blob: 70002c146eed19c0c5dd76c73092d6a56f11df25 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4** Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22** Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25** for linux-2.1.115
26** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * postion and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in include/linux/autoconf.h.
200 *
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
230 * are used.
231 *
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
234 * the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh.
254 * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug.
255 * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default).
256 */
257
258#include <linux/config.h>
259#include <linux/linkage.h>
260#include <linux/init.h>
261#include <asm/bootinfo.h>
262#include <asm/setup.h>
263#include <asm/entry.h>
264#include <asm/pgtable.h>
265#include <asm/page.h>
Sam Ravnborg0013a852005-09-09 20:57:26 +0200266#include <asm/asm-offsets.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267
268#ifdef CONFIG_MAC
269
270#include <asm/machw.h>
271
272/*
273 * Macintosh console support
274 */
275
Al Viroa2d823b2006-01-12 01:06:40 -0800276#ifdef CONFIG_FRAMEBUFFER_CONSOLE
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277#define CONSOLE
278#define CONSOLE_PENGUIN
Al Viroa2d823b2006-01-12 01:06:40 -0800279#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280
281/*
282 * Macintosh serial debug support; outputs boot info to the printer
283 * and/or modem serial ports
284 */
285#undef MAC_SERIAL_DEBUG
286
287/*
288 * Macintosh serial debug port selection; define one or both;
289 * requires MAC_SERIAL_DEBUG to be defined
290 */
291#define MAC_USE_SCC_A /* Macintosh modem serial port */
292#define MAC_USE_SCC_B /* Macintosh printer serial port */
293
294#endif /* CONFIG_MAC */
295
296#undef MMU_PRINT
297#undef MMU_NOCACHE_KERNEL
298#define SERIAL_DEBUG
299#undef DEBUG
300
301/*
302 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
303 * The 8x8 font is harder to read but fits more on the screen.
304 */
305#define FONT_8x8 /* default */
306/* #define FONT_8x16 */ /* 2nd choice */
307/* #define FONT_6x11 */ /* 3rd choice */
308
309.globl kernel_pg_dir
310.globl availmem
311.globl m68k_pgtable_cachemode
312.globl m68k_supervisor_cachemode
313#ifdef CONFIG_MVME16x
314.globl mvme_bdid
315#endif
316#ifdef CONFIG_Q40
317.globl q40_mem_cptr
318#endif
319
320CPUTYPE_040 = 1 /* indicates an 040 */
321CPUTYPE_060 = 2 /* indicates an 060 */
322CPUTYPE_0460 = 3 /* if either above are set, this is set */
323CPUTYPE_020 = 4 /* indicates an 020 */
324
325/* Translation control register */
326TC_ENABLE = 0x8000
327TC_PAGE8K = 0x4000
328TC_PAGE4K = 0x0000
329
330/* Transparent translation registers */
331TTR_ENABLE = 0x8000 /* enable transparent translation */
332TTR_ANYMODE = 0x4000 /* user and kernel mode access */
333TTR_KERNELMODE = 0x2000 /* only kernel mode access */
334TTR_USERMODE = 0x0000 /* only user mode access */
335TTR_CI = 0x0400 /* inhibit cache */
336TTR_RW = 0x0200 /* read/write mode */
337TTR_RWM = 0x0100 /* read/write mask */
338TTR_FCB2 = 0x0040 /* function code base bit 2 */
339TTR_FCB1 = 0x0020 /* function code base bit 1 */
340TTR_FCB0 = 0x0010 /* function code base bit 0 */
341TTR_FCM2 = 0x0004 /* function code mask bit 2 */
342TTR_FCM1 = 0x0002 /* function code mask bit 1 */
343TTR_FCM0 = 0x0001 /* function code mask bit 0 */
344
345/* Cache Control registers */
346CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
347CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
348CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
349CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
350CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
351CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
352CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
353CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
354CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
355CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
356CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
357CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
358CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
359CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
360CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
361CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
362CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
363CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
364CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
365CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
366CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
367CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
368
369/* Miscellaneous definitions */
370PAGESIZE = 4096
371PAGESHIFT = 12
372
373ROOT_TABLE_SIZE = 128
374PTR_TABLE_SIZE = 128
375PAGE_TABLE_SIZE = 64
376ROOT_INDEX_SHIFT = 25
377PTR_INDEX_SHIFT = 18
378PAGE_INDEX_SHIFT = 12
379
380#ifdef DEBUG
381/* When debugging use readable names for labels */
382#ifdef __STDC__
383#define L(name) .head.S.##name
384#else
385#define L(name) .head.S./**/name
386#endif
387#else
388#ifdef __STDC__
389#define L(name) .L##name
390#else
391#define L(name) .L/**/name
392#endif
393#endif
394
395/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
396#ifndef __INITDATA
397#define __INITDATA .data
398#define __FINIT .previous
399#endif
400
401/* Several macros to make the writing of subroutines easier:
402 * - func_start marks the beginning of the routine which setups the frame
403 * register and saves the registers, it also defines another macro
404 * to automatically restore the registers again.
405 * - func_return marks the end of the routine and simply calls the prepared
406 * macro to restore registers and jump back to the caller.
407 * - func_define generates another macro to automatically put arguments
408 * onto the stack call the subroutine and cleanup the stack again.
409 */
410
411/* Within subroutines these macros can be used to access the arguments
412 * on the stack. With STACK some allocated memory on the stack can be
413 * accessed and ARG0 points to the return address (used by mmu_engage).
414 */
415#define STACK %a6@(stackstart)
416#define ARG0 %a6@(4)
417#define ARG1 %a6@(8)
418#define ARG2 %a6@(12)
419#define ARG3 %a6@(16)
420#define ARG4 %a6@(20)
421
422.macro func_start name,saveregs,stack=0
423L(\name):
424 linkw %a6,#-\stack
425 moveml \saveregs,%sp@-
426.set stackstart,-\stack
427
428.macro func_return_\name
429 moveml %sp@+,\saveregs
430 unlk %a6
431 rts
432.endm
433.endm
434
435.macro func_return name
436 func_return_\name
437.endm
438
439.macro func_call name
440 jbsr L(\name)
441.endm
442
443.macro move_stack nr,arg1,arg2,arg3,arg4
444.if \nr
445 move_stack "(\nr-1)",\arg2,\arg3,\arg4
446 movel \arg1,%sp@-
447.endif
448.endm
449
450.macro func_define name,nr=0
451.macro \name arg1,arg2,arg3,arg4
452 move_stack \nr,\arg1,\arg2,\arg3,\arg4
453 func_call \name
454.if \nr
455 lea %sp@(\nr*4),%sp
456.endif
457.endm
458.endm
459
460func_define mmu_map,4
461func_define mmu_map_tt,4
462func_define mmu_fixup_page_mmu_cache,1
463func_define mmu_temp_map,2
464func_define mmu_engage
465func_define mmu_get_root_table_entry,1
466func_define mmu_get_ptr_table_entry,2
467func_define mmu_get_page_table_entry,2
468func_define mmu_print
469func_define get_new_page
470#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
471func_define set_leds
472#endif
473
474.macro mmu_map_eq arg1,arg2,arg3
475 mmu_map \arg1,\arg1,\arg2,\arg3
476.endm
477
478.macro get_bi_record record
479 pea \record
480 func_call get_bi_record
481 addql #4,%sp
482.endm
483
484func_define serial_putc,1
485func_define console_putc,1
486
487func_define console_init
488func_define console_put_stats
489func_define console_put_penguin
490func_define console_plot_pixel,3
491func_define console_scroll
492
493.macro putc ch
494#if defined(CONSOLE) || defined(SERIAL_DEBUG)
495 pea \ch
496#endif
497#ifdef CONSOLE
498 func_call console_putc
499#endif
500#ifdef SERIAL_DEBUG
501 func_call serial_putc
502#endif
503#if defined(CONSOLE) || defined(SERIAL_DEBUG)
504 addql #4,%sp
505#endif
506.endm
507
508.macro dputc ch
509#ifdef DEBUG
510 putc \ch
511#endif
512.endm
513
514func_define putn,1
515
516.macro dputn nr
517#ifdef DEBUG
518 putn \nr
519#endif
520.endm
521
522.macro puts string
523#if defined(CONSOLE) || defined(SERIAL_DEBUG)
524 __INITDATA
525.Lstr\@:
526 .string "\string"
527 __FINIT
528 pea %pc@(.Lstr\@)
529 func_call puts
530 addql #4,%sp
531#endif
532.endm
533
534.macro dputs string
535#ifdef DEBUG
536 puts "\string"
537#endif
538.endm
539
540#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
541#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
542#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
543#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
544#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
545#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
546#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
547#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
548#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
549#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
550#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
551#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
552#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
553
554#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
555 jeq 42f; \
556 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
557 jne lab ;\
558 42:\
559
560#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
561#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
562#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
563#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
564#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
565#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
566#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
567
568/* On the HP300 we use the on-board LEDs for debug output before
569 the console is running. Writing a 1 bit turns the corresponding LED
570 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
571.macro leds mask
572#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
573 hasnt_leds(.Lled\@)
574 pea \mask
575 func_call set_leds
576 addql #4,%sp
577.Lled\@:
578#endif
579.endm
580
581.text
582ENTRY(_stext)
583/*
584 * Version numbers of the bootinfo interface
585 * The area from _stext to _start will later be used as kernel pointer table
586 */
587 bras 1f /* Jump over bootinfo version numbers */
588
589 .long BOOTINFOV_MAGIC
590 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
591 .long MACH_ATARI, ATARI_BOOTI_VERSION
592 .long MACH_MVME147, MVME147_BOOTI_VERSION
593 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
594 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
595 .long MACH_MAC, MAC_BOOTI_VERSION
596 .long MACH_Q40, Q40_BOOTI_VERSION
597 .long MACH_HP300, HP300_BOOTI_VERSION
598 .long 0
5991: jra __start
600
601.equ kernel_pg_dir,_stext
602
603.equ .,_stext+PAGESIZE
604
605ENTRY(_start)
606 jra __start
607__INIT
608ENTRY(__start)
609/*
610 * Setup initial stack pointer
611 */
612 lea %pc@(_stext),%sp
613
614/*
615 * Record the CPU and machine type.
616 */
617 get_bi_record BI_MACHTYPE
618 lea %pc@(m68k_machtype),%a1
619 movel %a0@,%a1@
620
621 get_bi_record BI_FPUTYPE
622 lea %pc@(m68k_fputype),%a1
623 movel %a0@,%a1@
624
625 get_bi_record BI_MMUTYPE
626 lea %pc@(m68k_mmutype),%a1
627 movel %a0@,%a1@
628
629 get_bi_record BI_CPUTYPE
630 lea %pc@(m68k_cputype),%a1
631 movel %a0@,%a1@
632
633 leds 0x1
634
635#ifdef CONFIG_MAC
636/*
637 * For Macintosh, we need to determine the display parameters early (at least
638 * while debugging it).
639 */
640
641 is_not_mac(L(test_notmac))
642
643 get_bi_record BI_MAC_VADDR
644 lea %pc@(L(mac_videobase)),%a1
645 movel %a0@,%a1@
646
647 get_bi_record BI_MAC_VDEPTH
648 lea %pc@(L(mac_videodepth)),%a1
649 movel %a0@,%a1@
650
651 get_bi_record BI_MAC_VDIM
652 lea %pc@(L(mac_dimensions)),%a1
653 movel %a0@,%a1@
654
655 get_bi_record BI_MAC_VROW
656 lea %pc@(L(mac_rowbytes)),%a1
657 movel %a0@,%a1@
658
659#ifdef MAC_SERIAL_DEBUG
660 get_bi_record BI_MAC_SCCBASE
661 lea %pc@(L(mac_sccbase)),%a1
662 movel %a0@,%a1@
663#endif /* MAC_SERIAL_DEBUG */
664
665#if 0
666 /*
667 * Clear the screen
668 */
669 lea %pc@(L(mac_videobase)),%a0
670 movel %a0@,%a1
671 lea %pc@(L(mac_dimensions)),%a0
672 movel %a0@,%d1
673 swap %d1 /* #rows is high bytes */
674 andl #0xFFFF,%d1 /* rows */
675 subl #10,%d1
676 lea %pc@(L(mac_rowbytes)),%a0
677loopy2:
678 movel %a0@,%d0
679 subql #1,%d0
680loopx2:
681 moveb #0x55, %a1@+
682 dbra %d0,loopx2
683 dbra %d1,loopy2
684#endif
685
686L(test_notmac):
687#endif /* CONFIG_MAC */
688
689
690/*
691 * There are ultimately two pieces of information we want for all kinds of
692 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
693 * and is converted here from a booter type definition to a separate bit
694 * number which allows for the standard is_0x0 macro tests.
695 */
696 movel %pc@(m68k_cputype),%d0
697 /*
698 * Assume it's an 030
699 */
700 clrl %d1
701
702 /*
703 * Test the BootInfo cputype for 060
704 */
705 btst #CPUB_68060,%d0
706 jeq 1f
707 bset #CPUTYPE_060,%d1
708 bset #CPUTYPE_0460,%d1
709 jra 3f
7101:
711 /*
712 * Test the BootInfo cputype for 040
713 */
714 btst #CPUB_68040,%d0
715 jeq 2f
716 bset #CPUTYPE_040,%d1
717 bset #CPUTYPE_0460,%d1
718 jra 3f
7192:
720 /*
721 * Test the BootInfo cputype for 020
722 */
723 btst #CPUB_68020,%d0
724 jeq 3f
725 bset #CPUTYPE_020,%d1
726 jra 3f
7273:
728 /*
729 * Record the cpu type
730 */
731 lea %pc@(L(cputype)),%a0
732 movel %d1,%a0@
733
734 /*
735 * NOTE:
736 *
737 * Now the macros are valid:
738 * is_040_or_060
739 * is_not_040_or_060
740 * is_040
741 * is_060
742 * is_not_060
743 */
744
745 /*
746 * Determine the cache mode for pages holding MMU tables
747 * and for supervisor mode, unused for '020 and '030
748 */
749 clrl %d0
750 clrl %d1
751
752 is_not_040_or_060(L(save_cachetype))
753
754 /*
755 * '040 or '060
756 * d1 := cacheable write-through
757 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
758 * but we have been using write-through since at least 2.0.29 so I
759 * guess it is OK.
