| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 1 | /* vi: set sw = 4 ts = 4: */ | 
|  | 2 | /*	Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). | 
|  | 3 |  | 
|  | 4 | Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), | 
|  | 5 | which also acknowledges contributions by Mike Burrows, David Wheeler, | 
|  | 6 | Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, | 
|  | 7 | Robert Sedgewick, and Jon L. Bentley. | 
|  | 8 |  | 
|  | 9 | This code is licensed under the LGPLv2: | 
|  | 10 | LGPL (http://www.gnu.org/copyleft/lgpl.html | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | /* | 
|  | 14 | Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org). | 
|  | 15 |  | 
|  | 16 | More efficient reading of Huffman codes, a streamlined read_bunzip() | 
|  | 17 | function, and various other tweaks.  In (limited) tests, approximately | 
|  | 18 | 20% faster than bzcat on x86 and about 10% faster on arm. | 
|  | 19 |  | 
|  | 20 | Note that about 2/3 of the time is spent in read_unzip() reversing | 
|  | 21 | the Burrows-Wheeler transformation.  Much of that time is delay | 
|  | 22 | resulting from cache misses. | 
|  | 23 |  | 
|  | 24 | I would ask that anyone benefiting from this work, especially those | 
|  | 25 | using it in commercial products, consider making a donation to my local | 
|  | 26 | non-profit hospice organization in the name of the woman I loved, who | 
|  | 27 | passed away Feb. 12, 2003. | 
|  | 28 |  | 
|  | 29 | In memory of Toni W. Hagan | 
|  | 30 |  | 
|  | 31 | Hospice of Acadiana, Inc. | 
|  | 32 | 2600 Johnston St., Suite 200 | 
|  | 33 | Lafayette, LA 70503-3240 | 
|  | 34 |  | 
|  | 35 | Phone (337) 232-1234 or 1-800-738-2226 | 
|  | 36 | Fax   (337) 232-1297 | 
|  | 37 |  | 
|  | 38 | http://www.hospiceacadiana.com/ | 
|  | 39 |  | 
|  | 40 | Manuel | 
|  | 41 | */ | 
|  | 42 |  | 
|  | 43 | /* | 
|  | 44 | Made it fit for running in Linux Kernel by Alain Knaff (alain@knaff.lu) | 
|  | 45 | */ | 
|  | 46 |  | 
|  | 47 |  | 
|  | 48 | #ifndef STATIC | 
|  | 49 | #include <linux/decompress/bunzip2.h> | 
|  | 50 | #endif /* !STATIC */ | 
|  | 51 |  | 
|  | 52 | #include <linux/decompress/mm.h> | 
| Pekka Enberg | ba56617 | 2009-03-24 11:13:52 +0200 | [diff] [blame] | 53 | #include <linux/slab.h> | 
| Alain Knaff | bc22c17 | 2009-01-04 22:46:16 +0100 | [diff] [blame] | 54 |  | 
|  | 55 | #ifndef INT_MAX | 
|  | 56 | #define INT_MAX 0x7fffffff | 
|  | 57 | #endif | 
|  | 58 |  | 
|  | 59 | /* Constants for Huffman coding */ | 
|  | 60 | #define MAX_GROUPS		6 | 
|  | 61 | #define GROUP_SIZE   		50	/* 64 would have been more efficient */ | 
|  | 62 | #define MAX_HUFCODE_BITS 	20	/* Longest Huffman code allowed */ | 
|  | 63 | #define MAX_SYMBOLS 		258	/* 256 literals + RUNA + RUNB */ | 
|  | 64 | #define SYMBOL_RUNA		0 | 
|  | 65 | #define SYMBOL_RUNB		1 | 
|  | 66 |  | 
|  | 67 | /* Status return values */ | 
|  | 68 | #define RETVAL_OK			0 | 
|  | 69 | #define RETVAL_LAST_BLOCK		(-1) | 
|  | 70 | #define RETVAL_NOT_BZIP_DATA		(-2) | 
|  | 71 | #define RETVAL_UNEXPECTED_INPUT_EOF	(-3) | 
|  | 72 | #define RETVAL_UNEXPECTED_OUTPUT_EOF	(-4) | 
|  | 73 | #define RETVAL_DATA_ERROR		(-5) | 
|  | 74 | #define RETVAL_OUT_OF_MEMORY		(-6) | 
|  | 75 | #define RETVAL_OBSOLETE_INPUT		(-7) | 
|  | 76 |  | 
|  | 77 | /* Other housekeeping constants */ | 
|  | 78 | #define BZIP2_IOBUF_SIZE		4096 | 
|  | 79 |  | 
|  | 80 | /* This is what we know about each Huffman coding group */ | 
|  | 81 | struct group_data { | 
|  | 82 | /* We have an extra slot at the end of limit[] for a sentinal value. */ | 
|  | 83 | int limit[MAX_HUFCODE_BITS+1]; | 
|  | 84 | int base[MAX_HUFCODE_BITS]; | 
|  | 85 | int permute[MAX_SYMBOLS]; | 
|  | 86 | int minLen, maxLen; | 
|  | 87 | }; | 
|  | 88 |  | 
|  | 89 | /* Structure holding all the housekeeping data, including IO buffers and | 
|  | 90 | memory that persists between calls to bunzip */ | 
|  | 91 | struct bunzip_data { | 
|  | 92 | /* State for interrupting output loop */ | 
