| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/kernel/fork.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | 5 | */ | 
|  | 6 |  | 
|  | 7 | /* | 
|  | 8 | *  'fork.c' contains the help-routines for the 'fork' system call | 
|  | 9 | * (see also entry.S and others). | 
|  | 10 | * Fork is rather simple, once you get the hang of it, but the memory | 
|  | 11 | * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/config.h> | 
|  | 15 | #include <linux/slab.h> | 
|  | 16 | #include <linux/init.h> | 
|  | 17 | #include <linux/unistd.h> | 
|  | 18 | #include <linux/smp_lock.h> | 
|  | 19 | #include <linux/module.h> | 
|  | 20 | #include <linux/vmalloc.h> | 
|  | 21 | #include <linux/completion.h> | 
|  | 22 | #include <linux/namespace.h> | 
|  | 23 | #include <linux/personality.h> | 
|  | 24 | #include <linux/mempolicy.h> | 
|  | 25 | #include <linux/sem.h> | 
|  | 26 | #include <linux/file.h> | 
|  | 27 | #include <linux/key.h> | 
|  | 28 | #include <linux/binfmts.h> | 
|  | 29 | #include <linux/mman.h> | 
|  | 30 | #include <linux/fs.h> | 
|  | 31 | #include <linux/cpu.h> | 
|  | 32 | #include <linux/cpuset.h> | 
|  | 33 | #include <linux/security.h> | 
|  | 34 | #include <linux/swap.h> | 
|  | 35 | #include <linux/syscalls.h> | 
|  | 36 | #include <linux/jiffies.h> | 
|  | 37 | #include <linux/futex.h> | 
|  | 38 | #include <linux/ptrace.h> | 
|  | 39 | #include <linux/mount.h> | 
|  | 40 | #include <linux/audit.h> | 
|  | 41 | #include <linux/profile.h> | 
|  | 42 | #include <linux/rmap.h> | 
|  | 43 | #include <linux/acct.h> | 
|  | 44 |  | 
|  | 45 | #include <asm/pgtable.h> | 
|  | 46 | #include <asm/pgalloc.h> | 
|  | 47 | #include <asm/uaccess.h> | 
|  | 48 | #include <asm/mmu_context.h> | 
|  | 49 | #include <asm/cacheflush.h> | 
|  | 50 | #include <asm/tlbflush.h> | 
|  | 51 |  | 
|  | 52 | /* | 
|  | 53 | * Protected counters by write_lock_irq(&tasklist_lock) | 
|  | 54 | */ | 
|  | 55 | unsigned long total_forks;	/* Handle normal Linux uptimes. */ | 
|  | 56 | int nr_threads; 		/* The idle threads do not count.. */ | 
|  | 57 |  | 
|  | 58 | int max_threads;		/* tunable limit on nr_threads */ | 
|  | 59 |  | 
|  | 60 | DEFINE_PER_CPU(unsigned long, process_counts) = 0; | 
|  | 61 |  | 
|  | 62 | __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */ | 
|  | 63 |  | 
|  | 64 | EXPORT_SYMBOL(tasklist_lock); | 
|  | 65 |  | 
|  | 66 | int nr_processes(void) | 
|  | 67 | { | 
|  | 68 | int cpu; | 
|  | 69 | int total = 0; | 
|  | 70 |  | 
|  | 71 | for_each_online_cpu(cpu) | 
|  | 72 | total += per_cpu(process_counts, cpu); | 
|  | 73 |  | 
|  | 74 | return total; | 
|  | 75 | } | 
|  | 76 |  | 
|  | 77 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | 
|  | 78 | # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL) | 
|  | 79 | # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk)) | 
|  | 80 | static kmem_cache_t *task_struct_cachep; | 
|  | 81 | #endif | 
|  | 82 |  | 
|  | 83 | /* SLAB cache for signal_struct structures (tsk->signal) */ | 
|  | 84 | kmem_cache_t *signal_cachep; | 
|  | 85 |  | 
|  | 86 | /* SLAB cache for sighand_struct structures (tsk->sighand) */ | 
|  | 87 | kmem_cache_t *sighand_cachep; | 
|  | 88 |  | 
|  | 89 | /* SLAB cache for files_struct structures (tsk->files) */ | 
|  | 90 | kmem_cache_t *files_cachep; | 
|  | 91 |  | 
|  | 92 | /* SLAB cache for fs_struct structures (tsk->fs) */ | 
|  | 93 | kmem_cache_t *fs_cachep; | 
|  | 94 |  | 
|  | 95 | /* SLAB cache for vm_area_struct structures */ | 
|  | 96 | kmem_cache_t *vm_area_cachep; | 
|  | 97 |  | 
|  | 98 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 
|  | 99 | static kmem_cache_t *mm_cachep; | 
|  | 100 |  | 
|  | 101 | void free_task(struct task_struct *tsk) | 
|  | 102 | { | 
|  | 103 | free_thread_info(tsk->thread_info); | 
|  | 104 | free_task_struct(tsk); | 
|  | 105 | } | 
|  | 106 | EXPORT_SYMBOL(free_task); | 
|  | 107 |  | 
|  | 108 | void __put_task_struct(struct task_struct *tsk) | 
|  | 109 | { | 
|  | 110 | WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE))); | 
|  | 111 | WARN_ON(atomic_read(&tsk->usage)); | 
|  | 112 | WARN_ON(tsk == current); | 
|  | 113 |  | 
|  | 114 | if (unlikely(tsk->audit_context)) | 
|  | 115 | audit_free(tsk); | 
|  | 116 | security_task_free(tsk); | 
|  | 117 | free_uid(tsk->user); | 
|  | 118 | put_group_info(tsk->group_info); | 
|  | 119 |  | 
|  | 120 | if (!profile_handoff_task(tsk)) | 
|  | 121 | free_task(tsk); | 
|  | 122 | } | 
|  | 123 |  | 
|  | 124 | void __init fork_init(unsigned long mempages) | 
|  | 125 | { | 
|  | 126 | #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR | 
|  | 127 | #ifndef ARCH_MIN_TASKALIGN | 
|  | 128 | #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES | 
|  | 129 | #endif | 
|  | 130 | /* create a slab on which task_structs can be allocated */ | 
|  | 131 | task_struct_cachep = | 
|  | 132 | kmem_cache_create("task_struct", sizeof(struct task_struct), | 
|  | 133 | ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL); | 
|  | 134 | #endif | 
|  | 135 |  | 
|  | 136 | /* | 
|  | 137 | * The default maximum number of threads is set to a safe | 
|  | 138 | * value: the thread structures can take up at most half | 
|  | 139 | * of memory. | 
|  | 140 | */ | 
|  | 141 | max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE); | 
|  | 142 |  | 
|  | 143 | /* | 
|  | 144 | * we need to allow at least 20 threads to boot a system | 
|  | 145 | */ | 
|  | 146 | if(max_threads < 20) | 
|  | 147 | max_threads = 20; | 
|  | 148 |  | 
