| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * mmc_spi.c - Access SD/MMC cards through SPI master controllers | 
|  | 3 | * | 
|  | 4 | * (C) Copyright 2005, Intec Automation, | 
|  | 5 | *		Mike Lavender (mike@steroidmicros) | 
|  | 6 | * (C) Copyright 2006-2007, David Brownell | 
|  | 7 | * (C) Copyright 2007, Axis Communications, | 
|  | 8 | *		Hans-Peter Nilsson (hp@axis.com) | 
|  | 9 | * (C) Copyright 2007, ATRON electronic GmbH, | 
|  | 10 | *		Jan Nikitenko <jan.nikitenko@gmail.com> | 
|  | 11 | * | 
|  | 12 | * | 
|  | 13 | * This program is free software; you can redistribute it and/or modify | 
|  | 14 | * it under the terms of the GNU General Public License as published by | 
|  | 15 | * the Free Software Foundation; either version 2 of the License, or | 
|  | 16 | * (at your option) any later version. | 
|  | 17 | * | 
|  | 18 | * This program is distributed in the hope that it will be useful, | 
|  | 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 21 | * GNU General Public License for more details. | 
|  | 22 | * | 
|  | 23 | * You should have received a copy of the GNU General Public License | 
|  | 24 | * along with this program; if not, write to the Free Software | 
|  | 25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | 26 | */ | 
|  | 27 | #include <linux/hrtimer.h> | 
|  | 28 | #include <linux/delay.h> | 
| David Brownell | 23fd504 | 2007-10-14 14:50:25 -0700 | [diff] [blame] | 29 | #include <linux/bio.h> | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 30 | #include <linux/dma-mapping.h> | 
|  | 31 | #include <linux/crc7.h> | 
|  | 32 | #include <linux/crc-itu-t.h> | 
| Al Viro | e5712a6 | 2007-10-17 01:09:07 +0100 | [diff] [blame] | 33 | #include <linux/scatterlist.h> | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 34 |  | 
|  | 35 | #include <linux/mmc/host.h> | 
|  | 36 | #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */ | 
|  | 37 |  | 
|  | 38 | #include <linux/spi/spi.h> | 
|  | 39 | #include <linux/spi/mmc_spi.h> | 
|  | 40 |  | 
|  | 41 | #include <asm/unaligned.h> | 
|  | 42 |  | 
|  | 43 |  | 
|  | 44 | /* NOTES: | 
|  | 45 | * | 
|  | 46 | * - For now, we won't try to interoperate with a real mmc/sd/sdio | 
|  | 47 | *   controller, although some of them do have hardware support for | 
|  | 48 | *   SPI protocol.  The main reason for such configs would be mmc-ish | 
|  | 49 | *   cards like DataFlash, which don't support that "native" protocol. | 
|  | 50 | * | 
|  | 51 | *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to | 
|  | 52 | *   switch between driver stacks, and in any case if "native" mode | 
|  | 53 | *   is available, it will be faster and hence preferable. | 
|  | 54 | * | 
|  | 55 | * - MMC depends on a different chipselect management policy than the | 
|  | 56 | *   SPI interface currently supports for shared bus segments:  it needs | 
|  | 57 | *   to issue multiple spi_message requests with the chipselect active, | 
|  | 58 | *   using the results of one message to decide the next one to issue. | 
|  | 59 | * | 
|  | 60 | *   Pending updates to the programming interface, this driver expects | 
|  | 61 | *   that it not share the bus with other drivers (precluding conflicts). | 
|  | 62 | * | 
|  | 63 | * - We tell the controller to keep the chipselect active from the | 
|  | 64 | *   beginning of an mmc_host_ops.request until the end.  So beware | 
|  | 65 | *   of SPI controller drivers that mis-handle the cs_change flag! | 
|  | 66 | * | 
|  | 67 | *   However, many cards seem OK with chipselect flapping up/down | 
|  | 68 | *   during that time ... at least on unshared bus segments. | 
|  | 69 | */ | 
|  | 70 |  | 
|  | 71 |  | 
|  | 72 | /* | 
|  | 73 | * Local protocol constants, internal to data block protocols. | 
|  | 74 | */ | 
|  | 75 |  | 
|  | 76 | /* Response tokens used to ack each block written: */ | 
|  | 77 | #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f) | 
|  | 78 | #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1) | 
|  | 79 | #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1) | 
|  | 80 | #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1) | 
|  | 81 |  | 
|  | 82 | /* Read and write blocks start with these tokens and end with crc; | 
|  | 83 | * on error, read tokens act like a subset of R2_SPI_* values. | 
|  | 84 | */ | 
|  | 85 | #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */ | 
|  | 86 | #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */ | 
|  | 87 | #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */ | 
|  | 88 |  | 
|  | 89 | #define MMC_SPI_BLOCKSIZE	512 | 
|  | 90 |  | 
|  | 91 |  | 
|  | 92 | /* These fixed timeouts come from the latest SD specs, which say to ignore | 
|  | 93 | * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the | 
|  | 94 | * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after | 
|  | 95 | * reads which takes nowhere near that long.  Older cards may be able to use | 
|  | 96 | * shorter timeouts ... but why bother? | 
|  | 97 | */ | 
|  | 98 | #define readblock_timeout	ktime_set(0, 100 * 1000 * 1000) | 
|  | 99 | #define writeblock_timeout	ktime_set(0, 250 * 1000 * 1000) | 
|  | 100 | #define r1b_timeout		ktime_set(3, 0) | 
|  | 101 |  | 
|  | 102 |  | 
|  | 103 | /****************************************************************************/ | 
|  | 104 |  | 
|  | 105 | /* | 
|  | 106 | * Local Data Structures | 
|  | 107 | */ | 
|  | 108 |  | 
|  | 109 | /* "scratch" is per-{command,block} data exchanged with the card */ | 
|  | 110 | struct scratch { | 
|  | 111 | u8			status[29]; | 
|  | 112 | u8			data_token; | 
|  | 113 | __be16			crc_val; | 
|  | 114 | }; | 
|  | 115 |  | 
|  | 116 | struct mmc_spi_host { | 
|  | 117 | struct mmc_host		*mmc; | 
|  | 118 | struct spi_device	*spi; | 
|  | 119 |  | 
|  | 120 | unsigned char		power_mode; | 
|  | 121 | u16			powerup_msecs; | 
|  | 122 |  | 
|  | 123 | struct mmc_spi_platform_data	*pdata; | 
|  | 124 |  | 
|  | 125 | /* for bulk data transfers */ | 
|  | 126 | struct spi_transfer	token, t, crc, early_status; | 
|  | 127 | struct spi_message	m; | 
|  | 128 |  | 
|  | 129 | /* for status readback */ | 
|  | 130 | struct spi_transfer	status; | 
|  | 131 | struct spi_message	readback; | 
|  | 132 |  | 
|  | 133 | /* underlying DMA-aware controller, or null */ | 
|  | 134 | struct device		*dma_dev; | 
|  | 135 |  | 
|  | 136 | /* buffer used for commands and for message "overhead" */ | 
|  | 137 | struct scratch		*data; | 
|  | 138 | dma_addr_t		data_dma; | 
|  | 139 |  | 
|  | 140 | /* Specs say to write ones most of the time, even when the card | 
|  | 141 | * has no need to read its input data; and many cards won't care. | 
|  | 142 | * This is our source of those ones. | 
|  | 143 | */ | 
|  | 144 | void			*ones; | 
|  | 145 | dma_addr_t		ones_dma; | 
|  | 146 | }; | 
|  | 147 |  | 
|  | 148 |  | 
|  | 149 | /****************************************************************************/ | 
|  | 150 |  | 
|  | 151 | /* | 
|  | 152 | * MMC-over-SPI protocol glue, used by the MMC stack interface | 
|  | 153 | */ | 
|  | 154 |  | 
|  | 155 | static inline int mmc_cs_off(struct mmc_spi_host *host) | 
|  | 156 | { | 
|  | 157 | /* chipselect will always be inactive after setup() */ | 