760 */
761#ifdef CONFIG_060_WRITETHROUGH
762 /*
763 * If this is a 68060 board using drivers with cache coherency
764 * problems, then supervisor memory accesses need to be write-through
765 * also; otherwise, we want copyback.
766 */
767
768 is_not_060(1f)
769 movel #_PAGE_CACHE040W,%d0
770 jra L(save_cachetype)
771#endif /* CONFIG_060_WRITETHROUGH */
7721:
773 movew #_PAGE_CACHE040,%d0
774
775 movel #_PAGE_CACHE040W,%d1
776
777L(save_cachetype):
778 /* Save cache mode for supervisor mode and page tables
779 */
780 lea %pc@(m68k_supervisor_cachemode),%a0
781 movel %d0,%a0@
782 lea %pc@(m68k_pgtable_cachemode),%a0
783 movel %d1,%a0@
784
785/*
786 * raise interrupt level
787 */
788 movew #0x2700,%sr
789
790/*
791 If running on an Atari, determine the I/O base of the
792 serial port and test if we are running on a Medusa or Hades.
793 This test is necessary here, because on the Hades the serial
794 port is only accessible in the high I/O memory area.
795
796 The test whether it is a Medusa is done by writing to the byte at
797 phys. 0x0. This should result in a bus error on all other machines.
798
799 ...should, but doesn't. The Afterburner040 for the Falcon has the
800 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
801 another test to distinguish Medusa and AB040. This is a
802 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
803 (+AB040), but is in the range where the Medusa always asserts DTACK.
804
805 The test for the Hades is done by reading address 0xb0000000. This
806 should give a bus error on the Medusa.
807 */
808
809#ifdef CONFIG_ATARI
810 is_not_atari(L(notypetest))
811
812 /* get special machine type (Medusa/Hades/AB40) */
813 moveq #0,%d3 /* default if tag doesn't exist */
814 get_bi_record BI_ATARI_MCH_TYPE
815 tstl %d0
816 jbmi 1f
817 movel %a0@,%d3
818 lea %pc@(atari_mch_type),%a0
819 movel %d3,%a0@
8201:
821 /* On the Hades, the iobase must be set up before opening the
822 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
823 moveq #0,%d0
824 cmpl #ATARI_MACH_HADES,%d3
825 jbne 1f
826 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
8271: lea %pc@(L(iobase)),%a0
828 movel %d0,%a0@
829
830L(notypetest):
831#endif
832
833#ifdef CONFIG_VME
834 is_mvme147(L(getvmetype))
835 is_bvme6000(L(getvmetype))
836 is_not_mvme16x(L(gvtdone))
837
838 /* See if the loader has specified the BI_VME_TYPE tag. Recent
839 * versions of VMELILO and TFTPLILO do this. We have to do this
840 * early so we know how to handle console output. If the tag
841 * doesn't exist then we use the Bug for output on MVME16x.
842 */
843L(getvmetype):
844 get_bi_record BI_VME_TYPE
845 tstl %d0
846 jbmi 1f
847 movel %a0@,%d3
848 lea %pc@(vme_brdtype),%a0
849 movel %d3,%a0@
8501:
851#ifdef CONFIG_MVME16x
852 is_not_mvme16x(L(gvtdone))
853
854 /* Need to get the BRD_ID info to differentiate between 162, 167,
855 * etc. This is available as a BI_VME_BRDINFO tag with later
856 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
857 */
858 get_bi_record BI_VME_BRDINFO
859 tstl %d0
860 jpl 1f
861
862 /* Get pointer to board ID data from Bug */
863 movel %d2,%sp@-
864 trap #15
865 .word 0x70 /* trap 0x70 - .BRD_ID */
866 movel %sp@+,%a0
8671:
868 lea %pc@(mvme_bdid),%a1
869 /* Structure is 32 bytes long */
870 movel %a0@+,%a1@+
871 movel %a0@+,%a1@+
872 movel %a0@+,%a1@+
873 movel %a0@+,%a1@+
874 movel %a0@+,%a1@+
875 movel %a0@+,%a1@+
876 movel %a0@+,%a1@+
877 movel %a0@+,%a1@+
878#endif
879
880L(gvtdone):
881
882#endif
883
884#ifdef CONFIG_HP300
885 is_not_hp300(L(nothp))
886
887 /* Get the address of the UART for serial debugging */
888 get_bi_record BI_HP300_UART_ADDR
889 tstl %d0
890 jbmi 1f
891 movel %a0@,%d3
892 lea %pc@(L(uartbase)),%a0
893 movel %d3,%a0@
894 get_bi_record BI_HP300_UART_SCODE
895 tstl %d0
896 jbmi 1f
897 movel %a0@,%d3
898 lea %pc@(L(uart_scode)),%a0
899 movel %d3,%a0@
9001:
901L(nothp):
902#endif
903
904/*
905 * Initialize serial port
906 */
907 jbsr L(serial_init)
908
909/*
910 * Initialize console
911 */
912#ifdef CONFIG_MAC
913 is_not_mac(L(nocon))
914#ifdef CONSOLE
915 console_init
916#ifdef CONSOLE_PENGUIN
917 console_put_penguin
918#endif /* CONSOLE_PENGUIN */
919 console_put_stats
920#endif /* CONSOLE */
921L(nocon):
922#endif /* CONFIG_MAC */
923
924
925 putc '\n'
926 putc 'A'
927 leds 0x2
928 dputn %pc@(L(cputype))
929 dputn %pc@(m68k_supervisor_cachemode)
930 dputn %pc@(m68k_pgtable_cachemode)
931 dputc '\n'
932
933/*
934 * Save physical start address of kernel
935 */
936 lea %pc@(L(phys_kernel_start)),%a0
937 lea %pc@(_stext),%a1
938 subl #_stext,%a1
939 addl #PAGE_OFFSET,%a1
940 movel %a1,%a0@
941
942 putc 'B'
943
944 leds 0x4
945
946/*
947 * mmu_init
948 *
949 * This block of code does what's necessary to map in the various kinds
950 * of machines for execution of Linux.
951 * First map the first 4 MB of kernel code & data
952 */
953
954 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
955 %pc@(m68k_supervisor_cachemode)
956
957 putc 'C'
958
959#ifdef CONFIG_AMIGA
960
961L(mmu_init_amiga):
962
963 is_not_amiga(L(mmu_init_not_amiga))
964/*
965 * mmu_init_amiga
966 */
967
968 putc 'D'
969
970 is_not_040_or_060(1f)
971
972 /*
973 * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000
974 */
975 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
976 /*
977 * Map the Zorro III I/O space with transparent translation
978 * for frame buffer memory etc.
979 */
980 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
981
982 jbra L(mmu_init_done)
983
9841:
985 /*
986 * 030: Map the 32Meg range physical 0x0 upto logical 0x8000.0000
987 */
988 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
989 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
990
991 jbra L(mmu_init_done)
992
993L(mmu_init_not_amiga):
994#endif
995
996#ifdef CONFIG_ATARI
997
998L(mmu_init_atari):
999
1000 is_not_atari(L(mmu_init_not_atari))
1001
1002 putc 'E'
1003
1004/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1005 the last 16 MB of virtual address space to the first 16 MB (i.e.
1006 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1007 needed. I/O ranges are marked non-cachable.
1008
1009 For the Medusa it is better to map the I/O region transparently
1010 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1011 accessible only in the high area.
1012
1013 On the Hades all I/O registers are only accessible in the high
1014 area.
1015*/
1016
1017 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1018 moveq #0,%d0
1019 movel %pc@(atari_mch_type),%d3
1020 cmpl #ATARI_MACH_MEDUSA,%d3
1021 jbeq 2f
1022 cmpl #ATARI_MACH_HADES,%d3
1023 jbne 1f
10242: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10251: movel %d0,%d3
1026
1027 is_040_or_060(L(spata68040))
1028
1029 /* Map everything non-cacheable, though not all parts really
1030 * need to disable caches (crucial only for 0xff8000..0xffffff
1031 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1032 * isn't really used, except for sometimes peeking into the
1033 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1034 * this. */
1035 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1036
1037 jbra L(mmu_init_done)
1038
1039L(spata68040):
1040
1041 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1042
1043 jbra L(mmu_init_done)
1044
1045L(mmu_init_not_atari):
1046#endif
1047
1048#ifdef CONFIG_Q40
1049 is_not_q40(L(notq40))
1050 /*
1051 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1052 * non-cached serialized etc..
1053 * this includes master chip, DAC, RTC and ISA ports
1054 * 0xfe000000-0xfeffffff is for screen and ROM
1055 */
1056
1057 putc 'Q'
1058
1059 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1060 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1061
1062 jbra L(mmu_init_done)
1063
1064L(notq40):
1065#endif
1066
1067#ifdef CONFIG_HP300
1068 is_not_hp300(L(nothp300))
1069
1070 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1071 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1072 * The ROM mapping is needed because the LEDs are mapped there too.
1073 */
1074
1075 is_040(1f)
1076
1077 /*
1078 * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000
1079 */
1080 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1081
1082 jbra L(mmu_init_done)
1083
10841:
1085 /*
1086 * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000
1087 */
1088 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1089
1090 jbra L(mmu_init_done)
1091
1092L(nothp300):
1093#endif /* CONFIG_HP300 */
1094
1095#ifdef CONFIG_MVME147
1096
1097 is_not_mvme147(L(not147))
1098
1099 /*
1100 * On MVME147 we have already created kernel page tables for
1101 * 4MB of RAM at address 0, so now need to do a transparent
1102 * mapping of the top of memory space. Make it 0.5GByte for now,
1103 * so we can access on-board i/o areas.
1104 */
1105
1106 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1107
1108 jbra L(mmu_init_done)
1109
1110L(not147):
1111#endif /* CONFIG_MVME147 */
1112
1113#ifdef CONFIG_MVME16x
1114
1115 is_not_mvme16x(L(not16x))
1116
1117 /*
1118 * On MVME16x we have already created kernel page tables for
1119 * 4MB of RAM at address 0, so now need to do a transparent
1120 * mapping of the top of memory space. Make it 0.5GByte for now.
1121 * Supervisor only access, so transparent mapping doesn't
1122 * clash with User code virtual address space.
1123 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1124 * mapping is needed to allow 167Bug to run.
1125 * IO is in the range 0xfff00000 to 0xfffeffff.
1126 * PROM is 0xff800000->0xffbfffff and SRAM is
1127 * 0xffe00000->0xffe1ffff.
1128 */
1129
1130 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1131
1132 jbra L(mmu_init_done)
1133
1134L(not16x):
1135#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1136
1137#ifdef CONFIG_BVME6000
1138
1139 is_not_bvme6000(L(not6000))
1140
1141 /*
1142 * On BVME6000 we have already created kernel page tables for
1143 * 4MB of RAM at address 0, so now need to do a transparent
1144 * mapping of the top of memory space. Make it 0.5GByte for now,
1145 * so we can access on-board i/o areas.
1146 * Supervisor only access, so transparent mapping doesn't
1147 * clash with User code virtual address space.
1148 */
1149
1150 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1151
1152 jbra L(mmu_init_done)
1153
1154L(not6000):
1155#endif /* CONFIG_BVME6000 */
1156
1157/*
1158 * mmu_init_mac
1159 *
1160 * The Macintosh mappings are less clear.
1161 *
1162 * Even as of this writing, it is unclear how the
1163 * Macintosh mappings will be done. However, as
1164 * the first author of this code I'm proposing the
1165 * following model:
1166 *
1167 * Map the kernel (that's already done),
1168 * Map the I/O (on most machines that's the
1169 * 0x5000.0000 ... 0x5300.0000 range,
1170 * Map the video frame buffer using as few pages
1171 * as absolutely (this requirement mostly stems from
1172 * the fact that when the frame buffer is at
1173 * 0x0000.0000 then we know there is valid RAM just
1174 * above the screen that we don't want to waste!).
1175 *
1176 * By the way, if the frame buffer is at 0x0000.0000
1177 * then the Macintosh is known as an RBV based Mac.
1178 *
1179 * By the way 2, the code currently maps in a bunch of
1180 * regions. But I'd like to cut that out. (And move most
1181 * of the mappings up into the kernel proper ... or only
1182 * map what's necessary.)
1183 */
1184
1185#ifdef CONFIG_MAC
1186
1187L(mmu_init_mac):
1188
1189 is_not_mac(L(mmu_init_not_mac))
1190
1191 putc 'F'
1192
1193 is_not_040_or_060(1f)
1194
1195 moveq #_PAGE_NOCACHE_S,%d3
1196 jbra 2f
11971:
1198 moveq #_PAGE_NOCACHE030,%d3
11992:
1200 /*
1201 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1202 * we simply map the 4MB that contains the videomem
1203 */
1204
1205 movel #VIDEOMEMMASK,%d0
1206 andl %pc@(L(mac_videobase)),%d0
1207
1208 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1209 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1210 mmu_map_eq #0x40000000,#0x02000000,%d3
1211 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1212 mmu_map_eq #0x50000000,#0x03000000,%d3
1213 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1214 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1215
1216 jbra L(mmu_init_done)
1217
1218L(mmu_init_not_mac):
1219#endif
1220
1221#ifdef CONFIG_SUN3X
1222 is_not_sun3x(L(notsun3x))
1223
1224 /* oh, the pain.. We're gonna want the prom code after
1225 * starting the MMU, so we copy the mappings, translating
1226 * from 8k -> 4k pages as we go.
