blob: aad4fb80d1872ed264e96f9cedb2d116f41a70b4 [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
28 */
29
30#define UBIFS_DBG_PRESERVE_UBI
31
32#include "ubifs.h"
33#include <linux/module.h>
34#include <linux/moduleparam.h>
Artem Bityutskiy552ff312008-10-23 11:49:28 +030035#include <linux/debugfs.h>
Artem Bityutskiy4d61db42008-12-18 14:06:51 +020036#include <linux/math64.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090037#include <linux/slab.h>
Artem Bityutskiy1e517642008-07-14 19:08:37 +030038
39#ifdef CONFIG_UBIFS_FS_DEBUG
40
41DEFINE_SPINLOCK(dbg_lock);
42
43static char dbg_key_buf0[128];
44static char dbg_key_buf1[128];
45
Artem Bityutskiycce3f612011-03-09 13:36:23 +020046unsigned int ubifs_msg_flags;
47unsigned int ubifs_chk_flags;
Artem Bityutskiy1e517642008-07-14 19:08:37 +030048unsigned int ubifs_tst_flags;
49
50module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
51module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
52module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53
54MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
55MODULE_PARM_DESC(debug_chks, "Debug check flags");
56MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57
58static const char *get_key_fmt(int fmt)
59{
60 switch (fmt) {
61 case UBIFS_SIMPLE_KEY_FMT:
62 return "simple";
63 default:
64 return "unknown/invalid format";
65 }
66}
67
68static const char *get_key_hash(int hash)
69{
70 switch (hash) {
71 case UBIFS_KEY_HASH_R5:
72 return "R5";
73 case UBIFS_KEY_HASH_TEST:
74 return "test";
75 default:
76 return "unknown/invalid name hash";
77 }
78}
79
80static const char *get_key_type(int type)
81{
82 switch (type) {
83 case UBIFS_INO_KEY:
84 return "inode";
85 case UBIFS_DENT_KEY:
86 return "direntry";
87 case UBIFS_XENT_KEY:
88 return "xentry";
89 case UBIFS_DATA_KEY:
90 return "data";
91 case UBIFS_TRUN_KEY:
92 return "truncate";
93 default:
94 return "unknown/invalid key";
95 }
96}
97
98static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
99 char *buffer)
100{
101 char *p = buffer;
102 int type = key_type(c, key);
103
104 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105 switch (type) {
106 case UBIFS_INO_KEY:
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200107 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300108 get_key_type(type));
109 break;
110 case UBIFS_DENT_KEY:
111 case UBIFS_XENT_KEY:
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200112 sprintf(p, "(%lu, %s, %#08x)",
113 (unsigned long)key_inum(c, key),
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300114 get_key_type(type), key_hash(c, key));
115 break;
116 case UBIFS_DATA_KEY:
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200117 sprintf(p, "(%lu, %s, %u)",
118 (unsigned long)key_inum(c, key),
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300119 get_key_type(type), key_block(c, key));
120 break;
121 case UBIFS_TRUN_KEY:
122 sprintf(p, "(%lu, %s)",
Artem Bityutskiye84461a2008-10-29 12:08:43 +0200123 (unsigned long)key_inum(c, key),
124 get_key_type(type));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300125 break;
126 default:
127 sprintf(p, "(bad key type: %#08x, %#08x)",
128 key->u32[0], key->u32[1]);
129 }
130 } else
131 sprintf(p, "bad key format %d", c->key_fmt);
132}
133
134const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135{
136 /* dbg_lock must be held */
137 sprintf_key(c, key, dbg_key_buf0);
138 return dbg_key_buf0;
139}
140
141const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142{
143 /* dbg_lock must be held */
144 sprintf_key(c, key, dbg_key_buf1);
145 return dbg_key_buf1;
146}
147
148const char *dbg_ntype(int type)
149{
150 switch (type) {
151 case UBIFS_PAD_NODE:
152 return "padding node";
153 case UBIFS_SB_NODE:
154 return "superblock node";
155 case UBIFS_MST_NODE:
156 return "master node";
157 case UBIFS_REF_NODE:
158 return "reference node";
159 case UBIFS_INO_NODE:
160 return "inode node";
161 case UBIFS_DENT_NODE:
162 return "direntry node";
163 case UBIFS_XENT_NODE:
164 return "xentry node";
165 case UBIFS_DATA_NODE:
166 return "data node";
167 case UBIFS_TRUN_NODE:
168 return "truncate node";
169 case UBIFS_IDX_NODE:
170 return "indexing node";
171 case UBIFS_CS_NODE:
172 return "commit start node";
173 case UBIFS_ORPH_NODE:
174 return "orphan node";
175 default:
176 return "unknown node";
177 }
178}
179
180static const char *dbg_gtype(int type)
181{
182 switch (type) {
183 case UBIFS_NO_NODE_GROUP:
184 return "no node group";
185 case UBIFS_IN_NODE_GROUP:
186 return "in node group";
187 case UBIFS_LAST_OF_NODE_GROUP:
188 return "last of node group";
189 default:
190 return "unknown";
191 }
192}
193
194const char *dbg_cstate(int cmt_state)
195{
196 switch (cmt_state) {
197 case COMMIT_RESTING:
198 return "commit resting";
199 case COMMIT_BACKGROUND:
200 return "background commit requested";
201 case COMMIT_REQUIRED:
202 return "commit required";
203 case COMMIT_RUNNING_BACKGROUND:
204 return "BACKGROUND commit running";
205 case COMMIT_RUNNING_REQUIRED:
206 return "commit running and required";
207 case COMMIT_BROKEN:
208 return "broken commit";
209 default:
210 return "unknown commit state";
211 }
212}
213
Artem Bityutskiy77a7ae52009-09-15 15:03:51 +0300214const char *dbg_jhead(int jhead)
215{
216 switch (jhead) {
217 case GCHD:
218 return "0 (GC)";
219 case BASEHD:
220 return "1 (base)";
221 case DATAHD:
222 return "2 (data)";
223 default:
224 return "unknown journal head";
225 }
226}
227
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300228static void dump_ch(const struct ubifs_ch *ch)
229{
230 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
231 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
232 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
233 dbg_ntype(ch->node_type));
234 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
235 dbg_gtype(ch->group_type));
236 printk(KERN_DEBUG "\tsqnum %llu\n",
237 (unsigned long long)le64_to_cpu(ch->sqnum));
238 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
239}
240
241void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242{
243 const struct ubifs_inode *ui = ubifs_inode(inode);
244
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300245 printk(KERN_DEBUG "Dump in-memory inode:");
246 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
247 printk(KERN_DEBUG "\tsize %llu\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300248 (unsigned long long)i_size_read(inode));
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300249 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
250 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
251 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
252 printk(KERN_DEBUG "\tatime %u.%u\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300253 (unsigned int)inode->i_atime.tv_sec,
254 (unsigned int)inode->i_atime.tv_nsec);
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300255 printk(KERN_DEBUG "\tmtime %u.%u\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300256 (unsigned int)inode->i_mtime.tv_sec,
257 (unsigned int)inode->i_mtime.tv_nsec);
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300258 printk(KERN_DEBUG "\tctime %u.%u\n",
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300259 (unsigned int)inode->i_ctime.tv_sec,
260 (unsigned int)inode->i_ctime.tv_nsec);
Artem Bityutskiyb5e426e2008-09-09 11:20:35 +0300261 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
262 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
263 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
264 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
265 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
266 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
268 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
269 (unsigned long long)ui->synced_i_size);
270 printk(KERN_DEBUG "\tui_size %llu\n",
271 (unsigned long long)ui->ui_size);
272 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
273 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
274 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
275 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
276 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300277}
278
279void dbg_dump_node(const struct ubifs_info *c, const void *node)
280{
281 int i, n;
282 union ubifs_key key;
283 const struct ubifs_ch *ch = node;
284
285 if (dbg_failure_mode)
286 return;
287
288 /* If the magic is incorrect, just hexdump the first bytes */
289 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
290 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
291 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
292 (void *)node, UBIFS_CH_SZ, 1);
293 return;
294 }
295
296 spin_lock(&dbg_lock);
297 dump_ch(node);
298
299 switch (ch->node_type) {
300 case UBIFS_PAD_NODE:
301 {
302 const struct ubifs_pad_node *pad = node;
303
304 printk(KERN_DEBUG "\tpad_len %u\n",
305 le32_to_cpu(pad->pad_len));
306 break;
307 }
308 case UBIFS_SB_NODE:
309 {
310 const struct ubifs_sb_node *sup = node;
311 unsigned int sup_flags = le32_to_cpu(sup->flags);
312
313 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
314 (int)sup->key_hash, get_key_hash(sup->key_hash));
315 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
316 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
317 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
318 printk(KERN_DEBUG "\t big_lpt %u\n",
319 !!(sup_flags & UBIFS_FLG_BIGLPT));
320 printk(KERN_DEBUG "\tmin_io_size %u\n",
321 le32_to_cpu(sup->min_io_size));
322 printk(KERN_DEBUG "\tleb_size %u\n",
323 le32_to_cpu(sup->leb_size));
324 printk(KERN_DEBUG "\tleb_cnt %u\n",
325 le32_to_cpu(sup->leb_cnt));
326 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
327 le32_to_cpu(sup->max_leb_cnt));
328 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
329 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
330 printk(KERN_DEBUG "\tlog_lebs %u\n",
331 le32_to_cpu(sup->log_lebs));
332 printk(KERN_DEBUG "\tlpt_lebs %u\n",
333 le32_to_cpu(sup->lpt_lebs));
334 printk(KERN_DEBUG "\torph_lebs %u\n",
335 le32_to_cpu(sup->orph_lebs));
336 printk(KERN_DEBUG "\tjhead_cnt %u\n",
337 le32_to_cpu(sup->jhead_cnt));
338 printk(KERN_DEBUG "\tfanout %u\n",
339 le32_to_cpu(sup->fanout));
340 printk(KERN_DEBUG "\tlsave_cnt %u\n",
341 le32_to_cpu(sup->lsave_cnt));
342 printk(KERN_DEBUG "\tdefault_compr %u\n",
343 (int)le16_to_cpu(sup->default_compr));
344 printk(KERN_DEBUG "\trp_size %llu\n",
345 (unsigned long long)le64_to_cpu(sup->rp_size));
346 printk(KERN_DEBUG "\trp_uid %u\n",
347 le32_to_cpu(sup->rp_uid));
348 printk(KERN_DEBUG "\trp_gid %u\n",
349 le32_to_cpu(sup->rp_gid));
350 printk(KERN_DEBUG "\tfmt_version %u\n",
351 le32_to_cpu(sup->fmt_version));
352 printk(KERN_DEBUG "\ttime_gran %u\n",
353 le32_to_cpu(sup->time_gran));
Joe Perches7f2f4e72009-12-14 18:01:13 -0800354 printk(KERN_DEBUG "\tUUID %pUB\n",
355 sup->uuid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300356 break;
357 }
358 case UBIFS_MST_NODE:
359 {
360 const struct ubifs_mst_node *mst = node;
361
362 printk(KERN_DEBUG "\thighest_inum %llu\n",
363 (unsigned long long)le64_to_cpu(mst->highest_inum));
364 printk(KERN_DEBUG "\tcommit number %llu\n",
365 (unsigned long long)le64_to_cpu(mst->cmt_no));
366 printk(KERN_DEBUG "\tflags %#x\n",
367 le32_to_cpu(mst->flags));
368 printk(KERN_DEBUG "\tlog_lnum %u\n",
369 le32_to_cpu(mst->log_lnum));
370 printk(KERN_DEBUG "\troot_lnum %u\n",
371 le32_to_cpu(mst->root_lnum));
372 printk(KERN_DEBUG "\troot_offs %u\n",
373 le32_to_cpu(mst->root_offs));
374 printk(KERN_DEBUG "\troot_len %u\n",
375 le32_to_cpu(mst->root_len));
376 printk(KERN_DEBUG "\tgc_lnum %u\n",
377 le32_to_cpu(mst->gc_lnum));
378 printk(KERN_DEBUG "\tihead_lnum %u\n",
379 le32_to_cpu(mst->ihead_lnum));
380 printk(KERN_DEBUG "\tihead_offs %u\n",
381 le32_to_cpu(mst->ihead_offs));
Harvey Harrison0ecb9522008-10-24 10:52:57 -0700382 printk(KERN_DEBUG "\tindex_size %llu\n",
383 (unsigned long long)le64_to_cpu(mst->index_size));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300384 printk(KERN_DEBUG "\tlpt_lnum %u\n",
