blob: 581ddcc22fc58e13eca80f75446e04c4c866ef09 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/alpha/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
5 *
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070030#include <linux/errno.h>
31#include <linux/module.h>
32#include <linux/sched.h>
33#include <linux/kernel.h>
34#include <linux/param.h>
35#include <linux/string.h>
36#include <linux/mm.h>
37#include <linux/delay.h>
38#include <linux/ioport.h>
39#include <linux/irq.h>
40#include <linux/interrupt.h>
41#include <linux/init.h>
42#include <linux/bcd.h>
43#include <linux/profile.h>
44
45#include <asm/uaccess.h>
46#include <asm/io.h>
47#include <asm/hwrpb.h>
48#include <asm/8253pit.h>
49
50#include <linux/mc146818rtc.h>
51#include <linux/time.h>
52#include <linux/timex.h>
53
54#include "proto.h"
55#include "irq_impl.h"
56
Linus Torvalds1da177e2005-04-16 15:20:36 -070057static int set_rtc_mmss(unsigned long);
58
59DEFINE_SPINLOCK(rtc_lock);
60
61#define TICK_SIZE (tick_nsec / 1000)
62
63/*
64 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
65 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
66 * for large CPU clock rates.
67 */
68#define FIX_SHIFT 48
69
70/* lump static variables together for more efficient access: */
71static struct {
72 /* cycle counter last time it got invoked */
73 __u32 last_time;
74 /* ticks/cycle * 2^48 */
75 unsigned long scaled_ticks_per_cycle;
76 /* last time the CMOS clock got updated */
77 time_t last_rtc_update;
78 /* partial unused tick */
79 unsigned long partial_tick;
80} state;
81
82unsigned long est_cycle_freq;
83
84
85static inline __u32 rpcc(void)
86{
87 __u32 result;
88 asm volatile ("rpcc %0" : "=r"(result));
89 return result;
90}
91
92/*
93 * Scheduler clock - returns current time in nanosec units.
94 *
95 * Copied from ARM code for expediency... ;-}
96 */
97unsigned long long sched_clock(void)
98{
99 return (unsigned long long)jiffies * (1000000000 / HZ);
100}
101
102
103/*
104 * timer_interrupt() needs to keep up the real-time clock,
105 * as well as call the "do_timer()" routine every clocktick
106 */
107irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs)
108{
109 unsigned long delta;
110 __u32 now;
111 long nticks;
112
113#ifndef CONFIG_SMP
114 /* Not SMP, do kernel PC profiling here. */
115 profile_tick(CPU_PROFILING, regs);
116#endif
117
118 write_seqlock(&xtime_lock);
119
120 /*
121 * Calculate how many ticks have passed since the last update,
122 * including any previous partial leftover. Save any resulting
123 * fraction for the next pass.
124 */
125 now = rpcc();
126 delta = now - state.last_time;
127 state.last_time = now;
128 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
129 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
130 nticks = delta >> FIX_SHIFT;
131
132 while (nticks > 0) {
Atsushi Nemoto3171a032006-09-29 02:00:32 -0700133 do_timer(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134#ifndef CONFIG_SMP
135 update_process_times(user_mode(regs));
136#endif
137 nticks--;
138 }
139
140 /*
141 * If we have an externally synchronized Linux clock, then update
142 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
143 * called as close as possible to 500 ms before the new second starts.