|  | 93 | int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; | 
|  | 94 | /* I/O tracking data (file handles, buffers, positions, etc.) */ | 
|  | 95 | int (*fill)(void*, unsigned int); | 
|  | 96 | int inbufCount, inbufPos /*, outbufPos*/; | 
|  | 97 | unsigned char *inbuf /*,*outbuf*/; | 
|  | 98 | unsigned int inbufBitCount, inbufBits; | 
|  | 99 | /* The CRC values stored in the block header and calculated from the | 
|  | 100 | data */ | 
|  | 101 | unsigned int crc32Table[256], headerCRC, totalCRC, writeCRC; | 
|  | 102 | /* Intermediate buffer and its size (in bytes) */ | 
|  | 103 | unsigned int *dbuf, dbufSize; | 
|  | 104 | /* These things are a bit too big to go on the stack */ | 
|  | 105 | unsigned char selectors[32768];		/* nSelectors = 15 bits */ | 
|  | 106 | struct group_data groups[MAX_GROUPS];	/* Huffman coding tables */ | 
|  | 107 | int io_error;			/* non-zero if we have IO error */ | 
|  | 108 | }; | 
|  | 109 |  | 
|  | 110 |  | 
|  | 111 | /* Return the next nnn bits of input.  All reads from the compressed input | 
|  | 112 | are done through this function.  All reads are big endian */ | 
|  | 113 | static unsigned int INIT get_bits(struct bunzip_data *bd, char bits_wanted) | 
|  | 114 | { | 
|  | 115 | unsigned int bits = 0; | 
|  | 116 |  | 
|  | 117 | /* If we need to get more data from the byte buffer, do so. | 
|  | 118 | (Loop getting one byte at a time to enforce endianness and avoid | 
|  | 119 | unaligned access.) */ | 
|  | 120 | while (bd->inbufBitCount < bits_wanted) { | 
|  | 121 | /* If we need to read more data from file into byte buffer, do | 
|  | 122 | so */ | 
|  | 123 | if (bd->inbufPos == bd->inbufCount) { | 
|  | 124 | if (bd->io_error) | 
|  | 125 | return 0; | 
|  | 126 | bd->inbufCount = bd->fill(bd->inbuf, BZIP2_IOBUF_SIZE); | 
|  | 127 | if (bd->inbufCount <= 0) { | 
|  | 128 | bd->io_error = RETVAL_UNEXPECTED_INPUT_EOF; | 
|  | 129 | return 0; | 
|  | 130 | } | 
|  | 131 | bd->inbufPos = 0; | 
|  | 132 | } | 
|  | 133 | /* Avoid 32-bit overflow (dump bit buffer to top of output) */ | 
|  | 134 | if (bd->inbufBitCount >= 24) { | 
|  | 135 | bits = bd->inbufBits&((1 << bd->inbufBitCount)-1); | 
|  | 136 | bits_wanted -= bd->inbufBitCount; | 
|  | 137 | bits <<= bits_wanted; | 
|  | 138 | bd->inbufBitCount = 0; | 
|  | 139 | } | 
|  | 140 | /* Grab next 8 bits of input from buffer. */ | 
|  | 141 | bd->inbufBits = (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | 
|  | 142 | bd->inbufBitCount += 8; | 
|  | 143 | } | 
|  | 144 | /* Calculate result */ | 
|  | 145 | bd->inbufBitCount -= bits_wanted; | 
|  | 146 | bits |= (bd->inbufBits >> bd->inbufBitCount)&((1 << bits_wanted)-1); | 
|  | 147 |  | 
|  | 148 | return bits; | 
|  | 149 | } | 
|  | 150 |  | 
|  | 151 | /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ | 
|  | 152 |  | 
|  | 153 | static int INIT get_next_block(struct bunzip_data *bd) | 
|  | 154 | { | 
|  | 155 | struct group_data *hufGroup = NULL; | 
|  | 156 | int *base = NULL; | 
|  | 157 | int *limit = NULL; | 
|  | 158 | int dbufCount, nextSym, dbufSize, groupCount, selector, | 
|  | 159 | i, j, k, t, runPos, symCount, symTotal, nSelectors, | 
|  | 160 | byteCount[256]; | 
|  | 161 | unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; | 
|  | 162 | unsigned int *dbuf, origPtr; | 
|  | 163 |  | 
|  | 164 | dbuf = bd->dbuf; | 
|  | 165 | dbufSize = bd->dbufSize; | 
|  | 166 | selectors = bd->selectors; | 
|  | 167 |  | 
|  | 168 | /* Read in header signature and CRC, then validate signature. | 
|  | 169 | (last block signature means CRC is for whole file, return now) */ | 
|  | 170 | i = get_bits(bd, 24); | 
|  | 171 | j = get_bits(bd, 24); | 
|  | 172 | bd->headerCRC = get_bits(bd, 32); | 
|  | 173 | if ((i == 0x177245) && (j == 0x385090)) | 
|  | 174 | return RETVAL_LAST_BLOCK; | 
|  | 175 | if ((i != 0x314159) || (j != 0x265359)) | 
|  | 176 | return RETVAL_NOT_BZIP_DATA; | 
|  | 177 | /* We can add support for blockRandomised if anybody complains. | 