|  | 158 | return spi_setup(host->spi); | 
|  | 159 | } | 
|  | 160 |  | 
|  | 161 | static int | 
|  | 162 | mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) | 
|  | 163 | { | 
|  | 164 | int status; | 
|  | 165 |  | 
|  | 166 | if (len > sizeof(*host->data)) { | 
|  | 167 | WARN_ON(1); | 
|  | 168 | return -EIO; | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | host->status.len = len; | 
|  | 172 |  | 
|  | 173 | if (host->dma_dev) | 
|  | 174 | dma_sync_single_for_device(host->dma_dev, | 
|  | 175 | host->data_dma, sizeof(*host->data), | 
|  | 176 | DMA_FROM_DEVICE); | 
|  | 177 |  | 
|  | 178 | status = spi_sync(host->spi, &host->readback); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 179 |  | 
|  | 180 | if (host->dma_dev) | 
|  | 181 | dma_sync_single_for_cpu(host->dma_dev, | 
|  | 182 | host->data_dma, sizeof(*host->data), | 
|  | 183 | DMA_FROM_DEVICE); | 
|  | 184 |  | 
|  | 185 | return status; | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | static int | 
|  | 189 | mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte) | 
|  | 190 | { | 
|  | 191 | u8		*cp = host->data->status; | 
|  | 192 |  | 
|  | 193 | timeout = ktime_add(timeout, ktime_get()); | 
|  | 194 |  | 
|  | 195 | while (1) { | 
|  | 196 | int		status; | 
|  | 197 | unsigned	i; | 
|  | 198 |  | 
|  | 199 | status = mmc_spi_readbytes(host, n); | 
|  | 200 | if (status < 0) | 
|  | 201 | return status; | 
|  | 202 |  | 
|  | 203 | for (i = 0; i < n; i++) { | 
|  | 204 | if (cp[i] != byte) | 
|  | 205 | return cp[i]; | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 | /* REVISIT investigate msleep() to avoid busy-wait I/O | 
|  | 209 | * in at least some cases. | 
|  | 210 | */ | 
|  | 211 | if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0) | 
|  | 212 | break; | 
|  | 213 | } | 
|  | 214 | return -ETIMEDOUT; | 
|  | 215 | } | 
|  | 216 |  | 
|  | 217 | static inline int | 
|  | 218 | mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout) | 
|  | 219 | { | 
|  | 220 | return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | static int mmc_spi_readtoken(struct mmc_spi_host *host) | 
|  | 224 | { | 
|  | 225 | return mmc_spi_skip(host, readblock_timeout, 1, 0xff); | 
|  | 226 | } | 
|  | 227 |  | 
|  | 228 |  | 
|  | 229 | /* | 
|  | 230 | * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol | 
|  | 231 | * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold | 
|  | 232 | * R2_SPI bits ... for SEND_STATUS, or after data read errors. | 
|  | 233 | * | 
|  | 234 | * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on | 
|  | 235 | * newer cards R7 (IF_COND). | 
|  | 236 | */ | 
|  | 237 |  | 
|  | 238 | static char *maptype(struct mmc_command *cmd) | 
|  | 239 | { | 
|  | 240 | switch (mmc_spi_resp_type(cmd)) { | 
|  | 241 | case MMC_RSP_SPI_R1:	return "R1"; | 
|  | 242 | case MMC_RSP_SPI_R1B:	return "R1B"; | 
|  | 243 | case MMC_RSP_SPI_R2:	return "R2/R5"; | 
|  | 244 | case MMC_RSP_SPI_R3:	return "R3/R4/R7"; | 
|  | 245 | default:		return "?"; | 
|  | 246 | } | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | /* return zero, else negative errno after setting cmd->error */ | 
|  | 250 | static int mmc_spi_response_get(struct mmc_spi_host *host, | 
|  | 251 | struct mmc_command *cmd, int cs_on) | 
|  | 252 | { | 
|  | 253 | u8	*cp = host->data->status; | 
|  | 254 | u8	*end = cp + host->t.len; | 
|  | 255 | int	value = 0; | 
|  | 256 | char	tag[32]; | 
|  | 257 |  | 
|  | 258 | snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s", | 
|  | 259 | cmd->opcode, maptype(cmd)); | 
|  | 260 |  | 
|  | 261 | /* Except for data block reads, the whole response will already | 
|  | 262 | * be stored in the scratch buffer.  It's somewhere after the | 
|  | 263 | * command and the first byte we read after it.  We ignore that | 
|  | 264 | * first byte.  After STOP_TRANSMISSION command it may include | 
|  | 265 | * two data bits, but otherwise it's all ones. | 
|  | 266 | */ | 
|  | 267 | cp += 8; | 
|  | 268 | while (cp < end && *cp == 0xff) | 
|  | 269 | cp++; | 
|  | 270 |  | 
|  | 271 | /* Data block reads (R1 response types) may need more data... */ | 
|  | 272 | if (cp == end) { | 
|  | 273 | unsigned	i; | 
|  | 274 |  | 
|  | 275 | cp = host->data->status; | 
|  | 276 |  | 
|  | 277 | /* Card sends N(CR) (== 1..8) bytes of all-ones then one | 
|  | 278 | * status byte ... and we already scanned 2 bytes. | 
|  | 279 | * | 
|  | 280 | * REVISIT block read paths use nasty byte-at-a-time I/O | 
|  | 281 | * so it can always DMA directly into the target buffer. | 
|  | 282 | * It'd probably be better to memcpy() the first chunk and | 
|  | 283 | * avoid extra i/o calls... | 
|  | 284 | */ | 
|  | 285 | for (i = 2; i < 9; i++) { | 
|  | 286 | value = mmc_spi_readbytes(host, 1); | 
|  | 287 | if (value < 0) | 
|  | 288 | goto done; | 
|  | 289 | if (*cp != 0xff) | 
|  | 290 | goto checkstatus; | 
|  | 291 | } | 
|  | 292 | value = -ETIMEDOUT; | 
|  | 293 | goto done; | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | checkstatus: | 
|  | 297 | if (*cp & 0x80) { | 
|  | 298 | dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n", | 
|  | 299 | tag, *cp); | 
|  | 300 | value = -EBADR; | 
|  | 301 | goto done; | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | cmd->resp[0] = *cp++; | 
|  | 305 | cmd->error = 0; | 
|  | 306 |  | 
|  | 307 | /* Status byte: the entire seven-bit R1 response.  */ | 
|  | 308 | if (cmd->resp[0] != 0) { | 
|  | 309 | if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS | 
|  | 310 | | R1_SPI_ILLEGAL_COMMAND) | 
|  | 311 | & cmd->resp[0]) | 
|  | 312 | value = -EINVAL; | 
|  | 313 | else if (R1_SPI_COM_CRC & cmd->resp[0]) | 
|  | 314 | value = -EILSEQ; | 
|  | 315 | else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) | 
|  | 316 | & cmd->resp[0]) | 
|  | 317 | value = -EIO; | 
|  | 318 | /* else R1_SPI_IDLE, "it's resetting" */ | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 | switch (mmc_spi_resp_type(cmd)) { | 
|  | 322 |  | 
|  | 323 | /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) | 
|  | 324 | * and less-common stuff like various erase operations. | 
|  | 325 | */ | 
|  | 326 | case MMC_RSP_SPI_R1B: | 
|  | 327 | /* maybe we read all the busy tokens already */ | 
|  | 328 | while (cp < end && *cp == 0) | 
|  | 329 | cp++; | 
|  | 330 | if (cp == end) | 
|  | 331 | mmc_spi_wait_unbusy(host, r1b_timeout); | 
|  | 332 | break; | 
|  | 333 |  | 
|  | 334 | /* SPI R2 == R1 + second status byte; SEND_STATUS | 
|  | 335 | * SPI R5 == R1 + data byte; IO_RW_DIRECT | 
|  | 336 | */ | 
|  | 337 | case MMC_RSP_SPI_R2: | 
|  | 338 | cmd->resp[0] |= *cp << 8; | 
|  | 339 | break; | 
|  | 340 |  | 
|  | 341 | /* SPI R3, R4, or R7 == R1 + 4 bytes */ | 
|  | 342 | case MMC_RSP_SPI_R3: | 
|  | 343 | cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp)); | 
|  | 344 | break; | 
|  | 345 |  | 
|  | 346 | /* SPI R1 == just one status byte */ | 
|  | 347 | case MMC_RSP_SPI_R1: | 
|  | 348 | break; | 
|  | 349 |  | 
|  | 350 | default: | 
|  | 351 | dev_dbg(&host->spi->dev, "bad response type %04x\n", | 
|  | 352 | mmc_spi_resp_type(cmd)); | 
|  | 353 | if (value >= 0) | 
|  | 354 | value = -EINVAL; | 
|  | 355 | goto done; | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | if (value < 0) | 
