blob: bec78f55ca13359cf30bc00ff0d63223f6d758c4 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
Peter Zijlstra391e43d2011-11-15 17:14:39 +01007#include "cpupri.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +02008
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020039 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020040
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
Mike Galbraith0f342b92012-08-07 05:00:13 +020083extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +020084
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
Steve Muckle8f77c282013-03-11 16:33:42 -0700107 bool notify_on_migrate;
108
Peter Zijlstra029632f2011-10-25 10:00:11 +0200109#ifdef CONFIG_FAIR_GROUP_SCHED
110 /* schedulable entities of this group on each cpu */
111 struct sched_entity **se;
112 /* runqueue "owned" by this group on each cpu */
113 struct cfs_rq **cfs_rq;
114 unsigned long shares;
115
116 atomic_t load_weight;
117#endif
118
119#ifdef CONFIG_RT_GROUP_SCHED
120 struct sched_rt_entity **rt_se;
121 struct rt_rq **rt_rq;
122
123 struct rt_bandwidth rt_bandwidth;
124#endif
125
126 struct rcu_head rcu;
127 struct list_head list;
128
129 struct task_group *parent;
130 struct list_head siblings;
131 struct list_head children;
132
133#ifdef CONFIG_SCHED_AUTOGROUP
134 struct autogroup *autogroup;
135#endif
136
137 struct cfs_bandwidth cfs_bandwidth;
138};
139
140#ifdef CONFIG_FAIR_GROUP_SCHED
141#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
142
143/*
144 * A weight of 0 or 1 can cause arithmetics problems.
145 * A weight of a cfs_rq is the sum of weights of which entities
146 * are queued on this cfs_rq, so a weight of a entity should not be
147 * too large, so as the shares value of a task group.
148 * (The default weight is 1024 - so there's no practical
149 * limitation from this.)
150 */
151#define MIN_SHARES (1UL << 1)
152#define MAX_SHARES (1UL << 18)
153#endif
154
155/* Default task group.
156 * Every task in system belong to this group at bootup.
157 */
158extern struct task_group root_task_group;
159
160typedef int (*tg_visitor)(struct task_group *, void *);
161
162extern int walk_tg_tree_from(struct task_group *from,
163 tg_visitor down, tg_visitor up, void *data);
164
165/*
166 * Iterate the full tree, calling @down when first entering a node and @up when
167 * leaving it for the final time.
168 *
169 * Caller must hold rcu_lock or sufficient equivalent.
170 */
171static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
172{
173 return walk_tg_tree_from(&root_task_group, down, up, data);
174}
175
176extern int tg_nop(struct task_group *tg, void *data);
177
178extern void free_fair_sched_group(struct task_group *tg);
179extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
180extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
181extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
182 struct sched_entity *se, int cpu,
183 struct sched_entity *parent);
184extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
185extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
186
187extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
188extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
189extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
190
191extern void free_rt_sched_group(struct task_group *tg);
192extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
193extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
194 struct sched_rt_entity *rt_se, int cpu,
195 struct sched_rt_entity *parent);
196
197#else /* CONFIG_CGROUP_SCHED */
198
199struct cfs_bandwidth { };
200
201#endif /* CONFIG_CGROUP_SCHED */
202
203/* CFS-related fields in a runqueue */
204struct cfs_rq {
205 struct load_weight load;
206 unsigned long nr_running, h_nr_running;
207
208 u64 exec_clock;
209 u64 min_vruntime;
210#ifndef CONFIG_64BIT
211 u64 min_vruntime_copy;
212#endif
213
214 struct rb_root tasks_timeline;
215 struct rb_node *rb_leftmost;
216
Peter Zijlstra029632f2011-10-25 10:00:11 +0200217 /*
218 * 'curr' points to currently running entity on this cfs_rq.
219 * It is set to NULL otherwise (i.e when none are currently running).
