639 | } | 
|  | 640 |  | 
|  | 641 | xfs_buf_relse(bp); | 
|  | 642 | return; | 
|  | 643 | } | 
|  | 644 |  | 
|  | 645 | /* | 
|  | 646 | * Add the locked buffer to the transaction. | 
|  | 647 | * The buffer must be locked, and it cannot be associated with any | 
|  | 648 | * transaction. | 
|  | 649 | * | 
|  | 650 | * If the buffer does not yet have a buf log item associated with it, | 
|  | 651 | * then allocate one for it.  Then add the buf item to the transaction. | 
|  | 652 | */ | 
|  | 653 | void | 
|  | 654 | xfs_trans_bjoin(xfs_trans_t	*tp, | 
|  | 655 | xfs_buf_t	*bp) | 
|  | 656 | { | 
|  | 657 | xfs_buf_log_item_t	*bip; | 
|  | 658 |  | 
|  | 659 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 660 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | 
|  | 661 |  | 
|  | 662 | /* | 
|  | 663 | * The xfs_buf_log_item pointer is stored in b_fsprivate.  If | 
|  | 664 | * it doesn't have one yet, then allocate one and initialize it. | 
|  | 665 | * The checks to see if one is there are in xfs_buf_item_init(). | 
|  | 666 | */ | 
|  | 667 | xfs_buf_item_init(bp, tp->t_mountp); | 
|  | 668 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 669 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | 
|  | 670 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | 
|  | 671 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | 
|  | 672 |  | 
|  | 673 | /* | 
|  | 674 | * Take a reference for this transaction on the buf item. | 
|  | 675 | */ | 
|  | 676 | atomic_inc(&bip->bli_refcount); | 
|  | 677 |  | 
|  | 678 | /* | 
|  | 679 | * Get a log_item_desc to point at the new item. | 
|  | 680 | */ | 
|  | 681 | (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); | 
|  | 682 |  | 
|  | 683 | /* | 
|  | 684 | * Initialize b_fsprivate2 so we can find it with incore_match() | 
|  | 685 | * in xfs_trans_get_buf() and friends above. | 
|  | 686 | */ | 
|  | 687 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | 
|  | 688 |  | 
|  | 689 | xfs_buf_item_trace("BJOIN", bip); | 
|  | 690 | } | 
|  | 691 |  | 
|  | 692 | /* | 
|  | 693 | * Mark the buffer as not needing to be unlocked when the buf item's | 
|  | 694 | * IOP_UNLOCK() routine is called.  The buffer must already be locked | 
|  | 695 | * and associated with the given transaction. | 
|  | 696 | */ | 
|  | 697 | /* ARGSUSED */ | 
|  | 698 | void | 
|  | 699 | xfs_trans_bhold(xfs_trans_t	*tp, | 
|  | 700 | xfs_buf_t	*bp) | 
|  | 701 | { | 
|  | 702 | xfs_buf_log_item_t	*bip; | 
|  | 703 |  | 
|  | 704 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 705 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 706 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 707 |  | 
|  | 708 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 709 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | 
|  | 710 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | 
|  | 711 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 712 | bip->bli_flags |= XFS_BLI_HOLD; | 
|  | 713 | xfs_buf_item_trace("BHOLD", bip); | 
|  | 714 | } | 
|  | 715 |  | 
|  | 716 | /* | 
|  | 717 | * This is called to mark bytes first through last inclusive of the given | 
|  | 718 | * buffer as needing to be logged when the transaction is committed. | 
|  | 719 | * The buffer must already be associated with the given transaction. | 
|  | 720 | * | 
|  | 721 | * First and last are numbers relative to the beginning of this buffer, | 
|  | 722 | * so the first byte in the buffer is numbered 0 regardless of the | 
|  | 723 | * value of b_blkno. | 
|  | 724 | */ | 
|  | 725 | void | 
|  | 726 | xfs_trans_log_buf(xfs_trans_t	*tp, | 
|  | 727 | xfs_buf_t	*bp, | 
|  | 728 | uint		first, | 
|  | 729 | uint		last) | 
|  | 730 | { | 
|  | 731 | xfs_buf_log_item_t	*bip; | 
|  | 732 | xfs_log_item_desc_t	*lidp; | 
|  | 733 |  | 