385 le32_to_cpu(mst->lpt_lnum));
386 printk(KERN_DEBUG "\tlpt_offs %u\n",
387 le32_to_cpu(mst->lpt_offs));
388 printk(KERN_DEBUG "\tnhead_lnum %u\n",
389 le32_to_cpu(mst->nhead_lnum));
390 printk(KERN_DEBUG "\tnhead_offs %u\n",
391 le32_to_cpu(mst->nhead_offs));
392 printk(KERN_DEBUG "\tltab_lnum %u\n",
393 le32_to_cpu(mst->ltab_lnum));
394 printk(KERN_DEBUG "\tltab_offs %u\n",
395 le32_to_cpu(mst->ltab_offs));
396 printk(KERN_DEBUG "\tlsave_lnum %u\n",
397 le32_to_cpu(mst->lsave_lnum));
398 printk(KERN_DEBUG "\tlsave_offs %u\n",
399 le32_to_cpu(mst->lsave_offs));
400 printk(KERN_DEBUG "\tlscan_lnum %u\n",
401 le32_to_cpu(mst->lscan_lnum));
402 printk(KERN_DEBUG "\tleb_cnt %u\n",
403 le32_to_cpu(mst->leb_cnt));
404 printk(KERN_DEBUG "\tempty_lebs %u\n",
405 le32_to_cpu(mst->empty_lebs));
406 printk(KERN_DEBUG "\tidx_lebs %u\n",
407 le32_to_cpu(mst->idx_lebs));
408 printk(KERN_DEBUG "\ttotal_free %llu\n",
409 (unsigned long long)le64_to_cpu(mst->total_free));
410 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
411 (unsigned long long)le64_to_cpu(mst->total_dirty));
412 printk(KERN_DEBUG "\ttotal_used %llu\n",
413 (unsigned long long)le64_to_cpu(mst->total_used));
414 printk(KERN_DEBUG "\ttotal_dead %llu\n",
415 (unsigned long long)le64_to_cpu(mst->total_dead));
416 printk(KERN_DEBUG "\ttotal_dark %llu\n",
417 (unsigned long long)le64_to_cpu(mst->total_dark));
418 break;
419 }
420 case UBIFS_REF_NODE:
421 {
422 const struct ubifs_ref_node *ref = node;
423
424 printk(KERN_DEBUG "\tlnum %u\n",
425 le32_to_cpu(ref->lnum));
426 printk(KERN_DEBUG "\toffs %u\n",
427 le32_to_cpu(ref->offs));
428 printk(KERN_DEBUG "\tjhead %u\n",
429 le32_to_cpu(ref->jhead));
430 break;
431 }
432 case UBIFS_INO_NODE:
433 {
434 const struct ubifs_ino_node *ino = node;
435
436 key_read(c, &ino->key, &key);
437 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
438 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
439 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
440 printk(KERN_DEBUG "\tsize %llu\n",
441 (unsigned long long)le64_to_cpu(ino->size));
442 printk(KERN_DEBUG "\tnlink %u\n",
443 le32_to_cpu(ino->nlink));
444 printk(KERN_DEBUG "\tatime %lld.%u\n",
445 (long long)le64_to_cpu(ino->atime_sec),
446 le32_to_cpu(ino->atime_nsec));
447 printk(KERN_DEBUG "\tmtime %lld.%u\n",
448 (long long)le64_to_cpu(ino->mtime_sec),
449 le32_to_cpu(ino->mtime_nsec));
450 printk(KERN_DEBUG "\tctime %lld.%u\n",
451 (long long)le64_to_cpu(ino->ctime_sec),
452 le32_to_cpu(ino->ctime_nsec));
453 printk(KERN_DEBUG "\tuid %u\n",
454 le32_to_cpu(ino->uid));
455 printk(KERN_DEBUG "\tgid %u\n",
456 le32_to_cpu(ino->gid));
457 printk(KERN_DEBUG "\tmode %u\n",
458 le32_to_cpu(ino->mode));
459 printk(KERN_DEBUG "\tflags %#x\n",
460 le32_to_cpu(ino->flags));
461 printk(KERN_DEBUG "\txattr_cnt %u\n",
462 le32_to_cpu(ino->xattr_cnt));
463 printk(KERN_DEBUG "\txattr_size %u\n",
464 le32_to_cpu(ino->xattr_size));
465 printk(KERN_DEBUG "\txattr_names %u\n",
466 le32_to_cpu(ino->xattr_names));
467 printk(KERN_DEBUG "\tcompr_type %#x\n",
468 (int)le16_to_cpu(ino->compr_type));
469 printk(KERN_DEBUG "\tdata len %u\n",
470 le32_to_cpu(ino->data_len));
471 break;
472 }
473 case UBIFS_DENT_NODE:
474 case UBIFS_XENT_NODE:
475 {
476 const struct ubifs_dent_node *dent = node;
477 int nlen = le16_to_cpu(dent->nlen);
478
479 key_read(c, &dent->key, &key);
480 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
481 printk(KERN_DEBUG "\tinum %llu\n",
482 (unsigned long long)le64_to_cpu(dent->inum));
483 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
484 printk(KERN_DEBUG "\tnlen %d\n", nlen);
485 printk(KERN_DEBUG "\tname ");
486
487 if (nlen > UBIFS_MAX_NLEN)
488 printk(KERN_DEBUG "(bad name length, not printing, "
489 "bad or corrupted node)");
490 else {
491 for (i = 0; i < nlen && dent->name[i]; i++)
Artem Bityutskiyc9927c32009-03-16 09:42:03 +0200492 printk(KERN_CONT "%c", dent->name[i]);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300493 }
Artem Bityutskiyc9927c32009-03-16 09:42:03 +0200494 printk(KERN_CONT "\n");
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300495
496 break;
497 }
498 case UBIFS_DATA_NODE:
499 {
500 const struct ubifs_data_node *dn = node;
501 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502
503 key_read(c, &dn->key, &key);
504 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
505 printk(KERN_DEBUG "\tsize %u\n",
506 le32_to_cpu(dn->size));
507 printk(KERN_DEBUG "\tcompr_typ %d\n",
508 (int)le16_to_cpu(dn->compr_type));
509 printk(KERN_DEBUG "\tdata size %d\n",
510 dlen);
511 printk(KERN_DEBUG "\tdata:\n");
512 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data, dlen, 0);
514 break;
515 }
516 case UBIFS_TRUN_NODE:
517 {
518 const struct ubifs_trun_node *trun = node;
519
520 printk(KERN_DEBUG "\tinum %u\n",
521 le32_to_cpu(trun->inum));
522 printk(KERN_DEBUG "\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 printk(KERN_DEBUG "\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
527 }
528 case UBIFS_IDX_NODE:
529 {
530 const struct ubifs_idx_node *idx = node;
531
532 n = le16_to_cpu(idx->child_cnt);
533 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
534 printk(KERN_DEBUG "\tlevel %d\n",
535 (int)le16_to_cpu(idx->level));
536 printk(KERN_DEBUG "\tBranches:\n");
537
538 for (i = 0; i < n && i < c->fanout - 1; i++) {
539 const struct ubifs_branch *br;
540
541 br = ubifs_idx_branch(c, idx, i);
542 key_read(c, &br->key, &key);
543 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
544 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
545 le32_to_cpu(br->len), DBGKEY(&key));
546 }
547 break;
548 }
549 case UBIFS_CS_NODE:
550 break;
551 case UBIFS_ORPH_NODE:
552 {
553 const struct ubifs_orph_node *orph = node;
554
555 printk(KERN_DEBUG "\tcommit number %llu\n",
556 (unsigned long long)
557 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
558 printk(KERN_DEBUG "\tlast node flag %llu\n",
559 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
560 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
561 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
562 for (i = 0; i < n; i++)
563 printk(KERN_DEBUG "\t ino %llu\n",
Alexander Beregalov7424bac2008-09-17 22:09:41 +0400564 (unsigned long long)le64_to_cpu(orph->inos[i]));
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300565 break;
566 }
567 default:
568 printk(KERN_DEBUG "node type %d was not recognized\n",
569 (int)ch->node_type);
570 }
571 spin_unlock(&dbg_lock);
572}
573
574void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575{
576 spin_lock(&dbg_lock);
577 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
578 req->new_ino, req->dirtied_ino);
579 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
580 req->new_ino_d, req->dirtied_ino_d);
581 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
582 req->new_page, req->dirtied_page);
583 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
584 req->new_dent, req->mod_dent);
585 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
586 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
587 req->data_growth, req->dd_growth);
588 spin_unlock(&dbg_lock);
589}
590
591void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592{
593 spin_lock(&dbg_lock);
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300594 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
595 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300596 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
597 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
598 lst->total_dirty);
599 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
600 "total_dead %lld\n", lst->total_used, lst->total_dark,
601 lst->total_dead);
602 spin_unlock(&dbg_lock);
603}
604
605void dbg_dump_budg(struct ubifs_info *c)
606{
607 int i;
608 struct rb_node *rb;
609 struct ubifs_bud *bud;
610 struct ubifs_gced_idx_leb *idx_gc;
Artem Bityutskiy21a60252008-12-12 11:13:17 -0500611 long long available, outstanding, free;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300612
Artem Bityutskiy8ff83082011-03-29 18:19:50 +0300613 spin_lock(&c->space_lock);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300614 spin_lock(&dbg_lock);
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300615 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
616 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
Artem Bityutskiyb1375452011-03-29 18:04:05 +0300617 c->bi.data_growth, c->bi.dd_growth, c->bi.idx_growth);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300618 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
Artem Bityutskiyb1375452011-03-29 18:04:05 +0300619 "freeable_cnt %d\n", c->bi.data_growth + c->bi.dd_growth,
620 c->bi.data_growth + c->bi.dd_growth + c->bi.idx_growth,
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300621 c->freeable_cnt);
622 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
Artem Bityutskiyb1375452011-03-29 18:04:05 +0300623 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->bi.min_idx_lebs,
624 c->bi.old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300625 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
626 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
627 atomic_long_read(&c->dirty_zn_cnt),
628 atomic_long_read(&c->clean_zn_cnt));
629 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
630 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
631 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
632 c->gc_lnum, c->ihead_lnum);
Artem Bityutskiy84abf972009-01-23 14:54:59 +0200633 /* If we are in R/O mode, journal heads do not exist */
634 if (c->jheads)
635 for (i = 0; i < c->jhead_cnt; i++)
Artem Bityutskiy77a7ae52009-09-15 15:03:51 +0300636 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
637 dbg_jhead(c->jheads[i].wbuf.jhead),
638 c->jheads[i].wbuf.lnum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300639 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
640 bud = rb_entry(rb, struct ubifs_bud, rb);
641 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
642 }
643 list_for_each_entry(bud, &c->old_buds, list)
644 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
645 list_for_each_entry(idx_gc, &c->idx_gc, list)
646 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
647 idx_gc->lnum, idx_gc->unmap);
648 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
Artem Bityutskiy21a60252008-12-12 11:13:17 -0500649
650 /* Print budgeting predictions */
Artem Bityutskiyb1375452011-03-29 18:04:05 +0300651 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
652 outstanding = c->bi.data_growth + c->bi.dd_growth;
Artem Bityutskiy84abf972009-01-23 14:54:59 +0200653 free = ubifs_get_free_space_nolock(c);
Artem Bityutskiy21a60252008-12-12 11:13:17 -0500654 printk(KERN_DEBUG "Budgeting predictions:\n");
655 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
656 available, outstanding, free);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300657 spin_unlock(&dbg_lock);
Artem Bityutskiy8ff83082011-03-29 18:19:50 +0300658 spin_unlock(&c->space_lock);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300659}
660
661void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
662{
Artem Bityutskiybe9e62a2008-12-28 10:17:23 +0200663 int i, spc, dark = 0, dead = 0;
664 struct rb_node *rb;
665 struct ubifs_bud *bud;
666
667 spc = lp->free + lp->dirty;
668 if (spc < c->dead_wm)
669 dead = spc;
670 else
671 dark = ubifs_calc_dark(c, spc);
672
673 if (lp->flags & LPROPS_INDEX)
674 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
675 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
676 lp->dirty, c->leb_size - spc, spc, lp->flags);
677 else
678 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
679 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
680 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
681 c->leb_size - spc, spc, dark, dead,
682 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
683
684 if (lp->flags & LPROPS_TAKEN) {
685 if (lp->flags & LPROPS_INDEX)
686 printk(KERN_CONT "index, taken");
687 else
688 printk(KERN_CONT "taken");