220 */
221 struct sched_entity *curr, *next, *last, *skip;
222
223#ifdef CONFIG_SCHED_DEBUG
224 unsigned int nr_spread_over;
225#endif
226
227#ifdef CONFIG_FAIR_GROUP_SCHED
228 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
229
230 /*
231 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
232 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
233 * (like users, containers etc.)
234 *
235 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
236 * list is used during load balance.
237 */
238 int on_list;
239 struct list_head leaf_cfs_rq_list;
240 struct task_group *tg; /* group that "owns" this runqueue */
241
242#ifdef CONFIG_SMP
243 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200244 * h_load = weight * f(tg)
245 *
246 * Where f(tg) is the recursive weight fraction assigned to
247 * this group.
248 */
249 unsigned long h_load;
250
251 /*
252 * Maintaining per-cpu shares distribution for group scheduling
253 *
254 * load_stamp is the last time we updated the load average
255 * load_last is the last time we updated the load average and saw load
256 * load_unacc_exec_time is currently unaccounted execution time
257 */
258 u64 load_avg;
259 u64 load_period;
260 u64 load_stamp, load_last, load_unacc_exec_time;
261
262 unsigned long load_contribution;
263#endif /* CONFIG_SMP */
264#ifdef CONFIG_CFS_BANDWIDTH
265 int runtime_enabled;
266 u64 runtime_expires;
267 s64 runtime_remaining;
268
269 u64 throttled_timestamp;
270 int throttled, throttle_count;
271 struct list_head throttled_list;
272#endif /* CONFIG_CFS_BANDWIDTH */
273#endif /* CONFIG_FAIR_GROUP_SCHED */
274};
275
276static inline int rt_bandwidth_enabled(void)
277{
278 return sysctl_sched_rt_runtime >= 0;
279}
280
281/* Real-Time classes' related field in a runqueue: */
282struct rt_rq {
283 struct rt_prio_array active;
284 unsigned long rt_nr_running;
285#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
286 struct {
287 int curr; /* highest queued rt task prio */
288#ifdef CONFIG_SMP
289 int next; /* next highest */
290#endif
291 } highest_prio;
292#endif
293#ifdef CONFIG_SMP
294 unsigned long rt_nr_migratory;
295 unsigned long rt_nr_total;
296 int overloaded;
297 struct plist_head pushable_tasks;
298#endif
299 int rt_throttled;
300 u64 rt_time;
301 u64 rt_runtime;
302 /* Nests inside the rq lock: */
303 raw_spinlock_t rt_runtime_lock;
304
305#ifdef CONFIG_RT_GROUP_SCHED
306 unsigned long rt_nr_boosted;
307
308 struct rq *rq;
309 struct list_head leaf_rt_rq_list;
310 struct task_group *tg;
311#endif
312};
313
314#ifdef CONFIG_SMP
315
316/*
317 * We add the notion of a root-domain which will be used to define per-domain
318 * variables. Each exclusive cpuset essentially defines an island domain by
319 * fully partitioning the member cpus from any other cpuset. Whenever a new
320 * exclusive cpuset is created, we also create and attach a new root-domain
321 * object.
322 *
323 */
324struct root_domain {
325 atomic_t refcount;
326 atomic_t rto_count;
327 struct rcu_head rcu;
328 cpumask_var_t span;
329 cpumask_var_t online;
330
331 /*
332 * The "RT overload" flag: it gets set if a CPU has more than
333 * one runnable RT task.
334 */
335 cpumask_var_t rto_mask;
336 struct cpupri cpupri;
337};
338
339extern struct root_domain def_root_domain;
340
341#endif /* CONFIG_SMP */
342
343/*
344 * This is the main, per-CPU runqueue data structure.
345 *
346 * Locking rule: those places that want to lock multiple runqueues
347 * (such as the load balancing or the thread migration code), lock
348 * acquire operations must be ordered by ascending &runqueue.
349 */
350struct rq {
351 /* runqueue lock: */
352 raw_spinlock_t lock;
353
354 /*
355 * nr_running and cpu_load should be in the same cacheline because
356 * remote CPUs use both these fields when doing load calculation.