|  | 178 | There was some code for this in busybox 1.0.0-pre3, but nobody ever | 
|  | 179 | noticed that it didn't actually work. */ | 
|  | 180 | if (get_bits(bd, 1)) | 
|  | 181 | return RETVAL_OBSOLETE_INPUT; | 
|  | 182 | origPtr = get_bits(bd, 24); | 
|  | 183 | if (origPtr > dbufSize) | 
|  | 184 | return RETVAL_DATA_ERROR; | 
|  | 185 | /* mapping table: if some byte values are never used (encoding things | 
|  | 186 | like ascii text), the compression code removes the gaps to have fewer | 
|  | 187 | symbols to deal with, and writes a sparse bitfield indicating which | 
|  | 188 | values were present.  We make a translation table to convert the | 
|  | 189 | symbols back to the corresponding bytes. */ | 
|  | 190 | t = get_bits(bd, 16); | 
|  | 191 | symTotal = 0; | 
|  | 192 | for (i = 0; i < 16; i++) { | 
|  | 193 | if (t&(1 << (15-i))) { | 
|  | 194 | k = get_bits(bd, 16); | 
|  | 195 | for (j = 0; j < 16; j++) | 
|  | 196 | if (k&(1 << (15-j))) | 
|  | 197 | symToByte[symTotal++] = (16*i)+j; | 
|  | 198 | } | 
|  | 199 | } | 
|  | 200 | /* How many different Huffman coding groups does this block use? */ | 
|  | 201 | groupCount = get_bits(bd, 3); | 
|  | 202 | if (groupCount < 2 || groupCount > MAX_GROUPS) | 
|  | 203 | return RETVAL_DATA_ERROR; | 
|  | 204 | /* nSelectors: Every GROUP_SIZE many symbols we select a new | 
|  | 205 | Huffman coding group.  Read in the group selector list, | 
|  | 206 | which is stored as MTF encoded bit runs.  (MTF = Move To | 
|  | 207 | Front, as each value is used it's moved to the start of the | 
|  | 208 | list.) */ | 
|  | 209 | nSelectors = get_bits(bd, 15); | 
|  | 210 | if (!nSelectors) | 
|  | 211 | return RETVAL_DATA_ERROR; | 
|  | 212 | for (i = 0; i < groupCount; i++) | 
|  | 213 | mtfSymbol[i] = i; | 
|  | 214 | for (i = 0; i < nSelectors; i++) { | 
|  | 215 | /* Get next value */ | 
|  | 216 | for (j = 0; get_bits(bd, 1); j++) | 
|  | 217 | if (j >= groupCount) | 
|  | 218 | return RETVAL_DATA_ERROR; | 
|  | 219 | /* Decode MTF to get the next selector */ | 
|  | 220 | uc = mtfSymbol[j]; | 
|  | 221 | for (; j; j--) | 
|  | 222 | mtfSymbol[j] = mtfSymbol[j-1]; | 
|  | 223 | mtfSymbol[0] = selectors[i] = uc; | 
|  | 224 | } | 
|  | 225 | /* Read the Huffman coding tables for each group, which code | 
|  | 226 | for symTotal literal symbols, plus two run symbols (RUNA, | 
|  | 227 | RUNB) */ | 
|  | 228 | symCount = symTotal+2; | 
|  | 229 | for (j = 0; j < groupCount; j++) { | 
|  | 230 | unsigned char length[MAX_SYMBOLS], temp[MAX_HUFCODE_BITS+1]; | 
|  | 231 | int	minLen,	maxLen, pp; | 
|  | 232 | /* Read Huffman code lengths for each symbol.  They're | 
|  | 233 | stored in a way similar to mtf; record a starting | 
|  | 234 | value for the first symbol, and an offset from the | 
|  | 235 | previous value for everys symbol after that. | 
|  | 236 | (Subtracting 1 before the loop and then adding it | 
|  | 237 | back at the end is an optimization that makes the | 
|  | 238 | test inside the loop simpler: symbol length 0 | 
|  | 239 | becomes negative, so an unsigned inequality catches | 
|  | 240 | it.) */ | 
|  | 241 | t = get_bits(bd, 5)-1; | 
|  | 242 | for (i = 0; i < symCount; i++) { | 
|  | 243 | for (;;) { | 
|  | 244 | if (((unsigned)t) > (MAX_HUFCODE_BITS-1)) | 
|  | 245 | return RETVAL_DATA_ERROR; | 
|  | 246 |  | 
|  | 247 | /* If first bit is 0, stop.  Else | 
|  | 248 | second bit indicates whether to | 
|  | 249 | increment or decrement the value. | 
|  | 250 | Optimization: grab 2 bits and unget | 
|  | 251 | the second if the first was 0. */ | 
|  | 252 |  | 
|  | 253 | k = get_bits(bd, 2); | 
|  | 254 | if (k < 2) { | 
|  | 255 | bd->inbufBitCount++; | 
|  | 256 | break; | 
|  | 257 | } | 
|  | 258 | /* Add one if second bit 1, else | 
|  | 259 | * subtract 1.  Avoids if/else */ | 
|  | 260 | t += (((k+1)&2)-1); | 
|  | 261 | } | 
|  | 262 | /* Correct for the initial -1, to get the | 
|  | 263 | * final symbol length */ | 
|  | 264 | length[i] = t+1; | 
|  | 265 | } | 
