blob: caaf97eda9a3cfadca00eef1127cfb05d9899898 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Uwe Zeisbergerf30c2262006-10-03 23:01:26 +02002 * mm/page-writeback.c
Linus Torvalds1da177e2005-04-16 15:20:36 -07003 *
4 * Copyright (C) 2002, Linus Torvalds.
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07005 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Linus Torvalds1da177e2005-04-16 15:20:36 -07006 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
Francois Camie1f8e872008-10-15 22:01:59 -070010 * 10Apr2002 Andrew Morton
Linus Torvalds1da177e2005-04-16 15:20:36 -070011 * Initial version
12 */
13
14#include <linux/kernel.h>
Paul Gortmakerb95f1b312011-10-16 02:01:52 -040015#include <linux/export.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070016#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
Andrew Morton55e829a2006-12-10 02:19:27 -080025#include <linux/task_io_accounting_ops.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026#include <linux/blkdev.h>
27#include <linux/mpage.h>
Peter Zijlstrad08b3852006-09-25 23:30:57 -070028#include <linux/rmap.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
Al Viroff01bb42011-09-16 02:31:11 -040035#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
David Howells811d7362006-08-29 19:06:09 +010036#include <linux/pagevec.h>
Lisa Du36abcfd2013-09-11 14:22:36 -070037#include <linux/mm_inline.h>
Dave Chinner028c2dd2010-07-07 13:24:07 +100038#include <trace/events/writeback.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039
Lisa Du36abcfd2013-09-11 14:22:36 -070040#include "internal.h"
41
Linus Torvalds1da177e2005-04-16 15:20:36 -070042/*
Wu Fengguangffd1f602011-06-19 22:18:42 -060043 * Sleep at most 200ms at a time in balance_dirty_pages().
44 */
45#define MAX_PAUSE max(HZ/5, 1)
46
47/*
Wu Fengguang5b9b3572011-12-06 13:17:17 -060048 * Try to keep balance_dirty_pages() call intervals higher than this many pages
49 * by raising pause time to max_pause when falls below it.
50 */
51#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
52
53/*
Wu Fengguange98be2d2010-08-29 11:22:30 -060054 * Estimate write bandwidth at 200ms intervals.
55 */
56#define BANDWIDTH_INTERVAL max(HZ/5, 1)
57
Wu Fengguang6c14ae12011-03-02 16:04:18 -060058#define RATELIMIT_CALC_SHIFT 10
59
Wu Fengguange98be2d2010-08-29 11:22:30 -060060/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070061 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
62 * will look to see if it needs to force writeback or throttling.
63 */
64static long ratelimit_pages = 32;
65
Linus Torvalds1da177e2005-04-16 15:20:36 -070066/* The following parameters are exported via /proc/sys/vm */
67
68/*
Jens Axboe5b0830c2009-09-23 19:37:09 +020069 * Start background writeback (via writeback threads) at this percentage
Linus Torvalds1da177e2005-04-16 15:20:36 -070070 */
Wu Fengguang1b5e62b2009-03-23 08:57:38 +080071int dirty_background_ratio = 10;
Linus Torvalds1da177e2005-04-16 15:20:36 -070072
73/*
David Rientjes2da02992009-01-06 14:39:31 -080074 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
75 * dirty_background_ratio * the amount of dirtyable memory
76 */
77unsigned long dirty_background_bytes;
78
79/*
Bron Gondwana195cf452008-02-04 22:29:20 -080080 * free highmem will not be subtracted from the total free memory
81 * for calculating free ratios if vm_highmem_is_dirtyable is true
82 */
83int vm_highmem_is_dirtyable;
84
85/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070086 * The generator of dirty data starts writeback at this percentage
87 */
Wu Fengguang1b5e62b2009-03-23 08:57:38 +080088int vm_dirty_ratio = 20;
Linus Torvalds1da177e2005-04-16 15:20:36 -070089
90/*
David Rientjes2da02992009-01-06 14:39:31 -080091 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
92 * vm_dirty_ratio * the amount of dirtyable memory
93 */
94unsigned long vm_dirty_bytes;
95
96/*
Alexey Dobriyan704503d2009-03-31 15:23:18 -070097 * The interval between `kupdate'-style writebacks
Linus Torvalds1da177e2005-04-16 15:20:36 -070098 */
Toshiyuki Okajima22ef37e2009-05-16 22:56:28 -070099unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100
Artem Bityutskiy91913a22012-03-21 22:33:00 -0400101EXPORT_SYMBOL_GPL(dirty_writeback_interval);
102
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103/*
Alexey Dobriyan704503d2009-03-31 15:23:18 -0700104 * The longest time for which data is allowed to remain dirty
Linus Torvalds1da177e2005-04-16 15:20:36 -0700105 */
Toshiyuki Okajima22ef37e2009-05-16 22:56:28 -0700106unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700107
108/*
109 * Flag that makes the machine dump writes/reads and block dirtyings.
110 */
111int block_dump;
112
113/*
Bart Samweled5b43f2006-03-24 03:15:49 -0800114 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
115 * a full sync is triggered after this time elapses without any disk activity.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700116 */
117int laptop_mode;
118
119EXPORT_SYMBOL(laptop_mode);
120
121/* End of sysctl-exported parameters */
122
Wu Fengguangc42843f2011-03-02 15:54:09 -0600123unsigned long global_dirty_limit;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125/*
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700126 * Scale the writeback cache size proportional to the relative writeout speeds.
127 *
128 * We do this by keeping a floating proportion between BDIs, based on page
129 * writeback completions [end_page_writeback()]. Those devices that write out
130 * pages fastest will get the larger share, while the slower will get a smaller
131 * share.
132 *
133 * We use page writeout completions because we are interested in getting rid of
134 * dirty pages. Having them written out is the primary goal.
135 *
136 * We introduce a concept of time, a period over which we measure these events,
137 * because demand can/will vary over time. The length of this period itself is
138 * measured in page writeback completions.
139 *
140 */
141static struct prop_descriptor vm_completions;
142
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700143/*
Johannes Weiner1edf2232012-01-10 15:06:57 -0800144 * Work out the current dirty-memory clamping and background writeout
145 * thresholds.
146 *
147 * The main aim here is to lower them aggressively if there is a lot of mapped
148 * memory around. To avoid stressing page reclaim with lots of unreclaimable
149 * pages. It is better to clamp down on writers than to start swapping, and
150 * performing lots of scanning.
151 *
152 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
153 *
154 * We don't permit the clamping level to fall below 5% - that is getting rather
155 * excessive.
156 *
157 * We make sure that the background writeout level is below the adjusted
158 * clamping level.
159 */
Johannes Weinerccafa282012-01-10 15:07:44 -0800160
Johannes Weinera756cf52012-01-10 15:07:49 -0800161/*
162 * In a memory zone, there is a certain amount of pages we consider
163 * available for the page cache, which is essentially the number of
164 * free and reclaimable pages, minus some zone reserves to protect
165 * lowmem and the ability to uphold the zone's watermarks without
166 * requiring writeback.
167 *
168 * This number of dirtyable pages is the base value of which the
169 * user-configurable dirty ratio is the effictive number of pages that
170 * are allowed to be actually dirtied. Per individual zone, or
171 * globally by using the sum of dirtyable pages over all zones.
172 *
173 * Because the user is allowed to specify the dirty limit globally as
174 * absolute number of bytes, calculating the per-zone dirty limit can
175 * require translating the configured limit into a percentage of
176 * global dirtyable memory first.
177 */
178
Johannes Weiner1edf2232012-01-10 15:06:57 -0800179static unsigned long highmem_dirtyable_memory(unsigned long total)
180{
181#ifdef CONFIG_HIGHMEM
182 int node;
183 unsigned long x = 0;
184
185 for_each_node_state(node, N_HIGH_MEMORY) {
186 struct zone *z =
187 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
188
189 x += zone_page_state(z, NR_FREE_PAGES) +
Johannes Weinerab8fabd2012-01-10 15:07:42 -0800190 zone_reclaimable_pages(z) - z->dirty_balance_reserve;
Johannes Weiner1edf2232012-01-10 15:06:57 -0800191 }
192 /*
Sonny Rao711cf002012-12-20 15:05:07 -0800193 * Unreclaimable memory (kernel memory or anonymous memory
194 * without swap) can bring down the dirtyable pages below
195 * the zone's dirty balance reserve and the above calculation
196 * will underflow. However we still want to add in nodes
197 * which are below threshold (negative values) to get a more
198 * accurate calculation but make sure that the total never
199 * underflows.
200 */
201 if ((long)x < 0)
202 x = 0;
203
204 /*
Johannes Weiner1edf2232012-01-10 15:06:57 -0800205 * Make sure that the number of highmem pages is never larger
206 * than the number of the total dirtyable memory. This can only
207 * occur in very strange VM situations but we want to make sure
208 * that this does not occur.
209 */
210 return min(x, total);
211#else
212 return 0;
213#endif
214}
215
216/**
Johannes Weinerccafa282012-01-10 15:07:44 -0800217 * global_dirtyable_memory - number of globally dirtyable pages
Johannes Weiner1edf2232012-01-10 15:06:57 -0800218 *
Johannes Weinerccafa282012-01-10 15:07:44 -0800219 * Returns the global number of pages potentially available for dirty
220 * page cache. This is the base value for the global dirty limits.
Johannes Weiner1edf2232012-01-10 15:06:57 -0800221 */
Johannes Weinerccafa282012-01-10 15:07:44 -0800222unsigned long global_dirtyable_memory(void)
Johannes Weiner1edf2232012-01-10 15:06:57 -0800223{
224 unsigned long x;
225
Sonny Rao711cf002012-12-20 15:05:07 -0800226 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
227 x -= min(x, dirty_balance_reserve);
Johannes Weiner1edf2232012-01-10 15:06:57 -0800228
229 if (!vm_highmem_is_dirtyable)
230 x -= highmem_dirtyable_memory(x);
231
232 return x + 1; /* Ensure that we never return 0 */
233}
234
235/*
Johannes Weinerccafa282012-01-10 15:07:44 -0800236 * global_dirty_limits - background-writeback and dirty-throttling thresholds
237 *
238 * Calculate the dirty thresholds based on sysctl parameters
239 * - vm.dirty_background_ratio or vm.dirty_background_bytes
240 * - vm.dirty_ratio or vm.dirty_bytes
241 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
242 * real-time tasks.
243 */
244void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
245{
246 unsigned long background;
247 unsigned long dirty;
248 unsigned long uninitialized_var(available_memory);
249 struct task_struct *tsk;
250
251 if (!vm_dirty_bytes || !dirty_background_bytes)
252 available_memory = global_dirtyable_memory();
253
254 if (vm_dirty_bytes)
255 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
256 else
257 dirty = (vm_dirty_ratio * available_memory) / 100;
258
259 if (dirty_background_bytes)
260 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
261 else
262 background = (dirty_background_ratio * available_memory) / 100;
263
264 if (background >= dirty)
265 background = dirty / 2;
266 tsk = current;
267 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
268 background += background / 4;
269 dirty += dirty / 4;
270 }
271 *pbackground = background;
272 *pdirty = dirty;
273 trace_global_dirty_state(background, dirty);
274}
275
Johannes Weinera756cf52012-01-10 15:07:49 -0800276/**
277 * zone_dirtyable_memory - number of dirtyable pages in a zone
278 * @zone: the zone
279 *
280 * Returns the zone's number of pages potentially available for dirty
281 * page cache. This is the base value for the per-zone dirty limits.
282 */
283static unsigned long zone_dirtyable_memory(struct zone *zone)
284{
285 /*
286 * The effective global number of dirtyable pages may exclude
287 * highmem as a big-picture measure to keep the ratio between
288 * dirty memory and lowmem reasonable.