689 } else {
690 const char *s;
691
692 if (lp->flags & LPROPS_INDEX) {
693 switch (lp->flags & LPROPS_CAT_MASK) {
694 case LPROPS_DIRTY_IDX:
695 s = "dirty index";
696 break;
697 case LPROPS_FRDI_IDX:
698 s = "freeable index";
699 break;
700 default:
701 s = "index";
702 }
703 } else {
704 switch (lp->flags & LPROPS_CAT_MASK) {
705 case LPROPS_UNCAT:
706 s = "not categorized";
707 break;
708 case LPROPS_DIRTY:
709 s = "dirty";
710 break;
711 case LPROPS_FREE:
712 s = "free";
713 break;
714 case LPROPS_EMPTY:
715 s = "empty";
716 break;
717 case LPROPS_FREEABLE:
718 s = "freeable";
719 break;
720 default:
721 s = NULL;
722 break;
723 }
724 }
725 printk(KERN_CONT "%s", s);
726 }
727
728 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
729 bud = rb_entry(rb, struct ubifs_bud, rb);
730 if (bud->lnum == lp->lnum) {
731 int head = 0;
732 for (i = 0; i < c->jhead_cnt; i++) {
733 if (lp->lnum == c->jheads[i].wbuf.lnum) {
734 printk(KERN_CONT ", jhead %s",
735 dbg_jhead(i));
736 head = 1;
737 }
738 }
739 if (!head)
740 printk(KERN_CONT ", bud of jhead %s",
741 dbg_jhead(bud->jhead));
742 }
743 }
744 if (lp->lnum == c->gc_lnum)
745 printk(KERN_CONT ", GC LEB");
746 printk(KERN_CONT ")\n");
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300747}
748
749void dbg_dump_lprops(struct ubifs_info *c)
750{
751 int lnum, err;
752 struct ubifs_lprops lp;
753 struct ubifs_lp_stats lst;
754
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200755 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
756 current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300757 ubifs_get_lp_stats(c, &lst);
758 dbg_dump_lstats(&lst);
759
760 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
761 err = ubifs_read_one_lp(c, lnum, &lp);
762 if (err)
763 ubifs_err("cannot read lprops for LEB %d", lnum);
764
765 dbg_dump_lprop(c, &lp);
766 }
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200767 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
768 current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300769}
770
Adrian Hunter73944a62008-09-12 18:13:31 +0300771void dbg_dump_lpt_info(struct ubifs_info *c)
772{
773 int i;
774
775 spin_lock(&dbg_lock);
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200776 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
Adrian Hunter73944a62008-09-12 18:13:31 +0300777 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
778 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
779 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
780 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
781 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
782 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
783 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
784 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
785 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
786 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
787 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
788 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
789 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
790 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
791 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
792 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
793 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
794 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
795 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
796 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
797 c->nhead_lnum, c->nhead_offs);
Artem Bityutskiyf92b9822008-12-28 11:34:26 +0200798 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
799 c->ltab_lnum, c->ltab_offs);
Adrian Hunter73944a62008-09-12 18:13:31 +0300800 if (c->big_lpt)
801 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
802 c->lsave_lnum, c->lsave_offs);
803 for (i = 0; i < c->lpt_lebs; i++)
804 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
805 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
806 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
807 spin_unlock(&dbg_lock);
808}
809
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300810void dbg_dump_leb(const struct ubifs_info *c, int lnum)
811{
812 struct ubifs_scan_leb *sleb;
813 struct ubifs_scan_node *snod;
Artem Bityutskiy73d9aec2011-03-11 15:39:09 +0200814 void *buf;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300815
816 if (dbg_failure_mode)
817 return;
818
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200819 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
820 current->pid, lnum);
Artem Bityutskiy73d9aec2011-03-11 15:39:09 +0200821
Artem Bityutskiyfc5e58c2011-03-24 16:14:26 +0200822 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
Artem Bityutskiy73d9aec2011-03-11 15:39:09 +0200823 if (!buf) {
824 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
825 return;
826 }
827
828 sleb = ubifs_scan(c, lnum, 0, buf, 0);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300829 if (IS_ERR(sleb)) {
830 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
Artem Bityutskiy73d9aec2011-03-11 15:39:09 +0200831 goto out;
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300832 }
833
834 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
835 sleb->nodes_cnt, sleb->endpt);
836
837 list_for_each_entry(snod, &sleb->nodes, list) {
838 cond_resched();
839 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
840 snod->offs, snod->len);
841 dbg_dump_node(c, snod->node);
842 }
843
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200844 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
845 current->pid, lnum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300846 ubifs_scan_destroy(sleb);
Artem Bityutskiy73d9aec2011-03-11 15:39:09 +0200847
848out:
849 vfree(buf);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300850 return;
851}
852
853void dbg_dump_znode(const struct ubifs_info *c,
854 const struct ubifs_znode *znode)
855{
856 int n;
857 const struct ubifs_zbranch *zbr;
858
859 spin_lock(&dbg_lock);
860 if (znode->parent)
861 zbr = &znode->parent->zbranch[znode->iip];
862 else
863 zbr = &c->zroot;
864
865 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
866 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
867 zbr->len, znode->parent, znode->iip, znode->level,
868 znode->child_cnt, znode->flags);
869
870 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
871 spin_unlock(&dbg_lock);
872 return;
873 }
874
875 printk(KERN_DEBUG "zbranches:\n");
876 for (n = 0; n < znode->child_cnt; n++) {
877 zbr = &znode->zbranch[n];
878 if (znode->level > 0)
879 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
880 "%s\n", n, zbr->znode, zbr->lnum,
881 zbr->offs, zbr->len,
882 DBGKEY(&zbr->key));
883 else
884 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
885 "%s\n", n, zbr->znode, zbr->lnum,
886 zbr->offs, zbr->len,
887 DBGKEY(&zbr->key));
888 }
889 spin_unlock(&dbg_lock);
890}
891
892void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
893{
894 int i;
895
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200896 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
Artem Bityutskiy1de94152008-07-25 12:58:38 +0300897 current->pid, cat, heap->cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300898 for (i = 0; i < heap->cnt; i++) {
899 struct ubifs_lprops *lprops = heap->arr[i];
900
901 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
902 "flags %d\n", i, lprops->lnum, lprops->hpos,
903 lprops->free, lprops->dirty, lprops->flags);
904 }
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200905 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300906}
907
908void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
909 struct ubifs_nnode *parent, int iip)
910{
911 int i;
912
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200913 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300914 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
915 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
916 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
917 pnode->flags, iip, pnode->level, pnode->num);
918 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
919 struct ubifs_lprops *lp = &pnode->lprops[i];
920
921 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
922 i, lp->free, lp->dirty, lp->flags, lp->lnum);
923 }
924}
925
926void dbg_dump_tnc(struct ubifs_info *c)
927{
928 struct ubifs_znode *znode;
929 int level;
930
931 printk(KERN_DEBUG "\n");
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200932 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300933 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
934 level = znode->level;
935 printk(KERN_DEBUG "== Level %d ==\n", level);
936 while (znode) {
937 if (level != znode->level) {
938 level = znode->level;
939 printk(KERN_DEBUG "== Level %d ==\n", level);
940 }
941 dbg_dump_znode(c, znode);
942 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
943 }
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +0200944 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300945}
946
947static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
948 void *priv)
949{
950 dbg_dump_znode(c, znode);
951 return 0;
952}
953
954/**
955 * dbg_dump_index - dump the on-flash index.
956 * @c: UBIFS file-system description object
957 *
958 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
959 * which dumps only in-memory znodes and does not read znodes which from flash.
960 */
961void dbg_dump_index(struct ubifs_info *c)
962{
963 dbg_walk_index(c, NULL, dump_znode, NULL);
964}
965
966/**
Artem Bityutskiy84abf972009-01-23 14:54:59 +0200967 * dbg_save_space_info - save information about flash space.
968 * @c: UBIFS file-system description object
969 *
970 * This function saves information about UBIFS free space, dirty space, etc, in
971 * order to check it later.
972 */
973void dbg_save_space_info(struct ubifs_info *c)
974{
975 struct ubifs_debug_info *d = c->dbg;
Artem Bityutskiy7da64432011-04-04 17:16:39 +0300976 int freeable_cnt;
Artem Bityutskiy84abf972009-01-23 14:54:59 +0200977
978 spin_lock(&c->space_lock);
Artem Bityutskiy7da64432011-04-04 17:16:39 +0300979 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
980
981 /*
982 * We use a dirty hack here and zero out @c->freeable_cnt, because it
983 * affects the free space calculations, and UBIFS might not know about
984 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
985 * only when we read their lprops, and we do this only lazily, upon the
986 * need. So at any given point of time @c->freeable_cnt might be not
987 * exactly accurate.
988 *
989 * Just one example about the issue we hit when we did not zero
990 * @c->freeable_cnt.
991 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
992 * amount of free space in @d->saved_free
993 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
994 * information from flash, where we cache LEBs from various
995 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
996 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
997 * -> 'ubifs_get_pnode()' -> 'update_cats()'
998 * -> 'ubifs_add_to_cat()').
999 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1000 * becomes %1.
1001 * 4. We calculate the amount of free space when the re-mount is
1002 * finished in 'dbg_check_space_info()' and it does not match
1003 * @d->saved_free.
1004 */
1005 freeable_cnt = c->freeable_cnt;
1006 c->freeable_cnt = 0;
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001007 d->saved_free = ubifs_get_free_space_nolock(c);
Artem Bityutskiy7da64432011-04-04 17:16:39 +03001008 c->freeable_cnt = freeable_cnt;
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001009 spin_unlock(&c->space_lock);
1010}
1011
1012/**
1013 * dbg_check_space_info - check flash space information.
1014 * @c: UBIFS file-system description object
1015 *
1016 * This function compares current flash space information with the information
1017 * which was saved when the 'dbg_save_space_info()' function was called.
1018 * Returns zero if the information has not changed, and %-EINVAL it it has
1019 * changed.