|  | 266 | /* Find largest and smallest lengths in this group */ | 
|  | 267 | minLen = maxLen = length[0]; | 
|  | 268 |  | 
|  | 269 | for (i = 1; i < symCount; i++) { | 
|  | 270 | if (length[i] > maxLen) | 
|  | 271 | maxLen = length[i]; | 
|  | 272 | else if (length[i] < minLen) | 
|  | 273 | minLen = length[i]; | 
|  | 274 | } | 
|  | 275 |  | 
|  | 276 | /* Calculate permute[], base[], and limit[] tables from | 
|  | 277 | * length[]. | 
|  | 278 | * | 
|  | 279 | * permute[] is the lookup table for converting | 
|  | 280 | * Huffman coded symbols into decoded symbols.  base[] | 
|  | 281 | * is the amount to subtract from the value of a | 
|  | 282 | * Huffman symbol of a given length when using | 
|  | 283 | * permute[]. | 
|  | 284 | * | 
|  | 285 | * limit[] indicates the largest numerical value a | 
|  | 286 | * symbol with a given number of bits can have.  This | 
|  | 287 | * is how the Huffman codes can vary in length: each | 
|  | 288 | * code with a value > limit[length] needs another | 
|  | 289 | * bit. | 
|  | 290 | */ | 
|  | 291 | hufGroup = bd->groups+j; | 
|  | 292 | hufGroup->minLen = minLen; | 
|  | 293 | hufGroup->maxLen = maxLen; | 
|  | 294 | /* Note that minLen can't be smaller than 1, so we | 
|  | 295 | adjust the base and limit array pointers so we're | 
|  | 296 | not always wasting the first entry.  We do this | 
|  | 297 | again when using them (during symbol decoding).*/ | 
|  | 298 | base = hufGroup->base-1; | 
|  | 299 | limit = hufGroup->limit-1; | 
|  | 300 | /* Calculate permute[].  Concurently, initialize | 
|  | 301 | * temp[] and limit[]. */ | 
|  | 302 | pp = 0; | 
|  | 303 | for (i = minLen; i <= maxLen; i++) { | 
|  | 304 | temp[i] = limit[i] = 0; | 
|  | 305 | for (t = 0; t < symCount; t++) | 
|  | 306 | if (length[t] == i) | 
|  | 307 | hufGroup->permute[pp++] = t; | 
|  | 308 | } | 
|  | 309 | /* Count symbols coded for at each bit length */ | 
|  | 310 | for (i = 0; i < symCount; i++) | 
|  | 311 | temp[length[i]]++; | 
|  | 312 | /* Calculate limit[] (the largest symbol-coding value | 
|  | 313 | *at each bit length, which is (previous limit << | 
|  | 314 | *1)+symbols at this level), and base[] (number of | 
|  | 315 | *symbols to ignore at each bit length, which is limit | 
|  | 316 | *minus the cumulative count of symbols coded for | 
|  | 317 | *already). */ | 
|  | 318 | pp = t = 0; | 
|  | 319 | for (i = minLen; i < maxLen; i++) { | 
|  | 320 | pp += temp[i]; | 
|  | 321 | /* We read the largest possible symbol size | 
|  | 322 | and then unget bits after determining how | 
|  | 323 | many we need, and those extra bits could be | 
|  | 324 | set to anything.  (They're noise from | 
|  | 325 | future symbols.)  At each level we're | 
|  | 326 | really only interested in the first few | 
|  | 327 | bits, so here we set all the trailing | 
|  | 328 | to-be-ignored bits to 1 so they don't | 
|  | 329 | affect the value > limit[length] | 
|  | 330 | comparison. */ | 
|  | 331 | limit[i] = (pp << (maxLen - i)) - 1; | 
|  | 332 | pp <<= 1; | 
|  | 333 | base[i+1] = pp-(t += temp[i]); | 
|  | 334 | } | 
|  | 335 | limit[maxLen+1] = INT_MAX; /* Sentinal value for | 
|  | 336 | * reading next sym. */ | 
|  | 337 | limit[maxLen] = pp+temp[maxLen]-1; | 
|  | 338 | base[minLen] = 0; | 
|  | 339 | } | 
|  | 340 | /* We've finished reading and digesting the block header.  Now | 
|  | 341 | read this block's Huffman coded symbols from the file and | 
|  | 342 | undo the Huffman coding and run length encoding, saving the | 
|  | 343 | result into dbuf[dbufCount++] = uc */ | 
|  | 344 |  | 
|  | 345 | /* Initialize symbol occurrence counters and symbol Move To | 
|  | 346 | * Front table */ | 
|  | 347 | for (i = 0; i < 256; i++) { | 
|  | 348 | byteCount[i] = 0; | 
|  | 349 | mtfSymbol[i] = (unsigned char)i; | 
|  | 350 | } | 
|  | 351 | /* Loop through compressed symbols. */ | 
|  | 352 | runPos = dbufCount = symCount = selector = 0; | 
|  | 353 | for (;;) { | 
|  | 354 | /* Determine which Huffman coding group to use. */ | 