289 *
290 * But this function is purely about the individual zone and a
291 * highmem zone can hold its share of dirty pages, so we don't
292 * care about vm_highmem_is_dirtyable here.
293 */
Sonny Rao711cf002012-12-20 15:05:07 -0800294 unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
295 zone_reclaimable_pages(zone);
296
297 /* don't allow this to underflow */
298 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
299 return nr_pages;
Johannes Weinera756cf52012-01-10 15:07:49 -0800300}
301
302/**
303 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
304 * @zone: the zone
305 *
306 * Returns the maximum number of dirty pages allowed in a zone, based
307 * on the zone's dirtyable memory.
308 */
309static unsigned long zone_dirty_limit(struct zone *zone)
310{
311 unsigned long zone_memory = zone_dirtyable_memory(zone);
312 struct task_struct *tsk = current;
313 unsigned long dirty;
314
315 if (vm_dirty_bytes)
316 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
317 zone_memory / global_dirtyable_memory();
318 else
319 dirty = vm_dirty_ratio * zone_memory / 100;
320
321 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
322 dirty += dirty / 4;
323
324 return dirty;
325}
326
327/**
328 * zone_dirty_ok - tells whether a zone is within its dirty limits
329 * @zone: the zone to check
330 *
331 * Returns %true when the dirty pages in @zone are within the zone's
332 * dirty limit, %false if the limit is exceeded.
333 */
334bool zone_dirty_ok(struct zone *zone)
335{
336 unsigned long limit = zone_dirty_limit(zone);
337
338 return zone_page_state(zone, NR_FILE_DIRTY) +
339 zone_page_state(zone, NR_UNSTABLE_NFS) +
340 zone_page_state(zone, NR_WRITEBACK) <= limit;
341}
342
Johannes Weinerccafa282012-01-10 15:07:44 -0800343/*
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700344 * couple the period to the dirty_ratio:
345 *
346 * period/2 ~ roundup_pow_of_two(dirty limit)
347 */
348static int calc_period_shift(void)
349{
350 unsigned long dirty_total;
351
David Rientjes2da02992009-01-06 14:39:31 -0800352 if (vm_dirty_bytes)
353 dirty_total = vm_dirty_bytes / PAGE_SIZE;
354 else
Johannes Weinerccafa282012-01-10 15:07:44 -0800355 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
David Rientjes2da02992009-01-06 14:39:31 -0800356 100;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700357 return 2 + ilog2(dirty_total - 1);
358}
359
360/*
David Rientjes2da02992009-01-06 14:39:31 -0800361 * update the period when the dirty threshold changes.
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700362 */
David Rientjes2da02992009-01-06 14:39:31 -0800363static void update_completion_period(void)
364{
365 int shift = calc_period_shift();
366 prop_change_shift(&vm_completions, shift);
Wu Fengguang9d823e82011-06-11 18:10:12 -0600367
368 writeback_set_ratelimit();
David Rientjes2da02992009-01-06 14:39:31 -0800369}
370
371int dirty_background_ratio_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700372 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800373 loff_t *ppos)
374{
375 int ret;
376
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700377 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800378 if (ret == 0 && write)
379 dirty_background_bytes = 0;
380 return ret;
381}
382
383int dirty_background_bytes_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700384 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800385 loff_t *ppos)
386{
387 int ret;
388
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700389 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800390 if (ret == 0 && write)
391 dirty_background_ratio = 0;
392 return ret;
393}
394
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700395int dirty_ratio_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700396 void __user *buffer, size_t *lenp,
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700397 loff_t *ppos)
398{
399 int old_ratio = vm_dirty_ratio;
David Rientjes2da02992009-01-06 14:39:31 -0800400 int ret;
401
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700402 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700403 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
David Rientjes2da02992009-01-06 14:39:31 -0800404 update_completion_period();
405 vm_dirty_bytes = 0;
406 }
407 return ret;
408}
409
David Rientjes2da02992009-01-06 14:39:31 -0800410int dirty_bytes_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700411 void __user *buffer, size_t *lenp,
David Rientjes2da02992009-01-06 14:39:31 -0800412 loff_t *ppos)
413{
Sven Wegenerfc3501d2009-02-11 13:04:23 -0800414 unsigned long old_bytes = vm_dirty_bytes;
David Rientjes2da02992009-01-06 14:39:31 -0800415 int ret;
416
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700417 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
David Rientjes2da02992009-01-06 14:39:31 -0800418 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
419 update_completion_period();
420 vm_dirty_ratio = 0;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700421 }
422 return ret;
423}
424
425/*
426 * Increment the BDI's writeout completion count and the global writeout
427 * completion count. Called from test_clear_page_writeback().
428 */
429static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
430{
Jan Karaf7d2b1e2010-12-08 22:44:24 -0600431 __inc_bdi_stat(bdi, BDI_WRITTEN);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700432 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
433 bdi->max_prop_frac);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700434}
435
Miklos Szeredidd5656e2008-04-30 00:54:37 -0700436void bdi_writeout_inc(struct backing_dev_info *bdi)
437{
438 unsigned long flags;
439
440 local_irq_save(flags);
441 __bdi_writeout_inc(bdi);
442 local_irq_restore(flags);
443}
444EXPORT_SYMBOL_GPL(bdi_writeout_inc);
445
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700446/*
447 * Obtain an accurate fraction of the BDI's portion.
448 */
449static void bdi_writeout_fraction(struct backing_dev_info *bdi,
450 long *numerator, long *denominator)
451{
Wu Fengguang3efaf0f2010-12-16 22:22:00 -0600452 prop_fraction_percpu(&vm_completions, &bdi->completions,
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700453 numerator, denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700454}
455
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700456/*
Johannes Weinerd08c4292011-10-31 17:07:05 -0700457 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
458 * registered backing devices, which, for obvious reasons, can not
459 * exceed 100%.
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700460 */
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700461static unsigned int bdi_min_ratio;
462
463int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
464{
465 int ret = 0;
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700466
Jens Axboecfc4ba52009-09-14 13:12:40 +0200467 spin_lock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700468 if (min_ratio > bdi->max_ratio) {
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700469 ret = -EINVAL;
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700470 } else {
471 min_ratio -= bdi->min_ratio;
472 if (bdi_min_ratio + min_ratio < 100) {
473 bdi_min_ratio += min_ratio;
474 bdi->min_ratio += min_ratio;
475 } else {
476 ret = -EINVAL;
477 }
478 }
Jens Axboecfc4ba52009-09-14 13:12:40 +0200479 spin_unlock_bh(&bdi_lock);
Peter Zijlstra189d3c42008-04-30 00:54:35 -0700480
481 return ret;
482}
483
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700484int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
485{
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700486 int ret = 0;
487
488 if (max_ratio > 100)
489 return -EINVAL;
490
Jens Axboecfc4ba52009-09-14 13:12:40 +0200491 spin_lock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700492 if (bdi->min_ratio > max_ratio) {
493 ret = -EINVAL;
494 } else {
495 bdi->max_ratio = max_ratio;
496 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
497 }
Jens Axboecfc4ba52009-09-14 13:12:40 +0200498 spin_unlock_bh(&bdi_lock);
Peter Zijlstraa42dde02008-04-30 00:54:36 -0700499
500 return ret;
501}
502EXPORT_SYMBOL(bdi_set_max_ratio);
503
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600504static unsigned long dirty_freerun_ceiling(unsigned long thresh,
505 unsigned long bg_thresh)
506{
507 return (thresh + bg_thresh) / 2;
508}
509
Wu Fengguangffd1f602011-06-19 22:18:42 -0600510static unsigned long hard_dirty_limit(unsigned long thresh)
511{
512 return max(thresh, global_dirty_limit);
513}
514
Wu Fengguang6f718652011-03-02 17:14:34 -0600515/**
Wu Fengguang1babe182010-08-11 14:17:40 -0700516 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
Wu Fengguang6f718652011-03-02 17:14:34 -0600517 * @bdi: the backing_dev_info to query
518 * @dirty: global dirty limit in pages
Wu Fengguang1babe182010-08-11 14:17:40 -0700519 *
Wu Fengguang6f718652011-03-02 17:14:34 -0600520 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
521 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
Wu Fengguangaed21ad2011-11-23 11:44:41 -0600522 *
523 * Note that balance_dirty_pages() will only seriously take it as a hard limit
524 * when sleeping max_pause per page is not enough to keep the dirty pages under
525 * control. For example, when the device is completely stalled due to some error
526 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
527 * In the other normal situations, it acts more gently by throttling the tasks
528 * more (rather than completely block them) when the bdi dirty pages go high.
Wu Fengguang6f718652011-03-02 17:14:34 -0600529 *
530 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
Wu Fengguang1babe182010-08-11 14:17:40 -0700531 * - starving fast devices
532 * - piling up dirty pages (that will take long time to sync) on slow devices
533 *
534 * The bdi's share of dirty limit will be adapting to its throughput and
535 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
536 */
537unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
Wu Fengguang16c40422010-08-11 14:17:39 -0700538{
539 u64 bdi_dirty;
540 long numerator, denominator;
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700541
Wu Fengguang16c40422010-08-11 14:17:39 -0700542 /*
543 * Calculate this BDI's share of the dirty ratio.
544 */
545 bdi_writeout_fraction(bdi, &numerator, &denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700546
Wu Fengguang16c40422010-08-11 14:17:39 -0700547 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
548 bdi_dirty *= numerator;
549 do_div(bdi_dirty, denominator);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -0700550
Wu Fengguang16c40422010-08-11 14:17:39 -0700551 bdi_dirty += (dirty * bdi->min_ratio) / 100;
552 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
553 bdi_dirty = dirty * bdi->max_ratio / 100;
554
555 return bdi_dirty;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556}
557
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600558/*
559 * Dirty position control.
560 *
561 * (o) global/bdi setpoints
562 *
563 * We want the dirty pages be balanced around the global/bdi setpoints.
564 * When the number of dirty pages is higher/lower than the setpoint, the
565 * dirty position control ratio (and hence task dirty ratelimit) will be
566 * decreased/increased to bring the dirty pages back to the setpoint.
567 *
568 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
569 *
570 * if (dirty < setpoint) scale up pos_ratio
571 * if (dirty > setpoint) scale down pos_ratio
572 *
573 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
574 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
575 *
576 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
577 *
578 * (o) global control line
579 *
580 * ^ pos_ratio
581 * |
582 * | |<===== global dirty control scope ======>|
583 * 2.0 .............*
584 * | .*
585 * | . *
586 * | . *
587 * | . *
588 * | . *
589 * | . *
590 * 1.0 ................................*
591 * | . . *
592 * | . . *
593 * | . . *
594 * | . . *
595 * | . . *
596 * 0 +------------.------------------.----------------------*------------->
597 * freerun^ setpoint^ limit^ dirty pages
598 *
599 * (o) bdi control line
600 *
601 * ^ pos_ratio
602 * |
603 * | *
604 * | *
605 * | *
606 * | *
607 * | * |<=========== span ============>|
608 * 1.0 .......................*
609 * | . *
610 * | . *
611 * | . *
612 * | . *
613 * | . *
614 * | . *
615 * | . *
616 * | . *
617 * | . *
618 * | . *
619 * | . *
620 * 1/4 ...............................................* * * * * * * * * * * *
621 * | . .
622 * | . .
623 * | . .