|  | 149 | init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; | 
|  | 150 | init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; | 
|  | 151 | init_task.signal->rlim[RLIMIT_SIGPENDING] = | 
|  | 152 | init_task.signal->rlim[RLIMIT_NPROC]; | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | static struct task_struct *dup_task_struct(struct task_struct *orig) | 
|  | 156 | { | 
|  | 157 | struct task_struct *tsk; | 
|  | 158 | struct thread_info *ti; | 
|  | 159 |  | 
|  | 160 | prepare_to_copy(orig); | 
|  | 161 |  | 
|  | 162 | tsk = alloc_task_struct(); | 
|  | 163 | if (!tsk) | 
|  | 164 | return NULL; | 
|  | 165 |  | 
|  | 166 | ti = alloc_thread_info(tsk); | 
|  | 167 | if (!ti) { | 
|  | 168 | free_task_struct(tsk); | 
|  | 169 | return NULL; | 
|  | 170 | } | 
|  | 171 |  | 
|  | 172 | *ti = *orig->thread_info; | 
|  | 173 | *tsk = *orig; | 
|  | 174 | tsk->thread_info = ti; | 
|  | 175 | ti->task = tsk; | 
|  | 176 |  | 
|  | 177 | /* One for us, one for whoever does the "release_task()" (usually parent) */ | 
|  | 178 | atomic_set(&tsk->usage,2); | 
|  | 179 | return tsk; | 
|  | 180 | } | 
|  | 181 |  | 
|  | 182 | #ifdef CONFIG_MMU | 
|  | 183 | static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm) | 
|  | 184 | { | 
|  | 185 | struct vm_area_struct * mpnt, *tmp, **pprev; | 
|  | 186 | struct rb_node **rb_link, *rb_parent; | 
|  | 187 | int retval; | 
|  | 188 | unsigned long charge; | 
|  | 189 | struct mempolicy *pol; | 
|  | 190 |  | 
|  | 191 | down_write(&oldmm->mmap_sem); | 
|  | 192 | flush_cache_mm(current->mm); | 
|  | 193 | mm->locked_vm = 0; | 
|  | 194 | mm->mmap = NULL; | 
|  | 195 | mm->mmap_cache = NULL; | 
|  | 196 | mm->free_area_cache = oldmm->mmap_base; | 
|  | 197 | mm->map_count = 0; | 
|  | 198 | set_mm_counter(mm, rss, 0); | 
|  | 199 | set_mm_counter(mm, anon_rss, 0); | 
|  | 200 | cpus_clear(mm->cpu_vm_mask); | 
|  | 201 | mm->mm_rb = RB_ROOT; | 
|  | 202 | rb_link = &mm->mm_rb.rb_node; | 
|  | 203 | rb_parent = NULL; | 
|  | 204 | pprev = &mm->mmap; | 
|  | 205 |  | 
|  | 206 | for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) { | 
|  | 207 | struct file *file; | 
|  | 208 |  | 
|  | 209 | if (mpnt->vm_flags & VM_DONTCOPY) { | 
|  | 210 | __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file, | 
|  | 211 | -vma_pages(mpnt)); | 
|  | 212 | continue; | 
|  | 213 | } | 
|  | 214 | charge = 0; | 
|  | 215 | if (mpnt->vm_flags & VM_ACCOUNT) { | 
|  | 216 | unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; | 
|  | 217 | if (security_vm_enough_memory(len)) | 
|  | 218 | goto fail_nomem; | 
|  | 219 | charge = len; | 
|  | 220 | } | 
|  | 221 | tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); | 
|  | 222 | if (!tmp) | 
|  | 223 | goto fail_nomem; | 
|  | 224 | *tmp = *mpnt; | 
|  | 225 | pol = mpol_copy(vma_policy(mpnt)); | 
|  | 226 | retval = PTR_ERR(pol); | 
|  | 227 | if (IS_ERR(pol)) | 
|  | 228 | goto fail_nomem_policy; | 
|  | 229 | vma_set_policy(tmp, pol); | 
|  | 230 | tmp->vm_flags &= ~VM_LOCKED; | 
|  | 231 | tmp->vm_mm = mm; | 
|  | 232 | tmp->vm_next = NULL; | 
|  | 233 | anon_vma_link(tmp); | 
|  | 234 | file = tmp->vm_file; | 
|  | 235 | if (file) { | 
|  | 236 | struct inode *inode = file->f_dentry->d_inode; | 
|  | 237 | get_file(file); | 
|  | 238 | if (tmp->vm_flags & VM_DENYWRITE) | 
|  | 239 | atomic_dec(&inode->i_writecount); | 
|  | 240 |  | 
|  | 241 | /* insert tmp into the share list, just after mpnt */ | 
|  | 242 | spin_lock(&file->f_mapping->i_mmap_lock); | 
|  | 243 | tmp->vm_truncate_count = mpnt->vm_truncate_count; | 
|  | 244 | flush_dcache_mmap_lock(file->f_mapping); | 
|  | 245 | vma_prio_tree_add(tmp, mpnt); | 
|  | 246 | flush_dcache_mmap_unlock(file->f_mapping); | 
|  | 247 | spin_unlock(&file->f_mapping->i_mmap_lock); | 
|  | 248 | } | 
|  | 249 |  | 
|  | 250 | /* | 
|  | 251 | * Link in the new vma and copy the page table entries: | 
|  | 252 | * link in first so that swapoff can see swap entries, | 
|  | 253 | * and try_to_unmap_one's find_vma find the new vma. | 
|  | 254 | */ | 
|  | 255 | spin_lock(&mm->page_table_lock); | 
|  | 256 | *pprev = tmp; | 
|  | 257 | pprev = &tmp->vm_next; | 
|  | 258 |  | 
|  | 259 | __vma_link_rb(mm, tmp, rb_link, rb_parent); | 
|  | 260 | rb_link = &tmp->vm_rb.rb_right; | 
|  | 261 | rb_parent = &tmp->vm_rb; | 
|  | 262 |  | 
|  | 263 | mm->map_count++; | 
|  | 264 | retval = copy_page_range(mm, current->mm, tmp); | 
|  | 265 | spin_unlock(&mm->page_table_lock); | 
|  | 266 |  | 
|  | 267 | if (tmp->vm_ops && tmp->vm_ops->open) | 
|  | 268 | tmp->vm_ops->open(tmp); | 
|  | 269 |  | 
|  | 270 | if (retval) | 
|  | 271 | goto out; | 
|  | 272 | } | 
|  | 273 | retval = 0; | 
|  | 274 |  | 
|  | 275 | out: | 
|  | 276 | flush_tlb_mm(current->mm); | 
|  | 277 | up_write(&oldmm->mmap_sem); | 
|  | 278 | return retval; | 
|  | 279 | fail_nomem_policy: | 
|  | 280 | kmem_cache_free(vm_area_cachep, tmp); | 
|  | 281 | fail_nomem: | 
|  | 282 | retval = -ENOMEM; | 
|  | 283 | vm_unacct_memory(charge); | 
|  | 284 | goto out; | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | static inline int mm_alloc_pgd(struct mm_struct * mm) | 
|  | 288 | { | 
|  | 289 | mm->pgd = pgd_alloc(mm); | 
|  | 290 | if (unlikely(!mm->pgd)) | 
|  | 291 | return -ENOMEM; | 
|  | 292 | return 0; | 
|  | 293 | } | 
|  | 294 |  | 
|  | 295 | static inline void mm_free_pgd(struct mm_struct * mm) | 
|  | 296 | { | 
|  | 297 | pgd_free(mm->pgd); | 
|  | 298 | } | 
|  | 299 | #else | 
|  | 300 | #define dup_mmap(mm, oldmm)	(0) | 