1227 */
1228
1229 /* copy maps from 0xfee00000 to 0xff000000 */
1230 movel #0xfee00000, %d0
1231 moveq #ROOT_INDEX_SHIFT, %d1
1232 lsrl %d1,%d0
1233 mmu_get_root_table_entry %d0
1234
1235 movel #0xfee00000, %d0
1236 moveq #PTR_INDEX_SHIFT, %d1
1237 lsrl %d1,%d0
1238 andl #PTR_TABLE_SIZE-1, %d0
1239 mmu_get_ptr_table_entry %a0,%d0
1240
1241 movel #0xfee00000, %d0
1242 moveq #PAGE_INDEX_SHIFT, %d1
1243 lsrl %d1,%d0
1244 andl #PAGE_TABLE_SIZE-1, %d0
1245 mmu_get_page_table_entry %a0,%d0
1246
1247 /* this is where the prom page table lives */
1248 movel 0xfefe00d4, %a1
1249 movel %a1@, %a1
1250
1251 movel #((0x200000 >> 13)-1), %d1
1252
12531:
1254 movel %a1@+, %d3
1255 movel %d3,%a0@+
1256 addl #0x1000,%d3
1257 movel %d3,%a0@+
1258
1259 dbra %d1,1b
1260
1261 /* setup tt1 for I/O */
1262 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1263 jbra L(mmu_init_done)
1264
1265L(notsun3x):
1266#endif
1267
1268#ifdef CONFIG_APOLLO
1269 is_not_apollo(L(notapollo))
1270
1271 putc 'P'
1272 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1273
1274L(notapollo):
1275 jbra L(mmu_init_done)
1276#endif
1277
1278L(mmu_init_done):
1279
1280 putc 'G'
1281 leds 0x8
1282
1283/*
1284 * mmu_fixup
1285 *
1286 * On the 040 class machines, all pages that are used for the
1287 * mmu have to be fixed up. According to Motorola, pages holding mmu
1288 * tables should be non-cacheable on a '040 and write-through on a
1289 * '060. But analysis of the reasons for this, and practical
1290 * experience, showed that write-through also works on a '040.
1291 *
1292 * Allocated memory so far goes from kernel_end to memory_start that
1293 * is used for all kind of tables, for that the cache attributes
1294 * are now fixed.
1295 */
1296L(mmu_fixup):
1297
1298 is_not_040_or_060(L(mmu_fixup_done))
1299
1300#ifdef MMU_NOCACHE_KERNEL
1301 jbra L(mmu_fixup_done)
1302#endif
1303
1304 /* first fix the page at the start of the kernel, that
1305 * contains also kernel_pg_dir.
1306 */
1307 movel %pc@(L(phys_kernel_start)),%d0
1308 subl #PAGE_OFFSET,%d0
1309 lea %pc@(_stext),%a0
1310 subl %d0,%a0
1311 mmu_fixup_page_mmu_cache %a0
1312
1313 movel %pc@(L(kernel_end)),%a0
1314 subl %d0,%a0
1315 movel %pc@(L(memory_start)),%a1
1316 subl %d0,%a1
1317 bra 2f
13181:
1319 mmu_fixup_page_mmu_cache %a0
1320 addw #PAGESIZE,%a0
13212:
1322 cmpl %a0,%a1
1323 jgt 1b
1324
1325L(mmu_fixup_done):
1326
1327#ifdef MMU_PRINT
1328 mmu_print
1329#endif
1330
1331/*
1332 * mmu_engage
1333 *
1334 * This chunk of code performs the gruesome task of engaging the MMU.
1335 * The reason its gruesome is because when the MMU becomes engaged it
1336 * maps logical addresses to physical addresses. The Program Counter
1337 * register is then passed through the MMU before the next instruction
1338 * is fetched (the instruction following the engage MMU instruction).
1339 * This may mean one of two things:
1340 * 1. The Program Counter falls within the logical address space of
1341 * the kernel of which there are two sub-possibilities:
1342 * A. The PC maps to the correct instruction (logical PC == physical
1343 * code location), or
1344 * B. The PC does not map through and the processor will read some
1345 * data (or instruction) which is not the logically next instr.
1346 * As you can imagine, A is good and B is bad.
1347 * Alternatively,
1348 * 2. The Program Counter does not map through the MMU. The processor
1349 * will take a Bus Error.
1350 * Clearly, 2 is bad.
1351 * It doesn't take a wiz kid to figure you want 1.A.
1352 * This code creates that possibility.
1353 * There are two possible 1.A. states (we now ignore the other above states):
1354 * A. The kernel is located at physical memory addressed the same as
1355 * the logical memory for the kernel, i.e., 0x01000.
1356 * B. The kernel is located some where else. e.g., 0x0400.0000
1357 *
1358 * Under some conditions the Macintosh can look like A or B.
1359 * [A friend and I once noted that Apple hardware engineers should be
1360 * wacked twice each day: once when they show up at work (as in, Whack!,
1361 * "This is for the screwy hardware we know you're going to design today."),
1362 * and also at the end of the day (as in, Whack! "I don't know what
1363 * you designed today, but I'm sure it wasn't good."). -- rst]
1364 *
1365 * This code works on the following premise:
1366 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1367 * then create a mapping for the kernel at logical 0x8000.0000 to
1368 * the physical location of the pc. And, create a transparent
1369 * translation register for the first 16 Meg. Then, after the MMU
1370 * is engaged, the PC can be moved up into the 0x8000.0000 range
1371 * and then the transparent translation can be turned off and then
1372 * the PC can jump to the correct logical location and it will be
1373 * home (finally). This is essentially the code that the Amiga used
1374 * to use. Now, it's generalized for all processors. Which means
1375 * that a fresh (but temporary) mapping has to be created. The mapping
1376 * is made in page 0 (an as of yet unused location -- except for the
1377 * stack!). This temporary mapping will only require 1 pointer table
1378 * and a single page table (it can map 256K).
1379 *
1380 * OK, alternatively, imagine that the Program Counter is not within
1381 * the first 16 Meg. Then, just use Transparent Translation registers
1382 * to do the right thing.
1383 *
1384 * Last, if _start is already at 0x01000, then there's nothing special
1385 * to do (in other words, in a degenerate case of the first case above,
1386 * do nothing).
1387 *
1388 * Let's do it.
1389 *
1390 *
1391 */
1392
1393 putc 'H'
1394
1395 mmu_engage
1396
1397/*
1398 * After this point no new memory is allocated and
1399 * the start of available memory is stored in availmem.
1400 * (The bootmem allocator requires now the physicall address.)
1401 */
1402
1403 movel L(memory_start),availmem
1404
1405#ifdef CONFIG_AMIGA
1406 is_not_amiga(1f)
1407 /* fixup the Amiga custom register location before printing */
1408 clrl L(custom)
14091:
1410#endif
1411
1412#ifdef CONFIG_ATARI
1413 is_not_atari(1f)
1414 /* fixup the Atari iobase register location before printing */
1415 movel #0xff000000,L(iobase)
14161:
1417#endif
1418
1419#ifdef CONFIG_MAC
1420 is_not_mac(1f)
1421 movel #~VIDEOMEMMASK,%d0
1422 andl L(mac_videobase),%d0
1423 addl #VIDEOMEMBASE,%d0
1424 movel %d0,L(mac_videobase)
1425#if defined(CONSOLE)
1426 movel %pc@(L(phys_kernel_start)),%d0
1427 subl #PAGE_OFFSET,%d0
1428 subl %d0,L(console_font)
1429 subl %d0,L(console_font_data)
1430#endif
1431#ifdef MAC_SERIAL_DEBUG
1432 orl #0x50000000,L(mac_sccbase)
1433#endif
14341:
1435#endif
1436
1437#ifdef CONFIG_HP300
1438 is_not_hp300(1f)
1439 /*
1440 * Fix up the iobase register to point to the new location of the LEDs.
1441 */
1442 movel #0xf0000000,L(iobase)
1443
1444 /*
1445 * Energise the FPU and caches.
1446 */
1447 is_040(1f)
1448 movel #0x60,0xf05f400c
1449 jbra 2f
1450
1451 /*
1452 * 040: slightly different, apparently.
1453 */
14541: movew #0,0xf05f400e
1455 movew #0x64,0xf05f400e
14562:
1457#endif
1458
1459#ifdef CONFIG_SUN3X
1460 is_not_sun3x(1f)
1461
1462 /* enable copro */
1463 oriw #0x4000,0x61000000
14641:
1465#endif
1466
1467#ifdef CONFIG_APOLLO
1468 is_not_apollo(1f)
1469
1470 /*
1471 * Fix up the iobase before printing
1472 */
1473 movel #0x80000000,L(iobase)
14741:
1475#endif
1476
1477 putc 'I'
1478 leds 0x10
1479
1480/*
1481 * Enable caches
1482 */
1483
1484 is_not_040_or_060(L(cache_not_680460))
1485
1486L(cache680460):
1487 .chip 68040
1488 nop
1489 cpusha %bc
1490 nop
1491
1492 is_060(L(cache68060))
1493
1494 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1495 /* MMU stuff works in copyback mode now, so enable the cache */
1496 movec %d0,%cacr
1497 jra L(cache_done)
1498
1499L(cache68060):
1500 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1501 /* MMU stuff works in copyback mode now, so enable the cache */
1502 movec %d0,%cacr
1503 /* enable superscalar dispatch in PCR */
1504 moveq #1,%d0
1505 .chip 68060
1506 movec %d0,%pcr
1507
1508 jbra L(cache_done)
1509L(cache_not_680460):
1510L(cache68030):
1511 .chip 68030
1512 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1513 movec %d0,%cacr
1514
1515 jra L(cache_done)
1516 .chip 68k
1517L(cache_done):
1518
1519 putc 'J'
1520
1521/*
1522 * Setup initial stack pointer
1523 */
1524 lea init_task,%curptr
1525 lea init_thread_union+THREAD_SIZE,%sp
1526
1527 putc 'K'
1528
1529 subl %a6,%a6 /* clear a6 for gdb */
1530
1531/*
1532 * The new 64bit printf support requires an early exception initialization.
1533 */
1534 jbsr base_trap_init
1535
1536/* jump to the kernel start */
1537
1538 putc '\n'
1539 leds 0x55
1540
1541 jbsr start_kernel
1542
1543/*
1544 * Find a tag record in the bootinfo structure
1545 * The bootinfo structure is located right after the kernel bss
1546 * Returns: d0: size (-1 if not found)
1547 * a0: data pointer (end-of-records if not found)
1548 */
1549func_start get_bi_record,%d1
1550
1551 movel ARG1,%d0
1552 lea %pc@(_end),%a0
15531: tstw %a0@(BIR_TAG)
1554 jeq 3f
1555 cmpw %a0@(BIR_TAG),%d0
1556 jeq 2f
1557 addw %a0@(BIR_SIZE),%a0
1558 jra 1b
15592: moveq #0,%d0
1560 movew %a0@(BIR_SIZE),%d0
1561 lea %a0@(BIR_DATA),%a0
1562 jra 4f
15633: moveq #-1,%d0
1564 lea %a0@(BIR_SIZE),%a0
15654:
1566func_return get_bi_record
1567
1568
1569/*
1570 * MMU Initialization Begins Here
1571 *
1572 * The structure of the MMU tables on the 68k machines
1573 * is thus:
1574 * Root Table
1575 * Logical addresses are translated through
1576 * a hierarchical translation mechanism where the high-order
1577 * seven bits of the logical address (LA) are used as an
1578 * index into the "root table." Each entry in the root
1579 * table has a bit which specifies if it's a valid pointer to a
1580 * pointer table. Each entry defines a 32KMeg range of memory.
1581 * If an entry is invalid then that logical range of 32M is
1582 * invalid and references to that range of memory (when the MMU
1583 * is enabled) will fault. If the entry is valid, then it does
1584 * one of two things. On 040/060 class machines, it points to
1585 * a pointer table which then describes more finely the memory
1586 * within that 32M range. On 020/030 class machines, a technique
1587 * called "early terminating descriptors" are used. This technique
1588 * allows an entire 32Meg to be described by a single entry in the
1589 * root table. Thus, this entry in the root table, contains the
1590 * physical address of the memory or I/O at the logical address
1591 * which the entry represents and it also contains the necessary
1592 * cache bits for this region.
1593 *
1594 * Pointer Tables
1595 * Per the Root Table, there will be one or more
1596 * pointer tables. Each pointer table defines a 32M range.
1597 * Not all of the 32M range need be defined. Again, the next
1598 * seven bits of the logical address are used an index into
1599 * the pointer table to point to page tables (if the pointer
1600 * is valid). There will undoubtedly be more than one
1601 * pointer table for the kernel because each pointer table
1602 * defines a range of only 32M. Valid pointer table entries
1603 * point to page tables, or are early terminating entries
1604 * themselves.
1605 *
1606 * Page Tables
1607 * Per the Pointer Tables, each page table entry points
1608 * to the physical page in memory that supports the logical
1609 * address that translates to the particular index.
1610 *
1611 * In short, the Logical Address gets translated as follows:
1612 * bits 31..26 - index into the Root Table
1613 * bits 25..18 - index into the Pointer Table
1614 * bits 17..12 - index into the Page Table
1615 * bits 11..0 - offset into a particular 4K page
1616 *
1617 * The algorithms which follows do one thing: they abstract
1618 * the MMU hardware. For example, there are three kinds of
1619 * cache settings that are relevant. Either, memory is
1620 * being mapped in which case it is either Kernel Code (or
1621 * the RamDisk) or it is MMU data. On the 030, the MMU data
1622 * option also describes the kernel. Or, I/O is being mapped
1623 * in which case it has its own kind of cache bits. There
1624 * are constants which abstract these notions from the code that
1625 * actually makes the call to map some range of memory.
1626 *
1627 *
1628 *
1629 */
1630
1631#ifdef MMU_PRINT
1632/*
1633 * mmu_print
1634 *
1635 * This algorithm will print out the current MMU mappings.
1636 *
1637 * Input:
1638 * %a5 points to the root table. Everything else is calculated
1639 * from this.
1640 */
1641
1642#define mmu_next_valid 0
1643#define mmu_start_logical 4
1644#define mmu_next_logical 8
1645#define mmu_start_physical 12
1646#define mmu_next_physical 16
1647
1648#define MMU_PRINT_INVALID -1
1649#define MMU_PRINT_VALID 1
1650#define MMU_PRINT_UNINITED 0
1651
1652#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1653
1654func_start mmu_print,%a0-%a6/%d0-%d7
1655
1656 movel %pc@(L(kernel_pgdir_ptr)),%a5
1657 lea %pc@(L(mmu_print_data)),%a0
1658 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1659
1660 is_not_040_or_060(mmu_030_print)
1661
1662mmu_040_print:
1663 puts "\nMMU040\n"
1664 puts "rp:"
1665 putn %a5
1666 putc '\n'
1667#if 0
1668 /*
1669 * The following #if/#endif block is a tight algorithm for dumping the 040
1670 * MMU Map in gory detail. It really isn't that practical unless the
1671 * MMU Map algorithm appears to go awry and you need to debug it at the
1672 * entry per entry level.