|  | 355 | if (!(symCount--)) { | 
|  | 356 | symCount = GROUP_SIZE-1; | 
|  | 357 | if (selector >= nSelectors) | 
|  | 358 | return RETVAL_DATA_ERROR; | 
|  | 359 | hufGroup = bd->groups+selectors[selector++]; | 
|  | 360 | base = hufGroup->base-1; | 
|  | 361 | limit = hufGroup->limit-1; | 
|  | 362 | } | 
|  | 363 | /* Read next Huffman-coded symbol. */ | 
|  | 364 | /* Note: It is far cheaper to read maxLen bits and | 
|  | 365 | back up than it is to read minLen bits and then an | 
|  | 366 | additional bit at a time, testing as we go. | 
|  | 367 | Because there is a trailing last block (with file | 
|  | 368 | CRC), there is no danger of the overread causing an | 
|  | 369 | unexpected EOF for a valid compressed file.  As a | 
|  | 370 | further optimization, we do the read inline | 
|  | 371 | (falling back to a call to get_bits if the buffer | 
|  | 372 | runs dry).  The following (up to got_huff_bits:) is | 
|  | 373 | equivalent to j = get_bits(bd, hufGroup->maxLen); | 
|  | 374 | */ | 
|  | 375 | while (bd->inbufBitCount < hufGroup->maxLen) { | 
|  | 376 | if (bd->inbufPos == bd->inbufCount) { | 
|  | 377 | j = get_bits(bd, hufGroup->maxLen); | 
|  | 378 | goto got_huff_bits; | 
|  | 379 | } | 
|  | 380 | bd->inbufBits = | 
|  | 381 | (bd->inbufBits << 8)|bd->inbuf[bd->inbufPos++]; | 
|  | 382 | bd->inbufBitCount += 8; | 
|  | 383 | }; | 
|  | 384 | bd->inbufBitCount -= hufGroup->maxLen; | 
|  | 385 | j = (bd->inbufBits >> bd->inbufBitCount)& | 
|  | 386 | ((1 << hufGroup->maxLen)-1); | 
|  | 387 | got_huff_bits: | 
|  | 388 | /* Figure how how many bits are in next symbol and | 
|  | 389 | * unget extras */ | 
|  | 390 | i = hufGroup->minLen; | 
|  | 391 | while (j > limit[i]) | 
|  | 392 | ++i; | 
|  | 393 | bd->inbufBitCount += (hufGroup->maxLen - i); | 
|  | 394 | /* Huffman decode value to get nextSym (with bounds checking) */ | 
|  | 395 | if ((i > hufGroup->maxLen) | 
|  | 396 | || (((unsigned)(j = (j>>(hufGroup->maxLen-i))-base[i])) | 
|  | 397 | >= MAX_SYMBOLS)) | 
|  | 398 | return RETVAL_DATA_ERROR; | 
|  | 399 | nextSym = hufGroup->permute[j]; | 
|  | 400 | /* We have now decoded the symbol, which indicates | 
|  | 401 | either a new literal byte, or a repeated run of the | 
|  | 402 | most recent literal byte.  First, check if nextSym | 
|  | 403 | indicates a repeated run, and if so loop collecting | 
|  | 404 | how many times to repeat the last literal. */ | 
|  | 405 | if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */ | 
|  | 406 | /* If this is the start of a new run, zero out | 
|  | 407 | * counter */ | 
|  | 408 | if (!runPos) { | 
|  | 409 | runPos = 1; | 
|  | 410 | t = 0; | 
|  | 411 | } | 
|  | 412 | /* Neat trick that saves 1 symbol: instead of | 
|  | 413 | or-ing 0 or 1 at each bit position, add 1 | 
|  | 414 | or 2 instead.  For example, 1011 is 1 << 0 | 
|  | 415 | + 1 << 1 + 2 << 2.  1010 is 2 << 0 + 2 << 1 | 
|  | 416 | + 1 << 2.  You can make any bit pattern | 
|  | 417 | that way using 1 less symbol than the basic | 
|  | 418 | or 0/1 method (except all bits 0, which | 
|  | 419 | would use no symbols, but a run of length 0 | 
|  | 420 | doesn't mean anything in this context). | 
|  | 421 | Thus space is saved. */ | 
|  | 422 | t += (runPos << nextSym); | 
|  | 423 | /* +runPos if RUNA; +2*runPos if RUNB */ | 
|  | 424 |  | 
|  | 425 | runPos <<= 1; | 
|  | 426 | continue; | 
|  | 427 | } | 
|  | 428 | /* When we hit the first non-run symbol after a run, | 
|  | 429 | we now know how many times to repeat the last | 
|  | 430 | literal, so append that many copies to our buffer | 
|  | 431 | of decoded symbols (dbuf) now.  (The last literal | 
|  | 432 | used is the one at the head of the mtfSymbol | 
|  | 433 | array.) */ | 
|  | 434 | if (runPos) { | 
|  | 435 | runPos = 0; | 
|  | 436 | if (dbufCount+t >= dbufSize) | 
|  | 437 | return RETVAL_DATA_ERROR; | 
|  | 438 |  | 
|  | 439 | uc = symToByte[mtfSymbol[0]]; | 
|  | 440 | byteCount[uc] += t; | 
|  | 441 | while (t--) | 
|  | 442 | dbuf[dbufCount++] = uc; | 
