| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _PPC64_UACCESS_H | 
 | 2 | #define _PPC64_UACCESS_H | 
 | 3 |  | 
 | 4 | /*  | 
 | 5 |  * This program is free software; you can redistribute it and/or | 
 | 6 |  * modify it under the terms of the GNU General Public License | 
 | 7 |  * as published by the Free Software Foundation; either version | 
 | 8 |  * 2 of the License, or (at your option) any later version. | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #ifndef __ASSEMBLY__ | 
 | 12 | #include <linux/sched.h> | 
 | 13 | #include <linux/errno.h> | 
 | 14 | #include <asm/processor.h> | 
 | 15 |  | 
 | 16 | #define VERIFY_READ	0 | 
 | 17 | #define VERIFY_WRITE	1 | 
 | 18 |  | 
 | 19 | /* | 
 | 20 |  * The fs value determines whether argument validity checking should be | 
 | 21 |  * performed or not.  If get_fs() == USER_DS, checking is performed, with | 
 | 22 |  * get_fs() == KERNEL_DS, checking is bypassed. | 
 | 23 |  * | 
 | 24 |  * For historical reasons, these macros are grossly misnamed. | 
 | 25 |  */ | 
 | 26 |  | 
 | 27 | #define MAKE_MM_SEG(s)  ((mm_segment_t) { (s) }) | 
 | 28 |  | 
 | 29 | #define KERNEL_DS	MAKE_MM_SEG(0UL) | 
 | 30 | #define USER_DS		MAKE_MM_SEG(0xf000000000000000UL) | 
 | 31 |  | 
 | 32 | #define get_ds()	(KERNEL_DS) | 
 | 33 | #define get_fs()	(current->thread.fs) | 
 | 34 | #define set_fs(val)	(current->thread.fs = (val)) | 
 | 35 |  | 
 | 36 | #define segment_eq(a,b)	((a).seg == (b).seg) | 
 | 37 |  | 
 | 38 | /* | 
 | 39 |  * Use the alpha trick for checking ranges: | 
 | 40 |  * | 
 | 41 |  * Is a address valid? This does a straightforward calculation rather | 
 | 42 |  * than tests. | 
 | 43 |  * | 
 | 44 |  * Address valid if: | 
 | 45 |  *  - "addr" doesn't have any high-bits set | 
 | 46 |  *  - AND "size" doesn't have any high-bits set | 
 | 47 |  *  - OR we are in kernel mode. | 
 | 48 |  * | 
 | 49 |  * We dont have to check for high bits in (addr+size) because the first | 
 | 50 |  * two checks force the maximum result to be below the start of the | 
 | 51 |  * kernel region. | 
 | 52 |  */ | 
 | 53 | #define __access_ok(addr,size,segment) \ | 
 | 54 | 	(((segment).seg & (addr | size )) == 0) | 
 | 55 |  | 
 | 56 | #define access_ok(type,addr,size) \ | 
 | 57 | 	__access_ok(((__force unsigned long)(addr)),(size),get_fs()) | 
 | 58 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 59 | /* | 
 | 60 |  * The exception table consists of pairs of addresses: the first is the | 
 | 61 |  * address of an instruction that is allowed to fault, and the second is | 
 | 62 |  * the address at which the program should continue.  No registers are | 
 | 63 |  * modified, so it is entirely up to the continuation code to figure out | 
 | 64 |  * what to do. | 
 | 65 |  * | 
 | 66 |  * All the routines below use bits of fixup code that are out of line | 
 | 67 |  * with the main instruction path.  This means when everything is well, | 
 | 68 |  * we don't even have to jump over them.  Further, they do not intrude | 
 | 69 |  * on our cache or tlb entries. | 
 | 70 |  */ | 
 | 71 |  | 
 | 72 | struct exception_table_entry | 
 | 73 | { | 
 | 74 | 	unsigned long insn, fixup; | 
 | 75 | }; | 
 | 76 |  | 
 | 77 | /* Returns 0 if exception not found and fixup otherwise.  */ | 
 | 78 | extern unsigned long search_exception_table(unsigned long); | 
 | 79 |  | 
 | 80 | /* | 
 | 81 |  * These are the main single-value transfer routines.  They automatically | 