|  | 359 | dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", | 
|  | 360 | tag, cmd->resp[0], cmd->resp[1]); | 
|  | 361 |  | 
|  | 362 | /* disable chipselect on errors and some success cases */ | 
|  | 363 | if (value >= 0 && cs_on) | 
|  | 364 | return value; | 
|  | 365 | done: | 
|  | 366 | if (value < 0) | 
|  | 367 | cmd->error = value; | 
|  | 368 | mmc_cs_off(host); | 
|  | 369 | return value; | 
|  | 370 | } | 
|  | 371 |  | 
|  | 372 | /* Issue command and read its response. | 
|  | 373 | * Returns zero on success, negative for error. | 
|  | 374 | * | 
|  | 375 | * On error, caller must cope with mmc core retry mechanism.  That | 
|  | 376 | * means immediate low-level resubmit, which affects the bus lock... | 
|  | 377 | */ | 
|  | 378 | static int | 
|  | 379 | mmc_spi_command_send(struct mmc_spi_host *host, | 
|  | 380 | struct mmc_request *mrq, | 
|  | 381 | struct mmc_command *cmd, int cs_on) | 
|  | 382 | { | 
|  | 383 | struct scratch		*data = host->data; | 
|  | 384 | u8			*cp = data->status; | 
|  | 385 | u32			arg = cmd->arg; | 
|  | 386 | int			status; | 
|  | 387 | struct spi_transfer	*t; | 
|  | 388 |  | 
|  | 389 | /* We can handle most commands (except block reads) in one full | 
|  | 390 | * duplex I/O operation before either starting the next transfer | 
|  | 391 | * (data block or command) or else deselecting the card. | 
|  | 392 | * | 
|  | 393 | * First, write 7 bytes: | 
|  | 394 | *  - an all-ones byte to ensure the card is ready | 
|  | 395 | *  - opcode byte (plus start and transmission bits) | 
|  | 396 | *  - four bytes of big-endian argument | 
|  | 397 | *  - crc7 (plus end bit) ... always computed, it's cheap | 
|  | 398 | * | 
|  | 399 | * We init the whole buffer to all-ones, which is what we need | 
|  | 400 | * to write while we're reading (later) response data. | 
|  | 401 | */ | 
|  | 402 | memset(cp++, 0xff, sizeof(data->status)); | 
|  | 403 |  | 
|  | 404 | *cp++ = 0x40 | cmd->opcode; | 
|  | 405 | *cp++ = (u8)(arg >> 24); | 
|  | 406 | *cp++ = (u8)(arg >> 16); | 
|  | 407 | *cp++ = (u8)(arg >> 8); | 
|  | 408 | *cp++ = (u8)arg; | 
|  | 409 | *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; | 
|  | 410 |  | 
|  | 411 | /* Then, read up to 13 bytes (while writing all-ones): | 
|  | 412 | *  - N(CR) (== 1..8) bytes of all-ones | 
|  | 413 | *  - status byte (for all response types) | 
|  | 414 | *  - the rest of the response, either: | 
|  | 415 | *      + nothing, for R1 or R1B responses | 
|  | 416 | *	+ second status byte, for R2 responses | 
|  | 417 | *	+ four data bytes, for R3 and R7 responses | 
|  | 418 | * | 
|  | 419 | * Finally, read some more bytes ... in the nice cases we know in | 
|  | 420 | * advance how many, and reading 1 more is always OK: | 
|  | 421 | *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish | 
|  | 422 | *  - N(RC) (== 1..N) bytes of all-ones, before next command | 
|  | 423 | *  - N(WR) (== 1..N) bytes of all-ones, before data write | 
|  | 424 | * | 
|  | 425 | * So in those cases one full duplex I/O of at most 21 bytes will | 
|  | 426 | * handle the whole command, leaving the card ready to receive a | 
|  | 427 | * data block or new command.  We do that whenever we can, shaving | 
|  | 428 | * CPU and IRQ costs (especially when using DMA or FIFOs). | 
|  | 429 | * | 
|  | 430 | * There are two other cases, where it's not generally practical | 
|  | 431 | * to rely on a single I/O: | 
|  | 432 | * | 
|  | 433 | *  - R1B responses need at least N(EC) bytes of all-zeroes. | 
|  | 434 | * | 
|  | 435 | *    In this case we can *try* to fit it into one I/O, then | 
|  | 436 | *    maybe read more data later. | 
|  | 437 | * | 
|  | 438 | *  - Data block reads are more troublesome, since a variable | 
|  | 439 | *    number of padding bytes precede the token and data. | 
|  | 440 | *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID | 
|  | 441 | *      + N(AC) (== 1..many) bytes of all-ones | 
|  | 442 | * | 
|  | 443 | *    In this case we currently only have minimal speedups here: | 
|  | 444 | *    when N(CR) == 1 we can avoid I/O in response_get(). | 
|  | 445 | */ | 
|  | 446 | if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { | 
|  | 447 | cp += 2;	/* min(N(CR)) + status */ | 
|  | 448 | /* R1 */ | 
|  | 449 | } else { | 
|  | 450 | cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */ | 
|  | 451 | if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */ | 
|  | 452 | cp++; | 
|  | 453 | else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */ | 
|  | 454 | cp += 4; | 
|  | 455 | else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */ | 
|  | 456 | cp = data->status + sizeof(data->status); | 
|  | 457 | /* else:  R1 (most commands) */ | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n", | 
|  | 461 | cmd->opcode, maptype(cmd)); | 
|  | 462 |  | 
|  | 463 | /* send command, leaving chipselect active */ | 
|  | 464 | spi_message_init(&host->m); | 
|  | 465 |  | 
|  | 466 | t = &host->t; | 
|  | 467 | memset(t, 0, sizeof(*t)); | 
|  | 468 | t->tx_buf = t->rx_buf = data->status; | 
|  | 469 | t->tx_dma = t->rx_dma = host->data_dma; | 
|  | 470 | t->len = cp - data->status; | 
|  | 471 | t->cs_change = 1; | 
|  | 472 | spi_message_add_tail(t, &host->m); | 
|  | 473 |  | 
|  | 474 | if (host->dma_dev) { | 
|  | 475 | host->m.is_dma_mapped = 1; | 
|  | 476 | dma_sync_single_for_device(host->dma_dev, | 
|  | 477 | host->data_dma, sizeof(*host->data), | 
|  | 478 | DMA_BIDIRECTIONAL); | 
|  | 479 | } | 
|  | 480 | status = spi_sync(host->spi, &host->m); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 481 |  | 
|  | 482 | if (host->dma_dev) | 
|  | 483 | dma_sync_single_for_cpu(host->dma_dev, | 
|  | 484 | host->data_dma, sizeof(*host->data), | 
|  | 485 | DMA_BIDIRECTIONAL); | 
|  | 486 | if (status < 0) { | 
|  | 487 | dev_dbg(&host->spi->dev, "  ... write returned %d\n", status); | 
|  | 488 | cmd->error = status; | 
|  | 489 | return status; | 
|  | 490 | } | 
|  | 491 |  | 
|  | 492 | /* after no-data commands and STOP_TRANSMISSION, chipselect off */ | 
|  | 493 | return mmc_spi_response_get(host, cmd, cs_on); | 
|  | 494 | } | 
|  | 495 |  | 
|  | 496 | /* Build data message with up to four separate transfers.  For TX, we | 
|  | 497 | * start by writing the data token.  And in most cases, we finish with | 
|  | 498 | * a status transfer. | 
|  | 499 | * | 
|  | 500 | * We always provide TX data for data and CRC.  The MMC/SD protocol | 
|  | 501 | * requires us to write ones; but Linux defaults to writing zeroes; | 
|  | 502 | * so we explicitly initialize it to all ones on RX paths. | 
|  | 503 | * | 
|  | 504 | * We also handle DMA mapping, so the underlying SPI controller does | 
|  | 505 | * not need to (re)do it for each message. | 
|  | 506 | */ | 
|  | 507 | static void | 
|  | 508 | mmc_spi_setup_data_message( | 
|  | 509 | struct mmc_spi_host	*host, | 
|  | 510 | int			multiple, | 
|  | 511 | enum dma_data_direction	direction) | 
|  | 512 | { | 
|  | 513 | struct spi_transfer	*t; | 
|  | 514 | struct scratch		*scratch = host->data; | 
|  | 515 | dma_addr_t		dma = host->data_dma; | 
|  | 516 |  | 
|  | 517 | spi_message_init(&host->m); | 
|  | 518 | if (dma) | 
|  | 519 | host->m.is_dma_mapped = 1; | 
