| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Routines to emulate some Altivec/VMX instructions, specifically | 
 | 3 |  * those that can trap when given denormalized operands in Java mode. | 
 | 4 |  */ | 
 | 5 | #include <linux/kernel.h> | 
 | 6 | #include <linux/errno.h> | 
 | 7 | #include <linux/sched.h> | 
 | 8 | #include <asm/ptrace.h> | 
 | 9 | #include <asm/processor.h> | 
 | 10 | #include <asm/uaccess.h> | 
 | 11 |  | 
 | 12 | /* Functions in vector.S */ | 
 | 13 | extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b); | 
 | 14 | extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b); | 
 | 15 | extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); | 
 | 16 | extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); | 
 | 17 | extern void vrefp(vector128 *dst, vector128 *src); | 
 | 18 | extern void vrsqrtefp(vector128 *dst, vector128 *src); | 
 | 19 | extern void vexptep(vector128 *dst, vector128 *src); | 
 | 20 |  | 
 | 21 | static unsigned int exp2s[8] = { | 
 | 22 | 	0x800000, | 
 | 23 | 	0x8b95c2, | 
 | 24 | 	0x9837f0, | 
 | 25 | 	0xa5fed7, | 
 | 26 | 	0xb504f3, | 
 | 27 | 	0xc5672a, | 
 | 28 | 	0xd744fd, | 
 | 29 | 	0xeac0c7 | 
 | 30 | }; | 
 | 31 |  | 
 | 32 | /* | 
 | 33 |  * Computes an estimate of 2^x.  The `s' argument is the 32-bit | 
 | 34 |  * single-precision floating-point representation of x. | 
 | 35 |  */ | 
 | 36 | static unsigned int eexp2(unsigned int s) | 
 | 37 | { | 
 | 38 | 	int exp, pwr; | 
 | 39 | 	unsigned int mant, frac; | 
 | 40 |  | 
 | 41 | 	/* extract exponent field from input */ | 
 | 42 | 	exp = ((s >> 23) & 0xff) - 127; | 
 | 43 | 	if (exp > 7) { | 
 | 44 | 		/* check for NaN input */ | 
 | 45 | 		if (exp == 128 && (s & 0x7fffff) != 0) | 
 | 46 | 			return s | 0x400000;	/* return QNaN */ | 
 | 47 | 		/* 2^-big = 0, 2^+big = +Inf */ | 
 | 48 | 		return (s & 0x80000000)? 0: 0x7f800000;	/* 0 or +Inf */ | 
 | 49 | 	} | 
 | 50 | 	if (exp < -23) | 
 | 51 | 		return 0x3f800000;	/* 1.0 */ | 
 | 52 |  | 
 | 53 | 	/* convert to fixed point integer in 9.23 representation */ | 
 | 54 | 	pwr = (s & 0x7fffff) | 0x800000; | 
 | 55 | 	if (exp > 0) | 
 | 56 | 		pwr <<= exp; | 
 | 57 | 	else | 
 | 58 | 		pwr >>= -exp; | 
 | 59 | 	if (s & 0x80000000) | 
 | 60 | 		pwr = -pwr; | 
 | 61 |  | 
 | 62 | 	/* extract integer part, which becomes exponent part of result */ | 
 | 63 | 	exp = (pwr >> 23) + 126; | 
 | 64 | 	if (exp >= 254) | 
 | 65 | 		return 0x7f800000; | 
 | 66 | 	if (exp < -23) | 
 | 67 | 		return 0; | 
 | 68 |  | 