624 * 0 +----------------------.-------------------------------.------------->
625 * bdi_setpoint^ x_intercept^
626 *
627 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
628 * be smoothly throttled down to normal if it starts high in situations like
629 * - start writing to a slow SD card and a fast disk at the same time. The SD
630 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
631 * - the bdi dirty thresh drops quickly due to change of JBOD workload
632 */
633static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
634 unsigned long thresh,
635 unsigned long bg_thresh,
636 unsigned long dirty,
637 unsigned long bdi_thresh,
638 unsigned long bdi_dirty)
639{
640 unsigned long write_bw = bdi->avg_write_bandwidth;
641 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
642 unsigned long limit = hard_dirty_limit(thresh);
643 unsigned long x_intercept;
644 unsigned long setpoint; /* dirty pages' target balance point */
645 unsigned long bdi_setpoint;
646 unsigned long span;
647 long long pos_ratio; /* for scaling up/down the rate limit */
648 long x;
649
650 if (unlikely(dirty >= limit))
651 return 0;
652
653 /*
654 * global setpoint
655 *
656 * setpoint - dirty 3
657 * f(dirty) := 1.0 + (----------------)
658 * limit - setpoint
659 *
660 * it's a 3rd order polynomial that subjects to
661 *
662 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
663 * (2) f(setpoint) = 1.0 => the balance point
664 * (3) f(limit) = 0 => the hard limit
665 * (4) df/dx <= 0 => negative feedback control
666 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
667 * => fast response on large errors; small oscillation near setpoint
668 */
669 setpoint = (freerun + limit) / 2;
670 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
671 limit - setpoint + 1);
672 pos_ratio = x;
673 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
674 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
675 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
676
677 /*
678 * We have computed basic pos_ratio above based on global situation. If
679 * the bdi is over/under its share of dirty pages, we want to scale
680 * pos_ratio further down/up. That is done by the following mechanism.
681 */
682
683 /*
684 * bdi setpoint
685 *
686 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
687 *
688 * x_intercept - bdi_dirty
689 * := --------------------------
690 * x_intercept - bdi_setpoint
691 *
692 * The main bdi control line is a linear function that subjects to
693 *
694 * (1) f(bdi_setpoint) = 1.0
695 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
696 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
697 *
698 * For single bdi case, the dirty pages are observed to fluctuate
699 * regularly within range
700 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
701 * for various filesystems, where (2) can yield in a reasonable 12.5%
702 * fluctuation range for pos_ratio.
703 *
704 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
705 * own size, so move the slope over accordingly and choose a slope that
706 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
707 */
708 if (unlikely(bdi_thresh > thresh))
709 bdi_thresh = thresh;
Wu Fengguangaed21ad2011-11-23 11:44:41 -0600710 /*
711 * It's very possible that bdi_thresh is close to 0 not because the
712 * device is slow, but that it has remained inactive for long time.
713 * Honour such devices a reasonable good (hopefully IO efficient)
714 * threshold, so that the occasional writes won't be blocked and active
715 * writes can rampup the threshold quickly.
716 */
Wu Fengguang8927f662011-08-04 22:16:46 -0600717 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600718 /*
719 * scale global setpoint to bdi's:
720 * bdi_setpoint = setpoint * bdi_thresh / thresh
721 */
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600722 x = div_u64((u64)bdi_thresh << 16, thresh | 1);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600723 bdi_setpoint = setpoint * (u64)x >> 16;
724 /*
725 * Use span=(8*write_bw) in single bdi case as indicated by
726 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
727 *
728 * bdi_thresh thresh - bdi_thresh
729 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
730 * thresh thresh
731 */
732 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
733 x_intercept = bdi_setpoint + span;
734
735 if (bdi_dirty < x_intercept - span / 4) {
Wu Fengguang50657fc2011-10-11 17:06:33 -0600736 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
737 x_intercept - bdi_setpoint + 1);
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600738 } else
739 pos_ratio /= 4;
740
Wu Fengguang8927f662011-08-04 22:16:46 -0600741 /*
742 * bdi reserve area, safeguard against dirty pool underrun and disk idle
743 * It may push the desired control point of global dirty pages higher
744 * than setpoint.
745 */
746 x_intercept = bdi_thresh / 2;
747 if (bdi_dirty < x_intercept) {
Wu Fengguang50657fc2011-10-11 17:06:33 -0600748 if (bdi_dirty > x_intercept / 8)
749 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
750 else
Wu Fengguang8927f662011-08-04 22:16:46 -0600751 pos_ratio *= 8;
752 }
753
Wu Fengguang6c14ae12011-03-02 16:04:18 -0600754 return pos_ratio;
755}
756
Wu Fengguange98be2d2010-08-29 11:22:30 -0600757static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
758 unsigned long elapsed,
759 unsigned long written)
760{
761 const unsigned long period = roundup_pow_of_two(3 * HZ);
762 unsigned long avg = bdi->avg_write_bandwidth;
763 unsigned long old = bdi->write_bandwidth;
764 u64 bw;
765
766 /*
767 * bw = written * HZ / elapsed
768 *
769 * bw * elapsed + write_bandwidth * (period - elapsed)
770 * write_bandwidth = ---------------------------------------------------
771 * period
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600772 *
773 * @written may have decreased due to account_page_redirty().
774 * Avoid underflowing @bw calculation.
Wu Fengguange98be2d2010-08-29 11:22:30 -0600775 */
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600776 bw = written - min(written, bdi->written_stamp);
Wu Fengguange98be2d2010-08-29 11:22:30 -0600777 bw *= HZ;
778 if (unlikely(elapsed > period)) {
779 do_div(bw, elapsed);
780 avg = bw;
781 goto out;
782 }
783 bw += (u64)bdi->write_bandwidth * (period - elapsed);
784 bw >>= ilog2(period);
785
786 /*
787 * one more level of smoothing, for filtering out sudden spikes
788 */
789 if (avg > old && old >= (unsigned long)bw)
790 avg -= (avg - old) >> 3;
791
792 if (avg < old && old <= (unsigned long)bw)
793 avg += (old - avg) >> 3;
794
795out:
796 bdi->write_bandwidth = bw;
797 bdi->avg_write_bandwidth = avg;
798}
799
Wu Fengguangc42843f2011-03-02 15:54:09 -0600800/*
801 * The global dirtyable memory and dirty threshold could be suddenly knocked
802 * down by a large amount (eg. on the startup of KVM in a swapless system).
803 * This may throw the system into deep dirty exceeded state and throttle
804 * heavy/light dirtiers alike. To retain good responsiveness, maintain
805 * global_dirty_limit for tracking slowly down to the knocked down dirty
806 * threshold.
807 */
808static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
809{
810 unsigned long limit = global_dirty_limit;
811
812 /*
813 * Follow up in one step.
814 */
815 if (limit < thresh) {
816 limit = thresh;
817 goto update;
818 }
819
820 /*
821 * Follow down slowly. Use the higher one as the target, because thresh
822 * may drop below dirty. This is exactly the reason to introduce
823 * global_dirty_limit which is guaranteed to lie above the dirty pages.
824 */
825 thresh = max(thresh, dirty);
826 if (limit > thresh) {
827 limit -= (limit - thresh) >> 5;
828 goto update;
829 }
830 return;
831update:
832 global_dirty_limit = limit;
833}
834
835static void global_update_bandwidth(unsigned long thresh,
836 unsigned long dirty,
837 unsigned long now)
838{
839 static DEFINE_SPINLOCK(dirty_lock);
José Adolfo Galdámez900469d2015-06-20 23:45:36 -0600840 static unsigned long update_time = INITIAL_JIFFIES;
Wu Fengguangc42843f2011-03-02 15:54:09 -0600841
842 /*
843 * check locklessly first to optimize away locking for the most time
844 */
845 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
846 return;
847
848 spin_lock(&dirty_lock);
849 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
850 update_dirty_limit(thresh, dirty);
851 update_time = now;
852 }
853 spin_unlock(&dirty_lock);
854}
855
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600856/*
857 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
858 *
859 * Normal bdi tasks will be curbed at or below it in long term.
860 * Obviously it should be around (write_bw / N) when there are N dd tasks.
861 */
862static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
863 unsigned long thresh,
864 unsigned long bg_thresh,
865 unsigned long dirty,
866 unsigned long bdi_thresh,
867 unsigned long bdi_dirty,
868 unsigned long dirtied,
869 unsigned long elapsed)
870{
Wu Fengguang73811312011-08-26 15:53:24 -0600871 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
872 unsigned long limit = hard_dirty_limit(thresh);
873 unsigned long setpoint = (freerun + limit) / 2;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600874 unsigned long write_bw = bdi->avg_write_bandwidth;
875 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
876 unsigned long dirty_rate;
877 unsigned long task_ratelimit;
878 unsigned long balanced_dirty_ratelimit;
879 unsigned long pos_ratio;
Wu Fengguang73811312011-08-26 15:53:24 -0600880 unsigned long step;
881 unsigned long x;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600882
883 /*
884 * The dirty rate will match the writeout rate in long term, except
885 * when dirty pages are truncated by userspace or re-dirtied by FS.
886 */
887 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
888
889 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
890 bdi_thresh, bdi_dirty);
891 /*
892 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
893 */
894 task_ratelimit = (u64)dirty_ratelimit *
895 pos_ratio >> RATELIMIT_CALC_SHIFT;
896 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
897
898 /*
899 * A linear estimation of the "balanced" throttle rate. The theory is,
900 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
901 * dirty_rate will be measured to be (N * task_ratelimit). So the below
902 * formula will yield the balanced rate limit (write_bw / N).
903 *
904 * Note that the expanded form is not a pure rate feedback:
905 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
906 * but also takes pos_ratio into account:
907 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
908 *
909 * (1) is not realistic because pos_ratio also takes part in balancing
910 * the dirty rate. Consider the state
911 * pos_ratio = 0.5 (3)
912 * rate = 2 * (write_bw / N) (4)
913 * If (1) is used, it will stuck in that state! Because each dd will
914 * be throttled at
915 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
916 * yielding
917 * dirty_rate = N * task_ratelimit = write_bw (6)
918 * put (6) into (1) we get
919 * rate_(i+1) = rate_(i) (7)
920 *
921 * So we end up using (2) to always keep
922 * rate_(i+1) ~= (write_bw / N) (8)
923 * regardless of the value of pos_ratio. As long as (8) is satisfied,
924 * pos_ratio is able to drive itself to 1.0, which is not only where
925 * the dirty count meet the setpoint, but also where the slope of
926 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
927 */
928 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
929 dirty_rate | 1);
Wu Fengguangbdaac492011-08-03 14:30:36 -0600930 /*
931 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
932 */
933 if (unlikely(balanced_dirty_ratelimit > write_bw))
934 balanced_dirty_ratelimit = write_bw;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -0600935
Wu Fengguang73811312011-08-26 15:53:24 -0600936 /*
937 * We could safely do this and return immediately:
938 *
939 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
940 *
941 * However to get a more stable dirty_ratelimit, the below elaborated
942 * code makes use of task_ratelimit to filter out sigular points and
943 * limit the step size.
944 *
945 * The below code essentially only uses the relative value of
946 *
947 * task_ratelimit - dirty_ratelimit
948 * = (pos_ratio - 1) * dirty_ratelimit
949 *
950 * which reflects the direction and size of dirty position error.
951 */
952
953 /*
954 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
955 * task_ratelimit is on the same side of dirty_ratelimit, too.
956 * For example, when
957 * - dirty_ratelimit > balanced_dirty_ratelimit
958 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
959 * lowering dirty_ratelimit will help meet both the position and rate
960 * control targets. Otherwise, don't update dirty_ratelimit if it will
961 * only help meet the rate target. After all, what the users ultimately
962 * feel and care are stable dirty rate and small position error.
963 *
964 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
965 * and filter out the sigular points of balanced_dirty_ratelimit. Which
966 * keeps jumping around randomly and can even leap far away at times
967 * due to the small 200ms estimation period of dirty_rate (we want to
968 * keep that period small to reduce time lags).