|  | 520 |  | 
|  | 521 | /* for reads, readblock() skips 0xff bytes before finding | 
|  | 522 | * the token; for writes, this transfer issues that token. | 
|  | 523 | */ | 
|  | 524 | if (direction == DMA_TO_DEVICE) { | 
|  | 525 | t = &host->token; | 
|  | 526 | memset(t, 0, sizeof(*t)); | 
|  | 527 | t->len = 1; | 
|  | 528 | if (multiple) | 
|  | 529 | scratch->data_token = SPI_TOKEN_MULTI_WRITE; | 
|  | 530 | else | 
|  | 531 | scratch->data_token = SPI_TOKEN_SINGLE; | 
|  | 532 | t->tx_buf = &scratch->data_token; | 
|  | 533 | if (dma) | 
|  | 534 | t->tx_dma = dma + offsetof(struct scratch, data_token); | 
|  | 535 | spi_message_add_tail(t, &host->m); | 
|  | 536 | } | 
|  | 537 |  | 
|  | 538 | /* Body of transfer is buffer, then CRC ... | 
|  | 539 | * either TX-only, or RX with TX-ones. | 
|  | 540 | */ | 
|  | 541 | t = &host->t; | 
|  | 542 | memset(t, 0, sizeof(*t)); | 
|  | 543 | t->tx_buf = host->ones; | 
|  | 544 | t->tx_dma = host->ones_dma; | 
|  | 545 | /* length and actual buffer info are written later */ | 
|  | 546 | spi_message_add_tail(t, &host->m); | 
|  | 547 |  | 
|  | 548 | t = &host->crc; | 
|  | 549 | memset(t, 0, sizeof(*t)); | 
|  | 550 | t->len = 2; | 
|  | 551 | if (direction == DMA_TO_DEVICE) { | 
|  | 552 | /* the actual CRC may get written later */ | 
|  | 553 | t->tx_buf = &scratch->crc_val; | 
|  | 554 | if (dma) | 
|  | 555 | t->tx_dma = dma + offsetof(struct scratch, crc_val); | 
|  | 556 | } else { | 
|  | 557 | t->tx_buf = host->ones; | 
|  | 558 | t->tx_dma = host->ones_dma; | 
|  | 559 | t->rx_buf = &scratch->crc_val; | 
|  | 560 | if (dma) | 
|  | 561 | t->rx_dma = dma + offsetof(struct scratch, crc_val); | 
|  | 562 | } | 
|  | 563 | spi_message_add_tail(t, &host->m); | 
|  | 564 |  | 
|  | 565 | /* | 
|  | 566 | * A single block read is followed by N(EC) [0+] all-ones bytes | 
|  | 567 | * before deselect ... don't bother. | 
|  | 568 | * | 
|  | 569 | * Multiblock reads are followed by N(AC) [1+] all-ones bytes before | 
|  | 570 | * the next block is read, or a STOP_TRANSMISSION is issued.  We'll | 
|  | 571 | * collect that single byte, so readblock() doesn't need to. | 
|  | 572 | * | 
|  | 573 | * For a write, the one-byte data response follows immediately, then | 
|  | 574 | * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. | 
|  | 575 | * Then single block reads may deselect, and multiblock ones issue | 
|  | 576 | * the next token (next data block, or STOP_TRAN).  We can try to | 
|  | 577 | * minimize I/O ops by using a single read to collect end-of-busy. | 
|  | 578 | */ | 
|  | 579 | if (multiple || direction == DMA_TO_DEVICE) { | 
|  | 580 | t = &host->early_status; | 
|  | 581 | memset(t, 0, sizeof(*t)); | 
|  | 582 | t->len = (direction == DMA_TO_DEVICE) | 
|  | 583 | ? sizeof(scratch->status) | 
|  | 584 | : 1; | 
|  | 585 | t->tx_buf = host->ones; | 
|  | 586 | t->tx_dma = host->ones_dma; | 
|  | 587 | t->rx_buf = scratch->status; | 
|  | 588 | if (dma) | 
|  | 589 | t->rx_dma = dma + offsetof(struct scratch, status); | 
|  | 590 | t->cs_change = 1; | 
|  | 591 | spi_message_add_tail(t, &host->m); | 
|  | 592 | } | 
|  | 593 | } | 
|  | 594 |  | 
|  | 595 | /* | 
|  | 596 | * Write one block: | 
|  | 597 | *  - caller handled preceding N(WR) [1+] all-ones bytes | 
|  | 598 | *  - data block | 
|  | 599 | *	+ token | 
|  | 600 | *	+ data bytes | 
|  | 601 | *	+ crc16 | 
|  | 602 | *  - an all-ones byte ... card writes a data-response byte | 
|  | 603 | *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' | 
|  | 604 | * | 
|  | 605 | * Return negative errno, else success. | 
|  | 606 | */ | 
|  | 607 | static int | 
|  | 608 | mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t) | 
|  | 609 | { | 
|  | 610 | struct spi_device	*spi = host->spi; | 
|  | 611 | int			status, i; | 
|  | 612 | struct scratch		*scratch = host->data; | 
|  | 613 |  | 
|  | 614 | if (host->mmc->use_spi_crc) | 
|  | 615 | scratch->crc_val = cpu_to_be16( | 
|  | 616 | crc_itu_t(0, t->tx_buf, t->len)); | 
|  | 617 | if (host->dma_dev) | 
|  | 618 | dma_sync_single_for_device(host->dma_dev, | 
|  | 619 | host->data_dma, sizeof(*scratch), | 
|  | 620 | DMA_BIDIRECTIONAL); | 
|  | 621 |  | 
|  | 622 | status = spi_sync(spi, &host->m); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 623 |  | 
|  | 624 | if (status != 0) { | 
|  | 625 | dev_dbg(&spi->dev, "write error (%d)\n", status); | 
|  | 626 | return status; | 
|  | 627 | } | 
|  | 628 |  | 
|  | 629 | if (host->dma_dev) | 
|  | 630 | dma_sync_single_for_cpu(host->dma_dev, | 
|  | 631 | host->data_dma, sizeof(*scratch), | 
|  | 632 | DMA_BIDIRECTIONAL); | 
|  | 633 |  | 
|  | 634 | /* | 
|  | 635 | * Get the transmission data-response reply.  It must follow | 
|  | 636 | * immediately after the data block we transferred.  This reply | 
|  | 637 | * doesn't necessarily tell whether the write operation succeeded; | 
|  | 638 | * it just says if the transmission was ok and whether *earlier* | 
|  | 639 | * writes succeeded; see the standard. | 
|  | 640 | */ | 
|  | 641 | switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) { | 
|  | 642 | case SPI_RESPONSE_ACCEPTED: | 
|  | 643 | status = 0; | 
|  | 644 | break; | 
|  | 645 | case SPI_RESPONSE_CRC_ERR: | 
|  | 646 | /* host shall then issue MMC_STOP_TRANSMISSION */ | 
|  | 647 | status = -EILSEQ; | 
|  | 648 | break; | 
|  | 649 | case SPI_RESPONSE_WRITE_ERR: | 
|  | 650 | /* host shall then issue MMC_STOP_TRANSMISSION, | 
|  | 651 | * and should MMC_SEND_STATUS to sort it out | 
|  | 652 | */ | 
|  | 653 | status = -EIO; | 
|  | 654 | break; | 
|  | 655 | default: | 
|  | 656 | status = -EPROTO; | 
|  | 657 | break; | 
|  | 658 | } | 
|  | 659 | if (status != 0) { | 
|  | 660 | dev_dbg(&spi->dev, "write error %02x (%d)\n", | 
|  | 661 | scratch->status[0], status); | 
|  | 662 | return status; | 
|  | 663 | } | 
|  | 664 |  | 
|  | 665 | t->tx_buf += t->len; | 
|  | 666 | if (host->dma_dev) | 
|  | 667 | t->tx_dma += t->len; | 
|  | 668 |  | 
|  | 669 | /* Return when not busy.  If we didn't collect that status yet, | 
|  | 670 | * we'll need some more I/O. | 
|  | 671 | */ | 
|  | 672 | for (i = 1; i < sizeof(scratch->status); i++) { | 
|  | 673 | if (scratch->status[i] != 0) | 
|  | 674 | return 0; | 
|  | 675 | } | 
|  | 676 | return mmc_spi_wait_unbusy(host, writeblock_timeout); | 
|  | 677 | } | 
|  | 678 |  | 
|  | 679 | /* | 
|  | 680 | * Read one block: | 
|  | 681 | *  - skip leading all-ones bytes ... either | 
|  | 682 | *      + N(AC) [1..f(clock,CSD)] usually, else | 
|  | 683 | *      + N(CX) [0..8] when reading CSD or CID | 
|  | 684 | *  - data block | 
|  | 685 | *	+ token ... if error token, no data or crc | 
|  | 686 | *	+ data bytes | 
|  | 687 | *	+ crc16 | 
|  | 688 | * | 
|  | 689 | * After single block reads, we're done; N(EC) [0+] all-ones bytes follow | 
|  | 690 | * before dropping chipselect. | 
|  | 691 | * | 
|  | 692 | * For multiblock reads, caller either reads the next block or issues a | 
|  | 693 | * STOP_TRANSMISSION command. | 
|  | 694 | */ | 
|  | 695 | static int | 
|  | 696 | mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t) | 
|  | 697 | { | 
|  | 698 | struct spi_device	*spi = host->spi; | 
|  | 699 | int			status; | 