|  | 443 | } | 
|  | 444 | /* Is this the terminating symbol? */ | 
|  | 445 | if (nextSym > symTotal) | 
|  | 446 | break; | 
|  | 447 | /* At this point, nextSym indicates a new literal | 
|  | 448 | character.  Subtract one to get the position in the | 
|  | 449 | MTF array at which this literal is currently to be | 
|  | 450 | found.  (Note that the result can't be -1 or 0, | 
|  | 451 | because 0 and 1 are RUNA and RUNB.  But another | 
|  | 452 | instance of the first symbol in the mtf array, | 
|  | 453 | position 0, would have been handled as part of a | 
|  | 454 | run above.  Therefore 1 unused mtf position minus 2 | 
|  | 455 | non-literal nextSym values equals -1.) */ | 
|  | 456 | if (dbufCount >= dbufSize) | 
|  | 457 | return RETVAL_DATA_ERROR; | 
|  | 458 | i = nextSym - 1; | 
|  | 459 | uc = mtfSymbol[i]; | 
|  | 460 | /* Adjust the MTF array.  Since we typically expect to | 
|  | 461 | *move only a small number of symbols, and are bound | 
|  | 462 | *by 256 in any case, using memmove here would | 
|  | 463 | *typically be bigger and slower due to function call | 
|  | 464 | *overhead and other assorted setup costs. */ | 
|  | 465 | do { | 
|  | 466 | mtfSymbol[i] = mtfSymbol[i-1]; | 
|  | 467 | } while (--i); | 
|  | 468 | mtfSymbol[0] = uc; | 
|  | 469 | uc = symToByte[uc]; | 
|  | 470 | /* We have our literal byte.  Save it into dbuf. */ | 
|  | 471 | byteCount[uc]++; | 
|  | 472 | dbuf[dbufCount++] = (unsigned int)uc; | 
|  | 473 | } | 
|  | 474 | /* At this point, we've read all the Huffman-coded symbols | 
|  | 475 | (and repeated runs) for this block from the input stream, | 
|  | 476 | and decoded them into the intermediate buffer.  There are | 
|  | 477 | dbufCount many decoded bytes in dbuf[].  Now undo the | 
|  | 478 | Burrows-Wheeler transform on dbuf.  See | 
|  | 479 | http://dogma.net/markn/articles/bwt/bwt.htm | 
|  | 480 | */ | 
|  | 481 | /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ | 
|  | 482 | j = 0; | 
|  | 483 | for (i = 0; i < 256; i++) { | 
|  | 484 | k = j+byteCount[i]; | 
|  | 485 | byteCount[i] = j; | 
|  | 486 | j = k; | 
|  | 487 | } | 
|  | 488 | /* Figure out what order dbuf would be in if we sorted it. */ | 
|  | 489 | for (i = 0; i < dbufCount; i++) { | 
|  | 490 | uc = (unsigned char)(dbuf[i] & 0xff); | 
|  | 491 | dbuf[byteCount[uc]] |= (i << 8); | 
|  | 492 | byteCount[uc]++; | 
|  | 493 | } | 
|  | 494 | /* Decode first byte by hand to initialize "previous" byte. | 
|  | 495 | Note that it doesn't get output, and if the first three | 
|  | 496 | characters are identical it doesn't qualify as a run (hence | 
|  | 497 | writeRunCountdown = 5). */ | 
|  | 498 | if (dbufCount) { | 
|  | 499 | if (origPtr >= dbufCount) | 
|  | 500 | return RETVAL_DATA_ERROR; | 
|  | 501 | bd->writePos = dbuf[origPtr]; | 
|  | 502 | bd->writeCurrent = (unsigned char)(bd->writePos&0xff); | 
|  | 503 | bd->writePos >>= 8; | 
|  | 504 | bd->writeRunCountdown = 5; | 
|  | 505 | } | 
|  | 506 | bd->writeCount = dbufCount; | 
|  | 507 |  | 
|  | 508 | return RETVAL_OK; | 
|  | 509 | } | 
|  | 510 |  | 
|  | 511 | /* Undo burrows-wheeler transform on intermediate buffer to produce output. | 
|  | 512 | If start_bunzip was initialized with out_fd =-1, then up to len bytes of | 
|  | 513 | data are written to outbuf.  Return value is number of bytes written or | 
|  | 514 | error (all errors are negative numbers).  If out_fd!=-1, outbuf and len | 
|  | 515 | are ignored, data is written to out_fd and return is RETVAL_OK or error. | 
|  | 516 | */ | 
|  | 517 |  | 
|  | 518 | static int INIT read_bunzip(struct bunzip_data *bd, char *outbuf, int len) | 
|  | 519 | { | 
|  | 520 | const unsigned int *dbuf; | 
|  | 521 | int pos, xcurrent, previous, gotcount; | 
|  | 522 |  | 
|  | 523 | /* If last read was short due to end of file, return last block now */ | 
|  | 524 | if (bd->writeCount < 0) | 
|  | 525 | return bd->writeCount; | 
|  | 526 |  | 
|  | 527 | gotcount = 0; | 
|  | 528 | dbuf = bd->dbuf; | 