1020 */
1021int dbg_check_space_info(struct ubifs_info *c)
1022{
1023 struct ubifs_debug_info *d = c->dbg;
1024 struct ubifs_lp_stats lst;
Artem Bityutskiy7da64432011-04-04 17:16:39 +03001025 long long free;
1026 int freeable_cnt;
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001027
1028 spin_lock(&c->space_lock);
Artem Bityutskiy7da64432011-04-04 17:16:39 +03001029 freeable_cnt = c->freeable_cnt;
1030 c->freeable_cnt = 0;
1031 free = ubifs_get_free_space_nolock(c);
1032 c->freeable_cnt = freeable_cnt;
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001033 spin_unlock(&c->space_lock);
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001034
1035 if (free != d->saved_free) {
1036 ubifs_err("free space changed from %lld to %lld",
1037 d->saved_free, free);
1038 goto out;
1039 }
1040
1041 return 0;
1042
1043out:
1044 ubifs_msg("saved lprops statistics dump");
1045 dbg_dump_lstats(&d->saved_lst);
1046 ubifs_get_lp_stats(c, &lst);
Artem Bityutskiye055f7e2009-09-17 15:08:31 +03001047
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001048 ubifs_msg("current lprops statistics dump");
Artem Bityutskiye055f7e2009-09-17 15:08:31 +03001049 dbg_dump_lstats(&lst);
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001050 dbg_dump_budg(c);
Artem Bityutskiy84abf972009-01-23 14:54:59 +02001051 dump_stack();
1052 return -EINVAL;
1053}
1054
1055/**
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001056 * dbg_check_synced_i_size - check synchronized inode size.
1057 * @inode: inode to check
1058 *
1059 * If inode is clean, synchronized inode size has to be equivalent to current
1060 * inode size. This function has to be called only for locked inodes (@i_mutex
1061 * has to be locked). Returns %0 if synchronized inode size if correct, and
1062 * %-EINVAL if not.
1063 */
1064int dbg_check_synced_i_size(struct inode *inode)
1065{
1066 int err = 0;
1067 struct ubifs_inode *ui = ubifs_inode(inode);
1068
1069 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1070 return 0;
1071 if (!S_ISREG(inode->i_mode))
1072 return 0;
1073
1074 mutex_lock(&ui->ui_mutex);
1075 spin_lock(&ui->ui_lock);
1076 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1077 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1078 "is clean", ui->ui_size, ui->synced_i_size);
1079 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1080 inode->i_mode, i_size_read(inode));
1081 dbg_dump_stack();
1082 err = -EINVAL;
1083 }
1084 spin_unlock(&ui->ui_lock);
1085 mutex_unlock(&ui->ui_mutex);
1086 return err;
1087}
1088
1089/*
1090 * dbg_check_dir - check directory inode size and link count.
1091 * @c: UBIFS file-system description object
1092 * @dir: the directory to calculate size for
1093 * @size: the result is returned here
1094 *
1095 * This function makes sure that directory size and link count are correct.
1096 * Returns zero in case of success and a negative error code in case of
1097 * failure.
1098 *
1099 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1100 * calling this function.
1101 */
1102int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1103{
1104 unsigned int nlink = 2;
1105 union ubifs_key key;
1106 struct ubifs_dent_node *dent, *pdent = NULL;
1107 struct qstr nm = { .name = NULL };
1108 loff_t size = UBIFS_INO_NODE_SZ;
1109
1110 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1111 return 0;
1112
1113 if (!S_ISDIR(dir->i_mode))
1114 return 0;
1115
1116 lowest_dent_key(c, &key, dir->i_ino);
1117 while (1) {
1118 int err;
1119
1120 dent = ubifs_tnc_next_ent(c, &key, &nm);
1121 if (IS_ERR(dent)) {
1122 err = PTR_ERR(dent);
1123 if (err == -ENOENT)
1124 break;
1125 return err;
1126 }
1127
1128 nm.name = dent->name;
1129 nm.len = le16_to_cpu(dent->nlen);
1130 size += CALC_DENT_SIZE(nm.len);
1131 if (dent->type == UBIFS_ITYPE_DIR)
1132 nlink += 1;
1133 kfree(pdent);
1134 pdent = dent;
1135 key_read(c, &dent->key, &key);
1136 }
1137 kfree(pdent);
1138
1139 if (i_size_read(dir) != size) {
1140 ubifs_err("directory inode %lu has size %llu, "
1141 "but calculated size is %llu", dir->i_ino,
1142 (unsigned long long)i_size_read(dir),
1143 (unsigned long long)size);
1144 dump_stack();
1145 return -EINVAL;
1146 }
1147 if (dir->i_nlink != nlink) {
1148 ubifs_err("directory inode %lu has nlink %u, but calculated "
1149 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1150 dump_stack();
1151 return -EINVAL;
1152 }
1153
1154 return 0;
1155}
1156
1157/**
1158 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1159 * @c: UBIFS file-system description object
1160 * @zbr1: first zbranch
1161 * @zbr2: following zbranch
1162 *
1163 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1164 * names of the direntries/xentries which are referred by the keys. This
1165 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1166 * sure the name of direntry/xentry referred by @zbr1 is less than
1167 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1168 * and a negative error code in case of failure.
1169 */
1170static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1171 struct ubifs_zbranch *zbr2)
1172{
1173 int err, nlen1, nlen2, cmp;
1174 struct ubifs_dent_node *dent1, *dent2;
1175 union ubifs_key key;
1176
1177 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1178 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1179 if (!dent1)
1180 return -ENOMEM;
1181 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182 if (!dent2) {
1183 err = -ENOMEM;
1184 goto out_free;
1185 }
1186
1187 err = ubifs_tnc_read_node(c, zbr1, dent1);
1188 if (err)
1189 goto out_free;
1190 err = ubifs_validate_entry(c, dent1);
1191 if (err)
1192 goto out_free;
1193
1194 err = ubifs_tnc_read_node(c, zbr2, dent2);
1195 if (err)
1196 goto out_free;
1197 err = ubifs_validate_entry(c, dent2);
1198 if (err)
1199 goto out_free;
1200
1201 /* Make sure node keys are the same as in zbranch */
1202 err = 1;
1203 key_read(c, &dent1->key, &key);
1204 if (keys_cmp(c, &zbr1->key, &key)) {
Artem Bityutskiy5d38b3a2008-12-30 17:58:42 +02001205 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1206 zbr1->offs, DBGKEY(&key));
1207 dbg_err("but it should have key %s according to tnc",
1208 DBGKEY(&zbr1->key));
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +02001209 dbg_dump_node(c, dent1);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001210 goto out_free;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001211 }
1212
1213 key_read(c, &dent2->key, &key);
1214 if (keys_cmp(c, &zbr2->key, &key)) {
Artem Bityutskiy5d38b3a2008-12-30 17:58:42 +02001215 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1216 zbr1->offs, DBGKEY(&key));
1217 dbg_err("but it should have key %s according to tnc",
1218 DBGKEY(&zbr2->key));
Artem Bityutskiy2ba5f7a2008-10-31 17:32:30 +02001219 dbg_dump_node(c, dent2);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001220 goto out_free;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001221 }
1222
1223 nlen1 = le16_to_cpu(dent1->nlen);
1224 nlen2 = le16_to_cpu(dent2->nlen);
1225
1226 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1227 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1228 err = 0;
1229 goto out_free;
1230 }
1231 if (cmp == 0 && nlen1 == nlen2)
Artem Bityutskiy5d38b3a2008-12-30 17:58:42 +02001232 dbg_err("2 xent/dent nodes with the same name");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001233 else
Artem Bityutskiy5d38b3a2008-12-30 17:58:42 +02001234 dbg_err("bad order of colliding key %s",
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001235 DBGKEY(&key));
1236
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001237 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001238 dbg_dump_node(c, dent1);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03001239 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001240 dbg_dump_node(c, dent2);
1241
1242out_free:
1243 kfree(dent2);
1244 kfree(dent1);
1245 return err;
1246}
1247
1248/**
1249 * dbg_check_znode - check if znode is all right.
1250 * @c: UBIFS file-system description object
1251 * @zbr: zbranch which points to this znode
1252 *
1253 * This function makes sure that znode referred to by @zbr is all right.
1254 * Returns zero if it is, and %-EINVAL if it is not.
1255 */
1256static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1257{
1258 struct ubifs_znode *znode = zbr->znode;
1259 struct ubifs_znode *zp = znode->parent;
1260 int n, err, cmp;
1261
1262 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1263 err = 1;
1264 goto out;
1265 }
1266 if (znode->level < 0) {
1267 err = 2;
1268 goto out;
1269 }
1270 if (znode->iip < 0 || znode->iip >= c->fanout) {
1271 err = 3;
1272 goto out;
1273 }
1274
1275 if (zbr->len == 0)
1276 /* Only dirty zbranch may have no on-flash nodes */
1277 if (!ubifs_zn_dirty(znode)) {
1278 err = 4;
1279 goto out;
1280 }
1281
1282 if (ubifs_zn_dirty(znode)) {
1283 /*
1284 * If znode is dirty, its parent has to be dirty as well. The
1285 * order of the operation is important, so we have to have
1286 * memory barriers.
1287 */
1288 smp_mb();
1289 if (zp && !ubifs_zn_dirty(zp)) {
1290 /*
1291 * The dirty flag is atomic and is cleared outside the
1292 * TNC mutex, so znode's dirty flag may now have
1293 * been cleared. The child is always cleared before the
1294 * parent, so we just need to check again.
1295 */
1296 smp_mb();
1297 if (ubifs_zn_dirty(znode)) {
1298 err = 5;
1299 goto out;
1300 }
1301 }
1302 }
1303
1304 if (zp) {
1305 const union ubifs_key *min, *max;
1306
1307 if (znode->level != zp->level - 1) {
1308 err = 6;
1309 goto out;
1310 }
1311
1312 /* Make sure the 'parent' pointer in our znode is correct */
1313 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1314 if (!err) {
1315 /* This zbranch does not exist in the parent */
1316 err = 7;
1317 goto out;
1318 }
1319
1320 if (znode->iip >= zp->child_cnt) {
1321 err = 8;
1322 goto out;
1323 }
1324
1325 if (znode->iip != n) {
1326 /* This may happen only in case of collisions */
1327 if (keys_cmp(c, &zp->zbranch[n].key,
1328 &zp->zbranch[znode->iip].key)) {
1329 err = 9;
1330 goto out;
1331 }
1332 n = znode->iip;
1333 }
1334
1335 /*
1336 * Make sure that the first key in our znode is greater than or
1337 * equal to the key in the pointing zbranch.
1338 */
1339 min = &zbr->key;
1340 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1341 if (cmp == 1) {
1342 err = 10;
1343 goto out;
1344 }
1345
1346 if (n + 1 < zp->child_cnt) {
1347 max = &zp->zbranch[n + 1].key;
1348
1349 /*
1350 * Make sure the last key in our znode is less or
Artem Bityutskiy7d4e9cc2009-03-20 19:11:12 +02001351 * equivalent than the key in the zbranch which goes
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001352 * after our pointing zbranch.
1353 */
1354 cmp = keys_cmp(c, max,
1355 &znode->zbranch[znode->child_cnt - 1].key);
1356 if (cmp == -1) {
1357 err = 11;
1358 goto out;
1359 }
1360 }
1361 } else {
1362 /* This may only be root znode */
1363 if (zbr != &c->zroot) {
1364 err = 12;
1365 goto out;
1366 }
1367 }
1368
1369 /*
1370 * Make sure that next key is greater or equivalent then the previous
1371 * one.
1372 */
1373 for (n = 1; n < znode->child_cnt; n++) {
1374 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1375 &znode->zbranch[n].key);
1376 if (cmp > 0) {
1377 err = 13;
1378 goto out;
1379 }
1380 if (cmp == 0) {
1381 /* This can only be keys with colliding hash */
1382 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1383 err = 14;
1384 goto out;
1385 }
1386
1387 if (znode->level != 0 || c->replaying)
1388 continue;
1389
1390 /*
1391 * Colliding keys should follow binary order of
1392 * corresponding xentry/dentry names.