|  | 700 | struct scratch		*scratch = host->data; | 
|  | 701 |  | 
|  | 702 | /* At least one SD card sends an all-zeroes byte when N(CX) | 
|  | 703 | * applies, before the all-ones bytes ... just cope with that. | 
|  | 704 | */ | 
|  | 705 | status = mmc_spi_readbytes(host, 1); | 
|  | 706 | if (status < 0) | 
|  | 707 | return status; | 
|  | 708 | status = scratch->status[0]; | 
|  | 709 | if (status == 0xff || status == 0) | 
|  | 710 | status = mmc_spi_readtoken(host); | 
|  | 711 |  | 
|  | 712 | if (status == SPI_TOKEN_SINGLE) { | 
|  | 713 | if (host->dma_dev) { | 
|  | 714 | dma_sync_single_for_device(host->dma_dev, | 
|  | 715 | host->data_dma, sizeof(*scratch), | 
|  | 716 | DMA_BIDIRECTIONAL); | 
|  | 717 | dma_sync_single_for_device(host->dma_dev, | 
|  | 718 | t->rx_dma, t->len, | 
|  | 719 | DMA_FROM_DEVICE); | 
|  | 720 | } | 
|  | 721 |  | 
|  | 722 | status = spi_sync(spi, &host->m); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 723 |  | 
|  | 724 | if (host->dma_dev) { | 
|  | 725 | dma_sync_single_for_cpu(host->dma_dev, | 
|  | 726 | host->data_dma, sizeof(*scratch), | 
|  | 727 | DMA_BIDIRECTIONAL); | 
|  | 728 | dma_sync_single_for_cpu(host->dma_dev, | 
|  | 729 | t->rx_dma, t->len, | 
|  | 730 | DMA_FROM_DEVICE); | 
|  | 731 | } | 
|  | 732 |  | 
|  | 733 | } else { | 
|  | 734 | dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); | 
|  | 735 |  | 
|  | 736 | /* we've read extra garbage, timed out, etc */ | 
|  | 737 | if (status < 0) | 
|  | 738 | return status; | 
|  | 739 |  | 
|  | 740 | /* low four bits are an R2 subset, fifth seems to be | 
|  | 741 | * vendor specific ... map them all to generic error.. | 
|  | 742 | */ | 
|  | 743 | return -EIO; | 
|  | 744 | } | 
|  | 745 |  | 
|  | 746 | if (host->mmc->use_spi_crc) { | 
|  | 747 | u16 crc = crc_itu_t(0, t->rx_buf, t->len); | 
|  | 748 |  | 
|  | 749 | be16_to_cpus(&scratch->crc_val); | 
|  | 750 | if (scratch->crc_val != crc) { | 
|  | 751 | dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " | 
|  | 752 | "computed=0x%04x len=%d\n", | 
|  | 753 | scratch->crc_val, crc, t->len); | 
|  | 754 | return -EILSEQ; | 
|  | 755 | } | 
|  | 756 | } | 
|  | 757 |  | 
|  | 758 | t->rx_buf += t->len; | 
|  | 759 | if (host->dma_dev) | 
|  | 760 | t->rx_dma += t->len; | 
|  | 761 |  | 
|  | 762 | return 0; | 
|  | 763 | } | 
|  | 764 |  | 
|  | 765 | /* | 
|  | 766 | * An MMC/SD data stage includes one or more blocks, optional CRCs, | 
|  | 767 | * and inline handshaking.  That handhaking makes it unlike most | 
|  | 768 | * other SPI protocol stacks. | 
|  | 769 | */ | 
|  | 770 | static void | 
|  | 771 | mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, | 
|  | 772 | struct mmc_data *data, u32 blk_size) | 
|  | 773 | { | 
|  | 774 | struct spi_device	*spi = host->spi; | 
|  | 775 | struct device		*dma_dev = host->dma_dev; | 
|  | 776 | struct spi_transfer	*t; | 
|  | 777 | enum dma_data_direction	direction; | 
|  | 778 | struct scatterlist	*sg; | 
|  | 779 | unsigned		n_sg; | 
|  | 780 | int			multiple = (data->blocks > 1); | 
|  | 781 |  | 
|  | 782 | if (data->flags & MMC_DATA_READ) | 
|  | 783 | direction = DMA_FROM_DEVICE; | 
|  | 784 | else | 
|  | 785 | direction = DMA_TO_DEVICE; | 
|  | 786 | mmc_spi_setup_data_message(host, multiple, direction); | 
|  | 787 | t = &host->t; | 
|  | 788 |  | 
|  | 789 | /* Handle scatterlist segments one at a time, with synch for | 
|  | 790 | * each 512-byte block | 
|  | 791 | */ | 
|  | 792 | for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { | 
|  | 793 | int			status = 0; | 
|  | 794 | dma_addr_t		dma_addr = 0; | 
|  | 795 | void			*kmap_addr; | 
|  | 796 | unsigned		length = sg->length; | 
|  | 797 | enum dma_data_direction	dir = direction; | 
|  | 798 |  | 
|  | 799 | /* set up dma mapping for controller drivers that might | 
|  | 800 | * use DMA ... though they may fall back to PIO | 
|  | 801 | */ | 
|  | 802 | if (dma_dev) { | 
|  | 803 | /* never invalidate whole *shared* pages ... */ | 
|  | 804 | if ((sg->offset != 0 || length != PAGE_SIZE) | 
|  | 805 | && dir == DMA_FROM_DEVICE) | 
|  | 806 | dir = DMA_BIDIRECTIONAL; | 
|  | 807 |  | 
| Jens Axboe | 45711f1 | 2007-10-22 21:19:53 +0200 | [diff] [blame] | 808 | dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 809 | PAGE_SIZE, dir); | 
|  | 810 | if (direction == DMA_TO_DEVICE) | 
|  | 811 | t->tx_dma = dma_addr + sg->offset; | 
|  | 812 | else | 
|  | 813 | t->rx_dma = dma_addr + sg->offset; | 
|  | 814 | } | 
|  | 815 |  | 
|  | 816 | /* allow pio too; we don't allow highmem */ | 
| Jens Axboe | 45711f1 | 2007-10-22 21:19:53 +0200 | [diff] [blame] | 817 | kmap_addr = kmap(sg_page(sg)); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 818 | if (direction == DMA_TO_DEVICE) | 
|  | 819 | t->tx_buf = kmap_addr + sg->offset; | 
|  | 820 | else | 
|  | 821 | t->rx_buf = kmap_addr + sg->offset; | 
|  | 822 |  | 
|  | 823 | /* transfer each block, and update request status */ | 
|  | 824 | while (length) { | 
|  | 825 | t->len = min(length, blk_size); | 
|  | 826 |  | 
|  | 827 | dev_dbg(&host->spi->dev, | 
|  | 828 | "    mmc_spi: %s block, %d bytes\n", | 
|  | 829 | (direction == DMA_TO_DEVICE) | 
|  | 830 | ? "write" | 
|  | 831 | : "read", | 
|  | 832 | t->len); | 
|  | 833 |  | 
|  | 834 | if (direction == DMA_TO_DEVICE) | 
|  | 835 | status = mmc_spi_writeblock(host, t); | 
|  | 836 | else | 
|  | 837 | status = mmc_spi_readblock(host, t); | 
|  | 838 | if (status < 0) | 
|  | 839 | break; | 
|  | 840 |  | 
|  | 841 | data->bytes_xfered += t->len; | 
|  | 842 | length -= t->len; | 
|  | 843 |  | 
|  | 844 | if (!multiple) | 
|  | 845 | break; | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | /* discard mappings */ | 
|  | 849 | if (direction == DMA_FROM_DEVICE) | 
| Jens Axboe | 45711f1 | 2007-10-22 21:19:53 +0200 | [diff] [blame] | 850 | flush_kernel_dcache_page(sg_page(sg)); | 
|  | 851 | kunmap(sg_page(sg)); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 852 | if (dma_dev) | 
|  | 853 | dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); | 
|  | 854 |  | 
|  | 855 | if (status < 0) { | 
|  | 856 | data->error = status; | 
|  | 857 | dev_dbg(&spi->dev, "%s status %d\n", | 
|  | 858 | (direction == DMA_TO_DEVICE) | 
|  | 859 | ? "write" : "read", | 
|  | 860 | status); | 
|  | 861 | break; | 
|  | 862 | } | 
|  | 863 | } | 
|  | 864 |  | 
|  | 865 | /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that | 
|  | 866 | * can be issued before multiblock writes.  Unlike its more widely | 
|  | 867 | * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), | 
|  | 868 | * that can affect the STOP_TRAN logic.   Complete (and current) | 
|  | 869 | * MMC specs should sort that out before Linux starts using CMD23. | 
|  | 870 | */ | 
|  | 871 | if (direction == DMA_TO_DEVICE && multiple) { | 
|  | 872 | struct scratch	*scratch = host->data; | 
|  | 873 | int		tmp; | 
|  | 874 | const unsigned	statlen = sizeof(scratch->status); | 
|  | 875 |  | 
|  | 876 | dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n"); | 
|  | 877 |  | 
|  | 878 | /* Tweak the per-block message we set up earlier by morphing | 
|  | 879 | * it to hold single buffer with the token followed by some | 
|  | 880 | * all-ones bytes ... skip N(BR) (0..1), scan the rest for | 