|  | 734 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 735 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 736 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 737 | ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); | 
|  | 738 | ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || | 
|  | 739 | (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); | 
|  | 740 |  | 
|  | 741 | /* | 
|  | 742 | * Mark the buffer as needing to be written out eventually, | 
|  | 743 | * and set its iodone function to remove the buffer's buf log | 
|  | 744 | * item from the AIL and free it when the buffer is flushed | 
|  | 745 | * to disk.  See xfs_buf_attach_iodone() for more details | 
|  | 746 | * on li_cb and xfs_buf_iodone_callbacks(). | 
|  | 747 | * If we end up aborting this transaction, we trap this buffer | 
|  | 748 | * inside the b_bdstrat callback so that this won't get written to | 
|  | 749 | * disk. | 
|  | 750 | */ | 
|  | 751 | XFS_BUF_DELAYWRITE(bp); | 
|  | 752 | XFS_BUF_DONE(bp); | 
|  | 753 |  | 
|  | 754 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 755 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 756 | XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); | 
|  | 757 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; | 
|  | 758 |  | 
|  | 759 | /* | 
|  | 760 | * If we invalidated the buffer within this transaction, then | 
|  | 761 | * cancel the invalidation now that we're dirtying the buffer | 
|  | 762 | * again.  There are no races with the code in xfs_buf_item_unpin(), | 
|  | 763 | * because we have a reference to the buffer this entire time. | 
|  | 764 | */ | 
|  | 765 | if (bip->bli_flags & XFS_BLI_STALE) { | 
|  | 766 | xfs_buf_item_trace("BLOG UNSTALE", bip); | 
|  | 767 | bip->bli_flags &= ~XFS_BLI_STALE; | 
|  | 768 | ASSERT(XFS_BUF_ISSTALE(bp)); | 
|  | 769 | XFS_BUF_UNSTALE(bp); | 
|  | 770 | bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL; | 
|  | 771 | } | 
|  | 772 |  | 
|  | 773 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | 
|  | 774 | ASSERT(lidp != NULL); | 
|  | 775 |  | 
|  | 776 | tp->t_flags |= XFS_TRANS_DIRTY; | 
|  | 777 | lidp->lid_flags |= XFS_LID_DIRTY; | 
|  | 778 | lidp->lid_flags &= ~XFS_LID_BUF_STALE; | 
|  | 779 | bip->bli_flags |= XFS_BLI_LOGGED; | 
|  | 780 | xfs_buf_item_log(bip, first, last); | 
|  | 781 | xfs_buf_item_trace("BLOG", bip); | 
|  | 782 | } | 
|  | 783 |  | 
|  | 784 |  | 
|  | 785 | /* | 
|  | 786 | * This called to invalidate a buffer that is being used within | 
|  | 787 | * a transaction.  Typically this is because the blocks in the | 
|  | 788 | * buffer are being freed, so we need to prevent it from being | 
|  | 789 | * written out when we're done.  Allowing it to be written again | 
|  | 790 | * might overwrite data in the free blocks if they are reallocated | 
|  | 791 | * to a file. | 
|  | 792 | * | 
|  | 793 | * We prevent the buffer from being written out by clearing the | 
|  | 794 | * B_DELWRI flag.  We can't always | 
|  | 795 | * get rid of the buf log item at this point, though, because | 
|  | 796 | * the buffer may still be pinned by another transaction.  If that | 
|  | 797 | * is the case, then we'll wait until the buffer is committed to | 
|  | 798 | * disk for the last time (we can tell by the ref count) and | 
|  | 799 | * free it in xfs_buf_item_unpin().  Until it is cleaned up we | 
|  | 800 | * will keep the buffer locked so that the buffer and buf log item | 
|  | 801 | * are not reused. | 
|  | 802 | */ | 
|  | 803 | void | 
|  | 804 | xfs_trans_binval( | 
|  | 805 | xfs_trans_t	*tp, | 
|  | 806 | xfs_buf_t	*bp) | 
|  | 807 | { | 
|  | 808 | xfs_log_item_desc_t	*lidp; | 
|  | 809 | xfs_buf_log_item_t	*bip; | 
|  | 810 |  | 
|  | 811 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 812 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 813 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 814 |  | 