144 */
john stultzb149ee22005-09-06 15:17:46 -0700145 if (ntp_synced()
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 && xtime.tv_sec > state.last_rtc_update + 660
147 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
148 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
149 int tmp = set_rtc_mmss(xtime.tv_sec);
150 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
151 }
152
153 write_sequnlock(&xtime_lock);
154 return IRQ_HANDLED;
155}
156
157void
158common_init_rtc(void)
159{
160 unsigned char x;
161
162 /* Reset periodic interrupt frequency. */
163 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
164 /* Test includes known working values on various platforms
165 where 0x26 is wrong; we refuse to change those. */
166 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
167 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
168 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
169 }
170
171 /* Turn on periodic interrupts. */
172 x = CMOS_READ(RTC_CONTROL);
173 if (!(x & RTC_PIE)) {
174 printk("Turning on RTC interrupts.\n");
175 x |= RTC_PIE;
176 x &= ~(RTC_AIE | RTC_UIE);
177 CMOS_WRITE(x, RTC_CONTROL);
178 }
179 (void) CMOS_READ(RTC_INTR_FLAGS);
180
181 outb(0x36, 0x43); /* pit counter 0: system timer */
182 outb(0x00, 0x40);
183 outb(0x00, 0x40);
184
185 outb(0xb6, 0x43); /* pit counter 2: speaker */
186 outb(0x31, 0x42);
187 outb(0x13, 0x42);
188
189 init_rtc_irq();
190}
191
192
193/* Validate a computed cycle counter result against the known bounds for
194 the given processor core. There's too much brokenness in the way of
195 timing hardware for any one method to work everywhere. :-(
196
197 Return 0 if the result cannot be trusted, otherwise return the argument. */
198
199static unsigned long __init
200validate_cc_value(unsigned long cc)
201{
202 static struct bounds {
203 unsigned int min, max;
204 } cpu_hz[] __initdata = {
205 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
206 [EV4_CPU] = { 100000000, 300000000 },
207 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
208 [EV45_CPU] = { 200000000, 300000000 },
209 [EV5_CPU] = { 250000000, 433000000 },
210 [EV56_CPU] = { 333000000, 667000000 },
211 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
212 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
213 [EV6_CPU] = { 466000000, 600000000 },
214 [EV67_CPU] = { 600000000, 750000000 },
215 [EV68AL_CPU] = { 750000000, 940000000 },
216 [EV68CB_CPU] = { 1000000000, 1333333333 },
217 /* None of the following are shipping as of 2001-11-01. */
218 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
219 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
220 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
221 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
222 };
223
224 /* Allow for some drift in the crystal. 10MHz is more than enough. */
225 const unsigned int deviation = 10000000;
226
227 struct percpu_struct *cpu;
228 unsigned int index;
229
230 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
231 index = cpu->type & 0xffffffff;
232
233 /* If index out of bounds, no way to validate. */
Tobias Klauser25c87162006-07-30 03:03:23 -0700234 if (index >= ARRAY_SIZE(cpu_hz))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235 return cc;
236
237 /* If index contains no data, no way to validate. */
238 if (cpu_hz[index].max == 0)
239 return cc;
240
241 if (cc < cpu_hz[index].min - deviation
242 || cc > cpu_hz[index].max + deviation)
243 return 0;
244
245 return cc;
246}
247
248
249/*
250 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
251 * arch/i386/time.c.
252 */
253
254#define CALIBRATE_LATCH 0xffff
255#define TIMEOUT_COUNT 0x100000
256
257static unsigned long __init
258calibrate_cc_with_pit(void)
259{
260 int cc, count = 0;
261
262 /* Set the Gate high, disable speaker */
263 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
264
265 /*
266 * Now let's take care of CTC channel 2
267 *
268 * Set the Gate high, program CTC channel 2 for mode 0,
269 * (interrupt on terminal count mode), binary count,
270 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
271 */
272 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
273 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
274 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
275
276 cc = rpcc();
277 do {
278 count++;
279 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
280 cc = rpcc() - cc;
281
282 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
283 if (count <= 1 || count == TIMEOUT_COUNT)
284 return 0;
285
286 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
287}
288
289/* The Linux interpretation of the CMOS clock register contents:
290 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
291 RTC registers show the second which has precisely just started.
292 Let's hope other operating systems interpret the RTC the same way. */
293
294static unsigned long __init
295rpcc_after_update_in_progress(void)
296{
297 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
298 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
299
300 return rpcc();
301}
302
303void __init
304time_init(void)
305{
306 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
307 unsigned long cycle_freq, tolerance;
308 long diff;
309
310 /* Calibrate CPU clock -- attempt #1. */
311 if (!est_cycle_freq)
312 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
313
Matt Mackall4c2e6f62006-03-28 01:56:09 -0800314 cc1 = rpcc();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700315
316 /* Calibrate CPU clock -- attempt #2. */
317 if (!est_cycle_freq) {
Matt Mackall4c2e6f62006-03-28 01:56:09 -0800318 cc1 = rpcc_after_update_in_progress();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700319 cc2 = rpcc_after_update_in_progress();
320 est_cycle_freq = validate_cc_value(cc2 - cc1);
321 cc1 = cc2;
322 }
323
324 cycle_freq = hwrpb->cycle_freq;
325 if (est_cycle_freq) {
326 /* If the given value is within 250 PPM of what we calculated,
327 accept it. Otherwise, use what we found. */
328 tolerance = cycle_freq / 4000;
329 diff = cycle_freq - est_cycle_freq;
330 if (diff < 0)
331 diff = -diff;
332 if ((unsigned long)diff > tolerance) {
333 cycle_freq = est_cycle_freq;
334 printk("HWRPB cycle frequency bogus. "
335 "Estimated %lu Hz\n", cycle_freq);
336 } else {
337 est_cycle_freq = 0;
338 }
339 } else if (! validate_cc_value (cycle_freq)) {
340 printk("HWRPB cycle frequency bogus, "
341 "and unable to estimate a proper value!\n");
342 }
343
344 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
345 to settle, as the Update-In-Progress bit going low isn't good
346 enough on some hardware. 2ms is our guess; we haven't found
347 bogomips yet, but this is close on a 500Mhz box. */
348 __delay(1000000);
349
350 sec = CMOS_READ(RTC_SECONDS);
351 min = CMOS_READ(RTC_MINUTES);
352 hour = CMOS_READ(RTC_HOURS);
353 day = CMOS_READ(RTC_DAY_OF_MONTH);
354 mon = CMOS_READ(RTC_MONTH);
355 year = CMOS_READ(RTC_YEAR);
356
357 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
358 BCD_TO_BIN(sec);
359 BCD_TO_BIN(min);
360 BCD_TO_BIN(hour);
361 BCD_TO_BIN(day);
362 BCD_TO_BIN(mon);
363 BCD_TO_BIN(year);
364 }
365
366 /* PC-like is standard; used for year >= 70 */
367 epoch = 1900;
368 if (year < 20)
369 epoch = 2000;
370 else if (year >= 20 && year < 48)
371 /* NT epoch */
372 epoch = 1980;
373 else if (year >= 48 && year < 70)
374 /* Digital UNIX epoch */
375 epoch = 1952;
376
377 printk(KERN_INFO "Using epoch = %d\n", epoch);
378
379 if ((year += epoch) < 1970)
380 year += 100;
381
382 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
383 xtime.tv_nsec = 0;
384
385 wall_to_monotonic.tv_sec -= xtime.tv_sec;
386 wall_to_monotonic.tv_nsec = 0;
387
388 if (HZ > (1<<16)) {
389 extern void __you_loose (void);
390 __you_loose();
391 }
392
393 state.last_time = cc1;
394 state.scaled_ticks_per_cycle
395 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
396 state.last_rtc_update = 0;
397 state.partial_tick = 0L;
398
399 /* Startup the timer source. */
400 alpha_mv.init_rtc();
401}
402
403/*
404 * Use the cycle counter to estimate an displacement from the last time
405 * tick. Unfortunately the Alpha designers made only the low 32-bits of
406 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
407 * part. So we can't do the "find absolute time in terms of cycles" thing
408 * that the other ports do.
409 */
410void
411do_gettimeofday(struct timeval *tv)
412{
413 unsigned long flags;
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700414 unsigned long sec, usec, seq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415 unsigned long delta_cycles, delta_usec, partial_tick;
416
417 do {
418 seq = read_seqbegin_irqsave(&xtime_lock, flags);
419
420 delta_cycles = rpcc() - state.last_time;
421 sec = xtime.tv_sec;
422 usec = (xtime.tv_nsec / 1000);
423 partial_tick = state.partial_tick;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424
425 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
426
427#ifdef CONFIG_SMP
428 /* Until and unless we figure out how to get cpu cycle counters
429 in sync and keep them there, we can't use the rpcc tricks. */
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700430 delta_usec = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431#else
432 /*
433 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
434 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
435 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
436 *
437 * which, given a 600MHz cycle and a 1024Hz tick, has a
438 * dynamic range of about 1.7e17, which is less than the
439 * 1.8e19 in an unsigned long, so we are safe from overflow.