|  | 529 | pos = bd->writePos; | 
|  | 530 | xcurrent = bd->writeCurrent; | 
|  | 531 |  | 
|  | 532 | /* We will always have pending decoded data to write into the output | 
|  | 533 | buffer unless this is the very first call (in which case we haven't | 
|  | 534 | Huffman-decoded a block into the intermediate buffer yet). */ | 
|  | 535 |  | 
|  | 536 | if (bd->writeCopies) { | 
|  | 537 | /* Inside the loop, writeCopies means extra copies (beyond 1) */ | 
|  | 538 | --bd->writeCopies; | 
|  | 539 | /* Loop outputting bytes */ | 
|  | 540 | for (;;) { | 
|  | 541 | /* If the output buffer is full, snapshot | 
|  | 542 | * state and return */ | 
|  | 543 | if (gotcount >= len) { | 
|  | 544 | bd->writePos = pos; | 
|  | 545 | bd->writeCurrent = xcurrent; | 
|  | 546 | bd->writeCopies++; | 
|  | 547 | return len; | 
|  | 548 | } | 
|  | 549 | /* Write next byte into output buffer, updating CRC */ | 
|  | 550 | outbuf[gotcount++] = xcurrent; | 
|  | 551 | bd->writeCRC = (((bd->writeCRC) << 8) | 
|  | 552 | ^bd->crc32Table[((bd->writeCRC) >> 24) | 
|  | 553 | ^xcurrent]); | 
|  | 554 | /* Loop now if we're outputting multiple | 
|  | 555 | * copies of this byte */ | 
|  | 556 | if (bd->writeCopies) { | 
|  | 557 | --bd->writeCopies; | 
|  | 558 | continue; | 
|  | 559 | } | 
|  | 560 | decode_next_byte: | 
|  | 561 | if (!bd->writeCount--) | 
|  | 562 | break; | 
|  | 563 | /* Follow sequence vector to undo | 
|  | 564 | * Burrows-Wheeler transform */ | 
|  | 565 | previous = xcurrent; | 
|  | 566 | pos = dbuf[pos]; | 
|  | 567 | xcurrent = pos&0xff; | 
|  | 568 | pos >>= 8; | 
|  | 569 | /* After 3 consecutive copies of the same | 
|  | 570 | byte, the 4th is a repeat count.  We count | 
|  | 571 | down from 4 instead *of counting up because | 
|  | 572 | testing for non-zero is faster */ | 
|  | 573 | if (--bd->writeRunCountdown) { | 
|  | 574 | if (xcurrent != previous) | 
|  | 575 | bd->writeRunCountdown = 4; | 
|  | 576 | } else { | 
|  | 577 | /* We have a repeated run, this byte | 
|  | 578 | * indicates the count */ | 
|  | 579 | bd->writeCopies = xcurrent; | 
|  | 580 | xcurrent = previous; | 
|  | 581 | bd->writeRunCountdown = 5; | 
|  | 582 | /* Sometimes there are just 3 bytes | 
|  | 583 | * (run length 0) */ | 
|  | 584 | if (!bd->writeCopies) | 
|  | 585 | goto decode_next_byte; | 
|  | 586 | /* Subtract the 1 copy we'd output | 
|  | 587 | * anyway to get extras */ | 
|  | 588 | --bd->writeCopies; | 
|  | 589 | } | 
|  | 590 | } | 
|  | 591 | /* Decompression of this block completed successfully */ | 
|  | 592 | bd->writeCRC = ~bd->writeCRC; | 
|  | 593 | bd->totalCRC = ((bd->totalCRC << 1) | | 
|  | 594 | (bd->totalCRC >> 31)) ^ bd->writeCRC; | 
|  | 595 | /* If this block had a CRC error, force file level CRC error. */ | 
|  | 596 | if (bd->writeCRC != bd->headerCRC) { | 
|  | 597 | bd->totalCRC = bd->headerCRC+1; | 
|  | 598 | return RETVAL_LAST_BLOCK; | 
|  | 599 | } | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 | /* Refill the intermediate buffer by Huffman-decoding next | 
|  | 603 | * block of input */ | 
|  | 604 | /* (previous is just a convenient unused temp variable here) */ | 
|  | 605 | previous = get_next_block(bd); | 
|  | 606 | if (previous) { | 
|  | 607 | bd->writeCount = previous; | 
|  | 608 | return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; | 
|  | 609 | } | 
|  | 610 | bd->writeCRC = 0xffffffffUL; | 
|  | 611 | pos = bd->writePos; | 
|  | 612 | xcurrent = bd->writeCurrent; | 
|  | 613 | goto decode_next_byte; | 
|  | 614 | } | 
|  | 615 |  | 
|  | 616 | static int INIT nofill(void *buf, unsigned int len) | 
|  | 617 | { | 
|  | 618 | return -1; | 
|  | 619 | } | 
|  | 620 |  | 
|  | 621 | /* Allocate the structure, read file header.  If in_fd ==-1, inbuf must contain | 
|  | 622 | a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are | 
|  | 623 | ignored, and data is read from file handle into temporary buffer. */ | 
|  | 624 | static int INIT start_bunzip(struct bunzip_data **bdp, void *inbuf, int len, | 