|  | 815 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 816 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | 
|  | 817 | ASSERT(lidp != NULL); | 
|  | 818 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 819 |  | 
|  | 820 | if (bip->bli_flags & XFS_BLI_STALE) { | 
|  | 821 | /* | 
|  | 822 | * If the buffer is already invalidated, then | 
|  | 823 | * just return. | 
|  | 824 | */ | 
|  | 825 | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | 
|  | 826 | ASSERT(XFS_BUF_ISSTALE(bp)); | 
|  | 827 | ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); | 
|  | 828 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF)); | 
|  | 829 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | 
|  | 830 | ASSERT(lidp->lid_flags & XFS_LID_DIRTY); | 
|  | 831 | ASSERT(tp->t_flags & XFS_TRANS_DIRTY); | 
|  | 832 | xfs_buftrace("XFS_BINVAL RECUR", bp); | 
|  | 833 | xfs_buf_item_trace("BINVAL RECUR", bip); | 
|  | 834 | return; | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | /* | 
|  | 838 | * Clear the dirty bit in the buffer and set the STALE flag | 
|  | 839 | * in the buf log item.  The STALE flag will be used in | 
|  | 840 | * xfs_buf_item_unpin() to determine if it should clean up | 
|  | 841 | * when the last reference to the buf item is given up. | 
|  | 842 | * We set the XFS_BLI_CANCEL flag in the buf log format structure | 
|  | 843 | * and log the buf item.  This will be used at recovery time | 
|  | 844 | * to determine that copies of the buffer in the log before | 
|  | 845 | * this should not be replayed. | 
|  | 846 | * We mark the item descriptor and the transaction dirty so | 
|  | 847 | * that we'll hold the buffer until after the commit. | 
|  | 848 | * | 
|  | 849 | * Since we're invalidating the buffer, we also clear the state | 
|  | 850 | * about which parts of the buffer have been logged.  We also | 
|  | 851 | * clear the flag indicating that this is an inode buffer since | 
|  | 852 | * the data in the buffer will no longer be valid. | 
|  | 853 | * | 
|  | 854 | * We set the stale bit in the buffer as well since we're getting | 
|  | 855 | * rid of it. | 
|  | 856 | */ | 
|  | 857 | XFS_BUF_UNDELAYWRITE(bp); | 
|  | 858 | XFS_BUF_STALE(bp); | 
|  | 859 | bip->bli_flags |= XFS_BLI_STALE; | 
|  | 860 | bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY); | 
|  | 861 | bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF; | 
|  | 862 | bip->bli_format.blf_flags |= XFS_BLI_CANCEL; | 
|  | 863 | memset((char *)(bip->bli_format.blf_data_map), 0, | 
|  | 864 | (bip->bli_format.blf_map_size * sizeof(uint))); | 
|  | 865 | lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE; | 
|  | 866 | tp->t_flags |= XFS_TRANS_DIRTY; | 
|  | 867 | xfs_buftrace("XFS_BINVAL", bp); | 
|  | 868 | xfs_buf_item_trace("BINVAL", bip); | 
|  | 869 | } | 
|  | 870 |  | 
|  | 871 | /* | 
|  | 872 | * This call is used to indicate that the buffer contains on-disk | 
|  | 873 | * inodes which must be handled specially during recovery.  They | 
|  | 874 | * require special handling because only the di_next_unlinked from | 
|  | 875 | * the inodes in the buffer should be recovered.  The rest of the | 
|  | 876 | * data in the buffer is logged via the inodes themselves. | 
|  | 877 | * | 
|  | 878 | * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log | 
|  | 879 | * format structure so that we'll know what to do at recovery time. | 
|  | 880 | */ | 
|  | 881 | /* ARGSUSED */ | 
|  | 882 | void | 
|  | 883 | xfs_trans_inode_buf( | 
|  | 884 | xfs_trans_t	*tp, | 
|  | 885 | xfs_buf_t	*bp) | 
|  | 886 | { | 
|  | 887 | xfs_buf_log_item_t	*bip; | 
|  | 888 |  | 
|  | 889 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 890 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 891 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 892 |  | 