 | 69 | 	/* table lookup on top 3 bits of fraction to get mantissa */ | 
 | 70 | 	mant = exp2s[(pwr >> 20) & 7]; | 
 | 71 |  | 
 | 72 | 	/* linear interpolation using remaining 20 bits of fraction */ | 
 | 73 | 	asm("mulhwu %0,%1,%2" : "=r" (frac) | 
 | 74 | 	    : "r" (pwr << 12), "r" (0x172b83ff)); | 
 | 75 | 	asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant)); | 
 | 76 | 	mant += frac; | 
 | 77 |  | 
 | 78 | 	if (exp >= 0) | 
 | 79 | 		return mant + (exp << 23); | 
 | 80 |  | 
 | 81 | 	/* denormalized result */ | 
 | 82 | 	exp = -exp; | 
 | 83 | 	mant += 1 << (exp - 1); | 
 | 84 | 	return mant >> exp; | 
 | 85 | } | 
 | 86 |  | 
 | 87 | /* | 
 | 88 |  * Computes an estimate of log_2(x).  The `s' argument is the 32-bit | 
 | 89 |  * single-precision floating-point representation of x. | 
 | 90 |  */ | 
 | 91 | static unsigned int elog2(unsigned int s) | 
 | 92 | { | 
 | 93 | 	int exp, mant, lz, frac; | 
 | 94 |  | 
 | 95 | 	exp = s & 0x7f800000; | 
 | 96 | 	mant = s & 0x7fffff; | 
 | 97 | 	if (exp == 0x7f800000) {	/* Inf or NaN */ | 
 | 98 | 		if (mant != 0) | 
 | 99 | 			s |= 0x400000;	/* turn NaN into QNaN */ | 
 | 100 | 		return s; | 
 | 101 | 	} | 
 | 102 | 	if ((exp | mant) == 0)		/* +0 or -0 */ | 
 | 103 | 		return 0xff800000;	/* return -Inf */ | 
 | 104 |  | 
 | 105 | 	if (exp == 0) { | 
 | 106 | 		/* denormalized */ | 
 | 107 | 		asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant)); | 
 | 108 | 		mant <<= lz - 8; | 
 | 109 | 		exp = (-118 - lz) << 23; | 
 | 110 | 	} else { | 
 | 111 | 		mant |= 0x800000; | 
 | 112 | 		exp -= 127 << 23; | 
 | 113 | 	} | 
 | 114 |  | 
 | 115 | 	if (mant >= 0xb504f3) {				/* 2^0.5 * 2^23 */ | 
 | 116 | 		exp |= 0x400000;			/* 0.5 * 2^23 */ | 
 | 117 | 		asm("mulhwu %0,%1,%2" : "=r" (mant) | 
 | 118 | 		    : "r" (mant), "r" (0xb504f334));	/* 2^-0.5 * 2^32 */ | 
 | 119 | 	} | 
 | 120 | 	if (mant >= 0x9837f0) {				/* 2^0.25 * 2^23 */ | 
 | 121 | 		exp |= 0x200000;			/* 0.25 * 2^23 */ | 
 | 122 | 		asm("mulhwu %0,%1,%2" : "=r" (mant) | 
 | 123 | 		    : "r" (mant), "r" (0xd744fccb));	/* 2^-0.25 * 2^32 */ | 
 | 124 | 	} | 
 | 125 | 	if (mant >= 0x8b95c2) {				/* 2^0.125 * 2^23 */ | 
 | 126 | 		exp |= 0x100000;			/* 0.125 * 2^23 */ | 
 | 127 | 		asm("mulhwu %0,%1,%2" : "=r" (mant) | 
 | 128 | 		    : "r" (mant), "r" (0xeac0c6e8));	/* 2^-0.125 * 2^32 */ | 
 | 129 | 	} | 
 | 130 | 	if (mant > 0x800000) {				/* 1.0 * 2^23 */ | 
 | 131 | 		/* calculate (mant - 1) * 1.381097463 */ | 
 | 132 | 		/* 1.381097463 == 0.125 / (2^0.125 - 1) */ | 
 | 133 | 		asm("mulhwu %0,%1,%2" : "=r" (frac) | 