1673 */
1674 movel #ROOT_TABLE_SIZE,%d5
1675#if 0
1676 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1677 subql #1,%d5 | they (might) work
1678#endif
16791: tstl %d5
1680 jbeq mmu_print_done
1681 subq #1,%d5
1682 movel %a5@+,%d7
1683 btst #1,%d7
1684 jbeq 1b
1685
16862: putn %d7
1687 andil #0xFFFFFE00,%d7
1688 movel %d7,%a4
1689 movel #PTR_TABLE_SIZE,%d4
1690 putc ' '
16913: tstl %d4
1692 jbeq 11f
1693 subq #1,%d4
1694 movel %a4@+,%d7
1695 btst #1,%d7
1696 jbeq 3b
1697
16984: putn %d7
1699 andil #0xFFFFFF00,%d7
1700 movel %d7,%a3
1701 movel #PAGE_TABLE_SIZE,%d3
17025: movel #8,%d2
17036: tstl %d3
1704 jbeq 31f
1705 subq #1,%d3
1706 movel %a3@+,%d6
1707 btst #0,%d6
1708 jbeq 6b
17097: tstl %d2
1710 jbeq 8f
1711 subq #1,%d2
1712 putc ' '
1713 jbra 91f
17148: putc '\n'
1715 movel #8+1+8+1+1,%d2
17169: putc ' '
1717 dbra %d2,9b
1718 movel #7,%d2
171991: putn %d6
1720 jbra 6b
1721
172231: putc '\n'
1723 movel #8+1,%d2
172432: putc ' '
1725 dbra %d2,32b
1726 jbra 3b
1727
172811: putc '\n'
1729 jbra 1b
1730#endif /* MMU 040 Dumping code that's gory and detailed */
1731
1732 lea %pc@(kernel_pg_dir),%a5
1733 movel %a5,%a0 /* a0 has the address of the root table ptr */
1734 movel #0x00000000,%a4 /* logical address */
1735 moveql #0,%d0
173640:
1737 /* Increment the logical address and preserve in d5 */
1738 movel %a4,%d5
1739 addil #PAGESIZE<<13,%d5
1740 movel %a0@+,%d6
1741 btst #1,%d6
1742 jbne 41f
1743 jbsr mmu_print_tuple_invalidate
1744 jbra 48f
174541:
1746 movel #0,%d1
1747 andil #0xfffffe00,%d6
1748 movel %d6,%a1
174942:
1750 movel %a4,%d5
1751 addil #PAGESIZE<<6,%d5
1752 movel %a1@+,%d6
1753 btst #1,%d6
1754 jbne 43f
1755 jbsr mmu_print_tuple_invalidate
1756 jbra 47f
175743:
1758 movel #0,%d2
1759 andil #0xffffff00,%d6
1760 movel %d6,%a2
176144:
1762 movel %a4,%d5
1763 addil #PAGESIZE,%d5
1764 movel %a2@+,%d6
1765 btst #0,%d6
1766 jbne 45f
1767 jbsr mmu_print_tuple_invalidate
1768 jbra 46f
176945:
1770 moveml %d0-%d1,%sp@-
1771 movel %a4,%d0
1772 movel %d6,%d1
1773 andil #0xfffff4e0,%d1
1774 lea %pc@(mmu_040_print_flags),%a6
1775 jbsr mmu_print_tuple
1776 moveml %sp@+,%d0-%d1
177746:
1778 movel %d5,%a4
1779 addq #1,%d2
1780 cmpib #64,%d2
1781 jbne 44b
178247:
1783 movel %d5,%a4
1784 addq #1,%d1
1785 cmpib #128,%d1
1786 jbne 42b
178748:
1788 movel %d5,%a4 /* move to the next logical address */
1789 addq #1,%d0
1790 cmpib #128,%d0
1791 jbne 40b
1792
1793 .chip 68040
1794 movec %dtt1,%d0
1795 movel %d0,%d1
1796 andiw #0x8000,%d1 /* is it valid ? */
1797 jbeq 1f /* No, bail out */
1798
1799 movel %d0,%d1
1800 andil #0xff000000,%d1 /* Get the address */
1801 putn %d1
1802 puts "=="
1803 putn %d1
1804
1805 movel %d0,%d6
1806 jbsr mmu_040_print_flags_tt
18071:
1808 movec %dtt0,%d0
1809 movel %d0,%d1
1810 andiw #0x8000,%d1 /* is it valid ? */
1811 jbeq 1f /* No, bail out */
1812
1813 movel %d0,%d1
1814 andil #0xff000000,%d1 /* Get the address */
1815 putn %d1
1816 puts "=="
1817 putn %d1
1818
1819 movel %d0,%d6
1820 jbsr mmu_040_print_flags_tt
18211:
1822 .chip 68k
1823
1824 jbra mmu_print_done
1825
1826mmu_040_print_flags:
1827 btstl #10,%d6
1828 putZc(' ','G') /* global bit */
1829 btstl #7,%d6
1830 putZc(' ','S') /* supervisor bit */
1831mmu_040_print_flags_tt:
1832 btstl #6,%d6
1833 jbne 3f
1834 putc 'C'
1835 btstl #5,%d6
1836 putZc('w','c') /* write through or copy-back */
1837 jbra 4f
18383:
1839 putc 'N'
1840 btstl #5,%d6
1841 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
18424:
1843 rts
1844
1845mmu_030_print_flags:
1846 btstl #6,%d6
1847 putZc('C','I') /* write through or copy-back */
1848 rts
1849
1850mmu_030_print:
1851 puts "\nMMU030\n"
1852 puts "\nrp:"
1853 putn %a5
1854 putc '\n'
1855 movel %a5,%d0
1856 andil #0xfffffff0,%d0
1857 movel %d0,%a0
1858 movel #0x00000000,%a4 /* logical address */
1859 movel #0,%d0
186030:
1861 movel %a4,%d5
1862 addil #PAGESIZE<<13,%d5
1863 movel %a0@+,%d6
1864 btst #1,%d6 /* is it a table ptr? */
1865 jbne 31f /* yes */
1866 btst #0,%d6 /* is it early terminating? */
1867 jbeq 1f /* no */
1868 jbsr mmu_030_print_helper
1869 jbra 38f
18701:
1871 jbsr mmu_print_tuple_invalidate
1872 jbra 38f
187331:
1874 movel #0,%d1
1875 andil #0xfffffff0,%d6
1876 movel %d6,%a1
187732:
1878 movel %a4,%d5
1879 addil #PAGESIZE<<6,%d5
1880 movel %a1@+,%d6
1881 btst #1,%d6 /* is it a table ptr? */
1882 jbne 33f /* yes */
1883 btst #0,%d6 /* is it a page descriptor? */
1884 jbeq 1f /* no */
1885 jbsr mmu_030_print_helper
1886 jbra 37f
18871:
1888 jbsr mmu_print_tuple_invalidate
1889 jbra 37f
189033:
1891 movel #0,%d2
1892 andil #0xfffffff0,%d6
1893 movel %d6,%a2
189434:
1895 movel %a4,%d5
1896 addil #PAGESIZE,%d5
1897 movel %a2@+,%d6
1898 btst #0,%d6
1899 jbne 35f
1900 jbsr mmu_print_tuple_invalidate
1901 jbra 36f
190235:
1903 jbsr mmu_030_print_helper
190436:
1905 movel %d5,%a4
1906 addq #1,%d2
1907 cmpib #64,%d2
1908 jbne 34b
190937:
1910 movel %d5,%a4
1911 addq #1,%d1
1912 cmpib #128,%d1
1913 jbne 32b
191438:
1915 movel %d5,%a4 /* move to the next logical address */
1916 addq #1,%d0
1917 cmpib #128,%d0
1918 jbne 30b
1919
1920mmu_print_done:
1921 puts "\n\n"
1922
1923func_return mmu_print
1924
1925
1926mmu_030_print_helper:
1927 moveml %d0-%d1,%sp@-
1928 movel %a4,%d0
1929 movel %d6,%d1
1930 lea %pc@(mmu_030_print_flags),%a6
1931 jbsr mmu_print_tuple
1932 moveml %sp@+,%d0-%d1
1933 rts
1934
1935mmu_print_tuple_invalidate:
1936 moveml %a0/%d7,%sp@-
1937
1938 lea %pc@(L(mmu_print_data)),%a0
1939 tstl %a0@(mmu_next_valid)
1940 jbmi mmu_print_tuple_invalidate_exit
1941
1942 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1943
1944 putn %a4
1945
1946 puts "##\n"
1947
1948mmu_print_tuple_invalidate_exit:
1949 moveml %sp@+,%a0/%d7
1950 rts
1951
1952
1953mmu_print_tuple:
1954 moveml %d0-%d7/%a0,%sp@-
1955
1956 lea %pc@(L(mmu_print_data)),%a0
1957
1958 tstl %a0@(mmu_next_valid)
1959 jble mmu_print_tuple_print
1960
1961 cmpl %a0@(mmu_next_physical),%d1
1962 jbeq mmu_print_tuple_increment
1963
1964mmu_print_tuple_print:
1965 putn %d0
1966 puts "->"
1967 putn %d1
1968
1969 movel %d1,%d6
1970 jbsr %a6@
1971
1972mmu_print_tuple_record:
1973 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1974
1975 movel %d1,%a0@(mmu_next_physical)
1976
1977mmu_print_tuple_increment:
1978 movel %d5,%d7
1979 subl %a4,%d7
1980 addl %d7,%a0@(mmu_next_physical)
1981
1982mmu_print_tuple_exit:
1983 moveml %sp@+,%d0-%d7/%a0
1984 rts
1985
1986mmu_print_machine_cpu_types:
1987 puts "machine: "
1988
1989 is_not_amiga(1f)
1990 puts "amiga"
1991 jbra 9f
19921:
1993 is_not_atari(2f)
1994 puts "atari"
1995 jbra 9f
19962:
1997 is_not_mac(3f)
1998 puts "macintosh"
1999 jbra 9f
20003: puts "unknown"
20019: putc '\n'
2002
2003 puts "cputype: 0"
2004 is_not_060(1f)
2005 putc '6'
2006 jbra 9f
20071:
2008 is_not_040_or_060(2f)
2009 putc '4'
2010 jbra 9f
20112: putc '3'
20129: putc '0'
2013 putc '\n'
2014
2015 rts
2016#endif /* MMU_PRINT */
2017
2018/*
2019 * mmu_map_tt
2020 *
2021 * This is a specific function which works on all 680x0 machines.
2022 * On 030, 040 & 060 it will attempt to use Transparent Translation
2023 * registers (tt1).
2024 * On 020 it will call the standard mmu_map which will use early
2025 * terminating descriptors.
2026 */
2027func_start mmu_map_tt,%d0/%d1/%a0,4
2028
2029 dputs "mmu_map_tt:"
2030 dputn ARG1
2031 dputn ARG2
2032 dputn ARG3
2033 dputn ARG4
2034 dputc '\n'
2035
2036 is_020(L(do_map))
2037
2038 /* Extract the highest bit set
2039 */
2040 bfffo ARG3{#0,#32},%d1
2041 cmpw #8,%d1
2042 jcc L(do_map)
2043
2044 /* And get the mask
2045 */
2046 moveq #-1,%d0
2047 lsrl %d1,%d0
2048 lsrl #1,%d0
2049
2050 /* Mask the address
2051 */
2052 movel %d0,%d1
2053 notl %d1
2054 andl ARG2,%d1
2055
2056 /* Generate the upper 16bit of the tt register
2057 */
2058 lsrl #8,%d0
2059 orl %d0,%d1
2060 clrw %d1
2061
2062 is_040_or_060(L(mmu_map_tt_040))
2063
2064 /* set 030 specific bits (read/write access for supervisor mode
2065 * (highest function code set, lower two bits masked))
2066 */
2067 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2068 movel ARG4,%d0
2069 btst #6,%d0
2070 jeq 1f
2071 orw #TTR_CI,%d1
2072
20731: lea STACK,%a0
2074 dputn %d1
2075 movel %d1,%a0@
2076 .chip 68030
2077 tstl ARG1
2078 jne 1f
2079 pmove %a0@,%tt0
2080 jra 2f
20811: pmove %a0@,%tt1
20822: .chip 68k
2083 jra L(mmu_map_tt_done)
2084
2085 /* set 040 specific bits
2086 */
2087L(mmu_map_tt_040):
2088 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2089 orl ARG4,%d1
2090 dputn %d1
2091
2092 .chip 68040
2093 tstl ARG1
2094 jne 1f
2095 movec %d1,%itt0
2096 movec %d1,%dtt0
2097 jra 2f
20981: movec %d1,%itt1
2099 movec %d1,%dtt1
21002: .chip 68k
2101
2102 jra L(mmu_map_tt_done)
2103
2104L(do_map):
2105 mmu_map_eq ARG2,ARG3,ARG4
2106
2107L(mmu_map_tt_done):
2108
2109func_return mmu_map_tt
2110
2111/*
2112 * mmu_map
2113 *
2114 * This routine will map a range of memory using a pointer
2115 * table and allocating the pages on the fly from the kernel.
2116 * The pointer table does not have to be already linked into
2117 * the root table, this routine will do that if necessary.
2118 *
2119 * NOTE
2120 * This routine will assert failure and use the serial_putc
2121 * routines in the case of a run-time error. For example,
2122 * if the address is already mapped.
2123 *
2124 * NOTE-2
2125 * This routine will use early terminating descriptors
2126 * where possible for the 68020+68851 and 68030 type
2127 * processors.
2128 */
2129func_start mmu_map,%d0-%d4/%a0-%a4
2130
2131 dputs "\nmmu_map:"
2132 dputn ARG1
2133 dputn ARG2
2134 dputn ARG3
2135 dputn ARG4
2136 dputc '\n'
2137
2138 /* Get logical address and round it down to 256KB
2139 */
2140 movel ARG1,%d0
2141 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2142 movel %d0,%a3
2143
2144 /* Get the end address
2145 */
2146 movel ARG1,%a4
2147 addl ARG3,%a4
2148 subql #1,%a4
2149
2150 /* Get physical address and round it down to 256KB
2151 */
2152 movel ARG2,%d0
2153 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2154 movel %d0,%a2
2155
2156 /* Add page attributes to the physical address
2157 */
2158 movel ARG4,%d0
2159 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2160 addw %d0,%a2
2161
2162 dputn %a2
2163 dputn %a3
2164 dputn %a4
2165
2166 is_not_040_or_060(L(mmu_map_030))
2167
2168 addw #_PAGE_GLOBAL040,%a2
2169/*
2170 * MMU 040 & 060 Support
2171 *
2172 * The MMU usage for the 040 and 060 is different enough from
2173 * the 030 and 68851 that there is separate code. This comment
2174 * block describes the data structures and algorithms built by
2175 * this code.