357 */
358 unsigned long nr_running;
359 #define CPU_LOAD_IDX_MAX 5
360 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
361 unsigned long last_load_update_tick;
362#ifdef CONFIG_NO_HZ
363 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800364 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200365#endif
366 int skip_clock_update;
367
368 /* capture load from *all* tasks on this cpu: */
369 struct load_weight load;
370 unsigned long nr_load_updates;
371 u64 nr_switches;
372
373 struct cfs_rq cfs;
374 struct rt_rq rt;
375
376#ifdef CONFIG_FAIR_GROUP_SCHED
377 /* list of leaf cfs_rq on this cpu: */
378 struct list_head leaf_cfs_rq_list;
379#endif
380#ifdef CONFIG_RT_GROUP_SCHED
381 struct list_head leaf_rt_rq_list;
382#endif
383
384 /*
385 * This is part of a global counter where only the total sum
386 * over all CPUs matters. A task can increase this counter on
387 * one CPU and if it got migrated afterwards it may decrease
388 * it on another CPU. Always updated under the runqueue lock:
389 */
390 unsigned long nr_uninterruptible;
391
392 struct task_struct *curr, *idle, *stop;
393 unsigned long next_balance;
394 struct mm_struct *prev_mm;
395
396 u64 clock;
397 u64 clock_task;
398
399 atomic_t nr_iowait;
400
401#ifdef CONFIG_SMP
402 struct root_domain *rd;
403 struct sched_domain *sd;
404
405 unsigned long cpu_power;
406
407 unsigned char idle_balance;
408 /* For active balancing */
409 int post_schedule;
410 int active_balance;
411 int push_cpu;
412 struct cpu_stop_work active_balance_work;
413 /* cpu of this runqueue: */
414 int cpu;
415 int online;
416
Peter Zijlstra367456c2012-02-20 21:49:09 +0100417 struct list_head cfs_tasks;
418
Peter Zijlstra029632f2011-10-25 10:00:11 +0200419 u64 rt_avg;
420 u64 age_stamp;
421 u64 idle_stamp;
422 u64 avg_idle;
423#endif
424
425#ifdef CONFIG_IRQ_TIME_ACCOUNTING
426 u64 prev_irq_time;
427#endif
428#ifdef CONFIG_PARAVIRT
429 u64 prev_steal_time;
430#endif
431#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
432 u64 prev_steal_time_rq;
433#endif
434
435 /* calc_load related fields */
436 unsigned long calc_load_update;
437 long calc_load_active;
438
439#ifdef CONFIG_SCHED_HRTICK
440#ifdef CONFIG_SMP
441 int hrtick_csd_pending;
442 struct call_single_data hrtick_csd;
443#endif
444 struct hrtimer hrtick_timer;
445#endif
446
447#ifdef CONFIG_SCHEDSTATS
448 /* latency stats */
449 struct sched_info rq_sched_info;
450 unsigned long long rq_cpu_time;
451 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
452
453 /* sys_sched_yield() stats */
454 unsigned int yld_count;
455
456 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200457 unsigned int sched_count;
458 unsigned int sched_goidle;
459
460 /* try_to_wake_up() stats */
461 unsigned int ttwu_count;
462 unsigned int ttwu_local;
463#endif
464
465#ifdef CONFIG_SMP
466 struct llist_head wake_list;
467#endif
468};
469
470static inline int cpu_of(struct rq *rq)
471{
472#ifdef CONFIG_SMP
473 return rq->cpu;
474#else
475 return 0;
476#endif
477}
478
479DECLARE_PER_CPU(struct rq, runqueues);
480
Peter Zijlstra518cd622011-12-07 15:07:31 +0100481#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
482#define this_rq() (&__get_cpu_var(runqueues))
483#define task_rq(p) cpu_rq(task_cpu(p))
484#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
485#define raw_rq() (&__raw_get_cpu_var(runqueues))
486
487#ifdef CONFIG_SMP
488
Peter Zijlstra029632f2011-10-25 10:00:11 +0200489#define rcu_dereference_check_sched_domain(p) \
490 rcu_dereference_check((p), \
491 lockdep_is_held(&sched_domains_mutex))
492
493/*
494 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
495 * See detach_destroy_domains: synchronize_sched for details.