969 */
970 step = 0;
971 if (dirty < setpoint) {
972 x = min(bdi->balanced_dirty_ratelimit,
973 min(balanced_dirty_ratelimit, task_ratelimit));
974 if (dirty_ratelimit < x)
975 step = x - dirty_ratelimit;
976 } else {
977 x = max(bdi->balanced_dirty_ratelimit,
978 max(balanced_dirty_ratelimit, task_ratelimit));
979 if (dirty_ratelimit > x)
980 step = dirty_ratelimit - x;
981 }
982
983 /*
984 * Don't pursue 100% rate matching. It's impossible since the balanced
985 * rate itself is constantly fluctuating. So decrease the track speed
986 * when it gets close to the target. Helps eliminate pointless tremors.
987 */
988 step >>= dirty_ratelimit / (2 * step + 1);
989 /*
990 * Limit the tracking speed to avoid overshooting.
991 */
992 step = (step + 7) / 8;
993
994 if (dirty_ratelimit < balanced_dirty_ratelimit)
995 dirty_ratelimit += step;
996 else
997 dirty_ratelimit -= step;
998
999 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1000 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
Wu Fengguangb48c1042011-03-02 17:22:49 -06001001
1002 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001003}
1004
Wu Fengguange98be2d2010-08-29 11:22:30 -06001005void __bdi_update_bandwidth(struct backing_dev_info *bdi,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001006 unsigned long thresh,
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001007 unsigned long bg_thresh,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001008 unsigned long dirty,
1009 unsigned long bdi_thresh,
1010 unsigned long bdi_dirty,
Wu Fengguange98be2d2010-08-29 11:22:30 -06001011 unsigned long start_time)
1012{
1013 unsigned long now = jiffies;
1014 unsigned long elapsed = now - bdi->bw_time_stamp;
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001015 unsigned long dirtied;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001016 unsigned long written;
1017
1018 /*
1019 * rate-limit, only update once every 200ms.
1020 */
1021 if (elapsed < BANDWIDTH_INTERVAL)
1022 return;
1023
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001024 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001025 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1026
1027 /*
1028 * Skip quiet periods when disk bandwidth is under-utilized.
1029 * (at least 1s idle time between two flusher runs)
1030 */
1031 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1032 goto snapshot;
1033
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001034 if (thresh) {
Wu Fengguangc42843f2011-03-02 15:54:09 -06001035 global_update_bandwidth(thresh, dirty, now);
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001036 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1037 bdi_thresh, bdi_dirty,
1038 dirtied, elapsed);
1039 }
Wu Fengguange98be2d2010-08-29 11:22:30 -06001040 bdi_update_write_bandwidth(bdi, elapsed, written);
1041
1042snapshot:
Wu Fengguangbe3ffa22011-06-12 10:51:31 -06001043 bdi->dirtied_stamp = dirtied;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001044 bdi->written_stamp = written;
1045 bdi->bw_time_stamp = now;
1046}
1047
1048static void bdi_update_bandwidth(struct backing_dev_info *bdi,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001049 unsigned long thresh,
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001050 unsigned long bg_thresh,
Wu Fengguangc42843f2011-03-02 15:54:09 -06001051 unsigned long dirty,
1052 unsigned long bdi_thresh,
1053 unsigned long bdi_dirty,
Wu Fengguange98be2d2010-08-29 11:22:30 -06001054 unsigned long start_time)
1055{
1056 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1057 return;
1058 spin_lock(&bdi->wb.list_lock);
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001059 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1060 bdi_thresh, bdi_dirty, start_time);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001061 spin_unlock(&bdi->wb.list_lock);
1062}
1063
Linus Torvalds1da177e2005-04-16 15:20:36 -07001064/*
Wu Fengguang9d823e82011-06-11 18:10:12 -06001065 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1066 * will look to see if it needs to start dirty throttling.
1067 *
1068 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1069 * global_page_state() too often. So scale it near-sqrt to the safety margin
1070 * (the number of pages we may dirty without exceeding the dirty limits).
1071 */
1072static unsigned long dirty_poll_interval(unsigned long dirty,
1073 unsigned long thresh)
1074{
1075 if (thresh > dirty)
1076 return 1UL << (ilog2(thresh - dirty) >> 1);
1077
1078 return 1;
1079}
1080
Fengguang Wu60c6aa32013-10-16 13:47:03 -07001081static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1082 unsigned long bdi_dirty)
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001083{
Fengguang Wu60c6aa32013-10-16 13:47:03 -07001084 unsigned long bw = bdi->avg_write_bandwidth;
1085 unsigned long t;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001086
1087 /*
1088 * Limit pause time for small memory systems. If sleeping for too long
1089 * time, a small pool of dirty/writeback pages may go empty and disk go
1090 * idle.
1091 *
1092 * 8 serves as the safety ratio.
1093 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001094 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1095 t++;
1096
Fengguang Wu60c6aa32013-10-16 13:47:03 -07001097 return min_t(unsigned long, t, MAX_PAUSE);
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001098}
1099
1100static long bdi_min_pause(struct backing_dev_info *bdi,
1101 long max_pause,
1102 unsigned long task_ratelimit,
1103 unsigned long dirty_ratelimit,
1104 int *nr_dirtied_pause)
1105{
1106 long hi = ilog2(bdi->avg_write_bandwidth);
1107 long lo = ilog2(bdi->dirty_ratelimit);
1108 long t; /* target pause */
1109 long pause; /* estimated next pause */
1110 int pages; /* target nr_dirtied_pause */
1111
1112 /* target for 10ms pause on 1-dd case */
1113 t = max(1, HZ / 100);
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001114
1115 /*
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001116 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1117 * overheads.
1118 *
1119 * (N * 10ms) on 2^N concurrent tasks.
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001120 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001121 if (hi > lo)
1122 t += (hi - lo) * (10 * HZ) / 1024;
1123
1124 /*
1125 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1126 * on the much more stable dirty_ratelimit. However the next pause time
1127 * will be computed based on task_ratelimit and the two rate limits may
1128 * depart considerably at some time. Especially if task_ratelimit goes
1129 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1130 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1131 * result task_ratelimit won't be executed faithfully, which could
1132 * eventually bring down dirty_ratelimit.
1133 *
1134 * We apply two rules to fix it up:
1135 * 1) try to estimate the next pause time and if necessary, use a lower
1136 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1137 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1138 * 2) limit the target pause time to max_pause/2, so that the normal
1139 * small fluctuations of task_ratelimit won't trigger rule (1) and
1140 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1141 */
1142 t = min(t, 1 + max_pause / 2);
1143 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1144
Wu Fengguang5b9b3572011-12-06 13:17:17 -06001145 /*
1146 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1147 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1148 * When the 16 consecutive reads are often interrupted by some dirty
1149 * throttling pause during the async writes, cfq will go into idles
1150 * (deadline is fine). So push nr_dirtied_pause as high as possible
1151 * until reaches DIRTY_POLL_THRESH=32 pages.
1152 */
1153 if (pages < DIRTY_POLL_THRESH) {
1154 t = max_pause;
1155 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1156 if (pages > DIRTY_POLL_THRESH) {
1157 pages = DIRTY_POLL_THRESH;
1158 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1159 }
1160 }
1161
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001162 pause = HZ * pages / (task_ratelimit + 1);
1163 if (pause > max_pause) {
1164 t = max_pause;
1165 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1166 }
1167
1168 *nr_dirtied_pause = pages;
1169 /*
1170 * The minimal pause time will normally be half the target pause time.
1171 */
Wu Fengguang5b9b3572011-12-06 13:17:17 -06001172 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001173}
1174
Wu Fengguang9d823e82011-06-11 18:10:12 -06001175/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 * balance_dirty_pages() must be called by processes which are generating dirty
1177 * data. It looks at the number of dirty pages in the machine and will force
Wu Fengguang143dfe82010-08-27 18:45:12 -06001178 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
Jens Axboe5b0830c2009-09-23 19:37:09 +02001179 * If we're over `background_thresh' then the writeback threads are woken to
1180 * perform some writeout.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001181 */
Wu Fengguang3a2e9a52009-09-23 21:56:00 +08001182static void balance_dirty_pages(struct address_space *mapping,
Wu Fengguang143dfe82010-08-27 18:45:12 -06001183 unsigned long pages_dirtied)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184{
Wu Fengguang143dfe82010-08-27 18:45:12 -06001185 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1186 unsigned long bdi_reclaimable;
Wu Fengguang77627412010-09-12 13:34:05 -06001187 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1188 unsigned long bdi_dirty;
Wu Fengguang6c14ae12011-03-02 16:04:18 -06001189 unsigned long freerun;
David Rientjes364aeb22009-01-06 14:39:29 -08001190 unsigned long background_thresh;
1191 unsigned long dirty_thresh;
1192 unsigned long bdi_thresh;
Wu Fengguang83712352011-06-11 19:25:42 -06001193 long period;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001194 long pause;
1195 long max_pause;
1196 long min_pause;
1197 int nr_dirtied_pause;
Wu Fengguange50e3722010-08-11 14:17:37 -07001198 bool dirty_exceeded = false;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001199 unsigned long task_ratelimit;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001200 unsigned long dirty_ratelimit;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001201 unsigned long pos_ratio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 struct backing_dev_info *bdi = mapping->backing_dev_info;
Wu Fengguange98be2d2010-08-29 11:22:30 -06001203 unsigned long start_time = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204
1205 for (;;) {
Wu Fengguang83712352011-06-11 19:25:42 -06001206 unsigned long now = jiffies;
1207
Wu Fengguang143dfe82010-08-27 18:45:12 -06001208 /*
1209 * Unstable writes are a feature of certain networked
1210 * filesystems (i.e. NFS) in which data may have been
1211 * written to the server's write cache, but has not yet
1212 * been flushed to permanent storage.
1213 */
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001214 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1215 global_page_state(NR_UNSTABLE_NFS);
Wu Fengguang77627412010-09-12 13:34:05 -06001216 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001217
Wu Fengguang16c40422010-08-11 14:17:39 -07001218 global_dirty_limits(&background_thresh, &dirty_thresh);
1219
1220 /*
1221 * Throttle it only when the background writeback cannot
1222 * catch-up. This avoids (excessively) small writeouts
1223 * when the bdi limits are ramping up.
1224 */
Wu Fengguang6c14ae12011-03-02 16:04:18 -06001225 freerun = dirty_freerun_ceiling(dirty_thresh,
1226 background_thresh);
Wu Fengguang83712352011-06-11 19:25:42 -06001227 if (nr_dirty <= freerun) {
1228 current->dirty_paused_when = now;
1229 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001230 current->nr_dirtied_pause =
1231 dirty_poll_interval(nr_dirty, dirty_thresh);
Wu Fengguang16c40422010-08-11 14:17:39 -07001232 break;
Wu Fengguang83712352011-06-11 19:25:42 -06001233 }
Wu Fengguang16c40422010-08-11 14:17:39 -07001234
Wu Fengguang143dfe82010-08-27 18:45:12 -06001235 if (unlikely(!writeback_in_progress(bdi)))
1236 bdi_start_background_writeback(bdi);
1237
1238 /*
1239 * bdi_thresh is not treated as some limiting factor as
1240 * dirty_thresh, due to reasons
1241 * - in JBOD setup, bdi_thresh can fluctuate a lot
1242 * - in a system with HDD and USB key, the USB key may somehow
1243 * go into state (bdi_dirty >> bdi_thresh) either because
1244 * bdi_dirty starts high, or because bdi_thresh drops low.