|  | 301 | #define mm_alloc_pgd(mm)	(0) | 
|  | 302 | #define mm_free_pgd(mm) | 
|  | 303 | #endif /* CONFIG_MMU */ | 
|  | 304 |  | 
|  | 305 | __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); | 
|  | 306 |  | 
|  | 307 | #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL)) | 
|  | 308 | #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm))) | 
|  | 309 |  | 
|  | 310 | #include <linux/init_task.h> | 
|  | 311 |  | 
|  | 312 | static struct mm_struct * mm_init(struct mm_struct * mm) | 
|  | 313 | { | 
|  | 314 | atomic_set(&mm->mm_users, 1); | 
|  | 315 | atomic_set(&mm->mm_count, 1); | 
|  | 316 | init_rwsem(&mm->mmap_sem); | 
|  | 317 | INIT_LIST_HEAD(&mm->mmlist); | 
|  | 318 | mm->core_waiters = 0; | 
|  | 319 | mm->nr_ptes = 0; | 
|  | 320 | spin_lock_init(&mm->page_table_lock); | 
|  | 321 | rwlock_init(&mm->ioctx_list_lock); | 
|  | 322 | mm->ioctx_list = NULL; | 
|  | 323 | mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm); | 
|  | 324 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 
|  | 325 |  | 
|  | 326 | if (likely(!mm_alloc_pgd(mm))) { | 
|  | 327 | mm->def_flags = 0; | 
|  | 328 | return mm; | 
|  | 329 | } | 
|  | 330 | free_mm(mm); | 
|  | 331 | return NULL; | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | /* | 
|  | 335 | * Allocate and initialize an mm_struct. | 
|  | 336 | */ | 
|  | 337 | struct mm_struct * mm_alloc(void) | 
|  | 338 | { | 
|  | 339 | struct mm_struct * mm; | 
|  | 340 |  | 
|  | 341 | mm = allocate_mm(); | 
|  | 342 | if (mm) { | 
|  | 343 | memset(mm, 0, sizeof(*mm)); | 
|  | 344 | mm = mm_init(mm); | 
|  | 345 | } | 
|  | 346 | return mm; | 
|  | 347 | } | 
|  | 348 |  | 
|  | 349 | /* | 
|  | 350 | * Called when the last reference to the mm | 
|  | 351 | * is dropped: either by a lazy thread or by | 
|  | 352 | * mmput. Free the page directory and the mm. | 
|  | 353 | */ | 
|  | 354 | void fastcall __mmdrop(struct mm_struct *mm) | 
|  | 355 | { | 
|  | 356 | BUG_ON(mm == &init_mm); | 
|  | 357 | mm_free_pgd(mm); | 
|  | 358 | destroy_context(mm); | 
|  | 359 | free_mm(mm); | 
|  | 360 | } | 
|  | 361 |  | 
|  | 362 | /* | 
|  | 363 | * Decrement the use count and release all resources for an mm. | 
|  | 364 | */ | 
|  | 365 | void mmput(struct mm_struct *mm) | 
|  | 366 | { | 
|  | 367 | if (atomic_dec_and_test(&mm->mm_users)) { | 
|  | 368 | exit_aio(mm); | 
|  | 369 | exit_mmap(mm); | 
|  | 370 | if (!list_empty(&mm->mmlist)) { | 
|  | 371 | spin_lock(&mmlist_lock); | 
|  | 372 | list_del(&mm->mmlist); | 
|  | 373 | spin_unlock(&mmlist_lock); | 
|  | 374 | } | 
|  | 375 | put_swap_token(mm); | 
|  | 376 | mmdrop(mm); | 
|  | 377 | } | 
|  | 378 | } | 
|  | 379 | EXPORT_SYMBOL_GPL(mmput); | 
|  | 380 |  | 
|  | 381 | /** | 
|  | 382 | * get_task_mm - acquire a reference to the task's mm | 
|  | 383 | * | 
|  | 384 | * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning | 
|  | 385 | * this kernel workthread has transiently adopted a user mm with use_mm, | 
|  | 386 | * to do its AIO) is not set and if so returns a reference to it, after | 
|  | 387 | * bumping up the use count.  User must release the mm via mmput() | 
|  | 388 | * after use.  Typically used by /proc and ptrace. | 
|  | 389 | */ | 
|  | 390 | struct mm_struct *get_task_mm(struct task_struct *task) | 
|  | 391 | { | 
|  | 392 | struct mm_struct *mm; | 
|  | 393 |  | 
|  | 394 | task_lock(task); | 
|  | 395 | mm = task->mm; | 
|  | 396 | if (mm) { | 
|  | 397 | if (task->flags & PF_BORROWED_MM) | 
|  | 398 | mm = NULL; | 
|  | 399 | else | 
|  | 400 | atomic_inc(&mm->mm_users); | 
|  | 401 | } | 
|  | 402 | task_unlock(task); | 
|  | 403 | return mm; | 
|  | 404 | } | 
|  | 405 | EXPORT_SYMBOL_GPL(get_task_mm); | 
|  | 406 |  | 
|  | 407 | /* Please note the differences between mmput and mm_release. | 
|  | 408 | * mmput is called whenever we stop holding onto a mm_struct, | 
|  | 409 | * error success whatever. | 
|  | 410 | * | 
|  | 411 | * mm_release is called after a mm_struct has been removed | 
|  | 412 | * from the current process. | 
|  | 413 | * | 
|  | 414 | * This difference is important for error handling, when we | 
|  | 415 | * only half set up a mm_struct for a new process and need to restore | 
|  | 416 | * the old one.  Because we mmput the new mm_struct before | 
|  | 417 | * restoring the old one. . . | 
|  | 418 | * Eric Biederman 10 January 1998 | 
|  | 419 | */ | 
|  | 420 | void mm_release(struct task_struct *tsk, struct mm_struct *mm) | 
|  | 421 | { | 
|  | 422 | struct completion *vfork_done = tsk->vfork_done; | 
|  | 423 |  | 
|  | 424 | /* Get rid of any cached register state */ | 
|  | 425 | deactivate_mm(tsk, mm); | 
|  | 426 |  | 
|  | 427 | /* notify parent sleeping on vfork() */ | 
|  | 428 | if (vfork_done) { | 
|  | 429 | tsk->vfork_done = NULL; | 
|  | 430 | complete(vfork_done); | 
|  | 431 | } | 
|  | 432 | if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) { | 
|  | 433 | u32 __user * tidptr = tsk->clear_child_tid; | 
|  | 434 | tsk->clear_child_tid = NULL; | 
|  | 435 |  | 
|  | 436 | /* | 
|  | 437 | * We don't check the error code - if userspace has | 
|  | 438 | * not set up a proper pointer then tough luck. | 
|  | 439 | */ | 
|  | 440 | put_user(0, tidptr); | 
|  | 441 | sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0); | 
|  | 442 | } | 
|  | 443 | } | 
|  | 444 |  | 
|  | 445 | static int copy_mm(unsigned long clone_flags, struct task_struct * tsk) | 
|  | 446 | { | 
|  | 447 | struct mm_struct * mm, *oldmm; | 
|  | 448 | int retval; | 