496 *
497 * The domain tree of any CPU may only be accessed from within
498 * preempt-disabled sections.
499 */
500#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100501 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
502 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200503
Suresh Siddha77e81362011-11-17 11:08:23 -0800504#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
505
Peter Zijlstra518cd622011-12-07 15:07:31 +0100506/**
507 * highest_flag_domain - Return highest sched_domain containing flag.
508 * @cpu: The cpu whose highest level of sched domain is to
509 * be returned.
510 * @flag: The flag to check for the highest sched_domain
511 * for the given cpu.
512 *
513 * Returns the highest sched_domain of a cpu which contains the given flag.
514 */
515static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
516{
517 struct sched_domain *sd, *hsd = NULL;
518
519 for_each_domain(cpu, sd) {
520 if (!(sd->flags & flag))
521 break;
522 hsd = sd;
523 }
524
525 return hsd;
526}
527
528DECLARE_PER_CPU(struct sched_domain *, sd_llc);
529DECLARE_PER_CPU(int, sd_llc_id);
530
531#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200532
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100533#include "stats.h"
534#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200535
536#ifdef CONFIG_CGROUP_SCHED
537
538/*
539 * Return the group to which this tasks belongs.
540 *
541 * We use task_subsys_state_check() and extend the RCU verification with
542 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
543 * task it moves into the cgroup. Therefore by holding either of those locks,
544 * we pin the task to the current cgroup.
545 */
546static inline struct task_group *task_group(struct task_struct *p)
547{
548 struct task_group *tg;
549 struct cgroup_subsys_state *css;
550
551 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
552 lockdep_is_held(&p->pi_lock) ||
553 lockdep_is_held(&task_rq(p)->lock));
554 tg = container_of(css, struct task_group, css);
555
556 return autogroup_task_group(p, tg);
557}
558
Steve Muckle8f77c282013-03-11 16:33:42 -0700559static inline bool task_notify_on_migrate(struct task_struct *p)
560{
561 return task_group(p)->notify_on_migrate;
562}
563
Peter Zijlstra029632f2011-10-25 10:00:11 +0200564/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
565static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
566{
567#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
568 struct task_group *tg = task_group(p);
569#endif
570
571#ifdef CONFIG_FAIR_GROUP_SCHED
572 p->se.cfs_rq = tg->cfs_rq[cpu];
573 p->se.parent = tg->se[cpu];
574#endif
575
576#ifdef CONFIG_RT_GROUP_SCHED
577 p->rt.rt_rq = tg->rt_rq[cpu];
578 p->rt.parent = tg->rt_se[cpu];
579#endif
580}
581
582#else /* CONFIG_CGROUP_SCHED */
583
584static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
585static inline struct task_group *task_group(struct task_struct *p)
586{
587 return NULL;
588}
Steve Muckle8f77c282013-03-11 16:33:42 -0700589static inline bool task_notify_on_migrate(struct task_struct *p)
590{
591 return false;
592}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200593#endif /* CONFIG_CGROUP_SCHED */
594
595static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
596{
597 set_task_rq(p, cpu);
598#ifdef CONFIG_SMP
599 /*
600 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
601 * successfuly executed on another CPU. We must ensure that updates of
602 * per-task data have been completed by this moment.