 | 82 |  * use the right size if we just have the right pointer type. | 
 | 83 |  * | 
 | 84 |  * This gets kind of ugly. We want to return _two_ values in "get_user()" | 
 | 85 |  * and yet we don't want to do any pointers, because that is too much | 
 | 86 |  * of a performance impact. Thus we have a few rather ugly macros here, | 
 | 87 |  * and hide all the ugliness from the user. | 
 | 88 |  * | 
 | 89 |  * The "__xxx" versions of the user access functions are versions that | 
 | 90 |  * do not verify the address space, that must have been done previously | 
 | 91 |  * with a separate "access_ok()" call (this is used when we do multiple | 
 | 92 |  * accesses to the same area of user memory). | 
 | 93 |  * | 
 | 94 |  * As we use the same address space for kernel and user data on the | 
 | 95 |  * PowerPC, we can just do these as direct assignments.  (Of course, the | 
 | 96 |  * exception handling means that it's no longer "just"...) | 
 | 97 |  */ | 
 | 98 | #define get_user(x,ptr) \ | 
 | 99 |   __get_user_check((x),(ptr),sizeof(*(ptr))) | 
 | 100 | #define put_user(x,ptr) \ | 
 | 101 |   __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) | 
 | 102 |  | 
 | 103 | #define __get_user(x,ptr) \ | 
 | 104 |   __get_user_nocheck((x),(ptr),sizeof(*(ptr))) | 
 | 105 | #define __put_user(x,ptr) \ | 
 | 106 |   __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) | 
 | 107 |  | 
 | 108 | #define __get_user_unaligned __get_user | 
 | 109 | #define __put_user_unaligned __put_user | 
 | 110 |  | 
 | 111 | extern long __put_user_bad(void); | 
 | 112 |  | 
 | 113 | #define __put_user_nocheck(x,ptr,size)				\ | 
 | 114 | ({								\ | 
 | 115 | 	long __pu_err;						\ | 
 | 116 | 	might_sleep();						\ | 
 | 117 | 	__chk_user_ptr(ptr);					\ | 
 | 118 | 	__put_user_size((x),(ptr),(size),__pu_err,-EFAULT);	\ | 
 | 119 | 	__pu_err;						\ | 
 | 120 | }) | 
 | 121 |  | 
 | 122 | #define __put_user_check(x,ptr,size)					\ | 
 | 123 | ({									\ | 
 | 124 | 	long __pu_err = -EFAULT;					\ | 
 | 125 | 	void __user *__pu_addr = (ptr);					\ | 
 | 126 | 	might_sleep();							\ | 
 | 127 | 	if (access_ok(VERIFY_WRITE,__pu_addr,size))			\ | 
 | 128 | 		__put_user_size((x),__pu_addr,(size),__pu_err,-EFAULT);	\ | 
 | 129 | 	__pu_err;							\ | 
 | 130 | }) | 
 | 131 |  | 
 | 132 | #define __put_user_size(x,ptr,size,retval,errret)			\ | 
 | 133 | do {									\ | 
 | 134 | 	retval = 0;							\ | 
 | 135 | 	switch (size) {							\ | 
 | 136 | 	  case 1: __put_user_asm(x,ptr,retval,"stb",errret); break;	\ | 
 | 137 | 	  case 2: __put_user_asm(x,ptr,retval,"sth",errret); break;	\ | 
 | 138 | 	  case 4: __put_user_asm(x,ptr,retval,"stw",errret); break;	\ | 
 | 139 | 	  case 8: __put_user_asm(x,ptr,retval,"std",errret); break; 	\ | 
 | 140 | 	  default: __put_user_bad();					\ | 
 | 141 | 	}								\ | 
 | 142 | } while (0) | 
 | 143 |  | 
 | 144 | /* | 
 | 145 |  * We don't tell gcc that we are accessing memory, but this is OK | 
 | 146 |  * because we do not write to any memory gcc knows about, so there | 
 | 147 |  * are no aliasing issues. | 
 | 148 |  */ | 
 | 149 | #define __put_user_asm(x, addr, err, op, errret)		\ | 
 | 150 | 	__asm__ __volatile__(					\ | 
 | 151 | 		"1:	"op" %1,0(%2)  	# put_user\n" 	 	\ | 
 | 152 | 		"2:\n"						\ | 
 | 153 | 		".section .fixup,\"ax\"\n"			\ | 
 | 154 | 		"3:	li %0,%3\n"				\ | 
 | 155 | 		"	b 2b\n"					\ | 
 | 156 | 		".previous\n"					\ | 
 | 157 | 		".section __ex_table,\"a\"\n"			\ | 