 | 134 | 		    : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a)); | 
 | 135 | 		exp += frac; | 
 | 136 | 	} | 
 | 137 | 	s = exp & 0x80000000; | 
 | 138 | 	if (exp != 0) { | 
 | 139 | 		if (s) | 
 | 140 | 			exp = -exp; | 
 | 141 | 		asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp)); | 
 | 142 | 		lz = 8 - lz; | 
 | 143 | 		if (lz > 0) | 
 | 144 | 			exp >>= lz; | 
 | 145 | 		else if (lz < 0) | 
 | 146 | 			exp <<= -lz; | 
 | 147 | 		s += ((lz + 126) << 23) + exp; | 
 | 148 | 	} | 
 | 149 | 	return s; | 
 | 150 | } | 
 | 151 |  | 
 | 152 | #define VSCR_SAT	1 | 
 | 153 |  | 
 | 154 | static int ctsxs(unsigned int x, int scale, unsigned int *vscrp) | 
 | 155 | { | 
 | 156 | 	int exp, mant; | 
 | 157 |  | 
 | 158 | 	exp = (x >> 23) & 0xff; | 
 | 159 | 	mant = x & 0x7fffff; | 
 | 160 | 	if (exp == 255 && mant != 0) | 
 | 161 | 		return 0;		/* NaN -> 0 */ | 
 | 162 | 	exp = exp - 127 + scale; | 
 | 163 | 	if (exp < 0) | 
 | 164 | 		return 0;		/* round towards zero */ | 
 | 165 | 	if (exp >= 31) { | 
 | 166 | 		/* saturate, unless the result would be -2^31 */ | 
 | 167 | 		if (x + (scale << 23) != 0xcf000000) | 
 | 168 | 			*vscrp |= VSCR_SAT; | 
 | 169 | 		return (x & 0x80000000)? 0x80000000: 0x7fffffff; | 
 | 170 | 	} | 
 | 171 | 	mant |= 0x800000; | 
 | 172 | 	mant = (mant << 7) >> (30 - exp); | 
 | 173 | 	return (x & 0x80000000)? -mant: mant; | 
 | 174 | } | 
 | 175 |  | 
 | 176 | static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp) | 
 | 177 | { | 
 | 178 | 	int exp; | 
 | 179 | 	unsigned int mant; | 
 | 180 |  | 
 | 181 | 	exp = (x >> 23) & 0xff; | 
 | 182 | 	mant = x & 0x7fffff; | 
 | 183 | 	if (exp == 255 && mant != 0) | 
 | 184 | 		return 0;		/* NaN -> 0 */ | 
 | 185 | 	exp = exp - 127 + scale; | 
 | 186 | 	if (exp < 0) | 
 | 187 | 		return 0;		/* round towards zero */ | 
 | 188 | 	if (x & 0x80000000) { | 
 | 189 | 		/* negative => saturate to 0 */ | 
 | 190 | 		*vscrp |= VSCR_SAT; | 
 | 191 | 		return 0; | 
 | 192 | 	} | 
 | 193 | 	if (exp >= 32) { | 
 | 194 | 		/* saturate */ | 
 | 195 | 		*vscrp |= VSCR_SAT; | 
 | 196 | 		return 0xffffffff; | 
 | 197 | 	} | 
 | 198 | 	mant |= 0x800000; | 
 | 199 | 	mant = (mant << 8) >> (31 - exp); | 
 | 200 | 	return mant; | 
 | 201 | } | 
 | 202 |  | 
 | 203 | /* Round to floating integer, towards 0 */ | 
 | 204 | static unsigned int rfiz(unsigned int x) | 
 | 205 | { | 
 | 206 | 	int exp; | 
 | 207 |  | 
 | 208 | 	exp = ((x >> 23) & 0xff) - 127; | 
 | 209 | 	if (exp == 128 && (x & 0x7fffff) != 0) | 