603 */
604 smp_wmb();
605 task_thread_info(p)->cpu = cpu;
606#endif
607}
608
609/*
610 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
611 */
612#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100613# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200614# define const_debug __read_mostly
615#else
616# define const_debug const
617#endif
618
619extern const_debug unsigned int sysctl_sched_features;
620
621#define SCHED_FEAT(name, enabled) \
622 __SCHED_FEAT_##name ,
623
624enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100625#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200626 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200627};
628
629#undef SCHED_FEAT
630
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200631#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Ingo Molnarc5905af2012-02-24 08:31:31 +0100632static __always_inline bool static_branch__true(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200633{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100634 return static_key_true(key); /* Not out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200635}
636
Ingo Molnarc5905af2012-02-24 08:31:31 +0100637static __always_inline bool static_branch__false(struct static_key *key)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200638{
Ingo Molnarc5905af2012-02-24 08:31:31 +0100639 return static_key_false(key); /* Out of line branch. */
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200640}
641
642#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100643static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200644{ \
645 return static_branch__##enabled(key); \
646}
647
648#include "features.h"
649
650#undef SCHED_FEAT
651
Ingo Molnarc5905af2012-02-24 08:31:31 +0100652extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200653#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
654#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200655#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200656#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200657
658static inline u64 global_rt_period(void)
659{
660 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
661}
662
663static inline u64 global_rt_runtime(void)
664{
665 if (sysctl_sched_rt_runtime < 0)
666 return RUNTIME_INF;
667
668 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
669}
670
671
672
673static inline int task_current(struct rq *rq, struct task_struct *p)
674{
675 return rq->curr == p;
676}
677
678static inline int task_running(struct rq *rq, struct task_struct *p)
679{
680#ifdef CONFIG_SMP
681 return p->on_cpu;
682#else
683 return task_current(rq, p);
684#endif
685}
686
687
688#ifndef prepare_arch_switch
689# define prepare_arch_switch(next) do { } while (0)
690#endif
691#ifndef finish_arch_switch
692# define finish_arch_switch(prev) do { } while (0)
693#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000694#ifndef finish_arch_post_lock_switch
695# define finish_arch_post_lock_switch() do { } while (0)
696#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200697
698#ifndef __ARCH_WANT_UNLOCKED_CTXSW
699static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
700{
701#ifdef CONFIG_SMP
702 /*
703 * We can optimise this out completely for !SMP, because the
704 * SMP rebalancing from interrupt is the only thing that cares
705 * here.
706 */
707 next->on_cpu = 1;
708#endif
709}
710
711static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
712{
713#ifdef CONFIG_SMP
714 /*
715 * After ->on_cpu is cleared, the task can be moved to a different CPU.
716 * We must ensure this doesn't happen until the switch is completely
717 * finished.
718 */
719 smp_wmb();
720 prev->on_cpu = 0;
721#endif
722#ifdef CONFIG_DEBUG_SPINLOCK
723 /* this is a valid case when another task releases the spinlock */
724 rq->lock.owner = current;
725#endif
726 /*
727 * If we are tracking spinlock dependencies then we have to
728 * fix up the runqueue lock - which gets 'carried over' from
729 * prev into current:
730 */
731 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
732
733 raw_spin_unlock_irq(&rq->lock);
734}
735
736#else /* __ARCH_WANT_UNLOCKED_CTXSW */
737static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
738{
739#ifdef CONFIG_SMP
740 /*
741 * We can optimise this out completely for !SMP, because the
742 * SMP rebalancing from interrupt is the only thing that cares
743 * here.
744 */
745 next->on_cpu = 1;
746#endif
747#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
748 raw_spin_unlock_irq(&rq->lock);
749#else
750 raw_spin_unlock(&rq->lock);
751#endif
752}
753
754static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
755{
756#ifdef CONFIG_SMP
757 /*
758 * After ->on_cpu is cleared, the task can be moved to a different CPU.
759 * We must ensure this doesn't happen until the switch is completely
760 * finished.
761 */
762 smp_wmb();
763 prev->on_cpu = 0;
764#endif
765#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
766 local_irq_enable();
767#endif
768}
769#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
770
771
772static inline void update_load_add(struct load_weight *lw, unsigned long inc)
773{
774 lw->weight += inc;
775 lw->inv_weight = 0;
776}
777
778static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
779{
780 lw->weight -= dec;
781 lw->inv_weight = 0;
782}
783
784static inline void update_load_set(struct load_weight *lw, unsigned long w)
785{
786 lw->weight = w;
787 lw->inv_weight = 0;
788}
789
790/*
791 * To aid in avoiding the subversion of "niceness" due to uneven distribution
792 * of tasks with abnormal "nice" values across CPUs the contribution that
793 * each task makes to its run queue's load is weighted according to its
794 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
795 * scaled version of the new time slice allocation that they receive on time
796 * slice expiry etc.