|  | 881 | * "not busy any longer" status, and leave chip selected. | 
|  | 882 | */ | 
|  | 883 | INIT_LIST_HEAD(&host->m.transfers); | 
|  | 884 | list_add(&host->early_status.transfer_list, | 
|  | 885 | &host->m.transfers); | 
|  | 886 |  | 
|  | 887 | memset(scratch->status, 0xff, statlen); | 
|  | 888 | scratch->status[0] = SPI_TOKEN_STOP_TRAN; | 
|  | 889 |  | 
|  | 890 | host->early_status.tx_buf = host->early_status.rx_buf; | 
|  | 891 | host->early_status.tx_dma = host->early_status.rx_dma; | 
|  | 892 | host->early_status.len = statlen; | 
|  | 893 |  | 
|  | 894 | if (host->dma_dev) | 
|  | 895 | dma_sync_single_for_device(host->dma_dev, | 
|  | 896 | host->data_dma, sizeof(*scratch), | 
|  | 897 | DMA_BIDIRECTIONAL); | 
|  | 898 |  | 
|  | 899 | tmp = spi_sync(spi, &host->m); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 900 |  | 
|  | 901 | if (host->dma_dev) | 
|  | 902 | dma_sync_single_for_cpu(host->dma_dev, | 
|  | 903 | host->data_dma, sizeof(*scratch), | 
|  | 904 | DMA_BIDIRECTIONAL); | 
|  | 905 |  | 
|  | 906 | if (tmp < 0) { | 
|  | 907 | if (!data->error) | 
|  | 908 | data->error = tmp; | 
|  | 909 | return; | 
|  | 910 | } | 
|  | 911 |  | 
|  | 912 | /* Ideally we collected "not busy" status with one I/O, | 
|  | 913 | * avoiding wasteful byte-at-a-time scanning... but more | 
|  | 914 | * I/O is often needed. | 
|  | 915 | */ | 
|  | 916 | for (tmp = 2; tmp < statlen; tmp++) { | 
|  | 917 | if (scratch->status[tmp] != 0) | 
|  | 918 | return; | 
|  | 919 | } | 
|  | 920 | tmp = mmc_spi_wait_unbusy(host, writeblock_timeout); | 
|  | 921 | if (tmp < 0 && !data->error) | 
|  | 922 | data->error = tmp; | 
|  | 923 | } | 
|  | 924 | } | 
|  | 925 |  | 
|  | 926 | /****************************************************************************/ | 
|  | 927 |  | 
|  | 928 | /* | 
|  | 929 | * MMC driver implementation -- the interface to the MMC stack | 
|  | 930 | */ | 
|  | 931 |  | 
|  | 932 | static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) | 
|  | 933 | { | 
|  | 934 | struct mmc_spi_host	*host = mmc_priv(mmc); | 
|  | 935 | int			status = -EINVAL; | 
|  | 936 |  | 
|  | 937 | #ifdef DEBUG | 
|  | 938 | /* MMC core and layered drivers *MUST* issue SPI-aware commands */ | 
|  | 939 | { | 
|  | 940 | struct mmc_command	*cmd; | 
|  | 941 | int			invalid = 0; | 
|  | 942 |  | 
|  | 943 | cmd = mrq->cmd; | 
|  | 944 | if (!mmc_spi_resp_type(cmd)) { | 
|  | 945 | dev_dbg(&host->spi->dev, "bogus command\n"); | 
|  | 946 | cmd->error = -EINVAL; | 
|  | 947 | invalid = 1; | 
|  | 948 | } | 
|  | 949 |  | 
|  | 950 | cmd = mrq->stop; | 
|  | 951 | if (cmd && !mmc_spi_resp_type(cmd)) { | 
|  | 952 | dev_dbg(&host->spi->dev, "bogus STOP command\n"); | 
|  | 953 | cmd->error = -EINVAL; | 
|  | 954 | invalid = 1; | 
|  | 955 | } | 
|  | 956 |  | 
|  | 957 | if (invalid) { | 
|  | 958 | dump_stack(); | 
|  | 959 | mmc_request_done(host->mmc, mrq); | 
|  | 960 | return; | 
|  | 961 | } | 
|  | 962 | } | 
|  | 963 | #endif | 
|  | 964 |  | 
|  | 965 | /* issue command; then optionally data and stop */ | 
|  | 966 | status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); | 
|  | 967 | if (status == 0 && mrq->data) { | 
|  | 968 | mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); | 
|  | 969 | if (mrq->stop) | 
|  | 970 | status = mmc_spi_command_send(host, mrq, mrq->stop, 0); | 
|  | 971 | else | 
|  | 972 | mmc_cs_off(host); | 
|  | 973 | } | 
|  | 974 |  | 
|  | 975 | mmc_request_done(host->mmc, mrq); | 
|  | 976 | } | 
|  | 977 |  | 
|  | 978 | /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" | 
|  | 979 | * | 
|  | 980 | * NOTE that here we can't know that the card has just been powered up; | 
|  | 981 | * not all MMC/SD sockets support power switching. | 
|  | 982 | * | 
|  | 983 | * FIXME when the card is still in SPI mode, e.g. from a previous kernel, | 
|  | 984 | * this doesn't seem to do the right thing at all... | 
|  | 985 | */ | 
|  | 986 | static void mmc_spi_initsequence(struct mmc_spi_host *host) | 
|  | 987 | { | 
|  | 988 | /* Try to be very sure any previous command has completed; | 
|  | 989 | * wait till not-busy, skip debris from any old commands. | 
|  | 990 | */ | 
|  | 991 | mmc_spi_wait_unbusy(host, r1b_timeout); | 
|  | 992 | mmc_spi_readbytes(host, 10); | 
|  | 993 |  | 
|  | 994 | /* | 
|  | 995 | * Do a burst with chipselect active-high.  We need to do this to | 
|  | 996 | * meet the requirement of 74 clock cycles with both chipselect | 
|  | 997 | * and CMD (MOSI) high before CMD0 ... after the card has been | 
|  | 998 | * powered up to Vdd(min), and so is ready to take commands. | 
|  | 999 | * | 
|  | 1000 | * Some cards are particularly needy of this (e.g. Viking "SD256") | 
|  | 1001 | * while most others don't seem to care. | 
|  | 1002 | * | 
|  | 1003 | * Note that this is one of the places MMC/SD plays games with the | 
|  | 1004 | * SPI protocol.  Another is that when chipselect is released while | 
|  | 1005 | * the card returns BUSY status, the clock must issue several cycles | 
|  | 1006 | * with chipselect high before the card will stop driving its output. | 
|  | 1007 | */ | 
|  | 1008 | host->spi->mode |= SPI_CS_HIGH; | 
|  | 1009 | if (spi_setup(host->spi) != 0) { | 
|  | 1010 | /* Just warn; most cards work without it. */ | 
|  | 1011 | dev_warn(&host->spi->dev, | 
|  | 1012 | "can't change chip-select polarity\n"); | 
|  | 1013 | host->spi->mode &= ~SPI_CS_HIGH; | 
|  | 1014 | } else { | 
|  | 1015 | mmc_spi_readbytes(host, 18); | 
|  | 1016 |  | 
|  | 1017 | host->spi->mode &= ~SPI_CS_HIGH; | 
|  | 1018 | if (spi_setup(host->spi) != 0) { | 
|  | 1019 | /* Wot, we can't get the same setup we had before? */ | 
|  | 1020 | dev_err(&host->spi->dev, | 
|  | 1021 | "can't restore chip-select polarity\n"); | 
|  | 1022 | } | 
|  | 1023 | } | 
|  | 1024 | } | 
|  | 1025 |  | 
|  | 1026 | static char *mmc_powerstring(u8 power_mode) | 
|  | 1027 | { | 
|  | 1028 | switch (power_mode) { | 
|  | 1029 | case MMC_POWER_OFF: return "off"; | 
|  | 1030 | case MMC_POWER_UP:  return "up"; | 
|  | 1031 | case MMC_POWER_ON:  return "on"; | 
|  | 1032 | } | 
|  | 1033 | return "?"; | 
|  | 1034 | } | 
|  | 1035 |  | 
|  | 1036 | static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) | 
|  | 1037 | { | 
|  | 1038 | struct mmc_spi_host *host = mmc_priv(mmc); | 
|  | 1039 |  | 
|  | 1040 | if (host->power_mode != ios->power_mode) { | 
|  | 1041 | int		canpower; | 
|  | 1042 |  | 
|  | 1043 | canpower = host->pdata && host->pdata->setpower; | 
|  | 1044 |  | 
|  | 1045 | dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", | 
|  | 1046 | mmc_powerstring(ios->power_mode), | 
|  | 1047 | ios->vdd, | 
|  | 1048 | canpower ? ", can switch" : ""); | 
|  | 1049 |  | 
|  | 1050 | /* switch power on/off if possible, accounting for | 
|  | 1051 | * max 250msec powerup time if needed. | 
|  | 1052 | */ | 
|  | 1053 | if (canpower) { | 
|  | 1054 | switch (ios->power_mode) { | 
|  | 1055 | case MMC_POWER_OFF: | 
|  | 1056 | case MMC_POWER_UP: | 
|  | 1057 | host->pdata->setpower(&host->spi->dev, | 
|  | 1058 | ios->vdd); | 
|  | 1059 | if (ios->power_mode == MMC_POWER_UP) | 
|  | 1060 | msleep(host->powerup_msecs); | 
|  | 1061 | } | 
|  | 1062 | } | 
|  | 1063 |  | 