1245 * In this case we don't want to hard throttle the USB key
1246 * dirtiers for 100 seconds until bdi_dirty drops under
1247 * bdi_thresh. Instead the auxiliary bdi control line in
1248 * bdi_position_ratio() will let the dirtier task progress
1249 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1250 */
Wu Fengguang16c40422010-08-11 14:17:39 -07001251 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
Wu Fengguang16c40422010-08-11 14:17:39 -07001252
Wu Fengguange50e3722010-08-11 14:17:37 -07001253 /*
1254 * In order to avoid the stacked BDI deadlock we need
1255 * to ensure we accurately count the 'dirty' pages when
1256 * the threshold is low.
1257 *
1258 * Otherwise it would be possible to get thresh+n pages
1259 * reported dirty, even though there are thresh-m pages
1260 * actually dirty; with m+n sitting in the percpu
1261 * deltas.
1262 */
Wu Fengguang143dfe82010-08-27 18:45:12 -06001263 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1264 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1265 bdi_dirty = bdi_reclaimable +
Wu Fengguang77627412010-09-12 13:34:05 -06001266 bdi_stat_sum(bdi, BDI_WRITEBACK);
Wu Fengguange50e3722010-08-11 14:17:37 -07001267 } else {
Wu Fengguang143dfe82010-08-27 18:45:12 -06001268 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1269 bdi_dirty = bdi_reclaimable +
Wu Fengguang77627412010-09-12 13:34:05 -06001270 bdi_stat(bdi, BDI_WRITEBACK);
Wu Fengguange50e3722010-08-11 14:17:37 -07001271 }
Peter Zijlstra5fce25a2007-11-14 16:59:15 -08001272
Wu Fengguang82791942011-12-03 21:26:01 -06001273 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
Wu Fengguang77627412010-09-12 13:34:05 -06001274 (nr_dirty > dirty_thresh);
Wu Fengguang143dfe82010-08-27 18:45:12 -06001275 if (dirty_exceeded && !bdi->dirty_exceeded)
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001276 bdi->dirty_exceeded = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001277
Wu Fengguangaf6a3112011-10-03 20:46:17 -06001278 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1279 nr_dirty, bdi_thresh, bdi_dirty,
1280 start_time);
Wu Fengguange98be2d2010-08-29 11:22:30 -06001281
Wu Fengguang143dfe82010-08-27 18:45:12 -06001282 dirty_ratelimit = bdi->dirty_ratelimit;
1283 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1284 background_thresh, nr_dirty,
1285 bdi_thresh, bdi_dirty);
Wu Fengguang3a73dbb2011-11-07 19:19:28 +08001286 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1287 RATELIMIT_CALC_SHIFT;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001288 max_pause = bdi_max_pause(bdi, bdi_dirty);
1289 min_pause = bdi_min_pause(bdi, max_pause,
1290 task_ratelimit, dirty_ratelimit,
1291 &nr_dirtied_pause);
1292
Wu Fengguang3a73dbb2011-11-07 19:19:28 +08001293 if (unlikely(task_ratelimit == 0)) {
Wu Fengguang83712352011-06-11 19:25:42 -06001294 period = max_pause;
Wu Fengguangc8462cc2011-06-11 19:21:43 -06001295 pause = max_pause;
Wu Fengguang143dfe82010-08-27 18:45:12 -06001296 goto pause;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297 }
Wu Fengguang83712352011-06-11 19:25:42 -06001298 period = HZ * pages_dirtied / task_ratelimit;
1299 pause = period;
1300 if (current->dirty_paused_when)
1301 pause -= now - current->dirty_paused_when;
1302 /*
1303 * For less than 1s think time (ext3/4 may block the dirtier
1304 * for up to 800ms from time to time on 1-HDD; so does xfs,
1305 * however at much less frequency), try to compensate it in
1306 * future periods by updating the virtual time; otherwise just
1307 * do a reset, as it may be a light dirtier.
1308 */
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001309 if (pause < min_pause) {
Wu Fengguangece13ac2010-08-29 23:33:20 -06001310 trace_balance_dirty_pages(bdi,
1311 dirty_thresh,
1312 background_thresh,
1313 nr_dirty,
1314 bdi_thresh,
1315 bdi_dirty,
1316 dirty_ratelimit,
1317 task_ratelimit,
1318 pages_dirtied,
Wu Fengguang83712352011-06-11 19:25:42 -06001319 period,
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001320 min(pause, 0L),
Wu Fengguangece13ac2010-08-29 23:33:20 -06001321 start_time);
Wu Fengguang83712352011-06-11 19:25:42 -06001322 if (pause < -HZ) {
1323 current->dirty_paused_when = now;
1324 current->nr_dirtied = 0;
1325 } else if (period) {
1326 current->dirty_paused_when += period;
1327 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001328 } else if (current->nr_dirtied_pause <= pages_dirtied)
1329 current->nr_dirtied_pause += pages_dirtied;
Wu Fengguang57fc9782011-06-11 19:32:32 -06001330 break;
1331 }
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001332 if (unlikely(pause > max_pause)) {
1333 /* for occasional dropped task_ratelimit */
1334 now += min(pause - max_pause, max_pause);
1335 pause = max_pause;
1336 }
Wu Fengguang143dfe82010-08-27 18:45:12 -06001337
1338pause:
Wu Fengguangece13ac2010-08-29 23:33:20 -06001339 trace_balance_dirty_pages(bdi,
1340 dirty_thresh,
1341 background_thresh,
1342 nr_dirty,
1343 bdi_thresh,
1344 bdi_dirty,
1345 dirty_ratelimit,
1346 task_ratelimit,
1347 pages_dirtied,
Wu Fengguang83712352011-06-11 19:25:42 -06001348 period,
Wu Fengguangece13ac2010-08-29 23:33:20 -06001349 pause,
1350 start_time);
Jan Kara499d05e2011-11-16 19:34:48 +08001351 __set_current_state(TASK_KILLABLE);
Wu Fengguangd25105e2009-10-09 12:40:42 +02001352 io_schedule_timeout(pause);
Jens Axboe87c6a9b2009-09-17 19:59:14 +02001353
Wu Fengguang83712352011-06-11 19:25:42 -06001354 current->dirty_paused_when = now + pause;
1355 current->nr_dirtied = 0;
Wu Fengguang7ccb9ad2011-11-30 11:08:55 -06001356 current->nr_dirtied_pause = nr_dirtied_pause;
Wu Fengguang83712352011-06-11 19:25:42 -06001357
Wu Fengguangffd1f602011-06-19 22:18:42 -06001358 /*
Wu Fengguang1df64712011-11-13 19:47:32 -06001359 * This is typically equal to (nr_dirty < dirty_thresh) and can
1360 * also keep "1000+ dd on a slow USB stick" under control.
Wu Fengguangffd1f602011-06-19 22:18:42 -06001361 */
Wu Fengguang1df64712011-11-13 19:47:32 -06001362 if (task_ratelimit)
Wu Fengguangffd1f602011-06-19 22:18:42 -06001363 break;
Jan Kara499d05e2011-11-16 19:34:48 +08001364
Wu Fengguangc5c63432011-12-02 10:21:33 -06001365 /*
1366 * In the case of an unresponding NFS server and the NFS dirty
1367 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1368 * to go through, so that tasks on them still remain responsive.
1369 *
1370 * In theory 1 page is enough to keep the comsumer-producer
1371 * pipe going: the flusher cleans 1 page => the task dirties 1
1372 * more page. However bdi_dirty has accounting errors. So use
1373 * the larger and more IO friendly bdi_stat_error.
1374 */
1375 if (bdi_dirty <= bdi_stat_error(bdi))
1376 break;
1377
Jan Kara499d05e2011-11-16 19:34:48 +08001378 if (fatal_signal_pending(current))
1379 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380 }
1381
Wu Fengguang143dfe82010-08-27 18:45:12 -06001382 if (!dirty_exceeded && bdi->dirty_exceeded)
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001383 bdi->dirty_exceeded = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384
1385 if (writeback_in_progress(bdi))
Jens Axboe5b0830c2009-09-23 19:37:09 +02001386 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387
1388 /*
1389 * In laptop mode, we wait until hitting the higher threshold before
1390 * starting background writeout, and then write out all the way down
1391 * to the lower threshold. So slow writers cause minimal disk activity.
1392 *
1393 * In normal mode, we start background writeout at the lower
1394 * background_thresh, to keep the amount of dirty memory low.
1395 */
Wu Fengguang143dfe82010-08-27 18:45:12 -06001396 if (laptop_mode)
1397 return;
1398
1399 if (nr_reclaimable > background_thresh)
Christoph Hellwigc5444192010-06-08 18:15:15 +02001400 bdi_start_background_writeback(bdi);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401}
1402
Wu Fengguang9d823e82011-06-11 18:10:12 -06001403static DEFINE_PER_CPU(int, bdp_ratelimits);
Tejun Heo245b2e72009-06-24 15:13:48 +09001404
Wu Fengguang54848d72011-04-05 13:21:19 -06001405/*
1406 * Normal tasks are throttled by
1407 * loop {
1408 * dirty tsk->nr_dirtied_pause pages;
1409 * take a snap in balance_dirty_pages();
1410 * }
1411 * However there is a worst case. If every task exit immediately when dirtied
1412 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1413 * called to throttle the page dirties. The solution is to save the not yet
1414 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1415 * randomly into the running tasks. This works well for the above worst case,
1416 * as the new task will pick up and accumulate the old task's leaked dirty
1417 * count and eventually get throttled.
1418 */
1419DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1420
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421/**
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001422 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
Martin Waitz67be2dd2005-05-01 08:59:26 -07001423 * @mapping: address_space which was dirtied
Martin Waitza5802902006-04-02 13:59:55 +02001424 * @nr_pages_dirtied: number of pages which the caller has just dirtied
Linus Torvalds1da177e2005-04-16 15:20:36 -07001425 *
1426 * Processes which are dirtying memory should call in here once for each page
1427 * which was newly dirtied. The function will periodically check the system's
1428 * dirty state and will initiate writeback if needed.
1429 *
1430 * On really big machines, get_writeback_state is expensive, so try to avoid
1431 * calling it too often (ratelimiting). But once we're over the dirty memory
1432 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1433 * from overshooting the limit by (ratelimit_pages) each.
1434 */
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001435void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1436 unsigned long nr_pages_dirtied)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437{
Wu Fengguang36715ce2011-06-11 17:53:57 -06001438 struct backing_dev_info *bdi = mapping->backing_dev_info;
Wu Fengguang9d823e82011-06-11 18:10:12 -06001439 int ratelimit;
1440 int *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441
Wu Fengguang36715ce2011-06-11 17:53:57 -06001442 if (!bdi_cap_account_dirty(bdi))
1443 return;
1444
Wu Fengguang9d823e82011-06-11 18:10:12 -06001445 ratelimit = current->nr_dirtied_pause;
1446 if (bdi->dirty_exceeded)
1447 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001449 preempt_disable();
Wu Fengguang9d823e82011-06-11 18:10:12 -06001450 /*
1451 * This prevents one CPU to accumulate too many dirtied pages without
1452 * calling into balance_dirty_pages(), which can happen when there are
1453 * 1000+ tasks, all of them start dirtying pages at exactly the same
1454 * time, hence all honoured too large initial task->nr_dirtied_pause.
1455 */
Tejun Heo245b2e72009-06-24 15:13:48 +09001456 p = &__get_cpu_var(bdp_ratelimits);
Wu Fengguang9d823e82011-06-11 18:10:12 -06001457 if (unlikely(current->nr_dirtied >= ratelimit))
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001458 *p = 0;
Wu Fengguangd3bc1fe2011-04-14 07:52:37 -06001459 else if (unlikely(*p >= ratelimit_pages)) {
1460 *p = 0;
1461 ratelimit = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462 }
Wu Fengguang54848d72011-04-05 13:21:19 -06001463 /*
1464 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1465 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1466 * the dirty throttling and livelock other long-run dirtiers.