2176 *
2177 * The 040 does not support early terminating descriptors, as
2178 * the 030 does. Therefore, a third level of table is needed
2179 * for the 040, and that would be the page table. In Linux,
2180 * page tables are allocated directly from the memory above the
2181 * kernel.
2182 *
2183 */
2184
2185L(mmu_map_040):
2186 /* Calculate the offset into the root table
2187 */
2188 movel %a3,%d0
2189 moveq #ROOT_INDEX_SHIFT,%d1
2190 lsrl %d1,%d0
2191 mmu_get_root_table_entry %d0
2192
2193 /* Calculate the offset into the pointer table
2194 */
2195 movel %a3,%d0
2196 moveq #PTR_INDEX_SHIFT,%d1
2197 lsrl %d1,%d0
2198 andl #PTR_TABLE_SIZE-1,%d0
2199 mmu_get_ptr_table_entry %a0,%d0
2200
2201 /* Calculate the offset into the page table
2202 */
2203 movel %a3,%d0
2204 moveq #PAGE_INDEX_SHIFT,%d1
2205 lsrl %d1,%d0
2206 andl #PAGE_TABLE_SIZE-1,%d0
2207 mmu_get_page_table_entry %a0,%d0
2208
2209 /* The page table entry must not no be busy
2210 */
2211 tstl %a0@
2212 jne L(mmu_map_error)
2213
2214 /* Do the mapping and advance the pointers
2215 */
2216 movel %a2,%a0@
22172:
2218 addw #PAGESIZE,%a2
2219 addw #PAGESIZE,%a3
2220
2221 /* Ready with mapping?
2222 */
2223 lea %a3@(-1),%a0
2224 cmpl %a0,%a4
2225 jhi L(mmu_map_040)
2226 jra L(mmu_map_done)
2227
2228L(mmu_map_030):
2229 /* Calculate the offset into the root table
2230 */
2231 movel %a3,%d0
2232 moveq #ROOT_INDEX_SHIFT,%d1
2233 lsrl %d1,%d0
2234 mmu_get_root_table_entry %d0
2235
2236 /* Check if logical address 32MB aligned,
2237 * so we can try to map it once
2238 */
2239 movel %a3,%d0
2240 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2241 jne 1f
2242
2243 /* Is there enough to map for 32MB at once
2244 */
2245 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2246 cmpl %a1,%a4
2247 jcs 1f
2248
2249 addql #1,%a1
2250
2251 /* The root table entry must not no be busy
2252 */
2253 tstl %a0@
2254 jne L(mmu_map_error)
2255
2256 /* Do the mapping and advance the pointers
2257 */
2258 dputs "early term1"
2259 dputn %a2
2260 dputn %a3
2261 dputn %a1
2262 dputc '\n'
2263 movel %a2,%a0@
2264
2265 movel %a1,%a3
2266 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2267 jra L(mmu_mapnext_030)
22681:
2269 /* Calculate the offset into the pointer table
2270 */
2271 movel %a3,%d0
2272 moveq #PTR_INDEX_SHIFT,%d1
2273 lsrl %d1,%d0
2274 andl #PTR_TABLE_SIZE-1,%d0
2275 mmu_get_ptr_table_entry %a0,%d0
2276
2277 /* The pointer table entry must not no be busy
2278 */
2279 tstl %a0@
2280 jne L(mmu_map_error)
2281
2282 /* Do the mapping and advance the pointers
2283 */
2284 dputs "early term2"
2285 dputn %a2
2286 dputn %a3
2287 dputc '\n'
2288 movel %a2,%a0@
2289
2290 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2291 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2292
2293L(mmu_mapnext_030):
2294 /* Ready with mapping?
2295 */
2296 lea %a3@(-1),%a0
2297 cmpl %a0,%a4
2298 jhi L(mmu_map_030)
2299 jra L(mmu_map_done)
2300
2301L(mmu_map_error):
2302
2303 dputs "mmu_map error:"
2304 dputn %a2
2305 dputn %a3
2306 dputc '\n'
2307
2308L(mmu_map_done):
2309
2310func_return mmu_map
2311
2312/*
2313 * mmu_fixup
2314 *
2315 * On the 040 class machines, all pages that are used for the
2316 * mmu have to be fixed up.
2317 */
2318
2319func_start mmu_fixup_page_mmu_cache,%d0/%a0
2320
2321 dputs "mmu_fixup_page_mmu_cache"
2322 dputn ARG1
2323
2324 /* Calculate the offset into the root table
2325 */
2326 movel ARG1,%d0
2327 moveq #ROOT_INDEX_SHIFT,%d1
2328 lsrl %d1,%d0
2329 mmu_get_root_table_entry %d0
2330
2331 /* Calculate the offset into the pointer table
2332 */
2333 movel ARG1,%d0
2334 moveq #PTR_INDEX_SHIFT,%d1
2335 lsrl %d1,%d0
2336 andl #PTR_TABLE_SIZE-1,%d0
2337 mmu_get_ptr_table_entry %a0,%d0
2338
2339 /* Calculate the offset into the page table
2340 */
2341 movel ARG1,%d0
2342 moveq #PAGE_INDEX_SHIFT,%d1
2343 lsrl %d1,%d0
2344 andl #PAGE_TABLE_SIZE-1,%d0
2345 mmu_get_page_table_entry %a0,%d0
2346
2347 movel %a0@,%d0
2348 andil #_CACHEMASK040,%d0
2349 orl %pc@(m68k_pgtable_cachemode),%d0
2350 movel %d0,%a0@
2351
2352 dputc '\n'
2353
2354func_return mmu_fixup_page_mmu_cache
2355
2356/*
2357 * mmu_temp_map
2358 *
2359 * create a temporary mapping to enable the mmu,
2360 * this we don't need any transparation translation tricks.
2361 */
2362
2363func_start mmu_temp_map,%d0/%d1/%a0/%a1
2364
2365 dputs "mmu_temp_map"
2366 dputn ARG1
2367 dputn ARG2
2368 dputc '\n'
2369
2370 lea %pc@(L(temp_mmap_mem)),%a1
2371
2372 /* Calculate the offset in the root table
2373 */
2374 movel ARG2,%d0
2375 moveq #ROOT_INDEX_SHIFT,%d1
2376 lsrl %d1,%d0
2377 mmu_get_root_table_entry %d0
2378
2379 /* Check if the table is temporary allocated, so we have to reuse it
2380 */
2381 movel %a0@,%d0
2382 cmpl %pc@(L(memory_start)),%d0
2383 jcc 1f
2384
2385 /* Temporary allocate a ptr table and insert it into the root table
2386 */
2387 movel %a1@,%d0
2388 addl #PTR_TABLE_SIZE*4,%a1@
2389 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2390 movel %d0,%a0@
2391 dputs " (new)"
23921:
2393 dputn %d0
2394 /* Mask the root table entry for the ptr table
2395 */
2396 andw #-ROOT_TABLE_SIZE,%d0
2397 movel %d0,%a0
2398
2399 /* Calculate the offset into the pointer table
2400 */
2401 movel ARG2,%d0
2402 moveq #PTR_INDEX_SHIFT,%d1
2403 lsrl %d1,%d0
2404 andl #PTR_TABLE_SIZE-1,%d0
2405 lea %a0@(%d0*4),%a0
2406 dputn %a0
2407
2408 /* Check if a temporary page table is already allocated
2409 */
2410 movel %a0@,%d0
2411 jne 1f
2412
2413 /* Temporary allocate a page table and insert it into the ptr table
2414 */
2415 movel %a1@,%d0
2416 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2417 alignment restriction for pointer tables on the '0[46]0. */
2418 addl #512,%a1@
2419 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2420 movel %d0,%a0@
2421 dputs " (new)"
24221:
2423 dputn %d0
2424 /* Mask the ptr table entry for the page table
2425 */
2426 andw #-PTR_TABLE_SIZE,%d0
2427 movel %d0,%a0
2428
2429 /* Calculate the offset into the page table
2430 */
2431 movel ARG2,%d0
2432 moveq #PAGE_INDEX_SHIFT,%d1
2433 lsrl %d1,%d0
2434 andl #PAGE_TABLE_SIZE-1,%d0
2435 lea %a0@(%d0*4),%a0
2436 dputn %a0
2437
2438 /* Insert the address into the page table
2439 */
2440 movel ARG1,%d0
2441 andw #-PAGESIZE,%d0
2442 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2443 movel %d0,%a0@
2444 dputn %d0
2445
2446 dputc '\n'
2447
2448func_return mmu_temp_map
2449
2450func_start mmu_engage,%d0-%d2/%a0-%a3
2451
2452 moveq #ROOT_TABLE_SIZE-1,%d0
2453 /* Temporarily use a different root table. */
2454 lea %pc@(L(kernel_pgdir_ptr)),%a0
2455 movel %a0@,%a2
2456 movel %pc@(L(memory_start)),%a1
2457 movel %a1,%a0@
2458 movel %a2,%a0
24591:
2460 movel %a0@+,%a1@+
2461 dbra %d0,1b
2462
2463 lea %pc@(L(temp_mmap_mem)),%a0
2464 movel %a1,%a0@
2465
2466 movew #PAGESIZE-1,%d0
24671:
2468 clrl %a1@+
2469 dbra %d0,1b
2470
2471 lea %pc@(1b),%a0
2472 movel #1b,%a1
2473 /* Skip temp mappings if phys == virt */
2474 cmpl %a0,%a1
2475 jeq 1f
2476
2477 mmu_temp_map %a0,%a0
2478 mmu_temp_map %a0,%a1
2479
2480 addw #PAGESIZE,%a0
2481 addw #PAGESIZE,%a1
2482 mmu_temp_map %a0,%a0
2483 mmu_temp_map %a0,%a1
24841:
2485 movel %pc@(L(memory_start)),%a3
2486 movel %pc@(L(phys_kernel_start)),%d2
2487
2488 is_not_040_or_060(L(mmu_engage_030))
2489
2490L(mmu_engage_040):
2491 .chip 68040
2492 nop
2493 cinva %bc
2494 nop
2495 pflusha
2496 nop
2497 movec %a3,%srp
2498 movel #TC_ENABLE+TC_PAGE4K,%d0
2499 movec %d0,%tc /* enable the MMU */
2500 jmp 1f:l
25011: nop
2502 movec %a2,%srp
2503 nop
2504 cinva %bc
2505 nop
2506 pflusha
2507 .chip 68k
2508 jra L(mmu_engage_cleanup)
2509
2510L(mmu_engage_030_temp):
2511 .space 12
2512L(mmu_engage_030):
2513 .chip 68030
2514 lea %pc@(L(mmu_engage_030_temp)),%a0
2515 movel #0x80000002,%a0@
2516 movel %a3,%a0@(4)
2517 movel #0x0808,%d0
2518 movec %d0,%cacr
2519 pmove %a0@,%srp
2520 pflusha
2521 /*
2522 * enable,super root enable,4096 byte pages,7 bit root index,
2523 * 7 bit pointer index, 6 bit page table index.
2524 */
2525 movel #0x82c07760,%a0@(8)
2526 pmove %a0@(8),%tc /* enable the MMU */
2527 jmp 1f:l
25281: movel %a2,%a0@(4)
2529 movel #0x0808,%d0
2530 movec %d0,%cacr
2531 pmove %a0@,%srp
2532 pflusha
2533 .chip 68k
2534
2535L(mmu_engage_cleanup):
2536 subl #PAGE_OFFSET,%d2
2537 subl %d2,%a2
2538 movel %a2,L(kernel_pgdir_ptr)
2539 subl %d2,%fp
2540 subl %d2,%sp
2541 subl %d2,ARG0
2542
2543func_return mmu_engage
2544
2545func_start mmu_get_root_table_entry,%d0/%a1
2546
2547#if 0
2548 dputs "mmu_get_root_table_entry:"
2549 dputn ARG1
2550 dputs " ="
2551#endif
2552
2553 movel %pc@(L(kernel_pgdir_ptr)),%a0
2554 tstl %a0
2555 jne 2f
2556
2557 dputs "\nmmu_init:"
2558
2559 /* Find the start of free memory, get_bi_record does this for us,
2560 * as the bootinfo structure is located directly behind the kernel
2561 * and and we simply search for the last entry.
2562 */
2563 get_bi_record BI_LAST
2564 addw #PAGESIZE-1,%a0
2565 movel %a0,%d0
2566 andw #-PAGESIZE,%d0
2567
2568 dputn %d0
2569
2570 lea %pc@(L(memory_start)),%a0
2571 movel %d0,%a0@
2572 lea %pc@(L(kernel_end)),%a0
2573 movel %d0,%a0@
2574
2575 /* we have to return the first page at _stext since the init code
2576 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2577 * page is used for further ptr tables in get_ptr_table.