797 */
798
799#define WEIGHT_IDLEPRIO 3
800#define WMULT_IDLEPRIO 1431655765
801
802/*
803 * Nice levels are multiplicative, with a gentle 10% change for every
804 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
805 * nice 1, it will get ~10% less CPU time than another CPU-bound task
806 * that remained on nice 0.
807 *
808 * The "10% effect" is relative and cumulative: from _any_ nice level,
809 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
810 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
811 * If a task goes up by ~10% and another task goes down by ~10% then
812 * the relative distance between them is ~25%.)
813 */
814static const int prio_to_weight[40] = {
815 /* -20 */ 88761, 71755, 56483, 46273, 36291,
816 /* -15 */ 29154, 23254, 18705, 14949, 11916,
817 /* -10 */ 9548, 7620, 6100, 4904, 3906,
818 /* -5 */ 3121, 2501, 1991, 1586, 1277,
819 /* 0 */ 1024, 820, 655, 526, 423,
820 /* 5 */ 335, 272, 215, 172, 137,
821 /* 10 */ 110, 87, 70, 56, 45,
822 /* 15 */ 36, 29, 23, 18, 15,
823};
824
825/*
826 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
827 *
828 * In cases where the weight does not change often, we can use the
829 * precalculated inverse to speed up arithmetics by turning divisions
830 * into multiplications:
831 */
832static const u32 prio_to_wmult[40] = {
833 /* -20 */ 48388, 59856, 76040, 92818, 118348,
834 /* -15 */ 147320, 184698, 229616, 287308, 360437,
835 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
836 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
837 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
838 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
839 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
840 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
841};
842
843/* Time spent by the tasks of the cpu accounting group executing in ... */
844enum cpuacct_stat_index {
845 CPUACCT_STAT_USER, /* ... user mode */
846 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
847
848 CPUACCT_STAT_NSTATS,
849};
850
851
852#define sched_class_highest (&stop_sched_class)
853#define for_each_class(class) \
854 for (class = sched_class_highest; class; class = class->next)
855
856extern const struct sched_class stop_sched_class;
857extern const struct sched_class rt_sched_class;
858extern const struct sched_class fair_sched_class;
859extern const struct sched_class idle_sched_class;
860
861
862#ifdef CONFIG_SMP
863
864extern void trigger_load_balance(struct rq *rq, int cpu);
865extern void idle_balance(int this_cpu, struct rq *this_rq);
866
867#else /* CONFIG_SMP */
868
869static inline void idle_balance(int cpu, struct rq *rq)
870{
871}
872
873#endif
874
875extern void sysrq_sched_debug_show(void);
876extern void sched_init_granularity(void);
877extern void update_max_interval(void);
878extern void update_group_power(struct sched_domain *sd, int cpu);
879extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
880extern void init_sched_rt_class(void);
881extern void init_sched_fair_class(void);
882
883extern void resched_task(struct task_struct *p);
884extern void resched_cpu(int cpu);
885
886extern struct rt_bandwidth def_rt_bandwidth;
887extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
888
889extern void update_cpu_load(struct rq *this_rq);
890
891#ifdef CONFIG_CGROUP_CPUACCT
Glauber Costa54c707e2011-11-28 14:45:19 -0200892#include <linux/cgroup.h>
893/* track cpu usage of a group of tasks and its child groups */
894struct cpuacct {
895 struct cgroup_subsys_state css;
896 /* cpuusage holds pointer to a u64-type object on every cpu */
897 u64 __percpu *cpuusage;
898 struct kernel_cpustat __percpu *cpustat;
899};
900
901/* return cpu accounting group corresponding to this container */
902static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
903{
904 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
905 struct cpuacct, css);
906}
907