|  | 625 | int (*fill)(void*, unsigned int)) | 
|  | 626 | { | 
|  | 627 | struct bunzip_data *bd; | 
|  | 628 | unsigned int i, j, c; | 
|  | 629 | const unsigned int BZh0 = | 
|  | 630 | (((unsigned int)'B') << 24)+(((unsigned int)'Z') << 16) | 
|  | 631 | +(((unsigned int)'h') << 8)+(unsigned int)'0'; | 
|  | 632 |  | 
|  | 633 | /* Figure out how much data to allocate */ | 
|  | 634 | i = sizeof(struct bunzip_data); | 
|  | 635 |  | 
|  | 636 | /* Allocate bunzip_data.  Most fields initialize to zero. */ | 
|  | 637 | bd = *bdp = malloc(i); | 
|  | 638 | memset(bd, 0, sizeof(struct bunzip_data)); | 
|  | 639 | /* Setup input buffer */ | 
|  | 640 | bd->inbuf = inbuf; | 
|  | 641 | bd->inbufCount = len; | 
|  | 642 | if (fill != NULL) | 
|  | 643 | bd->fill = fill; | 
|  | 644 | else | 
|  | 645 | bd->fill = nofill; | 
|  | 646 |  | 
|  | 647 | /* Init the CRC32 table (big endian) */ | 
|  | 648 | for (i = 0; i < 256; i++) { | 
|  | 649 | c = i << 24; | 
|  | 650 | for (j = 8; j; j--) | 
|  | 651 | c = c&0x80000000 ? (c << 1)^0x04c11db7 : (c << 1); | 
|  | 652 | bd->crc32Table[i] = c; | 
|  | 653 | } | 
|  | 654 |  | 
|  | 655 | /* Ensure that file starts with "BZh['1'-'9']." */ | 
|  | 656 | i = get_bits(bd, 32); | 
|  | 657 | if (((unsigned int)(i-BZh0-1)) >= 9) | 
|  | 658 | return RETVAL_NOT_BZIP_DATA; | 
|  | 659 |  | 
|  | 660 | /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of | 
|  | 661 | uncompressed data.  Allocate intermediate buffer for block. */ | 
|  | 662 | bd->dbufSize = 100000*(i-BZh0); | 
|  | 663 |  | 
|  | 664 | bd->dbuf = large_malloc(bd->dbufSize * sizeof(int)); | 
|  | 665 | return RETVAL_OK; | 
|  | 666 | } | 
|  | 667 |  | 
|  | 668 | /* Example usage: decompress src_fd to dst_fd.  (Stops at end of bzip2 data, | 
|  | 669 | not end of file.) */ | 
|  | 670 | STATIC int INIT bunzip2(unsigned char *buf, int len, | 
|  | 671 | int(*fill)(void*, unsigned int), | 
|  | 672 | int(*flush)(void*, unsigned int), | 
|  | 673 | unsigned char *outbuf, | 
|  | 674 | int *pos, | 
|  | 675 | void(*error_fn)(char *x)) | 
|  | 676 | { | 
|  | 677 | struct bunzip_data *bd; | 
|  | 678 | int i = -1; | 
|  | 679 | unsigned char *inbuf; | 
|  | 680 |  | 
|  | 681 | set_error_fn(error_fn); | 
|  | 682 | if (flush) | 
|  | 683 | outbuf = malloc(BZIP2_IOBUF_SIZE); | 
|  | 684 | else | 
|  | 685 | len -= 4; /* Uncompressed size hack active in pre-boot | 
|  | 686 | environment */ | 
|  | 687 | if (!outbuf) { | 
|  | 688 | error("Could not allocate output bufer"); | 
|  | 689 | return -1; | 
|  | 690 | } | 
|  | 691 | if (buf) | 
|  | 692 | inbuf = buf; | 
|  | 693 | else | 
|  | 694 | inbuf = malloc(BZIP2_IOBUF_SIZE); | 
|  | 695 | if (!inbuf) { | 
|  | 696 | error("Could not allocate input bufer"); | 
|  | 697 | goto exit_0; | 
|  | 698 | } | 
|  | 699 | i = start_bunzip(&bd, inbuf, len, fill); | 
|  | 700 | if (!i) { | 
|  | 701 | for (;;) { | 
|  | 702 | i = read_bunzip(bd, outbuf, BZIP2_IOBUF_SIZE); | 
|  | 703 | if (i <= 0) | 
|  | 704 | break; | 
|  | 705 | if (!flush) | 
|  | 706 | outbuf += i; | 
|  | 707 | else | 
|  | 708 | if (i != flush(outbuf, i)) { | 
|  | 709 | i = RETVAL_UNEXPECTED_OUTPUT_EOF; | 
|  | 710 | break; | 
|  | 711 | } | 
|  | 712 | } | 
|  | 713 | } | 
|  | 714 | /* Check CRC and release memory */ | 
|  | 715 | if (i == RETVAL_LAST_BLOCK) { | 
|  | 716 | if (bd->headerCRC != bd->totalCRC) | 
|  | 717 | error("Data integrity error when decompressing."); | 
|  | 718 | else | 
|  | 719 | i = RETVAL_OK; | 
|  | 720 | } else if (i == RETVAL_UNEXPECTED_OUTPUT_EOF) { | 
|  | 721 | error("Compressed file ends unexpectedly"); | 
|  | 722 | } | 
|  | 723 | if (bd->dbuf) | 
|  | 724 | large_free(bd->dbuf); | 
|  | 725 | if (pos) | 
|  | 726 | *pos = bd->inbufPos; | 
|  | 727 | free(bd); | 
|  | 728 | if (!buf) | 
|  | 729 | free(inbuf); | 
|  | 730 | exit_0: | 
|  | 731 | if (flush) | 
|  | 732 | free(outbuf); | 
|  | 733 | return i; | 
|  | 734 | } | 
|  | 735 |  | 
|  | 736 | #define decompress bunzip2 |