 | 210 | 		return x | 0x400000;	/* NaN -> make it a QNaN */ | 
 | 211 | 	if (exp >= 23) | 
 | 212 | 		return x;		/* it's an integer already (or Inf) */ | 
 | 213 | 	if (exp < 0) | 
 | 214 | 		return x & 0x80000000;	/* |x| < 1.0 rounds to 0 */ | 
 | 215 | 	return x & ~(0x7fffff >> exp); | 
 | 216 | } | 
 | 217 |  | 
 | 218 | /* Round to floating integer, towards +/- Inf */ | 
 | 219 | static unsigned int rfii(unsigned int x) | 
 | 220 | { | 
 | 221 | 	int exp, mask; | 
 | 222 |  | 
 | 223 | 	exp = ((x >> 23) & 0xff) - 127; | 
 | 224 | 	if (exp == 128 && (x & 0x7fffff) != 0) | 
 | 225 | 		return x | 0x400000;	/* NaN -> make it a QNaN */ | 
 | 226 | 	if (exp >= 23) | 
 | 227 | 		return x;		/* it's an integer already (or Inf) */ | 
 | 228 | 	if ((x & 0x7fffffff) == 0) | 
 | 229 | 		return x;		/* +/-0 -> +/-0 */ | 
 | 230 | 	if (exp < 0) | 
 | 231 | 		/* 0 < |x| < 1.0 rounds to +/- 1.0 */ | 
 | 232 | 		return (x & 0x80000000) | 0x3f800000; | 
 | 233 | 	mask = 0x7fffff >> exp; | 
 | 234 | 	/* mantissa overflows into exponent - that's OK, | 
 | 235 | 	   it can't overflow into the sign bit */ | 
 | 236 | 	return (x + mask) & ~mask; | 
 | 237 | } | 
 | 238 |  | 
 | 239 | /* Round to floating integer, to nearest */ | 
 | 240 | static unsigned int rfin(unsigned int x) | 
 | 241 | { | 
 | 242 | 	int exp, half; | 
 | 243 |  | 
 | 244 | 	exp = ((x >> 23) & 0xff) - 127; | 
 | 245 | 	if (exp == 128 && (x & 0x7fffff) != 0) | 
 | 246 | 		return x | 0x400000;	/* NaN -> make it a QNaN */ | 
 | 247 | 	if (exp >= 23) | 
 | 248 | 		return x;		/* it's an integer already (or Inf) */ | 
 | 249 | 	if (exp < -1) | 
 | 250 | 		return x & 0x80000000;	/* |x| < 0.5 -> +/-0 */ | 
 | 251 | 	if (exp == -1) | 
 | 252 | 		/* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */ | 
 | 253 | 		return (x & 0x80000000) | 0x3f800000; | 
 | 254 | 	half = 0x400000 >> exp; | 
 | 255 | 	/* add 0.5 to the magnitude and chop off the fraction bits */ | 
 | 256 | 	return (x + half) & ~(0x7fffff >> exp); | 
 | 257 | } | 
 | 258 |  | 
 | 259 | int | 
 | 260 | emulate_altivec(struct pt_regs *regs) | 
 | 261 | { | 
 | 262 | 	unsigned int instr, i; | 
 | 263 | 	unsigned int va, vb, vc, vd; | 
 | 264 | 	vector128 *vrs; | 
 | 265 |  | 
 | 266 | 	if (get_user(instr, (unsigned int __user *) regs->nip)) | 
 | 267 | 		return -EFAULT; | 
 | 268 | 	if ((instr >> 26) != 4) | 
 | 269 | 		return -EINVAL;		/* not an altivec instruction */ | 
 | 270 | 	vd = (instr >> 21) & 0x1f; | 
 | 271 | 	va = (instr >> 16) & 0x1f; | 
 | 272 | 	vb = (instr >> 11) & 0x1f; | 
 | 273 | 	vc = (instr >> 6) & 0x1f; | 