 | 158 | 		"	.align 3\n"				\ | 
 | 159 | 		"	.llong 1b,3b\n"				\ | 
 | 160 | 		".previous"					\ | 
 | 161 | 		: "=r"(err)					\ | 
 | 162 | 		: "r"(x), "b"(addr), "i"(errret), "0"(err)) | 
 | 163 |  | 
 | 164 |  | 
 | 165 | #define __get_user_nocheck(x,ptr,size)				\ | 
 | 166 | ({								\ | 
 | 167 | 	long __gu_err, __gu_val;				\ | 
 | 168 | 	might_sleep();						\ | 
 | 169 | 	__get_user_size(__gu_val,(ptr),(size),__gu_err,-EFAULT);\ | 
 | 170 | 	(x) = (__typeof__(*(ptr)))__gu_val;			\ | 
 | 171 | 	__gu_err;						\ | 
 | 172 | }) | 
 | 173 |  | 
 | 174 | #define __get_user_check(x,ptr,size)					\ | 
 | 175 | ({									\ | 
 | 176 | 	long __gu_err = -EFAULT, __gu_val = 0;				\ | 
 | 177 | 	const __typeof__(*(ptr)) __user *__gu_addr = (ptr);		\ | 
 | 178 | 	might_sleep();							\ | 
 | 179 | 	if (access_ok(VERIFY_READ,__gu_addr,size))			\ | 
 | 180 | 		__get_user_size(__gu_val,__gu_addr,(size),__gu_err,-EFAULT);\ | 
 | 181 | 	(x) = (__typeof__(*(ptr)))__gu_val;				\ | 
 | 182 | 	__gu_err;							\ | 
 | 183 | }) | 
 | 184 |  | 
 | 185 | extern long __get_user_bad(void); | 
 | 186 |  | 
 | 187 | #define __get_user_size(x,ptr,size,retval,errret)			\ | 
 | 188 | do {									\ | 
 | 189 | 	retval = 0;							\ | 
 | 190 | 	__chk_user_ptr(ptr);						\ | 
 | 191 | 	switch (size) {							\ | 
 | 192 | 	  case 1: __get_user_asm(x,ptr,retval,"lbz",errret); break;	\ | 
 | 193 | 	  case 2: __get_user_asm(x,ptr,retval,"lhz",errret); break;	\ | 
 | 194 | 	  case 4: __get_user_asm(x,ptr,retval,"lwz",errret); break;	\ | 
 | 195 | 	  case 8: __get_user_asm(x,ptr,retval,"ld",errret);  break;	\ | 
 | 196 | 	  default: (x) = __get_user_bad();				\ | 
 | 197 | 	}								\ | 
 | 198 | } while (0) | 
 | 199 |  | 
 | 200 | #define __get_user_asm(x, addr, err, op, errret)	\ | 
 | 201 | 	__asm__ __volatile__(				\ | 
 | 202 | 		"1:	"op" %1,0(%2)	# get_user\n"  	\ | 
 | 203 | 		"2:\n"					\ | 
 | 204 | 		".section .fixup,\"ax\"\n"		\ | 
 | 205 | 		"3:	li %0,%3\n"			\ | 
 | 206 | 		"	li %1,0\n"			\ | 
 | 207 | 		"	b 2b\n"				\ | 
 | 208 | 		".previous\n"				\ | 
 | 209 | 		".section __ex_table,\"a\"\n"		\ | 
 | 210 | 		"	.align 3\n"			\ | 
 | 211 | 		"	.llong 1b,3b\n"			\ | 
 | 212 | 		".previous"				\ | 
 | 213 | 		: "=r"(err), "=r"(x)			\ | 
 | 214 | 		: "b"(addr), "i"(errret), "0"(err)) | 
 | 215 |  | 
 | 216 | /* more complex routines */ | 
 | 217 |  | 
 | 218 | extern unsigned long __copy_tofrom_user(void __user *to, const void __user *from, | 
 | 219 | 					unsigned long size); | 
 | 220 |  | 
 | 221 | static inline unsigned long | 
 | 222 | __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n) | 
 | 223 | { | 
 | 224 | 	if (__builtin_constant_p(n)) { | 
 | 225 | 		unsigned long ret; | 
 | 226 |  | 
 | 227 | 		switch (n) { | 
 | 228 | 		case 1: | 
 | 229 | 			__get_user_size(*(u8 *)to, from, 1, ret, 1); | 
 | 230 | 			return ret; | 
 | 231 | 		case 2: | 
 | 232 | 			__get_user_size(*(u16 *)to, from, 2, ret, 2); | 
 | 233 | 			return ret; | 
 | 234 | 		case 4: | 
 | 235 | 			__get_user_size(*(u32 *)to, from, 4, ret, 4); | 
 | 236 | 			return ret; | 
 | 237 | 		case 8: | 
 | 238 | 			__get_user_size(*(u64 *)to, from, 8, ret, 8); | 
 | 239 | 			return ret; | 
 | 240 | 		} | 
 | 241 | 	} | 
 | 242 | 	return __copy_tofrom_user((__force void __user *) to, from, n); | 
 | 243 | } | 
 | 244 |  | 
 | 245 | static inline unsigned long | 
 | 246 | __copy_from_user(void *to, const void __user *from, unsigned long n) | 
 | 247 | { | 