1467 */
1468 p = &__get_cpu_var(dirty_throttle_leaks);
1469 if (*p > 0 && current->nr_dirtied < ratelimit) {
1470 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1471 *p -= nr_pages_dirtied;
1472 current->nr_dirtied += nr_pages_dirtied;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473 }
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001474 preempt_enable();
Wu Fengguang9d823e82011-06-11 18:10:12 -06001475
1476 if (unlikely(current->nr_dirtied >= ratelimit))
1477 balance_dirty_pages(mapping, current->nr_dirtied);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478}
Andrew Mortonfa5a7342006-03-24 03:18:10 -08001479EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480
Andrew Morton232ea4d2007-02-28 20:13:21 -08001481void throttle_vm_writeout(gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001482{
David Rientjes364aeb22009-01-06 14:39:29 -08001483 unsigned long background_thresh;
1484 unsigned long dirty_thresh;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001485
1486 for ( ; ; ) {
Wu Fengguang16c40422010-08-11 14:17:39 -07001487 global_dirty_limits(&background_thresh, &dirty_thresh);
Fengguang Wu47a13332012-03-21 16:34:09 -07001488 dirty_thresh = hard_dirty_limit(dirty_thresh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489
1490 /*
1491 * Boost the allowable dirty threshold a bit for page
1492 * allocators so they don't get DoS'ed by heavy writers
1493 */
1494 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1495
Christoph Lameterc24f21b2006-06-30 01:55:42 -07001496 if (global_page_state(NR_UNSTABLE_NFS) +
1497 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1498 break;
Jens Axboe8aa7e842009-07-09 14:52:32 +02001499 congestion_wait(BLK_RW_ASYNC, HZ/10);
Fengguang Wu369f2382007-10-16 23:30:45 -07001500
1501 /*
1502 * The caller might hold locks which can prevent IO completion
1503 * or progress in the filesystem. So we cannot just sit here
1504 * waiting for IO to complete.
1505 */
1506 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1507 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508 }
1509}
1510
Linus Torvalds1da177e2005-04-16 15:20:36 -07001511/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1513 */
1514int dirty_writeback_centisecs_handler(ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001515 void __user *buffer, size_t *length, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001516{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -07001517 proc_dointvec(table, write, buffer, length, ppos);
Jens Axboe64231042010-05-21 20:00:35 +02001518 bdi_arm_supers_timer();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 return 0;
1520}
1521
Jens Axboec2c49862010-05-20 09:18:47 +02001522#ifdef CONFIG_BLOCK
Matthew Garrett31373d02010-04-06 14:25:14 +02001523void laptop_mode_timer_fn(unsigned long data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001524{
Matthew Garrett31373d02010-04-06 14:25:14 +02001525 struct request_queue *q = (struct request_queue *)data;
1526 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1527 global_page_state(NR_UNSTABLE_NFS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528
Matthew Garrett31373d02010-04-06 14:25:14 +02001529 /*
1530 * We want to write everything out, not just down to the dirty
1531 * threshold
1532 */
Matthew Garrett31373d02010-04-06 14:25:14 +02001533 if (bdi_has_dirty_io(&q->backing_dev_info))
Curt Wohlgemuth0e175a12011-10-07 21:54:10 -06001534 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1535 WB_REASON_LAPTOP_TIMER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001536}
1537
1538/*
1539 * We've spun up the disk and we're in laptop mode: schedule writeback
1540 * of all dirty data a few seconds from now. If the flush is already scheduled
1541 * then push it back - the user is still using the disk.
1542 */
Matthew Garrett31373d02010-04-06 14:25:14 +02001543void laptop_io_completion(struct backing_dev_info *info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001544{
Matthew Garrett31373d02010-04-06 14:25:14 +02001545 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546}
1547
1548/*
1549 * We're in laptop mode and we've just synced. The sync's writes will have
1550 * caused another writeback to be scheduled by laptop_io_completion.
1551 * Nothing needs to be written back anymore, so we unschedule the writeback.
1552 */
1553void laptop_sync_completion(void)
1554{
Matthew Garrett31373d02010-04-06 14:25:14 +02001555 struct backing_dev_info *bdi;
1556
1557 rcu_read_lock();
1558
1559 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1560 del_timer(&bdi->laptop_mode_wb_timer);
1561
1562 rcu_read_unlock();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563}
Jens Axboec2c49862010-05-20 09:18:47 +02001564#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565
1566/*
1567 * If ratelimit_pages is too high then we can get into dirty-data overload
1568 * if a large number of processes all perform writes at the same time.
1569 * If it is too low then SMP machines will call the (expensive)
1570 * get_writeback_state too often.
1571 *
1572 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1573 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
Wu Fengguang9d823e82011-06-11 18:10:12 -06001574 * thresholds.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001575 */
1576
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001577void writeback_set_ratelimit(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578{
Wu Fengguang9d823e82011-06-11 18:10:12 -06001579 unsigned long background_thresh;
1580 unsigned long dirty_thresh;
1581 global_dirty_limits(&background_thresh, &dirty_thresh);
1582 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583 if (ratelimit_pages < 16)
1584 ratelimit_pages = 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001585}
1586
Chandra Seetharaman26c21432006-06-27 02:54:10 -07001587static int __cpuinit
Linus Torvalds1da177e2005-04-16 15:20:36 -07001588ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1589{
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001590 writeback_set_ratelimit();
Paul E. McKenneyaa0f0302007-02-10 01:46:37 -08001591 return NOTIFY_DONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592}
1593
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001594static struct notifier_block __cpuinitdata ratelimit_nb = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595 .notifier_call = ratelimit_handler,
1596 .next = NULL,
1597};
1598
1599/*
Linus Torvaldsdc6e29d2007-01-29 16:37:38 -08001600 * Called early on to tune the page writeback dirty limits.
1601 *
1602 * We used to scale dirty pages according to how total memory
1603 * related to pages that could be allocated for buffers (by
1604 * comparing nr_free_buffer_pages() to vm_total_pages.
1605 *
1606 * However, that was when we used "dirty_ratio" to scale with
1607 * all memory, and we don't do that any more. "dirty_ratio"
1608 * is now applied to total non-HIGHPAGE memory (by subtracting
1609 * totalhigh_pages from vm_total_pages), and as such we can't
1610 * get into the old insane situation any more where we had
1611 * large amounts of dirty pages compared to a small amount of
1612 * non-HIGHMEM memory.
1613 *
1614 * But we might still want to scale the dirty_ratio by how
1615 * much memory the box has..
Linus Torvalds1da177e2005-04-16 15:20:36 -07001616 */
1617void __init page_writeback_init(void)
1618{
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001619 int shift;
1620
Chandra Seetharaman2d1d43f2006-09-29 02:01:25 -07001621 writeback_set_ratelimit();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001622 register_cpu_notifier(&ratelimit_nb);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07001623
1624 shift = calc_period_shift();
1625 prop_descriptor_init(&vm_completions, shift);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626}
1627
David Howells811d7362006-08-29 19:06:09 +01001628/**
Jan Karaf446daa2010-08-09 17:19:12 -07001629 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1630 * @mapping: address space structure to write
1631 * @start: starting page index
1632 * @end: ending page index (inclusive)
1633 *
1634 * This function scans the page range from @start to @end (inclusive) and tags
1635 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1636 * that write_cache_pages (or whoever calls this function) will then use
1637 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1638 * used to avoid livelocking of writeback by a process steadily creating new
1639 * dirty pages in the file (thus it is important for this function to be quick
1640 * so that it can tag pages faster than a dirtying process can create them).
1641 */
1642/*
1643 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1644 */
Jan Karaf446daa2010-08-09 17:19:12 -07001645void tag_pages_for_writeback(struct address_space *mapping,
1646 pgoff_t start, pgoff_t end)
1647{
Randy Dunlap3c111a02010-08-11 14:17:30 -07001648#define WRITEBACK_TAG_BATCH 4096
Jan Karaf446daa2010-08-09 17:19:12 -07001649 unsigned long tagged;
1650
1651 do {
1652 spin_lock_irq(&mapping->tree_lock);
1653 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1654 &start, end, WRITEBACK_TAG_BATCH,
1655 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1656 spin_unlock_irq(&mapping->tree_lock);
1657 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1658 cond_resched();
Jan Karad5ed3a42010-08-19 14:13:33 -07001659 /* We check 'start' to handle wrapping when end == ~0UL */
1660 } while (tagged >= WRITEBACK_TAG_BATCH && start);
Jan Karaf446daa2010-08-09 17:19:12 -07001661}
1662EXPORT_SYMBOL(tag_pages_for_writeback);
1663
1664/**
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001665 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
David Howells811d7362006-08-29 19:06:09 +01001666 * @mapping: address space structure to write
1667 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001668 * @writepage: function called for each page
1669 * @data: data passed to writepage function
David Howells811d7362006-08-29 19:06:09 +01001670 *
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001671 * If a page is already under I/O, write_cache_pages() skips it, even
David Howells811d7362006-08-29 19:06:09 +01001672 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1673 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1674 * and msync() need to guarantee that all the data which was dirty at the time
1675 * the call was made get new I/O started against them. If wbc->sync_mode is
1676 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1677 * existing IO to complete.
Jan Karaf446daa2010-08-09 17:19:12 -07001678 *
1679 * To avoid livelocks (when other process dirties new pages), we first tag
1680 * pages which should be written back with TOWRITE tag and only then start
1681 * writing them. For data-integrity sync we have to be careful so that we do
1682 * not miss some pages (e.g., because some other process has cleared TOWRITE
1683 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1684 * by the process clearing the DIRTY tag (and submitting the page for IO).
David Howells811d7362006-08-29 19:06:09 +01001685 */
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001686int write_cache_pages(struct address_space *mapping,
1687 struct writeback_control *wbc, writepage_t writepage,
1688 void *data)
David Howells811d7362006-08-29 19:06:09 +01001689{
David Howells811d7362006-08-29 19:06:09 +01001690 int ret = 0;
1691 int done = 0;
David Howells811d7362006-08-29 19:06:09 +01001692 struct pagevec pvec;
1693 int nr_pages;
Nick Piggin31a12662009-01-06 14:39:04 -08001694 pgoff_t uninitialized_var(writeback_index);
David Howells811d7362006-08-29 19:06:09 +01001695 pgoff_t index;
1696 pgoff_t end; /* Inclusive */
Nick Pigginbd19e012009-01-06 14:39:06 -08001697 pgoff_t done_index;
Nick Piggin31a12662009-01-06 14:39:04 -08001698 int cycled;
David Howells811d7362006-08-29 19:06:09 +01001699 int range_whole = 0;
Jan Karaf446daa2010-08-09 17:19:12 -07001700 int tag;
David Howells811d7362006-08-29 19:06:09 +01001701
David Howells811d7362006-08-29 19:06:09 +01001702 pagevec_init(&pvec, 0);
1703 if (wbc->range_cyclic) {
Nick Piggin31a12662009-01-06 14:39:04 -08001704 writeback_index = mapping->writeback_index; /* prev offset */
1705 index = writeback_index;
1706 if (index == 0)
1707 cycled = 1;
1708 else
1709 cycled = 0;
David Howells811d7362006-08-29 19:06:09 +01001710 end = -1;
1711 } else {
1712 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1713 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1714 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1715 range_whole = 1;
Nick Piggin31a12662009-01-06 14:39:04 -08001716 cycled = 1; /* ignore range_cyclic tests */
David Howells811d7362006-08-29 19:06:09 +01001717 }
Wu Fengguang6e6938b2010-06-06 10:38:15 -06001718 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
Jan Karaf446daa2010-08-09 17:19:12 -07001719 tag = PAGECACHE_TAG_TOWRITE;
1720 else
1721 tag = PAGECACHE_TAG_DIRTY;
David Howells811d7362006-08-29 19:06:09 +01001722retry:
Wu Fengguang6e6938b2010-06-06 10:38:15 -06001723 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
Jan Karaf446daa2010-08-09 17:19:12 -07001724 tag_pages_for_writeback(mapping, index, end);
Nick Pigginbd19e012009-01-06 14:39:06 -08001725 done_index = index;
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001726 while (!done && (index <= end)) {
1727 int i;
1728
Jan Karaf446daa2010-08-09 17:19:12 -07001729 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001730 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1731 if (nr_pages == 0)
1732 break;
David Howells811d7362006-08-29 19:06:09 +01001733
David Howells811d7362006-08-29 19:06:09 +01001734 for (i = 0; i < nr_pages; i++) {
1735 struct page *page = pvec.pages[i];
1736
Nick Piggind5482cd2009-01-06 14:39:11 -08001737 /*
1738 * At this point, the page may be truncated or
1739 * invalidated (changing page->mapping to NULL), or
1740 * even swizzled back from swapper_space to tmpfs file
1741 * mapping. However, page->index will not change
1742 * because we have a reference on the page.