 | 274 |  | 
 | 275 | 	vrs = current->thread.vr; | 
 | 276 | 	switch (instr & 0x3f) { | 
 | 277 | 	case 10: | 
 | 278 | 		switch (vc) { | 
 | 279 | 		case 0:	/* vaddfp */ | 
 | 280 | 			vaddfp(&vrs[vd], &vrs[va], &vrs[vb]); | 
 | 281 | 			break; | 
 | 282 | 		case 1:	/* vsubfp */ | 
 | 283 | 			vsubfp(&vrs[vd], &vrs[va], &vrs[vb]); | 
 | 284 | 			break; | 
 | 285 | 		case 4:	/* vrefp */ | 
 | 286 | 			vrefp(&vrs[vd], &vrs[vb]); | 
 | 287 | 			break; | 
 | 288 | 		case 5:	/* vrsqrtefp */ | 
 | 289 | 			vrsqrtefp(&vrs[vd], &vrs[vb]); | 
 | 290 | 			break; | 
 | 291 | 		case 6:	/* vexptefp */ | 
 | 292 | 			for (i = 0; i < 4; ++i) | 
 | 293 | 				vrs[vd].u[i] = eexp2(vrs[vb].u[i]); | 
 | 294 | 			break; | 
 | 295 | 		case 7:	/* vlogefp */ | 
 | 296 | 			for (i = 0; i < 4; ++i) | 
 | 297 | 				vrs[vd].u[i] = elog2(vrs[vb].u[i]); | 
 | 298 | 			break; | 
 | 299 | 		case 8:		/* vrfin */ | 
 | 300 | 			for (i = 0; i < 4; ++i) | 
 | 301 | 				vrs[vd].u[i] = rfin(vrs[vb].u[i]); | 
 | 302 | 			break; | 
 | 303 | 		case 9:		/* vrfiz */ | 
 | 304 | 			for (i = 0; i < 4; ++i) | 
 | 305 | 				vrs[vd].u[i] = rfiz(vrs[vb].u[i]); | 
 | 306 | 			break; | 
 | 307 | 		case 10:	/* vrfip */ | 
 | 308 | 			for (i = 0; i < 4; ++i) { | 
 | 309 | 				u32 x = vrs[vb].u[i]; | 
 | 310 | 				x = (x & 0x80000000)? rfiz(x): rfii(x); | 
 | 311 | 				vrs[vd].u[i] = x; | 
 | 312 | 			} | 
 | 313 | 			break; | 
 | 314 | 		case 11:	/* vrfim */ | 
 | 315 | 			for (i = 0; i < 4; ++i) { | 
 | 316 | 				u32 x = vrs[vb].u[i]; | 
 | 317 | 				x = (x & 0x80000000)? rfii(x): rfiz(x); | 
 | 318 | 				vrs[vd].u[i] = x; | 
 | 319 | 			} | 
 | 320 | 			break; | 
 | 321 | 		case 14:	/* vctuxs */ | 
 | 322 | 			for (i = 0; i < 4; ++i) | 
 | 323 | 				vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va, | 
 | 324 | 						¤t->thread.vscr.u[3]); | 
 | 325 | 			break; | 
 | 326 | 		case 15:	/* vctsxs */ | 
 | 327 | 			for (i = 0; i < 4; ++i) | 
 | 328 | 				vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va, | 
 | 329 | 						¤t->thread.vscr.u[3]); | 
 | 330 | 			break; | 
 | 331 | 		default: | 
 | 332 | 			return -EINVAL; | 
 | 333 | 		} | 
 | 334 | 		break; | 
 | 335 | 	case 46:	/* vmaddfp */ | 
 | 336 | 		vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); | 
 | 337 | 		break; | 
 | 338 | 	case 47:	/* vnmsubfp */ | 
 | 339 | 		vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); | 
 | 340 | 		break; | 
 | 341 | 	default: | 
 | 342 | 		return -EINVAL; | 
 | 343 | 	} | 
 | 344 |  | 
 | 345 | 	return 0; | 
 | 346 | } |