2578 */
2579 lea %pc@(_stext),%a0
2580 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2581 movel %a0,%a1@
2582 addl #ROOT_TABLE_SIZE*4,%a1@
2583
2584 lea %pc@(L(mmu_num_pointer_tables)),%a1
2585 addql #1,%a1@
2586
2587 /* clear the page
2588 */
2589 movel %a0,%a1
2590 movew #PAGESIZE/4-1,%d0
25911:
2592 clrl %a1@+
2593 dbra %d0,1b
2594
2595 lea %pc@(L(kernel_pgdir_ptr)),%a1
2596 movel %a0,%a1@
2597
2598 dputn %a0
2599 dputc '\n'
26002:
2601 movel ARG1,%d0
2602 lea %a0@(%d0*4),%a0
2603
2604#if 0
2605 dputn %a0
2606 dputc '\n'
2607#endif
2608
2609func_return mmu_get_root_table_entry
2610
2611
2612
2613func_start mmu_get_ptr_table_entry,%d0/%a1
2614
2615#if 0
2616 dputs "mmu_get_ptr_table_entry:"
2617 dputn ARG1
2618 dputn ARG2
2619 dputs " ="
2620#endif
2621
2622 movel ARG1,%a0
2623 movel %a0@,%d0
2624 jne 2f
2625
2626 /* Keep track of the number of pointer tables we use
2627 */
2628 dputs "\nmmu_get_new_ptr_table:"
2629 lea %pc@(L(mmu_num_pointer_tables)),%a0
2630 movel %a0@,%d0
2631 addql #1,%a0@
2632
2633 /* See if there is a free pointer table in our cache of pointer tables
2634 */
2635 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2636 andw #7,%d0
2637 jne 1f
2638
2639 /* Get a new pointer table page from above the kernel memory
2640 */
2641 get_new_page
2642 movel %a0,%a1@
26431:
2644 /* There is an unused pointer table in our cache... use it
2645 */
2646 movel %a1@,%d0
2647 addl #PTR_TABLE_SIZE*4,%a1@
2648
2649 dputn %d0
2650 dputc '\n'
2651
2652 /* Insert the new pointer table into the root table
2653 */
2654 movel ARG1,%a0
2655 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2656 movel %d0,%a0@
26572:
2658 /* Extract the pointer table entry
2659 */
2660 andw #-PTR_TABLE_SIZE,%d0
2661 movel %d0,%a0
2662 movel ARG2,%d0
2663 lea %a0@(%d0*4),%a0
2664
2665#if 0
2666 dputn %a0
2667 dputc '\n'
2668#endif
2669
2670func_return mmu_get_ptr_table_entry
2671
2672
2673func_start mmu_get_page_table_entry,%d0/%a1
2674
2675#if 0
2676 dputs "mmu_get_page_table_entry:"
2677 dputn ARG1
2678 dputn ARG2
2679 dputs " ="
2680#endif
2681
2682 movel ARG1,%a0
2683 movel %a0@,%d0
2684 jne 2f
2685
2686 /* If the page table entry doesn't exist, we allocate a complete new
2687 * page and use it as one continues big page table which can cover
2688 * 4MB of memory, nearly almost all mappings have that alignment.
2689 */
2690 get_new_page
2691 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2692
2693 /* align pointer table entry for a page of page tables
2694 */
2695 movel ARG1,%d0
2696 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2697 movel %d0,%a1
2698
2699 /* Insert the page tables into the pointer entries
2700 */
2701 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
27021:
2703 movel %a0,%a1@+
2704 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2705 dbra %d0,1b
2706
2707 /* Now we can get the initialized pointer table entry
2708 */
2709 movel ARG1,%a0
2710 movel %a0@,%d0
27112:
2712 /* Extract the page table entry
2713 */
2714 andw #-PAGE_TABLE_SIZE,%d0
2715 movel %d0,%a0
2716 movel ARG2,%d0
2717 lea %a0@(%d0*4),%a0
2718
2719#if 0
2720 dputn %a0
2721 dputc '\n'
2722#endif
2723
2724func_return mmu_get_page_table_entry
2725
2726/*
2727 * get_new_page
2728 *
2729 * Return a new page from the memory start and clear it.
2730 */
2731func_start get_new_page,%d0/%a1
2732
2733 dputs "\nget_new_page:"
2734
2735 /* allocate the page and adjust memory_start
2736 */
2737 lea %pc@(L(memory_start)),%a0
2738 movel %a0@,%a1
2739 addl #PAGESIZE,%a0@
2740
2741 /* clear the new page
2742 */
2743 movel %a1,%a0
2744 movew #PAGESIZE/4-1,%d0
27451:
2746 clrl %a1@+
2747 dbra %d0,1b
2748
2749 dputn %a0
2750 dputc '\n'
2751
2752func_return get_new_page
2753
2754
2755
2756/*
2757 * Debug output support
2758 * Atarians have a choice between the parallel port, the serial port
2759 * from the MFP or a serial port of the SCC
2760 */
2761
2762#ifdef CONFIG_MAC
2763
2764L(scc_initable_mac):
2765 .byte 9,12 /* Reset */
2766 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2767 .byte 3,0xc0 /* receiver: 8 bpc */
2768 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2769 .byte 9,0 /* no interrupts */
2770 .byte 10,0 /* NRZ */
2771 .byte 11,0x50 /* use baud rate generator */
2772 .byte 12,10,13,0 /* 9600 baud */
2773 .byte 14,1 /* Baud rate generator enable */
2774 .byte 3,0xc1 /* enable receiver */
2775 .byte 5,0xea /* enable transmitter */
2776 .byte -1
2777 .even
2778#endif
2779
2780#ifdef CONFIG_ATARI
2781/* #define USE_PRINTER */
2782/* #define USE_SCC_B */
2783/* #define USE_SCC_A */
2784#define USE_MFP
2785
2786#if defined(USE_SCC_A) || defined(USE_SCC_B)
2787#define USE_SCC
2788/* Initialisation table for SCC */
2789L(scc_initable):
2790 .byte 9,12 /* Reset */
2791 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2792 .byte 3,0xc0 /* receiver: 8 bpc */
2793 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2794 .byte 9,0 /* no interrupts */
2795 .byte 10,0 /* NRZ */
2796 .byte 11,0x50 /* use baud rate generator */
2797 .byte 12,24,13,0 /* 9600 baud */
2798 .byte 14,2,14,3 /* use master clock for BRG, enable */
2799 .byte 3,0xc1 /* enable receiver */
2800 .byte 5,0xea /* enable transmitter */
2801 .byte -1
2802 .even
2803#endif
2804
2805#ifdef USE_PRINTER
2806
2807LPSG_SELECT = 0xff8800
2808LPSG_READ = 0xff8800
2809LPSG_WRITE = 0xff8802
2810LPSG_IO_A = 14
2811LPSG_IO_B = 15
2812LPSG_CONTROL = 7
2813LSTMFP_GPIP = 0xfffa01
2814LSTMFP_DDR = 0xfffa05
2815LSTMFP_IERB = 0xfffa09
2816
2817#elif defined(USE_SCC_B)
2818
2819LSCC_CTRL = 0xff8c85
2820LSCC_DATA = 0xff8c87
2821
2822#elif defined(USE_SCC_A)
2823
2824LSCC_CTRL = 0xff8c81
2825LSCC_DATA = 0xff8c83
2826
2827#elif defined(USE_MFP)
2828
2829LMFP_UCR = 0xfffa29
2830LMFP_TDCDR = 0xfffa1d
2831LMFP_TDDR = 0xfffa25
2832LMFP_TSR = 0xfffa2d
2833LMFP_UDR = 0xfffa2f
2834
2835#endif
2836#endif /* CONFIG_ATARI */
2837
2838/*
2839 * Serial port output support.
2840 */
2841
2842/*
2843 * Initialize serial port hardware for 9600/8/1
2844 */
2845func_start serial_init,%d0/%d1/%a0/%a1
2846 /*
2847 * Some of the register usage that follows
2848 * CONFIG_AMIGA
2849 * a0 = pointer to boot info record
2850 * d0 = boot info offset
2851 * CONFIG_ATARI
2852 * a0 = address of SCC
2853 * a1 = Liobase address/address of scc_initable
2854 * d0 = init data for serial port
2855 * CONFIG_MAC
2856 * a0 = address of SCC
2857 * a1 = address of scc_initable_mac
2858 * d0 = init data for serial port
2859 */
2860
2861#ifdef CONFIG_AMIGA
2862#define SERIAL_DTR 7
2863#define SERIAL_CNTRL CIABBASE+C_PRA
2864
2865 is_not_amiga(1f)
2866 lea %pc@(L(custom)),%a0
2867 movel #-ZTWOBASE,%a0@
2868 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2869 get_bi_record BI_AMIGA_SERPER
2870 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2871| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
28721:
2873#endif
2874#ifdef CONFIG_ATARI
2875 is_not_atari(4f)
2876 movel %pc@(L(iobase)),%a1
2877#if defined(USE_PRINTER)
2878 bclr #0,%a1@(LSTMFP_IERB)
2879 bclr #0,%a1@(LSTMFP_DDR)
2880 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2881 moveb #0xff,%a1@(LPSG_WRITE)
2882 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2883 clrb %a1@(LPSG_WRITE)
2884 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2885 moveb %a1@(LPSG_READ),%d0
2886 bset #5,%d0
2887 moveb %d0,%a1@(LPSG_WRITE)
2888#elif defined(USE_SCC)
2889 lea %a1@(LSCC_CTRL),%a0
2890 lea %pc@(L(scc_initable)),%a1
28912: moveb %a1@+,%d0
2892 jmi 3f
2893 moveb %d0,%a0@
2894 moveb %a1@+,%a0@
2895 jra 2b
28963: clrb %a0@
2897#elif defined(USE_MFP)
2898 bclr #1,%a1@(LMFP_TSR)
2899 moveb #0x88,%a1@(LMFP_UCR)
2900 andb #0x70,%a1@(LMFP_TDCDR)
2901 moveb #2,%a1@(LMFP_TDDR)
2902 orb #1,%a1@(LMFP_TDCDR)
2903 bset #1,%a1@(LMFP_TSR)
2904#endif
2905 jra L(serial_init_done)
29064:
2907#endif
2908#ifdef CONFIG_MAC
2909 is_not_mac(L(serial_init_not_mac))
2910#ifdef MAC_SERIAL_DEBUG
2911#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2912#define MAC_USE_SCC_B
2913#endif
2914#define mac_scc_cha_b_ctrl_offset 0x0
2915#define mac_scc_cha_a_ctrl_offset 0x2
2916#define mac_scc_cha_b_data_offset 0x4
2917#define mac_scc_cha_a_data_offset 0x6
2918
2919#ifdef MAC_USE_SCC_A
2920 /* Initialize channel A */
2921 movel %pc@(L(mac_sccbase)),%a0
2922 lea %pc@(L(scc_initable_mac)),%a1
29235: moveb %a1@+,%d0
2924 jmi 6f
2925 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2926 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2927 jra 5b
29286:
2929#endif /* MAC_USE_SCC_A */
2930
2931#ifdef MAC_USE_SCC_B
2932 /* Initialize channel B */
2933#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
2934 movel %pc@(L(mac_sccbase)),%a0
2935#endif /* MAC_USE_SCC_A */
2936 lea %pc@(L(scc_initable_mac)),%a1
29377: moveb %a1@+,%d0
2938 jmi 8f
2939 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2940 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2941 jra 7b
29428:
2943#endif /* MAC_USE_SCC_B */
2944#endif /* MAC_SERIAL_DEBUG */
2945
2946 jra L(serial_init_done)
2947L(serial_init_not_mac):
2948#endif /* CONFIG_MAC */
2949
2950#ifdef CONFIG_Q40
2951 is_not_q40(2f)
2952/* debug output goes into SRAM, so we don't do it unless requested
2953 - check for '%LX$' signature in SRAM */
2954 lea %pc@(q40_mem_cptr),%a1
2955 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2956 move.l #0xff020000,%a1
2957 cmp.b #'%',%a1@
2958 bne 2f /*nodbg*/
2959 addq.w #4,%a1
2960 cmp.b #'L',%a1@
2961 bne 2f /*nodbg*/
2962 addq.w #4,%a1
2963 cmp.b #'X',%a1@
2964 bne 2f /*nodbg*/
2965 addq.w #4,%a1
2966 cmp.b #'$',%a1@
2967 bne 2f /*nodbg*/
2968 /* signature OK */
2969 lea %pc@(L(q40_do_debug)),%a1
2970 tas %a1@
2971/*nodbg: q40_do_debug is 0 by default*/
29722:
2973#endif
2974
2975#ifdef CONFIG_APOLLO
2976/* We count on the PROM initializing SIO1 */
2977#endif
2978
2979#ifdef CONFIG_HP300
2980/* We count on the boot loader initialising the UART */
2981#endif
2982
2983L(serial_init_done):
2984func_return serial_init
2985
2986/*
2987 * Output character on serial port.
2988 */
2989func_start serial_putc,%d0/%d1/%a0/%a1
2990
2991 movel ARG1,%d0
2992 cmpib #'\n',%d0
2993 jbne 1f
2994
2995 /* A little safe recursion is good for the soul */
2996 serial_putc #'\r'
29971:
2998
2999#ifdef CONFIG_AMIGA
3000 is_not_amiga(2f)
3001 andw #0x00ff,%d0
3002 oriw #0x0100,%d0
3003 movel %pc@(L(custom)),%a0
3004 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
30051: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3006 andw #0x2000,%d0
3007 jeq 1b
3008 jra L(serial_putc_done)
30092:
3010#endif
3011
3012#ifdef CONFIG_MAC
3013 is_not_mac(5f)
3014
3015#ifdef MAC_SERIAL_DEBUG
3016
3017#ifdef MAC_USE_SCC_A
3018 movel %pc@(L(mac_sccbase)),%a1
30193: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3020 jeq 3b
3021 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3022#endif /* MAC_USE_SCC_A */
3023
3024#ifdef MAC_USE_SCC_B
3025#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
3026 movel %pc@(L(mac_sccbase)),%a1
3027#endif /* MAC_USE_SCC_A */
30284: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3029 jeq 4b
3030 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3031#endif /* MAC_USE_SCC_B */
3032
3033#endif /* MAC_SERIAL_DEBUG */
3034
3035 jra L(serial_putc_done)
30365:
3037#endif /* CONFIG_MAC */
3038
3039#ifdef CONFIG_ATARI
3040 is_not_atari(4f)
3041 movel %pc@(L(iobase)),%a1
3042#if defined(USE_PRINTER)
30433: btst #0,%a1@(LSTMFP_GPIP)
3044 jne 3b
3045 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3046 moveb %d0,%a1@(LPSG_WRITE)
3047 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3048 moveb %a1@(LPSG_READ),%d0
3049 bclr #5,%d0
3050 moveb %d0,%a1@(LPSG_WRITE)
3051 nop
3052 nop
3053 bset #5,%d0
3054 moveb %d0,%a1@(LPSG_WRITE)
3055#elif defined(USE_SCC)
30563: btst #2,%a1@(LSCC_CTRL)
3057 jeq 3b
3058 moveb %d0,%a1@(LSCC_DATA)
3059#elif defined(USE_MFP)
30603: btst #7,%a1@(LMFP_TSR)
3061 jeq 3b
3062 moveb %d0,%a1@(LMFP_UDR)
3063#endif
3064 jra L(serial_putc_done)
30654:
3066#endif /* CONFIG_ATARI */
3067
3068#ifdef CONFIG_MVME147
3069 is_not_mvme147(2f)
30701: btst #2,M147_SCC_CTRL_A
3071 jeq 1b
3072 moveb %d0,M147_SCC_DATA_A
3073 jbra L(serial_putc_done)
30742:
3075#endif
3076
3077#ifdef CONFIG_MVME16x
3078 is_not_mvme16x(2f)
3079 /*
3080 * If the loader gave us a board type then we can use that to
3081 * select an appropriate output routine; otherwise we just use
3082 * the Bug code. If we haev to use the Bug that means the Bug
3083 * workspace has to be valid, which means the Bug has to use
3084 * the SRAM, which is non-standard.