1743 */
1744 if (page->index > end) {
1745 /*
1746 * can't be range_cyclic (1st pass) because
1747 * end == -1 in that case.
1748 */
1749 done = 1;
1750 break;
1751 }
1752
Jun'ichi Nomuracf15b072011-03-22 16:33:40 -07001753 done_index = page->index;
Nick Pigginbd19e012009-01-06 14:39:06 -08001754
David Howells811d7362006-08-29 19:06:09 +01001755 lock_page(page);
1756
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001757 /*
1758 * Page truncated or invalidated. We can freely skip it
1759 * then, even for data integrity operations: the page
1760 * has disappeared concurrently, so there could be no
1761 * real expectation of this data interity operation
1762 * even if there is now a new, dirty page at the same
1763 * pagecache address.
1764 */
David Howells811d7362006-08-29 19:06:09 +01001765 if (unlikely(page->mapping != mapping)) {
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001766continue_unlock:
David Howells811d7362006-08-29 19:06:09 +01001767 unlock_page(page);
1768 continue;
1769 }
1770
Nick Piggin515f4a02009-01-06 14:39:10 -08001771 if (!PageDirty(page)) {
1772 /* someone wrote it for us */
1773 goto continue_unlock;
1774 }
David Howells811d7362006-08-29 19:06:09 +01001775
Nick Piggin515f4a02009-01-06 14:39:10 -08001776 if (PageWriteback(page)) {
1777 if (wbc->sync_mode != WB_SYNC_NONE)
1778 wait_on_page_writeback(page);
1779 else
1780 goto continue_unlock;
1781 }
1782
1783 BUG_ON(PageWriteback(page));
1784 if (!clear_page_dirty_for_io(page))
Nick Piggin5a3d5c92009-01-06 14:39:09 -08001785 goto continue_unlock;
David Howells811d7362006-08-29 19:06:09 +01001786
Dave Chinner9e094382010-07-07 13:24:08 +10001787 trace_wbc_writepage(wbc, mapping->backing_dev_info);
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001788 ret = (*writepage)(page, wbc, data);
Nick Piggin00266772009-01-06 14:39:06 -08001789 if (unlikely(ret)) {
1790 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1791 unlock_page(page);
1792 ret = 0;
1793 } else {
1794 /*
1795 * done_index is set past this page,
1796 * so media errors will not choke
1797 * background writeout for the entire
1798 * file. This has consequences for
1799 * range_cyclic semantics (ie. it may
1800 * not be suitable for data integrity
1801 * writeout).
1802 */
Jun'ichi Nomuracf15b072011-03-22 16:33:40 -07001803 done_index = page->index + 1;
Nick Piggin00266772009-01-06 14:39:06 -08001804 done = 1;
1805 break;
1806 }
Dave Chinner0b564922010-06-09 10:37:18 +10001807 }
David Howells811d7362006-08-29 19:06:09 +01001808
Dave Chinner546a1922010-08-24 11:44:34 +10001809 /*
1810 * We stop writing back only if we are not doing
1811 * integrity sync. In case of integrity sync we have to
1812 * keep going until we have written all the pages
1813 * we tagged for writeback prior to entering this loop.
1814 */
1815 if (--wbc->nr_to_write <= 0 &&
1816 wbc->sync_mode == WB_SYNC_NONE) {
1817 done = 1;
1818 break;
Nick Piggin05fe4782009-01-06 14:39:08 -08001819 }
David Howells811d7362006-08-29 19:06:09 +01001820 }
1821 pagevec_release(&pvec);
1822 cond_resched();
1823 }
Nick Piggin3a4c6802009-02-12 04:34:23 +01001824 if (!cycled && !done) {
David Howells811d7362006-08-29 19:06:09 +01001825 /*
Nick Piggin31a12662009-01-06 14:39:04 -08001826 * range_cyclic:
David Howells811d7362006-08-29 19:06:09 +01001827 * We hit the last page and there is more work to be done: wrap
1828 * back to the start of the file
1829 */
Nick Piggin31a12662009-01-06 14:39:04 -08001830 cycled = 1;
David Howells811d7362006-08-29 19:06:09 +01001831 index = 0;
Nick Piggin31a12662009-01-06 14:39:04 -08001832 end = writeback_index - 1;
David Howells811d7362006-08-29 19:06:09 +01001833 goto retry;
1834 }
Dave Chinner0b564922010-06-09 10:37:18 +10001835 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1836 mapping->writeback_index = done_index;
Aneesh Kumar K.V06d6cf62008-07-11 19:27:31 -04001837
David Howells811d7362006-08-29 19:06:09 +01001838 return ret;
1839}
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001840EXPORT_SYMBOL(write_cache_pages);
1841
1842/*
1843 * Function used by generic_writepages to call the real writepage
1844 * function and set the mapping flags on error
1845 */
1846static int __writepage(struct page *page, struct writeback_control *wbc,
1847 void *data)
1848{
1849 struct address_space *mapping = data;
1850 int ret = mapping->a_ops->writepage(page, wbc);
1851 mapping_set_error(mapping, ret);
1852 return ret;
1853}
1854
1855/**
1856 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1857 * @mapping: address space structure to write
1858 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1859 *
1860 * This is a library function, which implements the writepages()
1861 * address_space_operation.
1862 */
1863int generic_writepages(struct address_space *mapping,
1864 struct writeback_control *wbc)
1865{
Shaohua Li9b6096a2011-03-17 10:47:06 +01001866 struct blk_plug plug;
1867 int ret;
1868
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001869 /* deal with chardevs and other special file */
1870 if (!mapping->a_ops->writepage)
1871 return 0;
1872
Shaohua Li9b6096a2011-03-17 10:47:06 +01001873 blk_start_plug(&plug);
1874 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1875 blk_finish_plug(&plug);
1876 return ret;
Miklos Szeredi0ea97182007-05-10 22:22:51 -07001877}
David Howells811d7362006-08-29 19:06:09 +01001878
1879EXPORT_SYMBOL(generic_writepages);
1880
Linus Torvalds1da177e2005-04-16 15:20:36 -07001881int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1882{
Andrew Morton22905f72005-11-16 15:07:01 -08001883 int ret;
1884
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885 if (wbc->nr_to_write <= 0)
1886 return 0;
1887 if (mapping->a_ops->writepages)
Peter Zijlstrad08b3852006-09-25 23:30:57 -07001888 ret = mapping->a_ops->writepages(mapping, wbc);
Andrew Morton22905f72005-11-16 15:07:01 -08001889 else
1890 ret = generic_writepages(mapping, wbc);
Andrew Morton22905f72005-11-16 15:07:01 -08001891 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001892}
1893
1894/**
1895 * write_one_page - write out a single page and optionally wait on I/O
Martin Waitz67be2dd2005-05-01 08:59:26 -07001896 * @page: the page to write
1897 * @wait: if true, wait on writeout
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898 *
1899 * The page must be locked by the caller and will be unlocked upon return.
1900 *
1901 * write_one_page() returns a negative error code if I/O failed.
1902 */
1903int write_one_page(struct page *page, int wait)
1904{
1905 struct address_space *mapping = page->mapping;
1906 int ret = 0;
1907 struct writeback_control wbc = {
1908 .sync_mode = WB_SYNC_ALL,
1909 .nr_to_write = 1,
1910 };
1911
1912 BUG_ON(!PageLocked(page));
1913
1914 if (wait)
1915 wait_on_page_writeback(page);
1916
1917 if (clear_page_dirty_for_io(page)) {
1918 page_cache_get(page);
1919 ret = mapping->a_ops->writepage(page, &wbc);
1920 if (ret == 0 && wait) {
1921 wait_on_page_writeback(page);
1922 if (PageError(page))
1923 ret = -EIO;
1924 }
1925 page_cache_release(page);
1926 } else {
1927 unlock_page(page);
1928 }
1929 return ret;
1930}
1931EXPORT_SYMBOL(write_one_page);
1932
1933/*
Ken Chen76719322007-02-10 01:43:15 -08001934 * For address_spaces which do not use buffers nor write back.
1935 */
1936int __set_page_dirty_no_writeback(struct page *page)
1937{
1938 if (!PageDirty(page))
Bob Liuc3f0da62011-01-13 15:45:49 -08001939 return !TestSetPageDirty(page);
Ken Chen76719322007-02-10 01:43:15 -08001940 return 0;
1941}
1942
1943/*
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001944 * Helper function for set_page_dirty family.
1945 * NOTE: This relies on being atomic wrt interrupts.
1946 */
1947void account_page_dirtied(struct page *page, struct address_space *mapping)
1948{
1949 if (mapping_cap_account_dirty(mapping)) {
1950 __inc_zone_page_state(page, NR_FILE_DIRTY);
Michael Rubinea941f02010-10-26 14:21:35 -07001951 __inc_zone_page_state(page, NR_DIRTIED);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001952 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
Wu Fengguangc8e28ce2011-01-23 10:07:47 -06001953 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001954 task_io_account_write(PAGE_CACHE_SIZE);
Wu Fengguangd3bc1fe2011-04-14 07:52:37 -06001955 current->nr_dirtied++;
1956 this_cpu_inc(bdp_ratelimits);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001957 }
1958}
Michael Rubin679ceac2010-08-20 02:31:26 -07001959EXPORT_SYMBOL(account_page_dirtied);
Edward Shishkine3a7cca2009-03-31 15:19:39 -07001960
1961/*
Michael Rubinf629d1c2010-10-26 14:21:33 -07001962 * Helper function for set_page_writeback family.
1963 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1964 * wrt interrupts.
1965 */
1966void account_page_writeback(struct page *page)
1967{
1968 inc_zone_page_state(page, NR_WRITEBACK);
1969}
1970EXPORT_SYMBOL(account_page_writeback);
1971
1972/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001973 * For address_spaces which do not use buffers. Just tag the page as dirty in
1974 * its radix tree.