1393 */
1394 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1395 &znode->zbranch[n]);
1396 if (err < 0)
1397 return err;
1398 if (err) {
1399 err = 15;
1400 goto out;
1401 }
1402 }
1403 }
1404
1405 for (n = 0; n < znode->child_cnt; n++) {
1406 if (!znode->zbranch[n].znode &&
1407 (znode->zbranch[n].lnum == 0 ||
1408 znode->zbranch[n].len == 0)) {
1409 err = 16;
1410 goto out;
1411 }
1412
1413 if (znode->zbranch[n].lnum != 0 &&
1414 znode->zbranch[n].len == 0) {
1415 err = 17;
1416 goto out;
1417 }
1418
1419 if (znode->zbranch[n].lnum == 0 &&
1420 znode->zbranch[n].len != 0) {
1421 err = 18;
1422 goto out;
1423 }
1424
1425 if (znode->zbranch[n].lnum == 0 &&
1426 znode->zbranch[n].offs != 0) {
1427 err = 19;
1428 goto out;
1429 }
1430
1431 if (znode->level != 0 && znode->zbranch[n].znode)
1432 if (znode->zbranch[n].znode->parent != znode) {
1433 err = 20;
1434 goto out;
1435 }
1436 }
1437
1438 return 0;
1439
1440out:
1441 ubifs_err("failed, error %d", err);
1442 ubifs_msg("dump of the znode");
1443 dbg_dump_znode(c, znode);
1444 if (zp) {
1445 ubifs_msg("dump of the parent znode");
1446 dbg_dump_znode(c, zp);
1447 }
1448 dump_stack();
1449 return -EINVAL;
1450}
1451
1452/**
1453 * dbg_check_tnc - check TNC tree.
1454 * @c: UBIFS file-system description object
1455 * @extra: do extra checks that are possible at start commit
1456 *
1457 * This function traverses whole TNC tree and checks every znode. Returns zero
1458 * if everything is all right and %-EINVAL if something is wrong with TNC.
1459 */
1460int dbg_check_tnc(struct ubifs_info *c, int extra)
1461{
1462 struct ubifs_znode *znode;
1463 long clean_cnt = 0, dirty_cnt = 0;
1464 int err, last;
1465
1466 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1467 return 0;
1468
1469 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1470 if (!c->zroot.znode)
1471 return 0;
1472
1473 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1474 while (1) {
1475 struct ubifs_znode *prev;
1476 struct ubifs_zbranch *zbr;
1477
1478 if (!znode->parent)
1479 zbr = &c->zroot;
1480 else
1481 zbr = &znode->parent->zbranch[znode->iip];
1482
1483 err = dbg_check_znode(c, zbr);
1484 if (err)
1485 return err;
1486
1487 if (extra) {
1488 if (ubifs_zn_dirty(znode))
1489 dirty_cnt += 1;
1490 else
1491 clean_cnt += 1;
1492 }
1493
1494 prev = znode;
1495 znode = ubifs_tnc_postorder_next(znode);
1496 if (!znode)
1497 break;
1498
1499 /*
1500 * If the last key of this znode is equivalent to the first key
1501 * of the next znode (collision), then check order of the keys.
1502 */
1503 last = prev->child_cnt - 1;
1504 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1505 !keys_cmp(c, &prev->zbranch[last].key,
1506 &znode->zbranch[0].key)) {
1507 err = dbg_check_key_order(c, &prev->zbranch[last],
1508 &znode->zbranch[0]);
1509 if (err < 0)
1510 return err;
1511 if (err) {
1512 ubifs_msg("first znode");
1513 dbg_dump_znode(c, prev);
1514 ubifs_msg("second znode");
1515 dbg_dump_znode(c, znode);
1516 return -EINVAL;
1517 }
1518 }
1519 }
1520
1521 if (extra) {
1522 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1523 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1524 atomic_long_read(&c->clean_zn_cnt),
1525 clean_cnt);
1526 return -EINVAL;
1527 }
1528 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1529 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1530 atomic_long_read(&c->dirty_zn_cnt),
1531 dirty_cnt);
1532 return -EINVAL;
1533 }
1534 }
1535
1536 return 0;
1537}
1538
1539/**
1540 * dbg_walk_index - walk the on-flash index.
1541 * @c: UBIFS file-system description object
1542 * @leaf_cb: called for each leaf node
1543 * @znode_cb: called for each indexing node
Adrian Hunter227c75c2009-01-29 11:53:51 +02001544 * @priv: private data which is passed to callbacks
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001545 *
1546 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1547 * node and @znode_cb for each indexing node. Returns zero in case of success
1548 * and a negative error code in case of failure.
1549 *
1550 * It would be better if this function removed every znode it pulled to into
1551 * the TNC, so that the behavior more closely matched the non-debugging
1552 * behavior.
1553 */
1554int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1555 dbg_znode_callback znode_cb, void *priv)
1556{
1557 int err;
1558 struct ubifs_zbranch *zbr;
1559 struct ubifs_znode *znode, *child;
1560
1561 mutex_lock(&c->tnc_mutex);
1562 /* If the root indexing node is not in TNC - pull it */
1563 if (!c->zroot.znode) {
1564 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1565 if (IS_ERR(c->zroot.znode)) {
1566 err = PTR_ERR(c->zroot.znode);
1567 c->zroot.znode = NULL;
1568 goto out_unlock;
1569 }
1570 }
1571
1572 /*
1573 * We are going to traverse the indexing tree in the postorder manner.
1574 * Go down and find the leftmost indexing node where we are going to
1575 * start from.
1576 */
1577 znode = c->zroot.znode;
1578 while (znode->level > 0) {
1579 zbr = &znode->zbranch[0];
1580 child = zbr->znode;
1581 if (!child) {
1582 child = ubifs_load_znode(c, zbr, znode, 0);
1583 if (IS_ERR(child)) {
1584 err = PTR_ERR(child);
1585 goto out_unlock;
1586 }
1587 zbr->znode = child;
1588 }
1589
1590 znode = child;
1591 }
1592
1593 /* Iterate over all indexing nodes */
1594 while (1) {
1595 int idx;
1596
1597 cond_resched();
1598
1599 if (znode_cb) {
1600 err = znode_cb(c, znode, priv);
1601 if (err) {
1602 ubifs_err("znode checking function returned "
1603 "error %d", err);
1604 dbg_dump_znode(c, znode);
1605 goto out_dump;
1606 }
1607 }
1608 if (leaf_cb && znode->level == 0) {
1609 for (idx = 0; idx < znode->child_cnt; idx++) {
1610 zbr = &znode->zbranch[idx];
1611 err = leaf_cb(c, zbr, priv);
1612 if (err) {
1613 ubifs_err("leaf checking function "
1614 "returned error %d, for leaf "
1615 "at LEB %d:%d",
1616 err, zbr->lnum, zbr->offs);
1617 goto out_dump;
1618 }
1619 }
1620 }
1621
1622 if (!znode->parent)
1623 break;
1624
1625 idx = znode->iip + 1;
1626 znode = znode->parent;
1627 if (idx < znode->child_cnt) {
1628 /* Switch to the next index in the parent */
1629 zbr = &znode->zbranch[idx];
1630 child = zbr->znode;
1631 if (!child) {
1632 child = ubifs_load_znode(c, zbr, znode, idx);
1633 if (IS_ERR(child)) {
1634 err = PTR_ERR(child);
1635 goto out_unlock;
1636 }
1637 zbr->znode = child;
1638 }
1639 znode = child;
1640 } else
1641 /*
1642 * This is the last child, switch to the parent and
1643 * continue.
1644 */
1645 continue;
1646
1647 /* Go to the lowest leftmost znode in the new sub-tree */
1648 while (znode->level > 0) {
1649 zbr = &znode->zbranch[0];
1650 child = zbr->znode;
1651 if (!child) {
1652 child = ubifs_load_znode(c, zbr, znode, 0);
1653 if (IS_ERR(child)) {
1654 err = PTR_ERR(child);
1655 goto out_unlock;
1656 }
1657 zbr->znode = child;
1658 }
1659 znode = child;
1660 }
1661 }
1662
1663 mutex_unlock(&c->tnc_mutex);
1664 return 0;
1665
1666out_dump:
1667 if (znode->parent)
1668 zbr = &znode->parent->zbranch[znode->iip];
1669 else
1670 zbr = &c->zroot;
1671 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1672 dbg_dump_znode(c, znode);
1673out_unlock:
1674 mutex_unlock(&c->tnc_mutex);
1675 return err;
1676}
1677
1678/**
1679 * add_size - add znode size to partially calculated index size.
1680 * @c: UBIFS file-system description object
1681 * @znode: znode to add size for
1682 * @priv: partially calculated index size
1683 *
1684 * This is a helper function for 'dbg_check_idx_size()' which is called for
1685 * every indexing node and adds its size to the 'long long' variable pointed to
1686 * by @priv.
1687 */
1688static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1689{
1690 long long *idx_size = priv;
1691 int add;
1692
1693 add = ubifs_idx_node_sz(c, znode->child_cnt);
1694 add = ALIGN(add, 8);
1695 *idx_size += add;
1696 return 0;
1697}
1698
1699/**
1700 * dbg_check_idx_size - check index size.
1701 * @c: UBIFS file-system description object
1702 * @idx_size: size to check
1703 *
1704 * This function walks the UBIFS index, calculates its size and checks that the
1705 * size is equivalent to @idx_size. Returns zero in case of success and a
1706 * negative error code in case of failure.
1707 */
1708int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1709{
1710 int err;
1711 long long calc = 0;
1712
1713 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1714 return 0;
1715
1716 err = dbg_walk_index(c, NULL, add_size, &calc);
1717 if (err) {
1718 ubifs_err("error %d while walking the index", err);
1719 return err;
1720 }
1721
1722 if (calc != idx_size) {
1723 ubifs_err("index size check failed: calculated size is %lld, "
1724 "should be %lld", calc, idx_size);
1725 dump_stack();
1726 return -EINVAL;
1727 }
1728
1729 return 0;
1730}
1731
1732/**
1733 * struct fsck_inode - information about an inode used when checking the file-system.
1734 * @rb: link in the RB-tree of inodes
1735 * @inum: inode number
1736 * @mode: inode type, permissions, etc
1737 * @nlink: inode link count
1738 * @xattr_cnt: count of extended attributes
1739 * @references: how many directory/xattr entries refer this inode (calculated
1740 * while walking the index)
1741 * @calc_cnt: for directory inode count of child directories
1742 * @size: inode size (read from on-flash inode)
1743 * @xattr_sz: summary size of all extended attributes (read from on-flash
1744 * inode)
1745 * @calc_sz: for directories calculated directory size
1746 * @calc_xcnt: count of extended attributes
1747 * @calc_xsz: calculated summary size of all extended attributes
1748 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1749 * inode (read from on-flash inode)
1750 * @calc_xnms: calculated sum of lengths of all extended attribute names
1751 */
1752struct fsck_inode {
1753 struct rb_node rb;
1754 ino_t inum;
1755 umode_t mode;
1756 unsigned int nlink;
1757 unsigned int xattr_cnt;
1758 int references;
1759 int calc_cnt;
1760 long long size;
1761 unsigned int xattr_sz;
1762 long long calc_sz;
1763 long long calc_xcnt;
1764 long long calc_xsz;
1765 unsigned int xattr_nms;
1766 long long calc_xnms;
1767};
1768
1769/**
1770 * struct fsck_data - private FS checking information.
1771 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1772 */
1773struct fsck_data {
1774 struct rb_root inodes;
1775};
1776
1777/**
1778 * add_inode - add inode information to RB-tree of inodes.
1779 * @c: UBIFS file-system description object
1780 * @fsckd: FS checking information
1781 * @ino: raw UBIFS inode to add
1782 *
1783 * This is a helper function for 'check_leaf()' which adds information about
1784 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1785 * case of success and a negative error code in case of failure.