|  | 893 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 894 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 895 |  | 
|  | 896 | bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF; | 
|  | 897 | } | 
|  | 898 |  | 
|  | 899 | /* | 
|  | 900 | * This call is used to indicate that the buffer is going to | 
|  | 901 | * be staled and was an inode buffer. This means it gets | 
|  | 902 | * special processing during unpin - where any inodes | 
|  | 903 | * associated with the buffer should be removed from ail. | 
|  | 904 | * There is also special processing during recovery, | 
|  | 905 | * any replay of the inodes in the buffer needs to be | 
|  | 906 | * prevented as the buffer may have been reused. | 
|  | 907 | */ | 
|  | 908 | void | 
|  | 909 | xfs_trans_stale_inode_buf( | 
|  | 910 | xfs_trans_t	*tp, | 
|  | 911 | xfs_buf_t	*bp) | 
|  | 912 | { | 
|  | 913 | xfs_buf_log_item_t	*bip; | 
|  | 914 |  | 
|  | 915 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 916 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 917 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 918 |  | 
|  | 919 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 920 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 921 |  | 
|  | 922 | bip->bli_flags |= XFS_BLI_STALE_INODE; | 
|  | 923 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) | 
|  | 924 | xfs_buf_iodone; | 
|  | 925 | } | 
|  | 926 |  | 
|  | 927 |  | 
|  | 928 |  | 
|  | 929 | /* | 
|  | 930 | * Mark the buffer as being one which contains newly allocated | 
|  | 931 | * inodes.  We need to make sure that even if this buffer is | 
|  | 932 | * relogged as an 'inode buf' we still recover all of the inode | 
|  | 933 | * images in the face of a crash.  This works in coordination with | 
|  | 934 | * xfs_buf_item_committed() to ensure that the buffer remains in the | 
|  | 935 | * AIL at its original location even after it has been relogged. | 
|  | 936 | */ | 
|  | 937 | /* ARGSUSED */ | 
|  | 938 | void | 
|  | 939 | xfs_trans_inode_alloc_buf( | 
|  | 940 | xfs_trans_t	*tp, | 
|  | 941 | xfs_buf_t	*bp) | 
|  | 942 | { | 
|  | 943 | xfs_buf_log_item_t	*bip; | 
|  | 944 |  | 
|  | 945 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 946 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 947 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 948 |  | 
|  | 949 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 950 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 951 |  | 
|  | 952 | bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; | 
|  | 953 | } | 
|  | 954 |  | 
|  | 955 |  | 
|  | 956 | /* | 
|  | 957 | * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of | 
|  | 958 | * dquots. However, unlike in inode buffer recovery, dquot buffers get | 
|  | 959 | * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). | 
|  | 960 | * The only thing that makes dquot buffers different from regular | 
|  | 961 | * buffers is that we must not replay dquot bufs when recovering | 
|  | 962 | * if a _corresponding_ quotaoff has happened. We also have to distinguish | 
|  | 963 | * between usr dquot bufs and grp dquot bufs, because usr and grp quotas | 
|  | 964 | * can be turned off independently. | 
|  | 965 | */ | 
|  | 966 | /* ARGSUSED */ | 
|  | 967 | void | 
|  | 968 | xfs_trans_dquot_buf( | 
|  | 969 | xfs_trans_t	*tp, | 
|  | 970 | xfs_buf_t	*bp, | 
|  | 971 | uint		type) | 
|  | 972 | { | 
|  | 973 | xfs_buf_log_item_t	*bip; | 
|  | 974 |  | 
|  | 975 | ASSERT(XFS_BUF_ISBUSY(bp)); | 
|  | 976 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | 
|  | 977 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | 
|  | 978 | ASSERT(type == XFS_BLI_UDQUOT_BUF || | 
| Nathan Scott | c8ad20f | 2005-06-21 15:38:48 +1000 | [diff] [blame] | 979 | type == XFS_BLI_PDQUOT_BUF || | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 980 | type == XFS_BLI_GDQUOT_BUF); | 
|  | 981 |  | 