 | 248 | 	might_sleep(); | 
 | 249 | 	return __copy_from_user_inatomic(to, from, n); | 
 | 250 | } | 
 | 251 |  | 
 | 252 | static inline unsigned long | 
 | 253 | __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n) | 
 | 254 | { | 
 | 255 | 	if (__builtin_constant_p(n)) { | 
 | 256 | 		unsigned long ret; | 
 | 257 |  | 
 | 258 | 		switch (n) { | 
 | 259 | 		case 1: | 
 | 260 | 			__put_user_size(*(u8 *)from, (u8 __user *)to, 1, ret, 1); | 
 | 261 | 			return ret; | 
 | 262 | 		case 2: | 
 | 263 | 			__put_user_size(*(u16 *)from, (u16 __user *)to, 2, ret, 2); | 
 | 264 | 			return ret; | 
 | 265 | 		case 4: | 
 | 266 | 			__put_user_size(*(u32 *)from, (u32 __user *)to, 4, ret, 4); | 
 | 267 | 			return ret; | 
 | 268 | 		case 8: | 
 | 269 | 			__put_user_size(*(u64 *)from, (u64 __user *)to, 8, ret, 8); | 
 | 270 | 			return ret; | 
 | 271 | 		} | 
 | 272 | 	} | 
 | 273 | 	return __copy_tofrom_user(to, (__force const void __user *) from, n); | 
 | 274 | } | 
 | 275 |  | 
 | 276 | static inline unsigned long | 
 | 277 | __copy_to_user(void __user *to, const void *from, unsigned long n) | 
 | 278 | { | 
 | 279 | 	might_sleep(); | 
 | 280 | 	return __copy_to_user_inatomic(to, from, n); | 
 | 281 | } | 
 | 282 |  | 
 | 283 | #define __copy_in_user(to, from, size) \ | 
 | 284 | 	__copy_tofrom_user((to), (from), (size)) | 
 | 285 |  | 
 | 286 | extern unsigned long copy_from_user(void *to, const void __user *from, | 
 | 287 | 				    unsigned long n); | 
 | 288 | extern unsigned long copy_to_user(void __user *to, const void *from, | 
 | 289 | 				  unsigned long n); | 
 | 290 | extern unsigned long copy_in_user(void __user *to, const void __user *from, | 
 | 291 | 				  unsigned long n); | 
 | 292 |  | 
 | 293 | extern unsigned long __clear_user(void __user *addr, unsigned long size); | 
 | 294 |  | 
 | 295 | static inline unsigned long | 
 | 296 | clear_user(void __user *addr, unsigned long size) | 
 | 297 | { | 
 | 298 | 	might_sleep(); | 
 | 299 | 	if (likely(access_ok(VERIFY_WRITE, addr, size))) | 
 | 300 | 		size = __clear_user(addr, size); | 
 | 301 | 	return size; | 
 | 302 | } | 
 | 303 |  | 
 | 304 | extern int __strncpy_from_user(char *dst, const char __user *src, long count); | 
 | 305 |  | 
 | 306 | static inline long | 
 | 307 | strncpy_from_user(char *dst, const char __user *src, long count) | 
 | 308 | { | 
 | 309 | 	might_sleep(); | 
 | 310 | 	if (likely(access_ok(VERIFY_READ, src, 1))) | 
 | 311 | 		return __strncpy_from_user(dst, src, count); | 
 | 312 | 	return -EFAULT; | 
 | 313 | } | 
 | 314 |  | 
 | 315 | /* | 
 | 316 |  * Return the size of a string (including the ending 0) | 
 | 317 |  * | 
 | 318 |  * Return 0 for error | 
 | 319 |  */ | 
 | 320 | extern int __strnlen_user(const char __user *str, long len); | 
 | 321 |  | 
 | 322 | /* | 
 | 323 |  * Returns the length of the string at str (including the null byte), | 
 | 324 |  * or 0 if we hit a page we can't access, | 
 | 325 |  * or something > len if we didn't find a null byte. | 
 | 326 |  */ | 
 | 327 | static inline int strnlen_user(const char __user *str, long len) | 
 | 328 | { | 
 | 329 | 	might_sleep(); | 
 | 330 | 	if (likely(access_ok(VERIFY_READ, str, 1))) | 
 | 331 | 		return __strnlen_user(str, len); | 
 | 332 | 	return 0; | 
 | 333 | } | 
 | 334 |  | 
 | 335 | #define strlen_user(str)	strnlen_user((str), 0x7ffffffe) | 
 | 336 |  | 
 | 337 | #endif  /* __ASSEMBLY__ */ | 
 | 338 |  | 
 | 339 | #endif	/* _PPC64_UACCESS_H */ |