1786 */
1787static struct fsck_inode *add_inode(struct ubifs_info *c,
1788 struct fsck_data *fsckd,
1789 struct ubifs_ino_node *ino)
1790{
1791 struct rb_node **p, *parent = NULL;
1792 struct fsck_inode *fscki;
1793 ino_t inum = key_inum_flash(c, &ino->key);
1794
1795 p = &fsckd->inodes.rb_node;
1796 while (*p) {
1797 parent = *p;
1798 fscki = rb_entry(parent, struct fsck_inode, rb);
1799 if (inum < fscki->inum)
1800 p = &(*p)->rb_left;
1801 else if (inum > fscki->inum)
1802 p = &(*p)->rb_right;
1803 else
1804 return fscki;
1805 }
1806
1807 if (inum > c->highest_inum) {
1808 ubifs_err("too high inode number, max. is %lu",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001809 (unsigned long)c->highest_inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001810 return ERR_PTR(-EINVAL);
1811 }
1812
1813 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1814 if (!fscki)
1815 return ERR_PTR(-ENOMEM);
1816
1817 fscki->inum = inum;
1818 fscki->nlink = le32_to_cpu(ino->nlink);
1819 fscki->size = le64_to_cpu(ino->size);
1820 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1821 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1822 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1823 fscki->mode = le32_to_cpu(ino->mode);
1824 if (S_ISDIR(fscki->mode)) {
1825 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1826 fscki->calc_cnt = 2;
1827 }
1828 rb_link_node(&fscki->rb, parent, p);
1829 rb_insert_color(&fscki->rb, &fsckd->inodes);
1830 return fscki;
1831}
1832
1833/**
1834 * search_inode - search inode in the RB-tree of inodes.
1835 * @fsckd: FS checking information
1836 * @inum: inode number to search
1837 *
1838 * This is a helper function for 'check_leaf()' which searches inode @inum in
1839 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1840 * the inode was not found.
1841 */
1842static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1843{
1844 struct rb_node *p;
1845 struct fsck_inode *fscki;
1846
1847 p = fsckd->inodes.rb_node;
1848 while (p) {
1849 fscki = rb_entry(p, struct fsck_inode, rb);
1850 if (inum < fscki->inum)
1851 p = p->rb_left;
1852 else if (inum > fscki->inum)
1853 p = p->rb_right;
1854 else
1855 return fscki;
1856 }
1857 return NULL;
1858}
1859
1860/**
1861 * read_add_inode - read inode node and add it to RB-tree of inodes.
1862 * @c: UBIFS file-system description object
1863 * @fsckd: FS checking information
1864 * @inum: inode number to read
1865 *
1866 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1867 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1868 * information pointer in case of success and a negative error code in case of
1869 * failure.
1870 */
1871static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1872 struct fsck_data *fsckd, ino_t inum)
1873{
1874 int n, err;
1875 union ubifs_key key;
1876 struct ubifs_znode *znode;
1877 struct ubifs_zbranch *zbr;
1878 struct ubifs_ino_node *ino;
1879 struct fsck_inode *fscki;
1880
1881 fscki = search_inode(fsckd, inum);
1882 if (fscki)
1883 return fscki;
1884
1885 ino_key_init(c, &key, inum);
1886 err = ubifs_lookup_level0(c, &key, &znode, &n);
1887 if (!err) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001888 ubifs_err("inode %lu not found in index", (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001889 return ERR_PTR(-ENOENT);
1890 } else if (err < 0) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001891 ubifs_err("error %d while looking up inode %lu",
1892 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001893 return ERR_PTR(err);
1894 }
1895
1896 zbr = &znode->zbranch[n];
1897 if (zbr->len < UBIFS_INO_NODE_SZ) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001898 ubifs_err("bad node %lu node length %d",
1899 (unsigned long)inum, zbr->len);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001900 return ERR_PTR(-EINVAL);
1901 }
1902
1903 ino = kmalloc(zbr->len, GFP_NOFS);
1904 if (!ino)
1905 return ERR_PTR(-ENOMEM);
1906
1907 err = ubifs_tnc_read_node(c, zbr, ino);
1908 if (err) {
1909 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1910 zbr->lnum, zbr->offs, err);
1911 kfree(ino);
1912 return ERR_PTR(err);
1913 }
1914
1915 fscki = add_inode(c, fsckd, ino);
1916 kfree(ino);
1917 if (IS_ERR(fscki)) {
1918 ubifs_err("error %ld while adding inode %lu node",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02001919 PTR_ERR(fscki), (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001920 return fscki;
1921 }
1922
1923 return fscki;
1924}
1925
1926/**
1927 * check_leaf - check leaf node.
1928 * @c: UBIFS file-system description object
1929 * @zbr: zbranch of the leaf node to check
1930 * @priv: FS checking information
1931 *
1932 * This is a helper function for 'dbg_check_filesystem()' which is called for
1933 * every single leaf node while walking the indexing tree. It checks that the
1934 * leaf node referred from the indexing tree exists, has correct CRC, and does
1935 * some other basic validation. This function is also responsible for building
1936 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1937 * calculates reference count, size, etc for each inode in order to later
1938 * compare them to the information stored inside the inodes and detect possible
1939 * inconsistencies. Returns zero in case of success and a negative error code
1940 * in case of failure.
1941 */
1942static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1943 void *priv)
1944{
1945 ino_t inum;
1946 void *node;
1947 struct ubifs_ch *ch;
1948 int err, type = key_type(c, &zbr->key);
1949 struct fsck_inode *fscki;
1950
1951 if (zbr->len < UBIFS_CH_SZ) {
1952 ubifs_err("bad leaf length %d (LEB %d:%d)",
1953 zbr->len, zbr->lnum, zbr->offs);
1954 return -EINVAL;
1955 }
1956
1957 node = kmalloc(zbr->len, GFP_NOFS);
1958 if (!node)
1959 return -ENOMEM;
1960
1961 err = ubifs_tnc_read_node(c, zbr, node);
1962 if (err) {
1963 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1964 zbr->lnum, zbr->offs, err);
1965 goto out_free;
1966 }
1967
1968 /* If this is an inode node, add it to RB-tree of inodes */
1969 if (type == UBIFS_INO_KEY) {
1970 fscki = add_inode(c, priv, node);
1971 if (IS_ERR(fscki)) {
1972 err = PTR_ERR(fscki);
1973 ubifs_err("error %d while adding inode node", err);
1974 goto out_dump;
1975 }
1976 goto out;
1977 }
1978
1979 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1980 type != UBIFS_DATA_KEY) {
1981 ubifs_err("unexpected node type %d at LEB %d:%d",
1982 type, zbr->lnum, zbr->offs);
1983 err = -EINVAL;
1984 goto out_free;
1985 }
1986
1987 ch = node;
1988 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1989 ubifs_err("too high sequence number, max. is %llu",
1990 c->max_sqnum);
1991 err = -EINVAL;
1992 goto out_dump;
1993 }
1994
1995 if (type == UBIFS_DATA_KEY) {
1996 long long blk_offs;
1997 struct ubifs_data_node *dn = node;
1998
1999 /*
2000 * Search the inode node this data node belongs to and insert
2001 * it to the RB-tree of inodes.
2002 */
2003 inum = key_inum_flash(c, &dn->key);
2004 fscki = read_add_inode(c, priv, inum);
2005 if (IS_ERR(fscki)) {
2006 err = PTR_ERR(fscki);
2007 ubifs_err("error %d while processing data node and "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002008 "trying to find inode node %lu",
2009 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002010 goto out_dump;
2011 }
2012
2013 /* Make sure the data node is within inode size */
2014 blk_offs = key_block_flash(c, &dn->key);
2015 blk_offs <<= UBIFS_BLOCK_SHIFT;
2016 blk_offs += le32_to_cpu(dn->size);
2017 if (blk_offs > fscki->size) {
2018 ubifs_err("data node at LEB %d:%d is not within inode "
2019 "size %lld", zbr->lnum, zbr->offs,
2020 fscki->size);
2021 err = -EINVAL;
2022 goto out_dump;
2023 }
2024 } else {
2025 int nlen;
2026 struct ubifs_dent_node *dent = node;
2027 struct fsck_inode *fscki1;
2028
2029 err = ubifs_validate_entry(c, dent);
2030 if (err)
2031 goto out_dump;
2032
2033 /*
2034 * Search the inode node this entry refers to and the parent
2035 * inode node and insert them to the RB-tree of inodes.
2036 */
2037 inum = le64_to_cpu(dent->inum);
2038 fscki = read_add_inode(c, priv, inum);
2039 if (IS_ERR(fscki)) {
2040 err = PTR_ERR(fscki);
2041 ubifs_err("error %d while processing entry node and "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002042 "trying to find inode node %lu",
2043 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002044 goto out_dump;
2045 }
2046
2047 /* Count how many direntries or xentries refers this inode */
2048 fscki->references += 1;
2049
2050 inum = key_inum_flash(c, &dent->key);
2051 fscki1 = read_add_inode(c, priv, inum);
2052 if (IS_ERR(fscki1)) {
Roel Kluinb38882f2009-12-07 14:21:45 +01002053 err = PTR_ERR(fscki1);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002054 ubifs_err("error %d while processing entry node and "
2055 "trying to find parent inode node %lu",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002056 err, (unsigned long)inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002057 goto out_dump;
2058 }
2059
2060 nlen = le16_to_cpu(dent->nlen);
2061 if (type == UBIFS_XENT_KEY) {
2062 fscki1->calc_xcnt += 1;
2063 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2064 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2065 fscki1->calc_xnms += nlen;
2066 } else {
2067 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2068 if (dent->type == UBIFS_ITYPE_DIR)
2069 fscki1->calc_cnt += 1;
2070 }
2071 }
2072
2073out:
2074 kfree(node);
2075 return 0;
2076
2077out_dump:
2078 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2079 dbg_dump_node(c, node);
2080out_free:
2081 kfree(node);
2082 return err;
2083}
2084
2085/**
2086 * free_inodes - free RB-tree of inodes.
2087 * @fsckd: FS checking information
2088 */
2089static void free_inodes(struct fsck_data *fsckd)
2090{
2091 struct rb_node *this = fsckd->inodes.rb_node;
2092 struct fsck_inode *fscki;
2093
2094 while (this) {
2095 if (this->rb_left)
2096 this = this->rb_left;
2097 else if (this->rb_right)
2098 this = this->rb_right;
2099 else {
2100 fscki = rb_entry(this, struct fsck_inode, rb);
2101 this = rb_parent(this);
2102 if (this) {
2103 if (this->rb_left == &fscki->rb)
2104 this->rb_left = NULL;
2105 else
2106 this->rb_right = NULL;
2107 }
2108 kfree(fscki);
2109 }
2110 }
2111}
2112
2113/**
2114 * check_inodes - checks all inodes.
2115 * @c: UBIFS file-system description object
2116 * @fsckd: FS checking information
2117 *
2118 * This is a helper function for 'dbg_check_filesystem()' which walks the
2119 * RB-tree of inodes after the index scan has been finished, and checks that
2120 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2121 * %-EINVAL if not, and a negative error code in case of failure.
2122 */
2123static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2124{
2125 int n, err;
2126 union ubifs_key key;
2127 struct ubifs_znode *znode;
2128 struct ubifs_zbranch *zbr;
2129 struct ubifs_ino_node *ino;
2130 struct fsck_inode *fscki;
2131 struct rb_node *this = rb_first(&fsckd->inodes);
2132
2133 while (this) {
2134 fscki = rb_entry(this, struct fsck_inode, rb);
2135 this = rb_next(this);
2136
2137 if (S_ISDIR(fscki->mode)) {
2138 /*
2139 * Directories have to have exactly one reference (they
2140 * cannot have hardlinks), although root inode is an
2141 * exception.