3085 */
3086 moveml %d0-%d7/%a2-%a6,%sp@-
3087 movel vme_brdtype,%d1
3088 jeq 1f | No tag - use the Bug
3089 cmpi #VME_TYPE_MVME162,%d1
3090 jeq 6f
3091 cmpi #VME_TYPE_MVME172,%d1
3092 jne 5f
3093 /* 162/172; it's an SCC */
30946: btst #2,M162_SCC_CTRL_A
3095 nop
3096 nop
3097 nop
3098 jeq 6b
3099 moveb #8,M162_SCC_CTRL_A
3100 nop
3101 nop
3102 nop
3103 moveb %d0,M162_SCC_CTRL_A
3104 jra 3f
31055:
3106 /* 166/167/177; it's a CD2401 */
3107 moveb #0,M167_CYCAR
3108 moveb M167_CYIER,%d2
3109 moveb #0x02,M167_CYIER
31107:
3111 btst #5,M167_PCSCCTICR
3112 jeq 7b
3113 moveb M167_PCTPIACKR,%d1
3114 moveb M167_CYLICR,%d1
3115 jeq 8f
3116 moveb #0x08,M167_CYTEOIR
3117 jra 7b
31188:
3119 moveb %d0,M167_CYTDR
3120 moveb #0,M167_CYTEOIR
3121 moveb %d2,M167_CYIER
3122 jra 3f
31231:
3124 moveb %d0,%sp@-
3125 trap #15
3126 .word 0x0020 /* TRAP 0x020 */
31273:
3128 moveml %sp@+,%d0-%d7/%a2-%a6
3129 jbra L(serial_putc_done)
31302:
3131#endif /* CONFIG_MVME16x */
3132
3133#ifdef CONFIG_BVME6000
3134 is_not_bvme6000(2f)
3135 /*
3136 * The BVME6000 machine has a serial port ...
3137 */
31381: btst #2,BVME_SCC_CTRL_A
3139 jeq 1b
3140 moveb %d0,BVME_SCC_DATA_A
3141 jbra L(serial_putc_done)
31422:
3143#endif
3144
3145#ifdef CONFIG_SUN3X
3146 is_not_sun3x(2f)
3147 movel %d0,-(%sp)
3148 movel 0xFEFE0018,%a1
3149 jbsr (%a1)
3150 addq #4,%sp
3151 jbra L(serial_putc_done)
31522:
3153#endif
3154
3155#ifdef CONFIG_Q40
3156 is_not_q40(2f)
3157 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3158 beq 2f
3159 lea %pc@(q40_mem_cptr),%a1
3160 move.l %a1@,%a0
3161 move.b %d0,%a0@
3162 addq.l #4,%a0
3163 move.l %a0,%a1@
3164 jbra L(serial_putc_done)
31652:
3166#endif
3167
3168#ifdef CONFIG_APOLLO
3169 is_not_apollo(2f)
3170 movl %pc@(L(iobase)),%a1
3171 moveb %d0,%a1@(LTHRB0)
31721: moveb %a1@(LSRB0),%d0
3173 andb #0x4,%d0
3174 beq 1b
3175 jbra L(serial_putc_done)
31762:
3177#endif
3178
3179#ifdef CONFIG_HP300
3180 is_not_hp300(3f)
3181 movl %pc@(L(iobase)),%a1
3182 addl %pc@(L(uartbase)),%a1
3183 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3184 jmi 3f /* Unset? Exit */
3185 cmpi #256,%d1 /* APCI scode? */
3186 jeq 2f
31871: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3188 andb #0x20,%d1
3189 beq 1b
3190 moveb %d0,%a1@(DCADATA)
3191 jbra L(serial_putc_done)
31922: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3193 andb #0x20,%d1
3194 beq 2b
3195 moveb %d0,%a1@(APCIDATA)
3196 jbra L(serial_putc_done)
31973:
3198#endif
3199
3200L(serial_putc_done):
3201func_return serial_putc
3202
3203/*
3204 * Output a string.
3205 */
3206func_start puts,%d0/%a0
3207
3208 movel ARG1,%a0
3209 jra 2f
32101:
3211#ifdef CONSOLE
3212 console_putc %d0
3213#endif
3214#ifdef SERIAL_DEBUG
3215 serial_putc %d0
3216#endif
32172: moveb %a0@+,%d0
3218 jne 1b
3219
3220func_return puts
3221
3222/*
3223 * Output number in hex notation.
3224 */
3225
3226func_start putn,%d0-%d2
3227
3228 putc ' '
3229
3230 movel ARG1,%d0
3231 moveq #7,%d1
32321: roll #4,%d0
3233 move %d0,%d2
3234 andb #0x0f,%d2
3235 addb #'0',%d2
3236 cmpb #'9',%d2
3237 jls 2f
3238 addb #'A'-('9'+1),%d2
32392:
3240#ifdef CONSOLE
3241 console_putc %d2
3242#endif
3243#ifdef SERIAL_DEBUG
3244 serial_putc %d2
3245#endif
3246 dbra %d1,1b
3247
3248func_return putn
3249
3250#ifdef CONFIG_MAC
3251/*
3252 * mac_serial_print
3253 *
3254 * This routine takes its parameters on the stack. It then
3255 * turns around and calls the internal routine. This routine
3256 * is used until the Linux console driver initializes itself.
3257 *
3258 * The calling parameters are:
3259 * void mac_serial_print(const char *str);
3260 *
3261 * This routine does NOT understand variable arguments only
3262 * simple strings!
3263 */
3264ENTRY(mac_serial_print)
3265 moveml %d0/%a0,%sp@-
3266#if 1
3267 move %sr,%sp@-
3268 ori #0x0700,%sr
3269#endif
3270 movel %sp@(10),%a0 /* fetch parameter */
3271 jra 2f
32721: serial_putc %d0
32732: moveb %a0@+,%d0
3274 jne 1b
3275#if 1
3276 move %sp@+,%sr
3277#endif
3278 moveml %sp@+,%d0/%a0
3279 rts
3280#endif /* CONFIG_MAC */
3281
3282#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3283func_start set_leds,%d0/%a0
3284 movel ARG1,%d0
3285#ifdef CONFIG_HP300
3286 is_not_hp300(1f)
3287 movel %pc@(L(iobase)),%a0
3288 moveb %d0,%a0@(0x1ffff)
3289 jra 2f
3290#endif
32911:
3292#ifdef CONFIG_APOLLO
3293 movel %pc@(L(iobase)),%a0
3294 lsll #8,%d0
3295 eorw #0xff00,%d0
3296 moveb %d0,%a0@(LCPUCTRL)
3297#endif
32982:
3299func_return set_leds
3300#endif
3301
3302#ifdef CONSOLE
3303/*
3304 * For continuity, see the data alignment
3305 * to which this structure is tied.
3306 */
3307#define Lconsole_struct_cur_column 0
3308#define Lconsole_struct_cur_row 4
3309#define Lconsole_struct_num_columns 8
3310#define Lconsole_struct_num_rows 12
3311#define Lconsole_struct_left_edge 16
3312#define Lconsole_struct_penguin_putc 20
3313
3314func_start console_init,%a0-%a4/%d0-%d7
3315 /*
3316 * Some of the register usage that follows
3317 * a0 = pointer to boot_info
3318 * a1 = pointer to screen
3319 * a2 = pointer to Lconsole_globals
3320 * d3 = pixel width of screen
3321 * d4 = pixel height of screen
3322 * (d3,d4) ~= (x,y) of a point just below
3323 * and to the right of the screen
3324 * NOT on the screen!
3325 * d5 = number of bytes per scan line
3326 * d6 = number of bytes on the entire screen
3327 */
3328
3329 lea %pc@(L(console_globals)),%a2
3330 movel %pc@(L(mac_videobase)),%a1
3331 movel %pc@(L(mac_rowbytes)),%d5
3332 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3333 movel %d3,%d4
3334 swap %d4 /* -> high byte */
3335 andl #0xffff,%d3 /* d3 = screen width in pixels */
3336 andl #0xffff,%d4 /* d4 = screen height in pixels */
3337
3338 movel %d5,%d6
3339| subl #20,%d6
3340 mulul %d4,%d6 /* scan line bytes x num scan lines */
3341 divul #8,%d6 /* we'll clear 8 bytes at a time */
3342 moveq #-1,%d0 /* Mac_black */
3343 subq #1,%d6
3344
3345L(console_clear_loop):
3346 movel %d0,%a1@+
3347 movel %d0,%a1@+
3348 dbra %d6,L(console_clear_loop)
3349
3350 /* Calculate font size */
3351
3352#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3353 lea %pc@(font_vga_8x8),%a0
3354#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3355 lea %pc@(font_vga_8x16),%a0
3356#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3357 lea %pc@(font_vga_6x11),%a0
3358#elif defined(CONFIG_FONT_8x8) /* default */
3359 lea %pc@(font_vga_8x8),%a0
3360#else /* no compiled-in font */
3361 lea 0,%a0
3362#endif
3363
3364 /*
3365 * At this point we make a shift in register usage
3366 * a1 = address of console_font pointer
3367 */
3368 lea %pc@(L(console_font)),%a1
3369 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3370 tstl %a0
3371 jeq 1f
3372 lea %pc@(L(console_font_data)),%a4
3373 movel %a0@(FONT_DESC_DATA),%d0
3374 subl #L(console_font),%a1
3375 addl %a1,%d0
3376 movel %d0,%a4@
3377
3378 /*
3379 * Calculate global maxs
3380 * Note - we can use either an
3381 * 8 x 16 or 8 x 8 character font
3382 * 6 x 11 also supported
3383 */
3384 /* ASSERT: a0 = contents of Lconsole_font */
3385 movel %d3,%d0 /* screen width in pixels */
3386 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3387
3388 movel %d4,%d1 /* screen height in pixels */
3389 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3390
3391 movel %d0,%a2@(Lconsole_struct_num_columns)
3392 movel %d1,%a2@(Lconsole_struct_num_rows)
3393
3394 /*
3395 * Clear the current row and column
3396 */
3397 clrl %a2@(Lconsole_struct_cur_column)
3398 clrl %a2@(Lconsole_struct_cur_row)
3399 clrl %a2@(Lconsole_struct_left_edge)
3400
3401 /*
3402 * Initialization is complete
3403 */
34041:
3405func_return console_init
3406
3407func_start console_put_stats,%a0/%d7
3408 /*
3409 * Some of the register usage that follows
3410 * a0 = pointer to boot_info
3411 * d7 = value of boot_info fields
3412 */
3413 puts "\nMacLinux\n\n"
3414
3415#ifdef SERIAL_DEBUG
3416 puts " vidaddr:"
3417 putn %pc@(L(mac_videobase)) /* video addr. */
3418
3419 puts "\n _stext:"
3420 lea %pc@(_stext),%a0
3421 putn %a0
3422
3423 puts "\nbootinfo:"
3424 lea %pc@(_end),%a0
3425 putn %a0
3426
3427 puts "\ncpuid:"
3428 putn %pc@(L(cputype))
3429 putc '\n'
3430
3431#ifdef MAC_SERIAL_DEBUG
3432 putn %pc@(L(mac_sccbase))
3433 putc '\n'
3434#endif
3435# if defined(MMU_PRINT)
3436 jbsr mmu_print_machine_cpu_types
3437# endif /* MMU_PRINT */
3438#endif /* SERIAL_DEBUG */
3439
3440func_return console_put_stats
3441
3442#ifdef CONSOLE_PENGUIN
3443func_start console_put_penguin,%a0-%a1/%d0-%d7
3444 /*
3445 * Get 'that_penguin' onto the screen in the upper right corner
3446 * penguin is 64 x 74 pixels, align against right edge of screen
3447 */
3448 lea %pc@(L(mac_dimensions)),%a0
3449 movel %a0@,%d0
3450 andil #0xffff,%d0
3451 subil #64,%d0 /* snug up against the right edge */
3452 clrl %d1 /* start at the top */
3453 movel #73,%d7
3454 lea %pc@(L(that_penguin)),%a1
3455L(console_penguin_row):
3456 movel #31,%d6
3457L(console_penguin_pixel_pair):
3458 moveb %a1@,%d2
3459 lsrb #4,%d2
3460 console_plot_pixel %d0,%d1,%d2
3461 addq #1,%d0
3462 moveb %a1@+,%d2
3463 console_plot_pixel %d0,%d1,%d2
3464 addq #1,%d0
3465 dbra %d6,L(console_penguin_pixel_pair)
3466
3467 subil #64,%d0
3468 addq #1,%d1
3469 dbra %d7,L(console_penguin_row)
3470
3471func_return console_put_penguin
3472
3473/* include penguin bitmap */
3474L(that_penguin):
3475#include "../mac/mac_penguin.S"
3476#endif
3477
3478 /*
3479 * Calculate source and destination addresses
3480 * output a1 = dest
3481 * a2 = source
3482 */
3483
3484func_start console_scroll,%a0-%a4/%d0-%d7
3485 lea %pc@(L(mac_videobase)),%a0
3486 movel %a0@,%a1
3487 movel %a1,%a2
3488 lea %pc@(L(mac_rowbytes)),%a0
3489 movel %a0@,%d5
3490 movel %pc@(L(console_font)),%a0
3491 tstl %a0
3492 jeq 1f
3493 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3494 addal %d5,%a2
3495
3496 /*
3497 * Get dimensions
3498 */
3499 lea %pc@(L(mac_dimensions)),%a0
3500 movel %a0@,%d3
3501 movel %d3,%d4
3502 swap %d4
3503 andl #0xffff,%d3 /* d3 = screen width in pixels */
3504 andl #0xffff,%d4 /* d4 = screen height in pixels */
3505
3506 /*
3507 * Calculate number of bytes to move
3508 */
3509 lea %pc@(L(mac_rowbytes)),%a0
3510 movel %a0@,%d6
3511 movel %pc@(L(console_font)),%a0
3512 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3513 mulul %d4,%d6 /* scan line bytes x num scan lines */
3514 divul #32,%d6 /* we'll move 8 longs at a time */
3515 subq #1,%d6
3516
3517L(console_scroll_loop):
3518 movel %a2@+,%a1@+
3519 movel %a2@+,%a1@+
3520 movel %a2@+,%a1@+
3521 movel %a2@+,%a1@+
3522 movel %a2@+,%a1@+
3523 movel %a2@+,%a1@+
3524 movel %a2@+,%a1@+
3525 movel %a2@+,%a1@+
3526 dbra %d6,L(console_scroll_loop)
3527
3528 lea %pc@(L(mac_rowbytes)),%a0
3529 movel %a0@,%d6
3530 movel %pc@(L(console_font)),%a0
3531 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3532 divul #32,%d6 /* we'll move 8 words at a time */
3533 subq #1,%d6
3534
3535 moveq #-1,%d0
3536L(console_scroll_clear_loop):
3537 movel %d0,%a1@+
3538 movel %d0,%a1@+
3539 movel %d0,%a1@+
3540 movel %d0,%a1@+
3541 movel %d0,%a1@+
3542 movel %d0,%a1@+
3543 movel %d0,%a1@+
3544 movel %d0,%a1@+
3545 dbra %d6,L(console_scroll_clear_loop)
3546
35471:
3548func_return console_scroll
3549
3550
3551func_start console_putc,%a0/%a1/%d0-%d7
3552
3553 is_not_mac(L(console_exit))
3554 tstl %pc@(L(console_font))
3555 jeq L(console_exit)
3556
3557 /* Output character in d7 on console.