908/* return cpu accounting group to which this task belongs */
909static inline struct cpuacct *task_ca(struct task_struct *tsk)
910{
911 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
912 struct cpuacct, css);
913}
914
915static inline struct cpuacct *parent_ca(struct cpuacct *ca)
916{
917 if (!ca || !ca->css.cgroup->parent)
918 return NULL;
919 return cgroup_ca(ca->css.cgroup->parent);
920}
921
Peter Zijlstra029632f2011-10-25 10:00:11 +0200922extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200923#else
924static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200925#endif
926
927static inline void inc_nr_running(struct rq *rq)
928{
Jeff Ohlsteinfe9a0d02012-06-19 15:59:46 -0700929 sched_update_nr_prod(cpu_of(rq), rq->nr_running, true);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200930 rq->nr_running++;
931}
932
933static inline void dec_nr_running(struct rq *rq)
934{
Jeff Ohlsteinfe9a0d02012-06-19 15:59:46 -0700935 sched_update_nr_prod(cpu_of(rq), rq->nr_running, false);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200936 rq->nr_running--;
937}
938
939extern void update_rq_clock(struct rq *rq);
940
941extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
942extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
943
944extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
945
946extern const_debug unsigned int sysctl_sched_time_avg;
947extern const_debug unsigned int sysctl_sched_nr_migrate;
948extern const_debug unsigned int sysctl_sched_migration_cost;
949
950static inline u64 sched_avg_period(void)
951{
952 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
953}
954
Peter Zijlstra029632f2011-10-25 10:00:11 +0200955#ifdef CONFIG_SCHED_HRTICK
956
957/*
958 * Use hrtick when:
959 * - enabled by features
960 * - hrtimer is actually high res
961 */
962static inline int hrtick_enabled(struct rq *rq)
963{
964 if (!sched_feat(HRTICK))
965 return 0;
966 if (!cpu_active(cpu_of(rq)))
967 return 0;
968 return hrtimer_is_hres_active(&rq->hrtick_timer);
969}
970
971void hrtick_start(struct rq *rq, u64 delay);
972
Mike Galbraithb39e66e2011-11-22 15:20:07 +0100973#else
974
975static inline int hrtick_enabled(struct rq *rq)
976{
977 return 0;
978}
979
Peter Zijlstra029632f2011-10-25 10:00:11 +0200980#endif /* CONFIG_SCHED_HRTICK */
981
982#ifdef CONFIG_SMP
983extern void sched_avg_update(struct rq *rq);
984static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
985{
986 rq->rt_avg += rt_delta;
987 sched_avg_update(rq);
988}
989#else
990static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
991static inline void sched_avg_update(struct rq *rq) { }
992#endif
993
994extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
995
996#ifdef CONFIG_SMP
997#ifdef CONFIG_PREEMPT
998
999static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1000
1001/*
1002 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1003 * way at the expense of forcing extra atomic operations in all
1004 * invocations. This assures that the double_lock is acquired using the
1005 * same underlying policy as the spinlock_t on this architecture, which
1006 * reduces latency compared to the unfair variant below. However, it
1007 * also adds more overhead and therefore may reduce throughput.
1008 */
1009static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1010 __releases(this_rq->lock)
1011 __acquires(busiest->lock)
1012 __acquires(this_rq->lock)
1013{
1014 raw_spin_unlock(&this_rq->lock);
1015 double_rq_lock(this_rq, busiest);
1016
1017 return 1;
1018}
1019
1020#else
1021/*
1022 * Unfair double_lock_balance: Optimizes throughput at the expense of
1023 * latency by eliminating extra atomic operations when the locks are
1024 * already in proper order on entry. This favors lower cpu-ids and will
1025 * grant the double lock to lower cpus over higher ids under contention,
1026 * regardless of entry order into the function.