|  | 1064 | /* See 6.4.1 in the simplified SD card physical spec 2.0 */ | 
|  | 1065 | if (ios->power_mode == MMC_POWER_ON) | 
|  | 1066 | mmc_spi_initsequence(host); | 
|  | 1067 |  | 
|  | 1068 | /* If powering down, ground all card inputs to avoid power | 
|  | 1069 | * delivery from data lines!  On a shared SPI bus, this | 
|  | 1070 | * will probably be temporary; 6.4.2 of the simplified SD | 
|  | 1071 | * spec says this must last at least 1msec. | 
|  | 1072 | * | 
|  | 1073 | *   - Clock low means CPOL 0, e.g. mode 0 | 
|  | 1074 | *   - MOSI low comes from writing zero | 
|  | 1075 | *   - Chipselect is usually active low... | 
|  | 1076 | */ | 
|  | 1077 | if (canpower && ios->power_mode == MMC_POWER_OFF) { | 
|  | 1078 | int mres; | 
|  | 1079 |  | 
|  | 1080 | host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); | 
|  | 1081 | mres = spi_setup(host->spi); | 
|  | 1082 | if (mres < 0) | 
|  | 1083 | dev_dbg(&host->spi->dev, | 
|  | 1084 | "switch to SPI mode 0 failed\n"); | 
|  | 1085 |  | 
|  | 1086 | if (spi_w8r8(host->spi, 0x00) < 0) | 
|  | 1087 | dev_dbg(&host->spi->dev, | 
|  | 1088 | "put spi signals to low failed\n"); | 
|  | 1089 |  | 
|  | 1090 | /* | 
|  | 1091 | * Now clock should be low due to spi mode 0; | 
|  | 1092 | * MOSI should be low because of written 0x00; | 
|  | 1093 | * chipselect should be low (it is active low) | 
|  | 1094 | * power supply is off, so now MMC is off too! | 
|  | 1095 | * | 
|  | 1096 | * FIXME no, chipselect can be high since the | 
|  | 1097 | * device is inactive and SPI_CS_HIGH is clear... | 
|  | 1098 | */ | 
|  | 1099 | msleep(10); | 
|  | 1100 | if (mres == 0) { | 
|  | 1101 | host->spi->mode |= (SPI_CPOL|SPI_CPHA); | 
|  | 1102 | mres = spi_setup(host->spi); | 
|  | 1103 | if (mres < 0) | 
|  | 1104 | dev_dbg(&host->spi->dev, | 
|  | 1105 | "switch back to SPI mode 3" | 
|  | 1106 | " failed\n"); | 
|  | 1107 | } | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | host->power_mode = ios->power_mode; | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { | 
|  | 1114 | int		status; | 
|  | 1115 |  | 
|  | 1116 | host->spi->max_speed_hz = ios->clock; | 
|  | 1117 | status = spi_setup(host->spi); | 
|  | 1118 | dev_dbg(&host->spi->dev, | 
|  | 1119 | "mmc_spi:  clock to %d Hz, %d\n", | 
|  | 1120 | host->spi->max_speed_hz, status); | 
|  | 1121 | } | 
|  | 1122 | } | 
|  | 1123 |  | 
|  | 1124 | static int mmc_spi_get_ro(struct mmc_host *mmc) | 
|  | 1125 | { | 
|  | 1126 | struct mmc_spi_host *host = mmc_priv(mmc); | 
|  | 1127 |  | 
|  | 1128 | if (host->pdata && host->pdata->get_ro) | 
|  | 1129 | return host->pdata->get_ro(mmc->parent); | 
|  | 1130 | /* board doesn't support read only detection; assume writeable */ | 
|  | 1131 | return 0; | 
|  | 1132 | } | 
|  | 1133 |  | 
|  | 1134 |  | 
|  | 1135 | static const struct mmc_host_ops mmc_spi_ops = { | 
|  | 1136 | .request	= mmc_spi_request, | 
|  | 1137 | .set_ios	= mmc_spi_set_ios, | 
|  | 1138 | .get_ro		= mmc_spi_get_ro, | 
|  | 1139 | }; | 
|  | 1140 |  | 
|  | 1141 |  | 
|  | 1142 | /****************************************************************************/ | 
|  | 1143 |  | 
|  | 1144 | /* | 
|  | 1145 | * SPI driver implementation | 
|  | 1146 | */ | 
|  | 1147 |  | 
|  | 1148 | static irqreturn_t | 
|  | 1149 | mmc_spi_detect_irq(int irq, void *mmc) | 
|  | 1150 | { | 
|  | 1151 | struct mmc_spi_host *host = mmc_priv(mmc); | 
|  | 1152 | u16 delay_msec = max(host->pdata->detect_delay, (u16)100); | 
|  | 1153 |  | 
|  | 1154 | mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); | 
|  | 1155 | return IRQ_HANDLED; | 
|  | 1156 | } | 
|  | 1157 |  | 
| David Brownell | 460cd05 | 2007-10-27 14:47:20 +0200 | [diff] [blame] | 1158 | struct count_children { | 
|  | 1159 | unsigned	n; | 
|  | 1160 | struct bus_type	*bus; | 
|  | 1161 | }; | 
|  | 1162 |  | 
|  | 1163 | static int maybe_count_child(struct device *dev, void *c) | 
|  | 1164 | { | 
|  | 1165 | struct count_children *ccp = c; | 
|  | 1166 |  | 
|  | 1167 | if (dev->bus == ccp->bus) { | 
|  | 1168 | if (ccp->n) | 
|  | 1169 | return -EBUSY; | 
|  | 1170 | ccp->n++; | 
|  | 1171 | } | 
|  | 1172 | return 0; | 
|  | 1173 | } | 
|  | 1174 |  | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 1175 | static int mmc_spi_probe(struct spi_device *spi) | 
|  | 1176 | { | 
|  | 1177 | void			*ones; | 
|  | 1178 | struct mmc_host		*mmc; | 
|  | 1179 | struct mmc_spi_host	*host; | 
|  | 1180 | int			status; | 
|  | 1181 |  | 
|  | 1182 | /* MMC and SD specs only seem to care that sampling is on the | 
|  | 1183 | * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode | 
|  | 1184 | * should be legit.  We'll use mode 0 since it seems to be a | 
|  | 1185 | * bit less troublesome on some hardware ... unclear why. | 
|  | 1186 | */ | 
|  | 1187 | spi->mode = SPI_MODE_0; | 
|  | 1188 | spi->bits_per_word = 8; | 
|  | 1189 |  | 
|  | 1190 | status = spi_setup(spi); | 
|  | 1191 | if (status < 0) { | 
|  | 1192 | dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", | 
|  | 1193 | spi->mode, spi->max_speed_hz / 1000, | 
|  | 1194 | status); | 
|  | 1195 | return status; | 
|  | 1196 | } | 
|  | 1197 |  | 
| David Brownell | 460cd05 | 2007-10-27 14:47:20 +0200 | [diff] [blame] | 1198 | /* We can use the bus safely iff nobody else will interfere with us. | 
|  | 1199 | * Most commands consist of one SPI message to issue a command, then | 
|  | 1200 | * several more to collect its response, then possibly more for data | 
|  | 1201 | * transfer.  Clocking access to other devices during that period will | 
|  | 1202 | * corrupt the command execution. | 
|  | 1203 | * | 
|  | 1204 | * Until we have software primitives which guarantee non-interference, | 
|  | 1205 | * we'll aim for a hardware-level guarantee. | 
|  | 1206 | * | 
|  | 1207 | * REVISIT we can't guarantee another device won't be added later... | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 1208 | */ | 
|  | 1209 | if (spi->master->num_chipselect > 1) { | 
| David Brownell | 460cd05 | 2007-10-27 14:47:20 +0200 | [diff] [blame] | 1210 | struct count_children cc; | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 1211 |  | 
| David Brownell | 460cd05 | 2007-10-27 14:47:20 +0200 | [diff] [blame] | 1212 | cc.n = 0; | 
|  | 1213 | cc.bus = spi->dev.bus; | 
|  | 1214 | status = device_for_each_child(spi->dev.parent, &cc, | 
|  | 1215 | maybe_count_child); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 1216 | if (status < 0) { | 
|  | 1217 | dev_err(&spi->dev, "can't share SPI bus\n"); | 
|  | 1218 | return status; | 
|  | 1219 | } | 
|  | 1220 |  | 
| David Brownell | 460cd05 | 2007-10-27 14:47:20 +0200 | [diff] [blame] | 1221 | dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n"); | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 1222 | } | 
|  | 1223 |  | 
|  | 1224 | /* We need a supply of ones to transmit.  This is the only time | 
|  | 1225 | * the CPU touches these, so cache coherency isn't a concern. | 
|  | 1226 | * | 
|  | 1227 | * NOTE if many systems use more than one MMC-over-SPI connector | 
|  | 1228 | * it'd save some memory to share this.  That's evidently rare. | 
|  | 1229 | */ | 
|  | 1230 | status = -ENOMEM; | 
|  | 1231 | ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); | 