440 *
441 * Round, but with .5 up always, since .5 to even is harder
442 * with no clear gain.
443 */
444
445 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700446 + partial_tick) * 15625;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
448#endif
449
450 usec += delta_usec;
451 if (usec >= 1000000) {
452 sec += 1;
453 usec -= 1000000;
454 }
455
456 tv->tv_sec = sec;
457 tv->tv_usec = usec;
458}
459
460EXPORT_SYMBOL(do_gettimeofday);
461
462int
463do_settimeofday(struct timespec *tv)
464{
465 time_t wtm_sec, sec = tv->tv_sec;
466 long wtm_nsec, nsec = tv->tv_nsec;
467 unsigned long delta_nsec;
468
469 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
470 return -EINVAL;
471
472 write_seqlock_irq(&xtime_lock);
473
474 /* The offset that is added into time in do_gettimeofday above
475 must be subtracted out here to keep a coherent view of the
476 time. Without this, a full-tick error is possible. */
477
478#ifdef CONFIG_SMP
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700479 delta_nsec = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700480#else
481 delta_nsec = rpcc() - state.last_time;
482 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700483 + state.partial_tick) * 15625;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
485 delta_nsec *= 1000;
486#endif
487
488 nsec -= delta_nsec;
489
490 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
491 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
492
493 set_normalized_timespec(&xtime, sec, nsec);
494 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
495
john stultzb149ee22005-09-06 15:17:46 -0700496 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497
498 write_sequnlock_irq(&xtime_lock);
499 clock_was_set();
500 return 0;
501}
502
503EXPORT_SYMBOL(do_settimeofday);
504
505
506/*
507 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
508 * called 500 ms after the second nowtime has started, because when
509 * nowtime is written into the registers of the CMOS clock, it will
510 * jump to the next second precisely 500 ms later. Check the Motorola
511 * MC146818A or Dallas DS12887 data sheet for details.
512 *
513 * BUG: This routine does not handle hour overflow properly; it just
514 * sets the minutes. Usually you won't notice until after reboot!
515 */
516
517
518static int
519set_rtc_mmss(unsigned long nowtime)
520{
521 int retval = 0;
522 int real_seconds, real_minutes, cmos_minutes;
523 unsigned char save_control, save_freq_select;
524
525 /* irq are locally disabled here */
526 spin_lock(&rtc_lock);
527 /* Tell the clock it's being set */
528 save_control = CMOS_READ(RTC_CONTROL);
529 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
530
531 /* Stop and reset prescaler */
532 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
533 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
534
535 cmos_minutes = CMOS_READ(RTC_MINUTES);
536 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
537 BCD_TO_BIN(cmos_minutes);
538
539 /*
540 * since we're only adjusting minutes and seconds,
541 * don't interfere with hour overflow. This avoids
542 * messing with unknown time zones but requires your
543 * RTC not to be off by more than 15 minutes
544 */
545 real_seconds = nowtime % 60;
546 real_minutes = nowtime / 60;
547 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
548 /* correct for half hour time zone */
549 real_minutes += 30;
550 }
551 real_minutes %= 60;
552
553 if (abs(real_minutes - cmos_minutes) < 30) {
554 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
555 BIN_TO_BCD(real_seconds);
556 BIN_TO_BCD(real_minutes);
557 }
558 CMOS_WRITE(real_seconds,RTC_SECONDS);
559 CMOS_WRITE(real_minutes,RTC_MINUTES);
560 } else {
561 printk(KERN_WARNING
562 "set_rtc_mmss: can't update from %d to %d\n",
563 cmos_minutes, real_minutes);
564 retval = -1;
565 }
566
567 /* The following flags have to be released exactly in this order,
568 * otherwise the DS12887 (popular MC146818A clone with integrated
569 * battery and quartz) will not reset the oscillator and will not
570 * update precisely 500 ms later. You won't find this mentioned in
571 * the Dallas Semiconductor data sheets, but who believes data
572 * sheets anyway ... -- Markus Kuhn
573 */
574 CMOS_WRITE(save_control, RTC_CONTROL);
575 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
576 spin_unlock(&rtc_lock);
577
578 return retval;
579}