1975 *
1976 * This is also used when a single buffer is being dirtied: we want to set the
1977 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1978 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1979 *
Johannes Weiner15870702015-01-08 14:32:18 -08001980 * The caller must ensure this doesn't race with truncation. Most will simply
1981 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
1982 * the pte lock held, which also locks out truncat
Linus Torvalds1da177e2005-04-16 15:20:36 -07001983 */
1984int __set_page_dirty_nobuffers(struct page *page)
1985{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001986 if (!TestSetPageDirty(page)) {
1987 struct address_space *mapping = page_mapping(page);
KOSAKI Motohiro4d4bed82014-02-06 12:04:24 -08001988 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989
Andrew Morton8c085402006-12-10 02:19:24 -08001990 if (!mapping)
1991 return 1;
1992
KOSAKI Motohiro4d4bed82014-02-06 12:04:24 -08001993 spin_lock_irqsave(&mapping->tree_lock, flags);
Johannes Weiner15870702015-01-08 14:32:18 -08001994 BUG_ON(page_mapping(page) != mapping);
1995 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1996 account_page_dirtied(page, mapping);
1997 radix_tree_tag_set(&mapping->page_tree, page_index(page),
1998 PAGECACHE_TAG_DIRTY);
KOSAKI Motohiro4d4bed82014-02-06 12:04:24 -08001999 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Andrew Morton8c085402006-12-10 02:19:24 -08002000 if (mapping->host) {
2001 /* !PageAnon && !swapper_space */
2002 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002004 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002006 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002007}
2008EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2009
2010/*
Wu Fengguang2f800fb2011-08-08 15:22:00 -06002011 * Call this whenever redirtying a page, to de-account the dirty counters
2012 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2013 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2014 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2015 * control.
2016 */
2017void account_page_redirty(struct page *page)
2018{
2019 struct address_space *mapping = page->mapping;
2020 if (mapping && mapping_cap_account_dirty(mapping)) {
2021 current->nr_dirtied--;
2022 dec_zone_page_state(page, NR_DIRTIED);
2023 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2024 }
2025}
2026EXPORT_SYMBOL(account_page_redirty);
2027
2028/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029 * When a writepage implementation decides that it doesn't want to write this
2030 * page for some reason, it should redirty the locked page via
2031 * redirty_page_for_writepage() and it should then unlock the page and return 0
2032 */
2033int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2034{
2035 wbc->pages_skipped++;
Wu Fengguang2f800fb2011-08-08 15:22:00 -06002036 account_page_redirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002037 return __set_page_dirty_nobuffers(page);
2038}
2039EXPORT_SYMBOL(redirty_page_for_writepage);
2040
2041/*
Wu Fengguang6746aff2009-09-16 11:50:14 +02002042 * Dirty a page.
2043 *
2044 * For pages with a mapping this should be done under the page lock
2045 * for the benefit of asynchronous memory errors who prefer a consistent
2046 * dirty state. This rule can be broken in some special cases,
2047 * but should be better not to.
2048 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049 * If the mapping doesn't provide a set_page_dirty a_op, then
2050 * just fall through and assume that it wants buffer_heads.
2051 */
Nick Piggin1cf6e7d2009-02-18 14:48:18 -08002052int set_page_dirty(struct page *page)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002053{
2054 struct address_space *mapping = page_mapping(page);
2055
2056 if (likely(mapping)) {
2057 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
Minchan Kim278df9f2011-03-22 16:32:54 -07002058 /*
2059 * readahead/lru_deactivate_page could remain
2060 * PG_readahead/PG_reclaim due to race with end_page_writeback
2061 * About readahead, if the page is written, the flags would be
2062 * reset. So no problem.
2063 * About lru_deactivate_page, if the page is redirty, the flag
2064 * will be reset. So no problem. but if the page is used by readahead
2065 * it will confuse readahead and make it restart the size rampup
2066 * process. But it's a trivial problem.
2067 */
2068 ClearPageReclaim(page);
David Howells93614012006-09-30 20:45:40 +02002069#ifdef CONFIG_BLOCK
2070 if (!spd)
2071 spd = __set_page_dirty_buffers;
2072#endif
2073 return (*spd)(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 }
Andrew Morton4741c9f2006-03-24 03:18:11 -08002075 if (!PageDirty(page)) {
2076 if (!TestSetPageDirty(page))
2077 return 1;
2078 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002079 return 0;
2080}
2081EXPORT_SYMBOL(set_page_dirty);
2082
2083/*
2084 * set_page_dirty() is racy if the caller has no reference against
2085 * page->mapping->host, and if the page is unlocked. This is because another
2086 * CPU could truncate the page off the mapping and then free the mapping.
2087 *
2088 * Usually, the page _is_ locked, or the caller is a user-space process which
2089 * holds a reference on the inode by having an open file.
2090 *
2091 * In other cases, the page should be locked before running set_page_dirty().
2092 */
2093int set_page_dirty_lock(struct page *page)
2094{
2095 int ret;
2096
Jens Axboe7eaceac2011-03-10 08:52:07 +01002097 lock_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098 ret = set_page_dirty(page);
2099 unlock_page(page);
2100 return ret;
2101}
2102EXPORT_SYMBOL(set_page_dirty_lock);
2103
2104/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002105 * Clear a page's dirty flag, while caring for dirty memory accounting.
2106 * Returns true if the page was previously dirty.
2107 *
2108 * This is for preparing to put the page under writeout. We leave the page
2109 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2110 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2111 * implementation will run either set_page_writeback() or set_page_dirty(),
2112 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2113 * back into sync.
2114 *
2115 * This incoherency between the page's dirty flag and radix-tree tag is
2116 * unfortunate, but it only exists while the page is locked.
2117 */
2118int clear_page_dirty_for_io(struct page *page)
2119{
2120 struct address_space *mapping = page_mapping(page);
2121
Nick Piggin79352892007-07-19 01:47:22 -07002122 BUG_ON(!PageLocked(page));
2123
Linus Torvalds7658cc22006-12-29 10:00:58 -08002124 if (mapping && mapping_cap_account_dirty(mapping)) {
2125 /*
2126 * Yes, Virginia, this is indeed insane.
2127 *
2128 * We use this sequence to make sure that
2129 * (a) we account for dirty stats properly
2130 * (b) we tell the low-level filesystem to
2131 * mark the whole page dirty if it was
2132 * dirty in a pagetable. Only to then
2133 * (c) clean the page again and return 1 to
2134 * cause the writeback.
2135 *
2136 * This way we avoid all nasty races with the
2137 * dirty bit in multiple places and clearing
2138 * them concurrently from different threads.
2139 *
2140 * Note! Normally the "set_page_dirty(page)"
2141 * has no effect on the actual dirty bit - since
2142 * that will already usually be set. But we
2143 * need the side effects, and it can help us
2144 * avoid races.
2145 *
2146 * We basically use the page "master dirty bit"
2147 * as a serialization point for all the different
2148 * threads doing their things.
Linus Torvalds7658cc22006-12-29 10:00:58 -08002149 */
2150 if (page_mkclean(page))
2151 set_page_dirty(page);
Nick Piggin79352892007-07-19 01:47:22 -07002152 /*
2153 * We carefully synchronise fault handlers against
2154 * installing a dirty pte and marking the page dirty
Johannes Weiner15870702015-01-08 14:32:18 -08002155 * at this point. We do this by having them hold the
2156 * page lock while dirtying the page, and pages are
2157 * always locked coming in here, so we get the desired
2158 * exclusion.
Nick Piggin79352892007-07-19 01:47:22 -07002159 */
Linus Torvalds7658cc22006-12-29 10:00:58 -08002160 if (TestClearPageDirty(page)) {
Andrew Morton8c085402006-12-10 02:19:24 -08002161 dec_zone_page_state(page, NR_FILE_DIRTY);
Peter Zijlstrac9e51e42007-10-16 23:25:47 -07002162 dec_bdi_stat(mapping->backing_dev_info,
2163 BDI_RECLAIMABLE);
Linus Torvalds7658cc22006-12-29 10:00:58 -08002164 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 }
Linus Torvalds7658cc22006-12-29 10:00:58 -08002166 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 }
Linus Torvalds7658cc22006-12-29 10:00:58 -08002168 return TestClearPageDirty(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169}
Hans Reiser58bb01a2005-11-18 01:10:53 -08002170EXPORT_SYMBOL(clear_page_dirty_for_io);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171
2172int test_clear_page_writeback(struct page *page)
2173{
2174 struct address_space *mapping = page_mapping(page);
2175 int ret;
2176
2177 if (mapping) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002178 struct backing_dev_info *bdi = mapping->backing_dev_info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179 unsigned long flags;
2180
Nick Piggin19fd6232008-07-25 19:45:32 -07002181 spin_lock_irqsave(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182 ret = TestClearPageWriteback(page);
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002183 if (ret) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 radix_tree_tag_clear(&mapping->page_tree,
2185 page_index(page),
2186 PAGECACHE_TAG_WRITEBACK);
Miklos Szeredie4ad08f2008-04-30 00:54:37 -07002187 if (bdi_cap_account_writeback(bdi)) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002188 __dec_bdi_stat(bdi, BDI_WRITEBACK);
Peter Zijlstra04fbfdc2007-10-16 23:25:50 -07002189 __bdi_writeout_inc(bdi);
2190 }
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002191 }
Nick Piggin19fd6232008-07-25 19:45:32 -07002192 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193 } else {
2194 ret = TestClearPageWriteback(page);
2195 }
Wu Fengguang99b12e32011-07-25 17:12:37 -07002196 if (ret) {
Andrew Mortond688abf2007-07-19 01:49:17 -07002197 dec_zone_page_state(page, NR_WRITEBACK);
Wu Fengguang99b12e32011-07-25 17:12:37 -07002198 inc_zone_page_state(page, NR_WRITTEN);
2199 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200 return ret;
2201}
2202
2203int test_set_page_writeback(struct page *page)
2204{
2205 struct address_space *mapping = page_mapping(page);
2206 int ret;
2207
2208 if (mapping) {
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002209 struct backing_dev_info *bdi = mapping->backing_dev_info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002210 unsigned long flags;
2211
Nick Piggin19fd6232008-07-25 19:45:32 -07002212 spin_lock_irqsave(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 ret = TestSetPageWriteback(page);
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002214 if (!ret) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215 radix_tree_tag_set(&mapping->page_tree,
2216 page_index(page),
2217 PAGECACHE_TAG_WRITEBACK);
Miklos Szeredie4ad08f2008-04-30 00:54:37 -07002218 if (bdi_cap_account_writeback(bdi))
Peter Zijlstra69cb51d2007-10-16 23:25:48 -07002219 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2220 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221 if (!PageDirty(page))
2222 radix_tree_tag_clear(&mapping->page_tree,
2223 page_index(page),
2224 PAGECACHE_TAG_DIRTY);
Jan Karaf446daa2010-08-09 17:19:12 -07002225 radix_tree_tag_clear(&mapping->page_tree,
2226 page_index(page),
2227 PAGECACHE_TAG_TOWRITE);
Nick Piggin19fd6232008-07-25 19:45:32 -07002228 spin_unlock_irqrestore(&mapping->tree_lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 } else {
2230 ret = TestSetPageWriteback(page);
2231 }
Andrew Mortond688abf2007-07-19 01:49:17 -07002232 if (!ret)
Michael Rubinf629d1c2010-10-26 14:21:33 -07002233 account_page_writeback(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234 return ret;
2235
2236}
2237EXPORT_SYMBOL(test_set_page_writeback);
2238
2239/*
Nick Piggin00128182007-10-16 01:24:40 -07002240 * Return true if any of the pages in the mapping are marked with the
Linus Torvalds1da177e2005-04-16 15:20:36 -07002241 * passed tag.
2242 */
2243int mapping_tagged(struct address_space *mapping, int tag)
2244{
Konstantin Khlebnikov72c47832011-07-25 17:12:31 -07002245 return radix_tree_tagged(&mapping->page_tree, tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246}
2247EXPORT_SYMBOL(mapping_tagged);