|  | 449 |  | 
|  | 450 | tsk->min_flt = tsk->maj_flt = 0; | 
|  | 451 | tsk->nvcsw = tsk->nivcsw = 0; | 
|  | 452 |  | 
|  | 453 | tsk->mm = NULL; | 
|  | 454 | tsk->active_mm = NULL; | 
|  | 455 |  | 
|  | 456 | /* | 
|  | 457 | * Are we cloning a kernel thread? | 
|  | 458 | * | 
|  | 459 | * We need to steal a active VM for that.. | 
|  | 460 | */ | 
|  | 461 | oldmm = current->mm; | 
|  | 462 | if (!oldmm) | 
|  | 463 | return 0; | 
|  | 464 |  | 
|  | 465 | if (clone_flags & CLONE_VM) { | 
|  | 466 | atomic_inc(&oldmm->mm_users); | 
|  | 467 | mm = oldmm; | 
|  | 468 | /* | 
|  | 469 | * There are cases where the PTL is held to ensure no | 
|  | 470 | * new threads start up in user mode using an mm, which | 
|  | 471 | * allows optimizing out ipis; the tlb_gather_mmu code | 
|  | 472 | * is an example. | 
|  | 473 | */ | 
|  | 474 | spin_unlock_wait(&oldmm->page_table_lock); | 
|  | 475 | goto good_mm; | 
|  | 476 | } | 
|  | 477 |  | 
|  | 478 | retval = -ENOMEM; | 
|  | 479 | mm = allocate_mm(); | 
|  | 480 | if (!mm) | 
|  | 481 | goto fail_nomem; | 
|  | 482 |  | 
|  | 483 | /* Copy the current MM stuff.. */ | 
|  | 484 | memcpy(mm, oldmm, sizeof(*mm)); | 
|  | 485 | if (!mm_init(mm)) | 
|  | 486 | goto fail_nomem; | 
|  | 487 |  | 
|  | 488 | if (init_new_context(tsk,mm)) | 
|  | 489 | goto fail_nocontext; | 
|  | 490 |  | 
|  | 491 | retval = dup_mmap(mm, oldmm); | 
|  | 492 | if (retval) | 
|  | 493 | goto free_pt; | 
|  | 494 |  | 
|  | 495 | mm->hiwater_rss = get_mm_counter(mm,rss); | 
|  | 496 | mm->hiwater_vm = mm->total_vm; | 
|  | 497 |  | 
|  | 498 | good_mm: | 
|  | 499 | tsk->mm = mm; | 
|  | 500 | tsk->active_mm = mm; | 
|  | 501 | return 0; | 
|  | 502 |  | 
|  | 503 | free_pt: | 
|  | 504 | mmput(mm); | 
|  | 505 | fail_nomem: | 
|  | 506 | return retval; | 
|  | 507 |  | 
|  | 508 | fail_nocontext: | 
|  | 509 | /* | 
|  | 510 | * If init_new_context() failed, we cannot use mmput() to free the mm | 
|  | 511 | * because it calls destroy_context() | 
|  | 512 | */ | 
|  | 513 | mm_free_pgd(mm); | 
|  | 514 | free_mm(mm); | 
|  | 515 | return retval; | 
|  | 516 | } | 
|  | 517 |  | 
|  | 518 | static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old) | 
|  | 519 | { | 
|  | 520 | struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL); | 
|  | 521 | /* We don't need to lock fs - think why ;-) */ | 
|  | 522 | if (fs) { | 
|  | 523 | atomic_set(&fs->count, 1); | 
|  | 524 | rwlock_init(&fs->lock); | 
|  | 525 | fs->umask = old->umask; | 
|  | 526 | read_lock(&old->lock); | 
|  | 527 | fs->rootmnt = mntget(old->rootmnt); | 
|  | 528 | fs->root = dget(old->root); | 
|  | 529 | fs->pwdmnt = mntget(old->pwdmnt); | 
|  | 530 | fs->pwd = dget(old->pwd); | 
|  | 531 | if (old->altroot) { | 
|  | 532 | fs->altrootmnt = mntget(old->altrootmnt); | 
|  | 533 | fs->altroot = dget(old->altroot); | 
|  | 534 | } else { | 
|  | 535 | fs->altrootmnt = NULL; | 
|  | 536 | fs->altroot = NULL; | 
|  | 537 | } | 
|  | 538 | read_unlock(&old->lock); | 
|  | 539 | } | 
|  | 540 | return fs; | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | struct fs_struct *copy_fs_struct(struct fs_struct *old) | 
|  | 544 | { | 
|  | 545 | return __copy_fs_struct(old); | 
|  | 546 | } | 
|  | 547 |  | 
|  | 548 | EXPORT_SYMBOL_GPL(copy_fs_struct); | 
|  | 549 |  | 
|  | 550 | static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk) | 
|  | 551 | { | 
|  | 552 | if (clone_flags & CLONE_FS) { | 
|  | 553 | atomic_inc(¤t->fs->count); | 
|  | 554 | return 0; | 
|  | 555 | } | 
|  | 556 | tsk->fs = __copy_fs_struct(current->fs); | 
|  | 557 | if (!tsk->fs) | 
|  | 558 | return -ENOMEM; | 
|  | 559 | return 0; | 
|  | 560 | } | 
|  | 561 |  | 
|  | 562 | static int count_open_files(struct files_struct *files, int size) | 
|  | 563 | { | 
|  | 564 | int i; | 
|  | 565 |  | 
|  | 566 | /* Find the last open fd */ | 
|  | 567 | for (i = size/(8*sizeof(long)); i > 0; ) { | 
|  | 568 | if (files->open_fds->fds_bits[--i]) | 
|  | 569 | break; | 
|  | 570 | } | 
|  | 571 | i = (i+1) * 8 * sizeof(long); | 
|  | 572 | return i; | 
|  | 573 | } | 
|  | 574 |  | 
|  | 575 | static int copy_files(unsigned long clone_flags, struct task_struct * tsk) | 
|  | 576 | { | 
|  | 577 | struct files_struct *oldf, *newf; | 
|  | 578 | struct file **old_fds, **new_fds; | 
|  | 579 | int open_files, size, i, error = 0, expand; | 
|  | 580 |  | 
|  | 581 | /* | 
|  | 582 | * A background process may not have any files ... | 
|  | 583 | */ | 
|  | 584 | oldf = current->files; | 
|  | 585 | if (!oldf) | 
|  | 586 | goto out; | 
|  | 587 |  | 
|  | 588 | if (clone_flags & CLONE_FILES) { | 
|  | 589 | atomic_inc(&oldf->count); | 
|  | 590 | goto out; | 
|  | 591 | } | 
|  | 592 |  | 
|  | 593 | /* | 
|  | 594 | * Note: we may be using current for both targets (See exec.c) | 
|  | 595 | * This works because we cache current->files (old) as oldf. Don't | 
|  | 596 | * break this. | 
|  | 597 | */ | 
|  | 598 | tsk->files = NULL; | 
|  | 599 | error = -ENOMEM; | 
|  | 600 | newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL); | 
|  | 601 | if (!newf) | 
|  | 602 | goto out; | 
|  | 603 |  | 
|  | 604 | atomic_set(&newf->count, 1); | 
|  | 605 |  | 
|  | 606 | spin_lock_init(&newf->file_lock); | 
|  | 607 | newf->next_fd	    = 0; | 
|  | 608 | newf->max_fds	    = NR_OPEN_DEFAULT; | 
|  | 609 | newf->max_fdset	    = __FD_SETSIZE; | 
|  | 610 | newf->close_on_exec = &newf->close_on_exec_init; | 
|  | 611 | newf->open_fds	    = &newf->open_fds_init; | 