2142 */
2143 if (fscki->inum != UBIFS_ROOT_INO &&
2144 fscki->references != 1) {
2145 ubifs_err("directory inode %lu has %d "
2146 "direntries which refer it, but "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002147 "should be 1",
2148 (unsigned long)fscki->inum,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002149 fscki->references);
2150 goto out_dump;
2151 }
2152 if (fscki->inum == UBIFS_ROOT_INO &&
2153 fscki->references != 0) {
2154 ubifs_err("root inode %lu has non-zero (%d) "
2155 "direntries which refer it",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002156 (unsigned long)fscki->inum,
2157 fscki->references);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002158 goto out_dump;
2159 }
2160 if (fscki->calc_sz != fscki->size) {
2161 ubifs_err("directory inode %lu size is %lld, "
2162 "but calculated size is %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002163 (unsigned long)fscki->inum,
2164 fscki->size, fscki->calc_sz);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002165 goto out_dump;
2166 }
2167 if (fscki->calc_cnt != fscki->nlink) {
2168 ubifs_err("directory inode %lu nlink is %d, "
2169 "but calculated nlink is %d",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002170 (unsigned long)fscki->inum,
2171 fscki->nlink, fscki->calc_cnt);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002172 goto out_dump;
2173 }
2174 } else {
2175 if (fscki->references != fscki->nlink) {
2176 ubifs_err("inode %lu nlink is %d, but "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002177 "calculated nlink is %d",
2178 (unsigned long)fscki->inum,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002179 fscki->nlink, fscki->references);
2180 goto out_dump;
2181 }
2182 }
2183 if (fscki->xattr_sz != fscki->calc_xsz) {
2184 ubifs_err("inode %lu has xattr size %u, but "
2185 "calculated size is %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002186 (unsigned long)fscki->inum, fscki->xattr_sz,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002187 fscki->calc_xsz);
2188 goto out_dump;
2189 }
2190 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2191 ubifs_err("inode %lu has %u xattrs, but "
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002192 "calculated count is %lld",
2193 (unsigned long)fscki->inum,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002194 fscki->xattr_cnt, fscki->calc_xcnt);
2195 goto out_dump;
2196 }
2197 if (fscki->xattr_nms != fscki->calc_xnms) {
2198 ubifs_err("inode %lu has xattr names' size %u, but "
2199 "calculated names' size is %lld",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002200 (unsigned long)fscki->inum, fscki->xattr_nms,
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002201 fscki->calc_xnms);
2202 goto out_dump;
2203 }
2204 }
2205
2206 return 0;
2207
2208out_dump:
2209 /* Read the bad inode and dump it */
2210 ino_key_init(c, &key, fscki->inum);
2211 err = ubifs_lookup_level0(c, &key, &znode, &n);
2212 if (!err) {
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002213 ubifs_err("inode %lu not found in index",
2214 (unsigned long)fscki->inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002215 return -ENOENT;
2216 } else if (err < 0) {
2217 ubifs_err("error %d while looking up inode %lu",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002218 err, (unsigned long)fscki->inum);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002219 return err;
2220 }
2221
2222 zbr = &znode->zbranch[n];
2223 ino = kmalloc(zbr->len, GFP_NOFS);
2224 if (!ino)
2225 return -ENOMEM;
2226
2227 err = ubifs_tnc_read_node(c, zbr, ino);
2228 if (err) {
2229 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2230 zbr->lnum, zbr->offs, err);
2231 kfree(ino);
2232 return err;
2233 }
2234
2235 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
Artem Bityutskiye84461a2008-10-29 12:08:43 +02002236 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002237 dbg_dump_node(c, ino);
2238 kfree(ino);
2239 return -EINVAL;
2240}
2241
2242/**
2243 * dbg_check_filesystem - check the file-system.
2244 * @c: UBIFS file-system description object
2245 *
2246 * This function checks the file system, namely:
2247 * o makes sure that all leaf nodes exist and their CRCs are correct;
2248 * o makes sure inode nlink, size, xattr size/count are correct (for all
2249 * inodes).
2250 *
2251 * The function reads whole indexing tree and all nodes, so it is pretty
2252 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2253 * not, and a negative error code in case of failure.
2254 */
2255int dbg_check_filesystem(struct ubifs_info *c)
2256{
2257 int err;
2258 struct fsck_data fsckd;
2259
2260 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2261 return 0;
2262
2263 fsckd.inodes = RB_ROOT;
2264 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2265 if (err)
2266 goto out_free;
2267
2268 err = check_inodes(c, &fsckd);
2269 if (err)
2270 goto out_free;
2271
2272 free_inodes(&fsckd);
2273 return 0;
2274
2275out_free:
2276 ubifs_err("file-system check failed with error %d", err);
2277 dump_stack();
2278 free_inodes(&fsckd);
2279 return err;
2280}
2281
Artem Bityutskiy3bb66b42010-08-07 10:06:11 +03002282/**
2283 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2284 * @c: UBIFS file-system description object
2285 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2286 *
2287 * This function returns zero if the list of data nodes is sorted correctly,
2288 * and %-EINVAL if not.
2289 */
2290int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2291{
2292 struct list_head *cur;
2293 struct ubifs_scan_node *sa, *sb;
2294
2295 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2296 return 0;
2297
2298 for (cur = head->next; cur->next != head; cur = cur->next) {
2299 ino_t inuma, inumb;
2300 uint32_t blka, blkb;
2301
2302 cond_resched();
2303 sa = container_of(cur, struct ubifs_scan_node, list);
2304 sb = container_of(cur->next, struct ubifs_scan_node, list);
2305
2306 if (sa->type != UBIFS_DATA_NODE) {
2307 ubifs_err("bad node type %d", sa->type);
2308 dbg_dump_node(c, sa->node);
2309 return -EINVAL;
2310 }
2311 if (sb->type != UBIFS_DATA_NODE) {
2312 ubifs_err("bad node type %d", sb->type);
2313 dbg_dump_node(c, sb->node);
2314 return -EINVAL;
2315 }
2316
2317 inuma = key_inum(c, &sa->key);
2318 inumb = key_inum(c, &sb->key);
2319
2320 if (inuma < inumb)
2321 continue;
2322 if (inuma > inumb) {
2323 ubifs_err("larger inum %lu goes before inum %lu",
2324 (unsigned long)inuma, (unsigned long)inumb);
2325 goto error_dump;
2326 }
2327
2328 blka = key_block(c, &sa->key);
2329 blkb = key_block(c, &sb->key);
2330
2331 if (blka > blkb) {
2332 ubifs_err("larger block %u goes before %u", blka, blkb);
2333 goto error_dump;
2334 }
2335 if (blka == blkb) {
2336 ubifs_err("two data nodes for the same block");
2337 goto error_dump;
2338 }
2339 }
2340
2341 return 0;
2342
2343error_dump:
2344 dbg_dump_node(c, sa->node);
2345 dbg_dump_node(c, sb->node);
2346 return -EINVAL;
2347}
2348
2349/**
2350 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2351 * @c: UBIFS file-system description object
2352 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2353 *
2354 * This function returns zero if the list of non-data nodes is sorted correctly,
2355 * and %-EINVAL if not.
2356 */
2357int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2358{
2359 struct list_head *cur;
2360 struct ubifs_scan_node *sa, *sb;
2361
2362 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
2363 return 0;
2364
2365 for (cur = head->next; cur->next != head; cur = cur->next) {
2366 ino_t inuma, inumb;
2367 uint32_t hasha, hashb;
2368
2369 cond_resched();
2370 sa = container_of(cur, struct ubifs_scan_node, list);
2371 sb = container_of(cur->next, struct ubifs_scan_node, list);
2372
2373 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2374 sa->type != UBIFS_XENT_NODE) {
2375 ubifs_err("bad node type %d", sa->type);
2376 dbg_dump_node(c, sa->node);
2377 return -EINVAL;
2378 }
2379 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2380 sa->type != UBIFS_XENT_NODE) {
2381 ubifs_err("bad node type %d", sb->type);
2382 dbg_dump_node(c, sb->node);
2383 return -EINVAL;
2384 }
2385
2386 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2387 ubifs_err("non-inode node goes before inode node");
2388 goto error_dump;
2389 }
2390
2391 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2392 continue;
2393
2394 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2395 /* Inode nodes are sorted in descending size order */
2396 if (sa->len < sb->len) {
2397 ubifs_err("smaller inode node goes first");
2398 goto error_dump;
2399 }
2400 continue;
2401 }
2402
2403 /*
2404 * This is either a dentry or xentry, which should be sorted in
2405 * ascending (parent ino, hash) order.
2406 */
2407 inuma = key_inum(c, &sa->key);
2408 inumb = key_inum(c, &sb->key);
2409
2410 if (inuma < inumb)
2411 continue;
2412 if (inuma > inumb) {
2413 ubifs_err("larger inum %lu goes before inum %lu",
2414 (unsigned long)inuma, (unsigned long)inumb);
2415 goto error_dump;
2416 }
2417
2418 hasha = key_block(c, &sa->key);
2419 hashb = key_block(c, &sb->key);
2420
2421 if (hasha > hashb) {
Artem Bityutskiyc4361572011-03-25 15:27:40 +02002422 ubifs_err("larger hash %u goes before %u",
2423 hasha, hashb);
Artem Bityutskiy3bb66b42010-08-07 10:06:11 +03002424 goto error_dump;
2425 }
2426 }
2427
2428 return 0;
2429
2430error_dump:
2431 ubifs_msg("dumping first node");
2432 dbg_dump_node(c, sa->node);
2433 ubifs_msg("dumping second node");
2434 dbg_dump_node(c, sb->node);
2435 return -EINVAL;
2436 return 0;
2437}
2438
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002439static int invocation_cnt;
2440
2441int dbg_force_in_the_gaps(void)
2442{
2443 if (!dbg_force_in_the_gaps_enabled)
2444 return 0;
2445 /* Force in-the-gaps every 8th commit */
2446 return !((invocation_cnt++) & 0x7);
2447}
2448
2449/* Failure mode for recovery testing */
2450
2451#define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2452
2453struct failure_mode_info {
2454 struct list_head list;
2455 struct ubifs_info *c;
2456};
2457
2458static LIST_HEAD(fmi_list);
2459static DEFINE_SPINLOCK(fmi_lock);
2460
2461static unsigned int next;
2462
2463static int simple_rand(void)
2464{
2465 if (next == 0)
2466 next = current->pid;
2467 next = next * 1103515245 + 12345;
2468 return (next >> 16) & 32767;
2469}
2470
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002471static void failure_mode_init(struct ubifs_info *c)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002472{
2473 struct failure_mode_info *fmi;
2474
2475 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2476 if (!fmi) {
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002477 ubifs_err("Failed to register failure mode - no memory");
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002478 return;
2479 }
2480 fmi->c = c;
2481 spin_lock(&fmi_lock);
2482 list_add_tail(&fmi->list, &fmi_list);
2483 spin_unlock(&fmi_lock);
2484}
2485
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002486static void failure_mode_exit(struct ubifs_info *c)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002487{
2488 struct failure_mode_info *fmi, *tmp;
2489
2490 spin_lock(&fmi_lock);
2491 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2492 if (fmi->c == c) {
2493 list_del(&fmi->list);
2494 kfree(fmi);
2495 }
2496 spin_unlock(&fmi_lock);
2497}
2498
2499static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2500{
2501 struct failure_mode_info *fmi;
2502
2503 spin_lock(&fmi_lock);
2504 list_for_each_entry(fmi, &fmi_list, list)
2505 if (fmi->c->ubi == desc) {
2506 struct ubifs_info *c = fmi->c;
2507
2508 spin_unlock(&fmi_lock);
2509 return c;
2510 }
2511 spin_unlock(&fmi_lock);
2512 return NULL;
2513}
2514
2515static int in_failure_mode(struct ubi_volume_desc *desc)
2516{
2517 struct ubifs_info *c = dbg_find_info(desc);
2518
2519 if (c && dbg_failure_mode)
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002520 return c->dbg->failure_mode;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002521 return 0;
2522}
2523
2524static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2525{
2526 struct ubifs_info *c = dbg_find_info(desc);
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002527 struct ubifs_debug_info *d;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002528
2529 if (!c || !dbg_failure_mode)
2530 return 0;
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002531 d = c->dbg;
2532 if (d->failure_mode)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002533 return 1;
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002534 if (!d->fail_cnt) {
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002535 /* First call - decide delay to failure */
2536 if (chance(1, 2)) {
2537 unsigned int delay = 1 << (simple_rand() >> 11);
2538
2539 if (chance(1, 2)) {