1027 */
1028static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1029 __releases(this_rq->lock)
1030 __acquires(busiest->lock)
1031 __acquires(this_rq->lock)
1032{
1033 int ret = 0;
1034
1035 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1036 if (busiest < this_rq) {
1037 raw_spin_unlock(&this_rq->lock);
1038 raw_spin_lock(&busiest->lock);
1039 raw_spin_lock_nested(&this_rq->lock,
1040 SINGLE_DEPTH_NESTING);
1041 ret = 1;
1042 } else
1043 raw_spin_lock_nested(&busiest->lock,
1044 SINGLE_DEPTH_NESTING);
1045 }
1046 return ret;
1047}
1048
1049#endif /* CONFIG_PREEMPT */
1050
1051/*
1052 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1053 */
1054static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1055{
1056 if (unlikely(!irqs_disabled())) {
1057 /* printk() doesn't work good under rq->lock */
1058 raw_spin_unlock(&this_rq->lock);
1059 BUG_ON(1);
1060 }
1061
1062 return _double_lock_balance(this_rq, busiest);
1063}
1064
1065static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1066 __releases(busiest->lock)
1067{
1068 raw_spin_unlock(&busiest->lock);
1069 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1070}
1071
1072/*
1073 * double_rq_lock - safely lock two runqueues
1074 *
1075 * Note this does not disable interrupts like task_rq_lock,
1076 * you need to do so manually before calling.
1077 */
1078static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1079 __acquires(rq1->lock)
1080 __acquires(rq2->lock)
1081{
1082 BUG_ON(!irqs_disabled());
1083 if (rq1 == rq2) {
1084 raw_spin_lock(&rq1->lock);
1085 __acquire(rq2->lock); /* Fake it out ;) */
1086 } else {
1087 if (rq1 < rq2) {
1088 raw_spin_lock(&rq1->lock);
1089 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1090 } else {
1091 raw_spin_lock(&rq2->lock);
1092 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1093 }
1094 }
1095}
1096
1097/*
1098 * double_rq_unlock - safely unlock two runqueues
1099 *
1100 * Note this does not restore interrupts like task_rq_unlock,
1101 * you need to do so manually after calling.
1102 */
1103static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1104 __releases(rq1->lock)
1105 __releases(rq2->lock)
1106{
1107 raw_spin_unlock(&rq1->lock);
1108 if (rq1 != rq2)
1109 raw_spin_unlock(&rq2->lock);
1110 else
1111 __release(rq2->lock);
1112}
1113
1114#else /* CONFIG_SMP */
1115
1116/*
1117 * double_rq_lock - safely lock two runqueues
1118 *
1119 * Note this does not disable interrupts like task_rq_lock,
1120 * you need to do so manually before calling.
1121 */
1122static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1123 __acquires(rq1->lock)
1124 __acquires(rq2->lock)
1125{
1126 BUG_ON(!irqs_disabled());
1127 BUG_ON(rq1 != rq2);
1128 raw_spin_lock(&rq1->lock);
1129 __acquire(rq2->lock); /* Fake it out ;) */
1130}
1131
1132/*
1133 * double_rq_unlock - safely unlock two runqueues
1134 *
1135 * Note this does not restore interrupts like task_rq_unlock,
1136 * you need to do so manually after calling.
1137 */
1138static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1139 __releases(rq1->lock)
1140 __releases(rq2->lock)
1141{
1142 BUG_ON(rq1 != rq2);
1143 raw_spin_unlock(&rq1->lock);
1144 __release(rq2->lock);
1145}
1146
1147#endif
1148
1149extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1150extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1151extern void print_cfs_stats(struct seq_file *m, int cpu);
1152extern void print_rt_stats(struct seq_file *m, int cpu);
1153
1154extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1155extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1156extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1157
1158extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001159
1160#ifdef CONFIG_NO_HZ
1161enum rq_nohz_flag_bits {
1162 NOHZ_TICK_STOPPED,
1163 NOHZ_BALANCE_KICK,
Suresh Siddha69e1e812011-12-01 17:07:33 -08001164 NOHZ_IDLE,
Suresh Siddha1c792db2011-12-01 17:07:32 -08001165};
1166
1167#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1168#endif