|  | 982 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | 
|  | 983 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | 
|  | 984 |  | 
|  | 985 | bip->bli_format.blf_flags |= type; | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | /* | 
|  | 989 | * Check to see if a buffer matching the given parameters is already | 
|  | 990 | * a part of the given transaction.  Only check the first, embedded | 
|  | 991 | * chunk, since we don't want to spend all day scanning large transactions. | 
|  | 992 | */ | 
|  | 993 | STATIC xfs_buf_t * | 
|  | 994 | xfs_trans_buf_item_match( | 
|  | 995 | xfs_trans_t	*tp, | 
|  | 996 | xfs_buftarg_t	*target, | 
|  | 997 | xfs_daddr_t	blkno, | 
|  | 998 | int		len) | 
|  | 999 | { | 
|  | 1000 | xfs_log_item_chunk_t	*licp; | 
|  | 1001 | xfs_log_item_desc_t	*lidp; | 
|  | 1002 | xfs_buf_log_item_t	*blip; | 
|  | 1003 | xfs_buf_t		*bp; | 
|  | 1004 | int			i; | 
|  | 1005 |  | 
|  | 1006 | bp = NULL; | 
|  | 1007 | len = BBTOB(len); | 
|  | 1008 | licp = &tp->t_items; | 
|  | 1009 | if (!XFS_LIC_ARE_ALL_FREE(licp)) { | 
|  | 1010 | for (i = 0; i < licp->lic_unused; i++) { | 
|  | 1011 | /* | 
|  | 1012 | * Skip unoccupied slots. | 
|  | 1013 | */ | 
|  | 1014 | if (XFS_LIC_ISFREE(licp, i)) { | 
|  | 1015 | continue; | 
|  | 1016 | } | 
|  | 1017 |  | 
|  | 1018 | lidp = XFS_LIC_SLOT(licp, i); | 
|  | 1019 | blip = (xfs_buf_log_item_t *)lidp->lid_item; | 
|  | 1020 | if (blip->bli_item.li_type != XFS_LI_BUF) { | 
|  | 1021 | continue; | 
|  | 1022 | } | 
|  | 1023 |  | 
|  | 1024 | bp = blip->bli_buf; | 
|  | 1025 | if ((XFS_BUF_TARGET(bp) == target) && | 
|  | 1026 | (XFS_BUF_ADDR(bp) == blkno) && | 
|  | 1027 | (XFS_BUF_COUNT(bp) == len)) { | 
|  | 1028 | /* | 
|  | 1029 | * We found it.  Break out and | 
|  | 1030 | * return the pointer to the buffer. | 
|  | 1031 | */ | 
|  | 1032 | break; | 
|  | 1033 | } else { | 
|  | 1034 | bp = NULL; | 
|  | 1035 | } | 
|  | 1036 | } | 
|  | 1037 | } | 
|  | 1038 | return bp; | 
|  | 1039 | } | 
|  | 1040 |  | 
|  | 1041 | /* | 
|  | 1042 | * Check to see if a buffer matching the given parameters is already | 
|  | 1043 | * a part of the given transaction.  Check all the chunks, we | 
|  | 1044 | * want to be thorough. | 
|  | 1045 | */ | 
|  | 1046 | STATIC xfs_buf_t * | 
|  | 1047 | xfs_trans_buf_item_match_all( | 
|  | 1048 | xfs_trans_t	*tp, | 
|  | 1049 | xfs_buftarg_t	*target, | 
|  | 1050 | xfs_daddr_t	blkno, | 
|  | 1051 | int		len) | 
|  | 1052 | { | 
|  | 1053 | xfs_log_item_chunk_t	*licp; | 
|  | 1054 | xfs_log_item_desc_t	*lidp; | 
|  | 1055 | xfs_buf_log_item_t	*blip; | 
|  | 1056 | xfs_buf_t		*bp; | 
|  | 1057 | int			i; | 
|  | 1058 |  | 
|  | 1059 | bp = NULL; | 
|  | 1060 | len = BBTOB(len); | 
|  | 1061 | for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { | 
|  | 1062 | if (XFS_LIC_ARE_ALL_FREE(licp)) { | 
|  | 1063 | ASSERT(licp == &tp->t_items); | 
|  | 1064 | ASSERT(licp->lic_next == NULL); | 
|  | 1065 | return NULL; | 
|  | 1066 | } | 
|  | 1067 | for (i = 0; i < licp->lic_unused; i++) { | 
|  | 1068 | /* | 
|  | 1069 | * Skip unoccupied slots. | 
|  | 1070 | */ | 
|  | 1071 | if (XFS_LIC_ISFREE(licp, i)) { | 
|  | 1072 | continue; | 
|  | 1073 | } | 
|  | 1074 |  | 
|  | 1075 | lidp = XFS_LIC_SLOT(licp, i); | 
|  | 1076 | blip = (xfs_buf_log_item_t *)lidp->lid_item; | 
|  | 1077 | if (blip->bli_item.li_type != XFS_LI_BUF) { | 
|  | 1078 | continue; | 
|  | 1079 | } | 
|  | 1080 |  | 
|  | 1081 | bp = blip->bli_buf; | 
|  | 1082 | if ((XFS_BUF_TARGET(bp) == target) && | 
|  | 1083 | (XFS_BUF_ADDR(bp) == blkno) && | 
|  | 1084 | (XFS_BUF_COUNT(bp) == len)) { | 
|  | 1085 | /* | 
|  | 1086 | * We found it.  Break out and | 
|  | 1087 | * return the pointer to the buffer. | 
|  | 1088 | */ | 
|  | 1089 | return bp; | 
|  | 1090 | } | 
|  | 1091 | } | 
|  | 1092 | } | 
|  | 1093 | return NULL; | 
|  | 1094 | } |