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002540 d->fail_delay = 1;
2541 d->fail_timeout = jiffies +
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002542 msecs_to_jiffies(delay);
2543 dbg_rcvry("failing after %ums", delay);
2544 } else {
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002545 d->fail_delay = 2;
2546 d->fail_cnt_max = delay;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002547 dbg_rcvry("failing after %u calls", delay);
2548 }
2549 }
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002550 d->fail_cnt += 1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002551 }
2552 /* Determine if failure delay has expired */
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002553 if (d->fail_delay == 1) {
2554 if (time_before(jiffies, d->fail_timeout))
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002555 return 0;
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002556 } else if (d->fail_delay == 2)
2557 if (d->fail_cnt++ < d->fail_cnt_max)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002558 return 0;
2559 if (lnum == UBIFS_SB_LNUM) {
2560 if (write) {
2561 if (chance(1, 2))
2562 return 0;
2563 } else if (chance(19, 20))
2564 return 0;
2565 dbg_rcvry("failing in super block LEB %d", lnum);
2566 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2567 if (chance(19, 20))
2568 return 0;
2569 dbg_rcvry("failing in master LEB %d", lnum);
2570 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2571 if (write) {
2572 if (chance(99, 100))
2573 return 0;
2574 } else if (chance(399, 400))
2575 return 0;
2576 dbg_rcvry("failing in log LEB %d", lnum);
2577 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2578 if (write) {
2579 if (chance(7, 8))
2580 return 0;
2581 } else if (chance(19, 20))
2582 return 0;
2583 dbg_rcvry("failing in LPT LEB %d", lnum);
2584 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2585 if (write) {
2586 if (chance(1, 2))
2587 return 0;
2588 } else if (chance(9, 10))
2589 return 0;
2590 dbg_rcvry("failing in orphan LEB %d", lnum);
2591 } else if (lnum == c->ihead_lnum) {
2592 if (chance(99, 100))
2593 return 0;
2594 dbg_rcvry("failing in index head LEB %d", lnum);
2595 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2596 if (chance(9, 10))
2597 return 0;
2598 dbg_rcvry("failing in GC head LEB %d", lnum);
2599 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2600 !ubifs_search_bud(c, lnum)) {
2601 if (chance(19, 20))
2602 return 0;
2603 dbg_rcvry("failing in non-bud LEB %d", lnum);
2604 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2605 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2606 if (chance(999, 1000))
2607 return 0;
2608 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2609 } else {
2610 if (chance(9999, 10000))
2611 return 0;
2612 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2613 }
2614 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002615 d->failure_mode = 1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002616 dump_stack();
2617 return 1;
2618}
2619
2620static void cut_data(const void *buf, int len)
2621{
2622 int flen, i;
2623 unsigned char *p = (void *)buf;
2624
2625 flen = (len * (long long)simple_rand()) >> 15;
2626 for (i = flen; i < len; i++)
2627 p[i] = 0xff;
2628}
2629
2630int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2631 int len, int check)
2632{
2633 if (in_failure_mode(desc))
2634 return -EIO;
2635 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2636}
2637
2638int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2639 int offset, int len, int dtype)
2640{
Adrian Hunter16dfd802008-07-18 16:47:41 +03002641 int err, failing;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002642
2643 if (in_failure_mode(desc))
2644 return -EIO;
Adrian Hunter16dfd802008-07-18 16:47:41 +03002645 failing = do_fail(desc, lnum, 1);
2646 if (failing)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002647 cut_data(buf, len);
2648 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2649 if (err)
2650 return err;
Adrian Hunter16dfd802008-07-18 16:47:41 +03002651 if (failing)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002652 return -EIO;
2653 return 0;
2654}
2655
2656int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2657 int len, int dtype)
2658{
2659 int err;
2660
2661 if (do_fail(desc, lnum, 1))
2662 return -EIO;
2663 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2664 if (err)
2665 return err;
2666 if (do_fail(desc, lnum, 1))
2667 return -EIO;
2668 return 0;
2669}
2670
2671int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2672{
2673 int err;
2674
2675 if (do_fail(desc, lnum, 0))
2676 return -EIO;
2677 err = ubi_leb_erase(desc, lnum);
2678 if (err)
2679 return err;
2680 if (do_fail(desc, lnum, 0))
2681 return -EIO;
2682 return 0;
2683}
2684
2685int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2686{
2687 int err;
2688
2689 if (do_fail(desc, lnum, 0))
2690 return -EIO;
2691 err = ubi_leb_unmap(desc, lnum);
2692 if (err)
2693 return err;
2694 if (do_fail(desc, lnum, 0))
2695 return -EIO;
2696 return 0;
2697}
2698
2699int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2700{
2701 if (in_failure_mode(desc))
2702 return -EIO;
2703 return ubi_is_mapped(desc, lnum);
2704}
2705
2706int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2707{
2708 int err;
2709
2710 if (do_fail(desc, lnum, 0))
2711 return -EIO;
2712 err = ubi_leb_map(desc, lnum, dtype);
2713 if (err)
2714 return err;
2715 if (do_fail(desc, lnum, 0))
2716 return -EIO;
2717 return 0;
2718}
2719
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002720/**
2721 * ubifs_debugging_init - initialize UBIFS debugging.
2722 * @c: UBIFS file-system description object
2723 *
2724 * This function initializes debugging-related data for the file system.
2725 * Returns zero in case of success and a negative error code in case of
2726 * failure.
2727 */
2728int ubifs_debugging_init(struct ubifs_info *c)
2729{
2730 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2731 if (!c->dbg)
2732 return -ENOMEM;
2733
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002734 failure_mode_init(c);
2735 return 0;
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002736}
2737
2738/**
2739 * ubifs_debugging_exit - free debugging data.
2740 * @c: UBIFS file-system description object
2741 */
2742void ubifs_debugging_exit(struct ubifs_info *c)
2743{
2744 failure_mode_exit(c);
Artem Bityutskiy17c2f9f2008-10-17 13:31:39 +03002745 kfree(c->dbg);
2746}
2747
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002748/*
2749 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2750 * contain the stuff specific to particular file-system mounts.
2751 */
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002752static struct dentry *dfs_rootdir;
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002753
2754/**
2755 * dbg_debugfs_init - initialize debugfs file-system.
2756 *
2757 * UBIFS uses debugfs file-system to expose various debugging knobs to
2758 * user-space. This function creates "ubifs" directory in the debugfs
2759 * file-system. Returns zero in case of success and a negative error code in
2760 * case of failure.
2761 */
2762int dbg_debugfs_init(void)
2763{
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002764 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2765 if (IS_ERR(dfs_rootdir)) {
2766 int err = PTR_ERR(dfs_rootdir);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002767 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2768 "error %d\n", err);
2769 return err;
2770 }
2771
2772 return 0;
2773}
2774
2775/**
2776 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2777 */
2778void dbg_debugfs_exit(void)
2779{
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002780 debugfs_remove(dfs_rootdir);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002781}
2782
2783static int open_debugfs_file(struct inode *inode, struct file *file)
2784{
2785 file->private_data = inode->i_private;
Artem Bityutskiy1bbfc842011-03-21 16:26:42 +02002786 return nonseekable_open(inode, file);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002787}
2788
2789static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2790 size_t count, loff_t *ppos)
2791{
2792 struct ubifs_info *c = file->private_data;
2793 struct ubifs_debug_info *d = c->dbg;
2794
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002795 if (file->f_path.dentry == d->dfs_dump_lprops)
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002796 dbg_dump_lprops(c);
Artem Bityutskiy8ff83082011-03-29 18:19:50 +03002797 else if (file->f_path.dentry == d->dfs_dump_budg)
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002798 dbg_dump_budg(c);
Artem Bityutskiy8ff83082011-03-29 18:19:50 +03002799 else if (file->f_path.dentry == d->dfs_dump_tnc) {
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002800 mutex_lock(&c->tnc_mutex);
2801 dbg_dump_tnc(c);
2802 mutex_unlock(&c->tnc_mutex);
2803 } else
2804 return -EINVAL;
2805
2806 *ppos += count;
2807 return count;
2808}
2809
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002810static const struct file_operations dfs_fops = {
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002811 .open = open_debugfs_file,
2812 .write = write_debugfs_file,
2813 .owner = THIS_MODULE,
Artem Bityutskiy1bbfc842011-03-21 16:26:42 +02002814 .llseek = no_llseek,
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002815};
2816
2817/**
2818 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2819 * @c: UBIFS file-system description object
2820 *
2821 * This function creates all debugfs files for this instance of UBIFS. Returns
2822 * zero in case of success and a negative error code in case of failure.
2823 *
2824 * Note, the only reason we have not merged this function with the
2825 * 'ubifs_debugging_init()' function is because it is better to initialize
2826 * debugfs interfaces at the very end of the mount process, and remove them at
2827 * the very beginning of the mount process.
2828 */
2829int dbg_debugfs_init_fs(struct ubifs_info *c)
2830{
2831 int err;
2832 const char *fname;
2833 struct dentry *dent;
2834 struct ubifs_debug_info *d = c->dbg;
2835
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002836 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
Artem Bityutskiycc6a86b2011-04-01 10:10:52 +03002837 fname = d->dfs_dir_name;
2838 dent = debugfs_create_dir(fname, dfs_rootdir);
Artem Bityutskiy95169532011-04-01 10:16:17 +03002839 if (IS_ERR_OR_NULL(dent))
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002840 goto out;
Artem Bityutskiycc6a86b2011-04-01 10:10:52 +03002841 d->dfs_dir = dent;
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002842
2843 fname = "dump_lprops";
Vasiliy Kulikov8c559d32011-02-04 15:24:19 +03002844 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
Artem Bityutskiy95169532011-04-01 10:16:17 +03002845 if (IS_ERR_OR_NULL(dent))
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002846 goto out_remove;
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002847 d->dfs_dump_lprops = dent;
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002848
2849 fname = "dump_budg";
Vasiliy Kulikov8c559d32011-02-04 15:24:19 +03002850 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
Artem Bityutskiy95169532011-04-01 10:16:17 +03002851 if (IS_ERR_OR_NULL(dent))
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002852 goto out_remove;
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002853 d->dfs_dump_budg = dent;
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002854
2855 fname = "dump_tnc";
Vasiliy Kulikov8c559d32011-02-04 15:24:19 +03002856 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
Artem Bityutskiy95169532011-04-01 10:16:17 +03002857 if (IS_ERR_OR_NULL(dent))
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002858 goto out_remove;
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002859 d->dfs_dump_tnc = dent;
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002860
2861 return 0;
2862
2863out_remove:
Artem Bityutskiycc6a86b2011-04-01 10:10:52 +03002864 debugfs_remove_recursive(d->dfs_dir);
2865out:
Artem Bityutskiy95169532011-04-01 10:16:17 +03002866 err = dent ? PTR_ERR(dent) : -ENODEV;
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002867 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2868 fname, err);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002869 return err;
2870}
2871
2872/**
2873 * dbg_debugfs_exit_fs - remove all debugfs files.
2874 * @c: UBIFS file-system description object
2875 */
2876void dbg_debugfs_exit_fs(struct ubifs_info *c)
2877{
Artem Bityutskiy84abf972009-01-23 14:54:59 +02002878 debugfs_remove_recursive(c->dbg->dfs_dir);
Artem Bityutskiy552ff312008-10-23 11:49:28 +03002879}
2880
Artem Bityutskiy1e517642008-07-14 19:08:37 +03002881#endif /* CONFIG_UBIFS_FS_DEBUG */