|  | 612 | newf->fd	    = &newf->fd_array[0]; | 
|  | 613 |  | 
|  | 614 | spin_lock(&oldf->file_lock); | 
|  | 615 |  | 
|  | 616 | open_files = count_open_files(oldf, oldf->max_fdset); | 
|  | 617 | expand = 0; | 
|  | 618 |  | 
|  | 619 | /* | 
|  | 620 | * Check whether we need to allocate a larger fd array or fd set. | 
|  | 621 | * Note: we're not a clone task, so the open count won't  change. | 
|  | 622 | */ | 
|  | 623 | if (open_files > newf->max_fdset) { | 
|  | 624 | newf->max_fdset = 0; | 
|  | 625 | expand = 1; | 
|  | 626 | } | 
|  | 627 | if (open_files > newf->max_fds) { | 
|  | 628 | newf->max_fds = 0; | 
|  | 629 | expand = 1; | 
|  | 630 | } | 
|  | 631 |  | 
|  | 632 | /* if the old fdset gets grown now, we'll only copy up to "size" fds */ | 
|  | 633 | if (expand) { | 
|  | 634 | spin_unlock(&oldf->file_lock); | 
|  | 635 | spin_lock(&newf->file_lock); | 
|  | 636 | error = expand_files(newf, open_files-1); | 
|  | 637 | spin_unlock(&newf->file_lock); | 
|  | 638 | if (error < 0) | 
|  | 639 | goto out_release; | 
|  | 640 | spin_lock(&oldf->file_lock); | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | old_fds = oldf->fd; | 
|  | 644 | new_fds = newf->fd; | 
|  | 645 |  | 
|  | 646 | memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8); | 
|  | 647 | memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8); | 
|  | 648 |  | 
|  | 649 | for (i = open_files; i != 0; i--) { | 
|  | 650 | struct file *f = *old_fds++; | 
|  | 651 | if (f) { | 
|  | 652 | get_file(f); | 
|  | 653 | } else { | 
|  | 654 | /* | 
|  | 655 | * The fd may be claimed in the fd bitmap but not yet | 
|  | 656 | * instantiated in the files array if a sibling thread | 
|  | 657 | * is partway through open().  So make sure that this | 
|  | 658 | * fd is available to the new process. | 
|  | 659 | */ | 
|  | 660 | FD_CLR(open_files - i, newf->open_fds); | 
|  | 661 | } | 
|  | 662 | *new_fds++ = f; | 
|  | 663 | } | 
|  | 664 | spin_unlock(&oldf->file_lock); | 
|  | 665 |  | 
|  | 666 | /* compute the remainder to be cleared */ | 
|  | 667 | size = (newf->max_fds - open_files) * sizeof(struct file *); | 
|  | 668 |  | 
|  | 669 | /* This is long word aligned thus could use a optimized version */ | 
|  | 670 | memset(new_fds, 0, size); | 
|  | 671 |  | 
|  | 672 | if (newf->max_fdset > open_files) { | 
|  | 673 | int left = (newf->max_fdset-open_files)/8; | 
|  | 674 | int start = open_files / (8 * sizeof(unsigned long)); | 
|  | 675 |  | 
|  | 676 | memset(&newf->open_fds->fds_bits[start], 0, left); | 
|  | 677 | memset(&newf->close_on_exec->fds_bits[start], 0, left); | 
|  | 678 | } | 
|  | 679 |  | 
|  | 680 | tsk->files = newf; | 
|  | 681 | error = 0; | 
|  | 682 | out: | 
|  | 683 | return error; | 
|  | 684 |  | 
|  | 685 | out_release: | 
|  | 686 | free_fdset (newf->close_on_exec, newf->max_fdset); | 
|  | 687 | free_fdset (newf->open_fds, newf->max_fdset); | 
|  | 688 | free_fd_array(newf->fd, newf->max_fds); | 
|  | 689 | kmem_cache_free(files_cachep, newf); | 
|  | 690 | goto out; | 
|  | 691 | } | 
|  | 692 |  | 
|  | 693 | /* | 
|  | 694 | *	Helper to unshare the files of the current task. | 
|  | 695 | *	We don't want to expose copy_files internals to | 
|  | 696 | *	the exec layer of the kernel. | 
|  | 697 | */ | 
|  | 698 |  | 
|  | 699 | int unshare_files(void) | 
|  | 700 | { | 
|  | 701 | struct files_struct *files  = current->files; | 
|  | 702 | int rc; | 
|  | 703 |  | 
|  | 704 | if(!files) | 
|  | 705 | BUG(); | 
|  | 706 |  | 
|  | 707 | /* This can race but the race causes us to copy when we don't | 
|  | 708 | need to and drop the copy */ | 
|  | 709 | if(atomic_read(&files->count) == 1) | 
|  | 710 | { | 
|  | 711 | atomic_inc(&files->count); | 
|  | 712 | return 0; | 
|  | 713 | } | 
|  | 714 | rc = copy_files(0, current); | 
|  | 715 | if(rc) | 
|  | 716 | current->files = files; | 
|  | 717 | return rc; | 
|  | 718 | } | 
|  | 719 |  | 
|  | 720 | EXPORT_SYMBOL(unshare_files); | 
|  | 721 |  | 
|  | 722 | static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk) | 
|  | 723 | { | 
|  | 724 | struct sighand_struct *sig; | 
|  | 725 |  | 
|  | 726 | if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) { | 
|  | 727 | atomic_inc(¤t->sighand->count); | 
|  | 728 | return 0; | 
|  | 729 | } | 
|  | 730 | sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
|  | 731 | tsk->sighand = sig; | 
|  | 732 | if (!sig) | 
|  | 733 | return -ENOMEM; | 
|  | 734 | spin_lock_init(&sig->siglock); | 
|  | 735 | atomic_set(&sig->count, 1); | 
|  | 736 | memcpy(sig->action, current->sighand->action, sizeof(sig->action)); | 
|  | 737 | return 0; | 
|  | 738 | } | 
|  | 739 |  | 
|  | 740 | static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk) | 
|  | 741 | { | 
|  | 742 | struct signal_struct *sig; | 
|  | 743 | int ret; | 
|  | 744 |  | 
|  | 745 | if (clone_flags & CLONE_THREAD) { | 
|  | 746 | atomic_inc(¤t->signal->count); | 
|  | 747 | atomic_inc(¤t->signal->live); | 
|  | 748 | return 0; | 
|  | 749 | } | 
|  | 750 | sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL); | 
|  | 751 | tsk->signal = sig; | 
|  | 752 | if (!sig) | 
|  | 753 | return -ENOMEM; | 
|  | 754 |  | 
|  | 755 | ret = copy_thread_group_keys(tsk); | 
|  | 756 | if (ret < 0) { | 
|  | 757 | kmem_cache_free(signal_cachep, sig); | 
|  | 758 | return ret; | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | atomic_set(&sig->count, 1); | 
|  | 762 | atomic_set(&sig->live, 1); | 
|  | 763 | init_waitqueue_head(&sig->wait_chldexit); | 
|  | 764 | sig->flags = 0; | 