|  | 1232 | if (!ones) | 
|  | 1233 | goto nomem; | 
|  | 1234 | memset(ones, 0xff, MMC_SPI_BLOCKSIZE); | 
|  | 1235 |  | 
|  | 1236 | mmc = mmc_alloc_host(sizeof(*host), &spi->dev); | 
|  | 1237 | if (!mmc) | 
|  | 1238 | goto nomem; | 
|  | 1239 |  | 
|  | 1240 | mmc->ops = &mmc_spi_ops; | 
|  | 1241 | mmc->max_blk_size = MMC_SPI_BLOCKSIZE; | 
|  | 1242 |  | 
|  | 1243 | /* As long as we keep track of the number of successfully | 
|  | 1244 | * transmitted blocks, we're good for multiwrite. | 
|  | 1245 | */ | 
|  | 1246 | mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE; | 
|  | 1247 |  | 
|  | 1248 | /* SPI doesn't need the lowspeed device identification thing for | 
|  | 1249 | * MMC or SD cards, since it never comes up in open drain mode. | 
|  | 1250 | * That's good; some SPI masters can't handle very low speeds! | 
|  | 1251 | * | 
|  | 1252 | * However, low speed SDIO cards need not handle over 400 KHz; | 
|  | 1253 | * that's the only reason not to use a few MHz for f_min (until | 
|  | 1254 | * the upper layer reads the target frequency from the CSD). | 
|  | 1255 | */ | 
|  | 1256 | mmc->f_min = 400000; | 
|  | 1257 | mmc->f_max = spi->max_speed_hz; | 
|  | 1258 |  | 
|  | 1259 | host = mmc_priv(mmc); | 
|  | 1260 | host->mmc = mmc; | 
|  | 1261 | host->spi = spi; | 
|  | 1262 |  | 
|  | 1263 | host->ones = ones; | 
|  | 1264 |  | 
|  | 1265 | /* Platform data is used to hook up things like card sensing | 
|  | 1266 | * and power switching gpios. | 
|  | 1267 | */ | 
|  | 1268 | host->pdata = spi->dev.platform_data; | 
|  | 1269 | if (host->pdata) | 
|  | 1270 | mmc->ocr_avail = host->pdata->ocr_mask; | 
|  | 1271 | if (!mmc->ocr_avail) { | 
|  | 1272 | dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); | 
|  | 1273 | mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; | 
|  | 1274 | } | 
|  | 1275 | if (host->pdata && host->pdata->setpower) { | 
|  | 1276 | host->powerup_msecs = host->pdata->powerup_msecs; | 
|  | 1277 | if (!host->powerup_msecs || host->powerup_msecs > 250) | 
|  | 1278 | host->powerup_msecs = 250; | 
|  | 1279 | } | 
|  | 1280 |  | 
|  | 1281 | dev_set_drvdata(&spi->dev, mmc); | 
|  | 1282 |  | 
|  | 1283 | /* preallocate dma buffers */ | 
|  | 1284 | host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); | 
|  | 1285 | if (!host->data) | 
|  | 1286 | goto fail_nobuf1; | 
|  | 1287 |  | 
| Tony Jones | 49dce68 | 2007-10-16 01:27:48 -0700 | [diff] [blame] | 1288 | if (spi->master->dev.parent->dma_mask) { | 
|  | 1289 | struct device	*dev = spi->master->dev.parent; | 
| David Brownell | 15a0580 | 2007-08-08 09:12:54 -0700 | [diff] [blame] | 1290 |  | 
|  | 1291 | host->dma_dev = dev; | 
|  | 1292 | host->ones_dma = dma_map_single(dev, ones, | 
|  | 1293 | MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); | 
|  | 1294 | host->data_dma = dma_map_single(dev, host->data, | 
|  | 1295 | sizeof(*host->data), DMA_BIDIRECTIONAL); | 
|  | 1296 |  | 
|  | 1297 | /* REVISIT in theory those map operations can fail... */ | 
|  | 1298 |  | 
|  | 1299 | dma_sync_single_for_cpu(host->dma_dev, | 
|  | 1300 | host->data_dma, sizeof(*host->data), | 
|  | 1301 | DMA_BIDIRECTIONAL); | 
|  | 1302 | } | 
|  | 1303 |  | 
|  | 1304 | /* setup message for status/busy readback */ | 
|  | 1305 | spi_message_init(&host->readback); | 
|  | 1306 | host->readback.is_dma_mapped = (host->dma_dev != NULL); | 
|  | 1307 |  | 
|  | 1308 | spi_message_add_tail(&host->status, &host->readback); | 
|  | 1309 | host->status.tx_buf = host->ones; | 
|  | 1310 | host->status.tx_dma = host->ones_dma; | 
|  | 1311 | host->status.rx_buf = &host->data->status; | 
|  | 1312 | host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); | 
|  | 1313 | host->status.cs_change = 1; | 
|  | 1314 |  | 
|  | 1315 | /* register card detect irq */ | 
|  | 1316 | if (host->pdata && host->pdata->init) { | 
|  | 1317 | status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); | 
|  | 1318 | if (status != 0) | 
|  | 1319 | goto fail_glue_init; | 
|  | 1320 | } | 
|  | 1321 |  | 
|  | 1322 | status = mmc_add_host(mmc); | 
|  | 1323 | if (status != 0) | 
|  | 1324 | goto fail_add_host; | 
|  | 1325 |  | 
|  | 1326 | dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n", | 
|  | 1327 | mmc->class_dev.bus_id, | 
|  | 1328 | host->dma_dev ? "" : ", no DMA", | 
|  | 1329 | (host->pdata && host->pdata->get_ro) | 
|  | 1330 | ? "" : ", no WP", | 
|  | 1331 | (host->pdata && host->pdata->setpower) | 
|  | 1332 | ? "" : ", no poweroff"); | 
|  | 1333 | return 0; | 
|  | 1334 |  | 
|  | 1335 | fail_add_host: | 
|  | 1336 | mmc_remove_host (mmc); | 
|  | 1337 | fail_glue_init: | 
|  | 1338 | if (host->dma_dev) | 
|  | 1339 | dma_unmap_single(host->dma_dev, host->data_dma, | 
|  | 1340 | sizeof(*host->data), DMA_BIDIRECTIONAL); | 
|  | 1341 | kfree(host->data); | 
|  | 1342 |  | 
|  | 1343 | fail_nobuf1: | 
|  | 1344 | mmc_free_host(mmc); | 
|  | 1345 | dev_set_drvdata(&spi->dev, NULL); | 
|  | 1346 |  | 
|  | 1347 | nomem: | 
|  | 1348 | kfree(ones); | 
|  | 1349 | return status; | 
|  | 1350 | } | 
|  | 1351 |  | 
|  | 1352 |  | 
|  | 1353 | static int __devexit mmc_spi_remove(struct spi_device *spi) | 
|  | 1354 | { | 
|  | 1355 | struct mmc_host		*mmc = dev_get_drvdata(&spi->dev); | 
|  | 1356 | struct mmc_spi_host	*host; | 
|  | 1357 |  | 
|  | 1358 | if (mmc) { | 
|  | 1359 | host = mmc_priv(mmc); | 
|  | 1360 |  | 
|  | 1361 | /* prevent new mmc_detect_change() calls */ | 
|  | 1362 | if (host->pdata && host->pdata->exit) | 
|  | 1363 | host->pdata->exit(&spi->dev, mmc); | 
|  | 1364 |  | 
|  | 1365 | mmc_remove_host(mmc); | 
|  | 1366 |  | 
|  | 1367 | if (host->dma_dev) { | 
|  | 1368 | dma_unmap_single(host->dma_dev, host->ones_dma, | 
|  | 1369 | MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); | 
|  | 1370 | dma_unmap_single(host->dma_dev, host->data_dma, | 
|  | 1371 | sizeof(*host->data), DMA_BIDIRECTIONAL); | 
|  | 1372 | } | 
|  | 1373 |  | 
|  | 1374 | kfree(host->data); | 
|  | 1375 | kfree(host->ones); | 
|  | 1376 |  | 
|  | 1377 | spi->max_speed_hz = mmc->f_max; | 
|  | 1378 | mmc_free_host(mmc); | 
|  | 1379 | dev_set_drvdata(&spi->dev, NULL); | 
|  | 1380 | } | 
|  | 1381 | return 0; | 
|  | 1382 | } | 
|  | 1383 |  | 
|  | 1384 |  | 
|  | 1385 | static struct spi_driver mmc_spi_driver = { | 
|  | 1386 | .driver = { | 
|  | 1387 | .name =		"mmc_spi", | 
|  | 1388 | .bus =		&spi_bus_type, | 
|  | 1389 | .owner =	THIS_MODULE, | 
|  | 1390 | }, | 
|  | 1391 | .probe =	mmc_spi_probe, | 
|  | 1392 | .remove =	__devexit_p(mmc_spi_remove), | 
|  | 1393 | }; | 
|  | 1394 |  | 
|  | 1395 |  | 
|  | 1396 | static int __init mmc_spi_init(void) | 
|  | 1397 | { | 
|  | 1398 | return spi_register_driver(&mmc_spi_driver); | 
|  | 1399 | } | 
|  | 1400 | module_init(mmc_spi_init); | 
|  | 1401 |  | 
|  | 1402 |  | 
|  | 1403 | static void __exit mmc_spi_exit(void) | 
|  | 1404 | { | 
|  | 1405 | spi_unregister_driver(&mmc_spi_driver); | 
|  | 1406 | } | 
|  | 1407 | module_exit(mmc_spi_exit); | 
|  | 1408 |  | 
|  | 1409 |  | 
|  | 1410 | MODULE_AUTHOR("Mike Lavender, David Brownell, " | 
|  | 1411 | "Hans-Peter Nilsson, Jan Nikitenko"); | 
|  | 1412 | MODULE_DESCRIPTION("SPI SD/MMC host driver"); | 
|  | 1413 | MODULE_LICENSE("GPL"); |