3558 */
3559 movel ARG1,%d7
3560 cmpib #'\n',%d7
3561 jbne 1f
3562
3563 /* A little safe recursion is good for the soul */
3564 console_putc #'\r'
35651:
3566 lea %pc@(L(console_globals)),%a0
3567
3568 cmpib #10,%d7
3569 jne L(console_not_lf)
3570 movel %a0@(Lconsole_struct_cur_row),%d0
3571 addil #1,%d0
3572 movel %d0,%a0@(Lconsole_struct_cur_row)
3573 movel %a0@(Lconsole_struct_num_rows),%d1
3574 cmpl %d1,%d0
3575 jcs 1f
3576 subil #1,%d0
3577 movel %d0,%a0@(Lconsole_struct_cur_row)
3578 console_scroll
35791:
3580 jra L(console_exit)
3581
3582L(console_not_lf):
3583 cmpib #13,%d7
3584 jne L(console_not_cr)
3585 clrl %a0@(Lconsole_struct_cur_column)
3586 jra L(console_exit)
3587
3588L(console_not_cr):
3589 cmpib #1,%d7
3590 jne L(console_not_home)
3591 clrl %a0@(Lconsole_struct_cur_row)
3592 clrl %a0@(Lconsole_struct_cur_column)
3593 jra L(console_exit)
3594
3595/*
3596 * At this point we know that the %d7 character is going to be
3597 * rendered on the screen. Register usage is -
3598 * a0 = pointer to console globals
3599 * a1 = font data
3600 * d0 = cursor column
3601 * d1 = cursor row to draw the character
3602 * d7 = character number
3603 */
3604L(console_not_home):
3605 movel %a0@(Lconsole_struct_cur_column),%d0
3606 addql #1,%a0@(Lconsole_struct_cur_column)
3607 movel %a0@(Lconsole_struct_num_columns),%d1
3608 cmpl %d1,%d0
3609 jcs 1f
3610 console_putc #'\n' /* recursion is OK! */
36111:
3612 movel %a0@(Lconsole_struct_cur_row),%d1
3613
3614 /*
3615 * At this point we make a shift in register usage
3616 * a0 = address of pointer to font data (fbcon_font_desc)
3617 */
3618 movel %pc@(L(console_font)),%a0
3619 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3620 andl #0x000000ff,%d7
3621 /* ASSERT: a0 = contents of Lconsole_font */
3622 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3623 addl %d7,%a1 /* a1 = points to char image */
3624
3625 /*
3626 * At this point we make a shift in register usage
3627 * d0 = pixel coordinate, x
3628 * d1 = pixel coordinate, y
3629 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3630 * d3 = font scan line data (8 pixels)
3631 * d6 = count down for the font's pixel width (8)
3632 * d7 = count down for the font's pixel count in height
3633 */
3634 /* ASSERT: a0 = contents of Lconsole_font */
3635 mulul %a0@(FONT_DESC_WIDTH),%d0
3636 mulul %a0@(FONT_DESC_HEIGHT),%d1
3637 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3638 subq #1,%d7
3639L(console_read_char_scanline):
3640 moveb %a1@+,%d3
3641
3642 /* ASSERT: a0 = contents of Lconsole_font */
3643 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3644 subql #1,%d6
3645
3646L(console_do_font_scanline):
3647 lslb #1,%d3
3648 scsb %d2 /* convert 1 bit into a byte */
3649 console_plot_pixel %d0,%d1,%d2
3650 addq #1,%d0
3651 dbra %d6,L(console_do_font_scanline)
3652
3653 /* ASSERT: a0 = contents of Lconsole_font */
3654 subl %a0@(FONT_DESC_WIDTH),%d0
3655 addq #1,%d1
3656 dbra %d7,L(console_read_char_scanline)
3657
3658L(console_exit):
3659func_return console_putc
3660
3661 /*
3662 * Input:
3663 * d0 = x coordinate
3664 * d1 = y coordinate
3665 * d2 = (bit 0) 1/0 for white/black (!)
3666 * All registers are preserved
3667 */
3668func_start console_plot_pixel,%a0-%a1/%d0-%d4
3669
3670 movel %pc@(L(mac_videobase)),%a1
3671 movel %pc@(L(mac_videodepth)),%d3
3672 movel ARG1,%d0
3673 movel ARG2,%d1
3674 mulul %pc@(L(mac_rowbytes)),%d1
3675 movel ARG3,%d2
3676
3677 /*
3678 * Register usage:
3679 * d0 = x coord becomes byte offset into frame buffer
3680 * d1 = y coord
3681 * d2 = black or white (0/1)
3682 * d3 = video depth
3683 * d4 = temp of x (d0) for many bit depths
3684 */
3685L(test_1bit):
3686 cmpb #1,%d3
3687 jbne L(test_2bit)
3688 movel %d0,%d4 /* we need the low order 3 bits! */
3689 divul #8,%d0
3690 addal %d0,%a1
3691 addal %d1,%a1
3692 andb #7,%d4
3693 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3694 andb #1,%d2
3695 jbne L(white_1)
3696 bsetb %d4,%a1@
3697 jbra L(console_plot_pixel_exit)
3698L(white_1):
3699 bclrb %d4,%a1@
3700 jbra L(console_plot_pixel_exit)
3701
3702L(test_2bit):
3703 cmpb #2,%d3
3704 jbne L(test_4bit)
3705 movel %d0,%d4 /* we need the low order 2 bits! */
3706 divul #4,%d0
3707 addal %d0,%a1
3708 addal %d1,%a1
3709 andb #3,%d4
3710 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3711 lsll #1,%d4 /* ! */
3712 andb #1,%d2
3713 jbne L(white_2)
3714 bsetb %d4,%a1@
3715 addq #1,%d4
3716 bsetb %d4,%a1@
3717 jbra L(console_plot_pixel_exit)
3718L(white_2):
3719 bclrb %d4,%a1@
3720 addq #1,%d4
3721 bclrb %d4,%a1@
3722 jbra L(console_plot_pixel_exit)
3723
3724L(test_4bit):
3725 cmpb #4,%d3
3726 jbne L(test_8bit)
3727 movel %d0,%d4 /* we need the low order bit! */
3728 divul #2,%d0
3729 addal %d0,%a1
3730 addal %d1,%a1
3731 andb #1,%d4
3732 eorb #1,%d4
3733 lsll #2,%d4 /* ! */
3734 andb #1,%d2
3735 jbne L(white_4)
3736 bsetb %d4,%a1@
3737 addq #1,%d4
3738 bsetb %d4,%a1@
3739 addq #1,%d4
3740 bsetb %d4,%a1@
3741 addq #1,%d4
3742 bsetb %d4,%a1@
3743 jbra L(console_plot_pixel_exit)
3744L(white_4):
3745 bclrb %d4,%a1@
3746 addq #1,%d4
3747 bclrb %d4,%a1@
3748 addq #1,%d4
3749 bclrb %d4,%a1@
3750 addq #1,%d4
3751 bclrb %d4,%a1@
3752 jbra L(console_plot_pixel_exit)
3753
3754L(test_8bit):
3755 cmpb #8,%d3
3756 jbne L(test_16bit)
3757 addal %d0,%a1
3758 addal %d1,%a1
3759 andb #1,%d2
3760 jbne L(white_8)
3761 moveb #0xff,%a1@
3762 jbra L(console_plot_pixel_exit)
3763L(white_8):
3764 clrb %a1@
3765 jbra L(console_plot_pixel_exit)
3766
3767L(test_16bit):
3768 cmpb #16,%d3
3769 jbne L(console_plot_pixel_exit)
3770 addal %d0,%a1
3771 addal %d0,%a1
3772 addal %d1,%a1
3773 andb #1,%d2
3774 jbne L(white_16)
3775 clrw %a1@
3776 jbra L(console_plot_pixel_exit)
3777L(white_16):
3778 movew #0x0fff,%a1@
3779 jbra L(console_plot_pixel_exit)
3780
3781L(console_plot_pixel_exit):
3782func_return console_plot_pixel
3783#endif /* CONSOLE */
3784
3785#if 0
3786/*
3787 * This is some old code lying around. I don't believe
3788 * it's used or important anymore. My guess is it contributed
3789 * to getting to this point, but it's done for now.
3790 * It was still in the 2.1.77 head.S, so it's still here.
3791 * (And still not used!)
3792 */
3793L(showtest):
3794 moveml %a0/%d7,%sp@-
3795 puts "A="
3796 putn %a1
3797
3798 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3799
3800 puts "DA="
3801 putn %a0
3802
3803 puts "D="
3804 putn %a0@
3805
3806 puts "S="
3807 lea %pc@(L(mmu)),%a0
3808 .long 0xf0106200 | pmove %psr,%a0@
3809 clrl %d7
3810 movew %a0@,%d7
3811 putn %d7
3812
3813 putc '\n'
3814 moveml %sp@+,%a0/%d7
3815 rts
3816#endif /* 0 */
3817
3818__INITDATA
3819 .align 4
3820
3821#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3822 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3823L(custom):
3824L(iobase):
3825 .long 0
3826#endif
3827
3828#if defined(CONSOLE)
3829L(console_globals):
3830 .long 0 /* cursor column */
3831 .long 0 /* cursor row */
3832 .long 0 /* max num columns */
3833 .long 0 /* max num rows */
3834 .long 0 /* left edge */
3835 .long 0 /* mac putc */
3836L(console_font):
3837 .long 0 /* pointer to console font (struct font_desc) */
3838L(console_font_data):
3839 .long 0 /* pointer to console font data */
3840#endif /* CONSOLE */
3841
3842#if defined(MMU_PRINT)
3843L(mmu_print_data):
3844 .long 0 /* valid flag */
3845 .long 0 /* start logical */
3846 .long 0 /* next logical */
3847 .long 0 /* start physical */
3848 .long 0 /* next physical */
3849#endif /* MMU_PRINT */
3850
3851L(cputype):
3852 .long 0
3853L(mmu_cached_pointer_tables):
3854 .long 0
3855L(mmu_num_pointer_tables):
3856 .long 0
3857L(phys_kernel_start):
3858 .long 0
3859L(kernel_end):
3860 .long 0
3861L(memory_start):
3862 .long 0
3863L(kernel_pgdir_ptr):
3864 .long 0
3865L(temp_mmap_mem):
3866 .long 0
3867
3868#if defined (CONFIG_MVME147)
3869M147_SCC_CTRL_A = 0xfffe3002
3870M147_SCC_DATA_A = 0xfffe3003
3871#endif
3872
3873#if defined (CONFIG_MVME16x)
3874M162_SCC_CTRL_A = 0xfff45005
3875M167_CYCAR = 0xfff450ee
3876M167_CYIER = 0xfff45011
3877M167_CYLICR = 0xfff45026
3878M167_CYTEOIR = 0xfff45085
3879M167_CYTDR = 0xfff450f8
3880M167_PCSCCTICR = 0xfff4201e
3881M167_PCTPIACKR = 0xfff42025
3882#endif
3883
3884#if defined (CONFIG_BVME6000)
3885BVME_SCC_CTRL_A = 0xffb0000b
3886BVME_SCC_DATA_A = 0xffb0000f
3887#endif
3888
3889#if defined(CONFIG_MAC)
3890L(mac_booter_data):
3891 .long 0
3892L(mac_videobase):
3893 .long 0
3894L(mac_videodepth):
3895 .long 0
3896L(mac_dimensions):
3897 .long 0
3898L(mac_rowbytes):
3899 .long 0
3900#ifdef MAC_SERIAL_DEBUG
3901L(mac_sccbase):
3902 .long 0
3903#endif /* MAC_SERIAL_DEBUG */
3904#endif
3905
3906#if defined (CONFIG_APOLLO)
3907LSRB0 = 0x10412
3908LTHRB0 = 0x10416
3909LCPUCTRL = 0x10100
3910#endif
3911
3912#if defined(CONFIG_HP300)
3913DCADATA = 0x11
3914DCALSR = 0x1b
3915APCIDATA = 0x00
3916APCILSR = 0x14
3917L(uartbase):
3918 .long 0
3919L(uart_scode):
3920 .long -1
3921#endif
3922
3923__FINIT
3924 .data
3925 .align 4
3926
3927availmem:
3928 .long 0
3929m68k_pgtable_cachemode:
3930 .long 0
3931m68k_supervisor_cachemode:
3932 .long 0
3933#if defined(CONFIG_MVME16x)
3934mvme_bdid:
3935 .long 0,0,0,0,0,0,0,0
3936#endif
3937#if defined(CONFIG_Q40)
3938q40_mem_cptr:
3939 .long 0
3940L(q40_do_debug):
3941 .long 0
3942#endif