|  | 765 | sig->group_exit_code = 0; | 
|  | 766 | sig->group_exit_task = NULL; | 
|  | 767 | sig->group_stop_count = 0; | 
|  | 768 | sig->curr_target = NULL; | 
|  | 769 | init_sigpending(&sig->shared_pending); | 
|  | 770 | INIT_LIST_HEAD(&sig->posix_timers); | 
|  | 771 |  | 
|  | 772 | sig->it_real_value = sig->it_real_incr = 0; | 
|  | 773 | sig->real_timer.function = it_real_fn; | 
|  | 774 | sig->real_timer.data = (unsigned long) tsk; | 
|  | 775 | init_timer(&sig->real_timer); | 
|  | 776 |  | 
|  | 777 | sig->it_virt_expires = cputime_zero; | 
|  | 778 | sig->it_virt_incr = cputime_zero; | 
|  | 779 | sig->it_prof_expires = cputime_zero; | 
|  | 780 | sig->it_prof_incr = cputime_zero; | 
|  | 781 |  | 
|  | 782 | sig->tty = current->signal->tty; | 
|  | 783 | sig->pgrp = process_group(current); | 
|  | 784 | sig->session = current->signal->session; | 
|  | 785 | sig->leader = 0;	/* session leadership doesn't inherit */ | 
|  | 786 | sig->tty_old_pgrp = 0; | 
|  | 787 |  | 
|  | 788 | sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero; | 
|  | 789 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 
|  | 790 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 
|  | 791 | sig->sched_time = 0; | 
|  | 792 | INIT_LIST_HEAD(&sig->cpu_timers[0]); | 
|  | 793 | INIT_LIST_HEAD(&sig->cpu_timers[1]); | 
|  | 794 | INIT_LIST_HEAD(&sig->cpu_timers[2]); | 
|  | 795 |  | 
|  | 796 | task_lock(current->group_leader); | 
|  | 797 | memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); | 
|  | 798 | task_unlock(current->group_leader); | 
|  | 799 |  | 
|  | 800 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 
|  | 801 | /* | 
|  | 802 | * New sole thread in the process gets an expiry time | 
|  | 803 | * of the whole CPU time limit. | 
|  | 804 | */ | 
|  | 805 | tsk->it_prof_expires = | 
|  | 806 | secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | 
|  | 807 | } | 
|  | 808 |  | 
|  | 809 | return 0; | 
|  | 810 | } | 
|  | 811 |  | 
|  | 812 | static inline void copy_flags(unsigned long clone_flags, struct task_struct *p) | 
|  | 813 | { | 
|  | 814 | unsigned long new_flags = p->flags; | 
|  | 815 |  | 
|  | 816 | new_flags &= ~PF_SUPERPRIV; | 
|  | 817 | new_flags |= PF_FORKNOEXEC; | 
|  | 818 | if (!(clone_flags & CLONE_PTRACE)) | 
|  | 819 | p->ptrace = 0; | 
|  | 820 | p->flags = new_flags; | 
|  | 821 | } | 
|  | 822 |  | 
|  | 823 | asmlinkage long sys_set_tid_address(int __user *tidptr) | 
|  | 824 | { | 
|  | 825 | current->clear_child_tid = tidptr; | 
|  | 826 |  | 
|  | 827 | return current->pid; | 
|  | 828 | } | 
|  | 829 |  | 
|  | 830 | /* | 
|  | 831 | * This creates a new process as a copy of the old one, | 
|  | 832 | * but does not actually start it yet. | 
|  | 833 | * | 
|  | 834 | * It copies the registers, and all the appropriate | 
|  | 835 | * parts of the process environment (as per the clone | 
|  | 836 | * flags). The actual kick-off is left to the caller. | 
|  | 837 | */ | 
|  | 838 | static task_t *copy_process(unsigned long clone_flags, | 
|  | 839 | unsigned long stack_start, | 
|  | 840 | struct pt_regs *regs, | 
|  | 841 | unsigned long stack_size, | 
|  | 842 | int __user *parent_tidptr, | 
|  | 843 | int __user *child_tidptr, | 
|  | 844 | int pid) | 
|  | 845 | { | 
|  | 846 | int retval; | 
|  | 847 | struct task_struct *p = NULL; | 
|  | 848 |  | 
|  | 849 | if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) | 
|  | 850 | return ERR_PTR(-EINVAL); | 
|  | 851 |  | 
|  | 852 | /* | 
|  | 853 | * Thread groups must share signals as well, and detached threads | 
|  | 854 | * can only be started up within the thread group. | 
|  | 855 | */ | 
|  | 856 | if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) | 
|  | 857 | return ERR_PTR(-EINVAL); | 
|  | 858 |  | 
|  | 859 | /* | 
|  | 860 | * Shared signal handlers imply shared VM. By way of the above, | 
|  | 861 | * thread groups also imply shared VM. Blocking this case allows | 
|  | 862 | * for various simplifications in other code. | 
|  | 863 | */ | 
|  | 864 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 
|  | 865 | return ERR_PTR(-EINVAL); | 
|  | 866 |  | 
|  | 867 | retval = security_task_create(clone_flags); | 
|  | 868 | if (retval) | 
|  | 869 | goto fork_out; | 
|  | 870 |  | 
|  | 871 | retval = -ENOMEM; | 
|  | 872 | p = dup_task_struct(current); | 
|  | 873 | if (!p) | 
|  | 874 | goto fork_out; | 
|  | 875 |  | 
|  | 876 | retval = -EAGAIN; | 
|  | 877 | if (atomic_read(&p->user->processes) >= | 
|  | 878 | p->signal->rlim[RLIMIT_NPROC].rlim_cur) { | 
|  | 879 | if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) && | 
|  | 880 | p->user != &root_user) | 
|  | 881 | goto bad_fork_free; | 
|  | 882 | } | 
|  | 883 |  | 
|  | 884 | atomic_inc(&p->user->__count); | 
|  | 885 | atomic_inc(&p->user->processes); | 
|  | 886 | get_group_info(p->group_info); | 
|  | 887 |  | 
|  | 888 | /* | 
|  | 889 | * If multiple threads are within copy_process(), then this check | 
|  | 890 | * triggers too late. This doesn't hurt, the check is only there | 
|  | 891 | * to stop root fork bombs. | 
|  | 892 | */ | 
|  | 893 | if (nr_threads >= max_threads) | 
|  | 894 | goto bad_fork_cleanup_count; | 
|  | 895 |  | 
|  | 896 | if (!try_module_get(p->thread_info->exec_domain->module)) | 
|  | 897 | goto bad_fork_cleanup_count; | 
|  | 898 |  | 
|  | 899 | if (p->binfmt && !try_module_get(p->binfmt->module)) | 
|  | 900 | goto bad_fork_cleanup_put_domain; | 
|  | 901 |  | 
|  | 902 | p->did_exec = 0; | 
|  | 903 | copy_flags(clone_flags, p); | 
|  | 904 | p->pid = pid; | 
|  | 905 | retval = -EFAULT; | 
|  | 906 | if (clone_flags & CLONE_PARENT_SETTID) | 
|  | 907 | if (put_user(p->pid, parent_tidptr)) | 
|  | 908 | goto bad_fork_cleanup; | 
|  | 909 |  | 
|  | 910 | p->proc_dentry = NULL; | 
|  | 911 |  | 
|  | 912 | INIT_LIST_HEAD(&p->children); | 
|  | 913 | INIT_LIST_HEAD(&p->sibling); | 
|  | 914 | p->vfork_done = NULL; | 
|  | 915 | spin_lock_init(&p->alloc_lock); | 
|  | 916 | spin_lock_init(&p->proc_lock); | 
|  | 917 |  | 
|  | 918 | clear_tsk_thread_flag(p, TIF_SIGPENDING); | 
|  | 919 | init_sigpending(&p->pending); | 
|  | 920 |  | 
|  | 921 | p->utime = cputime_zero; | 
|  | 922 | p->stime = cputime_zero; | 
|  | 923 | p->sched_time = 0; | 
|  | 924 | p->rchar = 0;		/* I/O counter: bytes read */ | 
|  | 925 | p->wchar = 0;		/* I/O counter: bytes written */ | 
|  | 926 | p->syscr = 0;		/* I/O counter: read syscalls */ | 
|  | 927 | p->syscw = 0;		/* I/O counter: write syscalls */ | 
|  | 928 | acct_clear_integrals(p); | 
|  | 929 |  | 
|  | 930 | p->it_virt_expires = cputime_zero; | 
|  | 931 | p->it_prof_expires = cputime_zero; | 
|  | 932 | p->it_sched_expires = 0; | 
|  | 933 | INIT_LIST_HEAD(&p->cpu_timers[0]); | 
|  | 934 | INIT_LIST_HEAD(&p->cpu_timers[1]); | 
|  | 935 | INIT_LIST_HEAD(&p->cpu_timers[2]); | 
|  | 936 |  | 
|  | 937 | p->lock_depth = -1;		/* -1 = no lock */ | 
|  | 938 | do_posix_clock_monotonic_gettime(&p->start_time); | 
|  | 939 | p->security = NULL; | 
|  | 940 | p->io_context = NULL; | 
|  | 941 | p->io_wait = NULL; | 
|  | 942 | p->audit_context = NULL; | 
|  | 943 | #ifdef CONFIG_NUMA | 
|  | 944 | p->mempolicy = mpol_copy(p->mempolicy); | 
|  | 945 | if (IS_ERR(p->mempolicy)) { | 
|  | 946 | retval = PTR_ERR(p->mempolicy); | 
|  | 947 | p->mempolicy = NULL; | 
|  | 948 | goto bad_fork_cleanup; | 
|  | 949 | } | 
|  | 950 | #endif | 
|  | 951 |  | 
|  | 952 | p->tgid = p->pid; | 
|  | 953 | if (clone_flags & CLONE_THREAD) | 
|  | 954 | p->tgid = current->tgid; | 
|  | 955 |  | 
|  | 956 | if ((retval = security_task_alloc(p))) | 
|  | 957 | goto bad_fork_cleanup_policy; | 
|  | 958 | if ((retval = audit_alloc(p))) | 
|  | 959 | goto bad_fork_cleanup_security; | 
|  | 960 | /* copy all the process information */ | 
|  | 961 | if ((retval = copy_semundo(clone_flags, p))) | 
|  | 962 | goto bad_fork_cleanup_audit; | 
|  | 963 | if ((retval = copy_files(clone_flags, p))) | 
|  | 964 | goto bad_fork_cleanup_semundo; | 
|  | 965 | if ((retval = copy_fs(clone_flags, p))) | 
|  | 966 | goto bad_fork_cleanup_files; | 
|  | 967 | if ((retval = copy_sighand(clone_flags, p))) | 
|  | 968 | goto bad_fork_cleanup_fs; | 
|  | 969 | if ((retval = copy_signal(clone_flags, p))) | 
|  | 970 | goto bad_fork_cleanup_sighand; | 
|  | 971 | if ((retval = copy_mm(clone_flags, p))) | 
|  | 972 | goto bad_fork_cleanup_signal; | 
|  | 973 | if ((retval = copy_keys(clone_flags, p))) | 
|  | 974 | goto bad_fork_cleanup_mm; | 
|  | 975 | if ((retval = copy_namespace(clone_flags, p))) | 
|  | 976 | goto bad_fork_cleanup_keys; | 
|  | 977 | retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs); | 
|  | 978 | if (retval) | 
|  | 979 | goto bad_fork_cleanup_namespace; | 
|  | 980 |  | 
|  | 981 | p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; | 
|  | 982 | /* | 
|  | 983 | * Clear TID on mm_release()? | 
|  | 984 | */ | 
|  | 985 | p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL; | 
|  | 986 |  | 
|  | 987 | /* | 
|  | 988 | * Syscall tracing should be turned off in the child regardless | 
|  | 989 | * of CLONE_PTRACE. | 
|  | 990 | */ | 
|  | 991 | clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); | 
|  | 992 |  | 
|  | 993 | /* Our parent execution domain becomes current domain | 
|  | 994 | These must match for thread signalling to apply */ | 
|  | 995 |  | 
|  | 996 | p->parent_exec_id = p->self_exec_id; | 
|  | 997 |  | 
|  | 998 | /* ok, now we should be set up.. */ | 
|  | 999 | p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL); | 
|  | 1000 | p->pdeath_signal = 0; | 
|  | 1001 | p->exit_state = 0; | 
|  | 1002 |  | 
|  | 1003 | /* Perform scheduler related setup */ | 
|  | 1004 | sched_fork(p); | 
|  | 1005 |  | 
|  | 1006 | /* | 
|  | 1007 | * Ok, make it visible to the rest of the system. | 
|  | 1008 | * We dont wake it up yet. | 
|  | 1009 | */ | 
|  | 1010 | p->group_leader = p; | 
|  | 1011 | INIT_LIST_HEAD(&p->ptrace_children); | 
|  | 1012 | INIT_LIST_HEAD(&p->ptrace_list); | 
|  | 1013 |  | 
|  | 1014 | /* Need tasklist lock for parent etc handling! */ | 
|  | 1015 | write_lock_irq(&tasklist_lock); | 
|  | 1016 |  | 
|  | 1017 | /* | 
|  | 1018 | * The task hasn't been attached yet, so cpus_allowed mask cannot | 
|  | 1019 | * have changed. The cpus_allowed mask of the parent may have | 
|  | 1020 | * changed after it was copied first time, and it may then move to | 
|  | 1021 | * another CPU - so we re-copy it here and set the child's CPU to | 
|  | 1022 | * the parent's CPU. This avoids alot of nasty races. | 
|  | 1023 | */ | 
|  | 1024 | p->cpus_allowed = current->cpus_allowed; | 
|  | 1025 | set_task_cpu(p, smp_processor_id()); | 
|  | 1026 |  | 
|  | 1027 | /* | 
|  | 1028 | * Check for pending SIGKILL! The new thread should not be allowed | 
|  | 1029 | * to slip out of an OOM kill. (or normal SIGKILL.) | 
|  | 1030 | */ | 
|  | 1031 | if (sigismember(¤t->pending.signal, SIGKILL)) { | 
|  | 1032 | write_unlock_irq(&tasklist_lock); | 
|  | 1033 | retval = -EINTR; | 
|  | 1034 | goto bad_fork_cleanup_namespace; | 
|  | 1035 | } | 
|  | 1036 |  | 
|  | 1037 | /* CLONE_PARENT re-uses the old parent */ | 
|  | 1038 | if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) | 
|  | 1039 | p->real_parent = current->real_parent; | 
|  | 1040 | else | 
|  | 1041 | p->real_parent = current; | 
|  | 1042 | p->parent = p->real_parent; | 
|  | 1043 |  | 
|  | 1044 | if (clone_flags & CLONE_THREAD) { | 
|  | 1045 | spin_lock(¤t->sighand->siglock); | 
|  | 1046 | /* | 
|  | 1047 | * Important: if an exit-all has been started then | 
|  | 1048 | * do not create this new thread - the whole thread | 
|  | 1049 | * group is supposed to exit anyway. | 
|  | 1050 | */ | 
|  | 1051 | if (current->signal->flags & SIGNAL_GROUP_EXIT) { | 
|  | 1052 | spin_unlock(¤t->sighand->siglock); | 
|  | 1053 | write_unlock_irq(&tasklist_lock); | 
|  | 1054 | retval = -EAGAIN; | 
|  | 1055 | goto bad_fork_cleanup_namespace; | 
|  | 1056 | } | 
|  | 1057 | p->group_leader = current->group_leader; | 
|  | 1058 |  | 
|  | 1059 | if (current->signal->group_stop_count > 0) { | 
|  | 1060 | /* | 
|  | 1061 | * There is an all-stop in progress for the group. | 
|  | 1062 | * We ourselves will stop as soon as we check signals. | 
|  | 1063 | * Make the new thread part of that group stop too. | 
|  | 1064 | */ | 
|  | 1065 | current->signal->group_stop_count++; | 
|  | 1066 | set_tsk_thread_flag(p, TIF_SIGPENDING); | 
|  | 1067 | } | 
|  | 1068 |  | 
|  | 1069 | if (!cputime_eq(current->signal->it_virt_expires, | 
|  | 1070 | cputime_zero) || | 
|  | 1071 | !cputime_eq(current->signal->it_prof_expires, | 
|  | 1072 | cputime_zero) || | 
|  | 1073 | current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY || | 
|  | 1074 | !list_empty(¤t->signal->cpu_timers[0]) || | 
|  | 1075 | !list_empty(¤t->signal->cpu_timers[1]) || | 
|  | 1076 | !list_empty(¤t->signal->cpu_timers[2])) { | 
|  | 1077 | /* | 
|  | 1078 | * Have child wake up on its first tick to check | 
|  | 1079 | * for process CPU timers. | 
|  | 1080 | */ | 
|  | 1081 | p->it_prof_expires = jiffies_to_cputime(1); | 
|  | 1082 | } | 
|  | 1083 |  | 
|  | 1084 | spin_unlock(¤t->sighand->siglock); | 
|  | 1085 | } | 
|  | 1086 |  | 
|  | 1087 | SET_LINKS(p); | 
|  | 1088 | if (unlikely(p->ptrace & PT_PTRACED)) | 
|  | 1089 | __ptrace_link(p, current->parent); | 
|  | 1090 |  | 
|  | 1091 | cpuset_fork(p); | 
|  | 1092 |  | 
|  | 1093 | attach_pid(p, PIDTYPE_PID, p->pid); | 
|  | 1094 | attach_pid(p, PIDTYPE_TGID, p->tgid); | 
|  | 1095 | if (thread_group_leader(p)) { | 
|  | 1096 | attach_pid(p, PIDTYPE_PGID, process_group(p)); | 
|  | 1097 | attach_pid(p, PIDTYPE_SID, p->signal->session); | 
|  | 1098 | if (p->pid) | 
|  | 1099 | __get_cpu_var(process_counts)++; | 
|  | 1100 | } | 
|  | 1101 |  | 
|  | 1102 | nr_threads++; | 
|  | 1103 | total_forks++; | 
|  | 1104 | write_unlock_irq(&tasklist_lock); | 
|  | 1105 | retval = 0; | 
|  | 1106 |  | 
|  | 1107 | fork_out: | 
|  | 1108 | if (retval) | 
|  | 1109 | return ERR_PTR(retval); | 
|  | 1110 | return p; | 
|  | 1111 |  | 
|  | 1112 | bad_fork_cleanup_namespace: | 
|  | 1113 | exit_namespace(p); | 
|  | 1114 | bad_fork_cleanup_keys: | 
|  | 1115 | exit_keys(p); | 
|  | 1116 | bad_fork_cleanup_mm: | 
|  | 1117 | if (p->mm) | 
|  | 1118 | mmput(p->mm); | 
|  | 1119 | bad_fork_cleanup_signal: | 
|  | 1120 | exit_signal(p); | 
|  | 1121 | bad_fork_cleanup_sighand: | 
|  | 1122 | exit_sighand(p); | 
|  | 1123 | bad_fork_cleanup_fs: | 
|  | 1124 | exit_fs(p); /* blocking */ | 
|  | 1125 | bad_fork_cleanup_files: | 
|  | 1126 | exit_files(p); /* blocking */ | 
|  | 1127 | bad_fork_cleanup_semundo: | 
|  | 1128 | exit_sem(p); | 
|  | 1129 | bad_fork_cleanup_audit: | 
|  | 1130 | audit_free(p); | 
|  | 1131 | bad_fork_cleanup_security: | 
|  | 1132 | security_task_free(p); | 
|  | 1133 | bad_fork_cleanup_policy: | 
|  | 1134 | #ifdef CONFIG_NUMA | 
|  | 1135 | mpol_free(p->mempolicy); | 
|  | 1136 | #endif | 
|  | 1137 | bad_fork_cleanup: | 
|  | 1138 | if (p->binfmt) | 
|  | 1139 | module_put(p->binfmt->module); | 
|  | 1140 | bad_fork_cleanup_put_domain: | 
|  | 1141 | module_put(p->thread_info->exec_domain->module); | 
|  | 1142 | bad_fork_cleanup_count: | 
|  | 1143 | put_group_info(p->group_info); | 
|  | 1144 | atomic_dec(&p->user->processes); | 
|  | 1145 | free_uid(p->user); | 
|  | 1146 | bad_fork_free: | 
|  | 1147 | free_task(p); | 
|  | 1148 | goto fork_out; | 
|  | 1149 | } | 
|  | 1150 |  | 
|  | 1151 | struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs) | 
|  | 1152 | { | 
|  | 1153 | memset(regs, 0, sizeof(struct pt_regs)); | 
|  | 1154 | return regs; | 
|  | 1155 | } | 
|  | 1156 |  | 
|  | 1157 | task_t * __devinit fork_idle(int cpu) | 
|  | 1158 | { | 
|  | 1159 | task_t *task; | 
|  | 1160 | struct pt_regs regs; | 
|  | 1161 |  | 
|  | 1162 | task = copy_process(CLONE_VM, 0, idle_regs(®s), 0, NULL, NULL, 0); | 
|  | 1163 | if (!task) | 
|  | 1164 | return ERR_PTR(-ENOMEM); | 
|  | 1165 | init_idle(task, cpu); | 
|  | 1166 | unhash_process(task); | 
|  | 1167 | return task; | 
|  | 1168 | } | 
|  | 1169 |  | 
|  | 1170 | static inline int fork_traceflag (unsigned clone_flags) | 
|  | 1171 | { | 
|  | 1172 | if (clone_flags & CLONE_UNTRACED) | 
|  | 1173 | return 0; | 
|  | 1174 | else if (clone_flags & CLONE_VFORK) { | 
|  | 1175 | if (current->ptrace & PT_TRACE_VFORK) | 
|  | 1176 | return PTRACE_EVENT_VFORK; | 
|  | 1177 | } else if ((clone_flags & CSIGNAL) != SIGCHLD) { | 
|  | 1178 | if (current->ptrace & PT_TRACE_CLONE) | 
|  | 1179 | return PTRACE_EVENT_CLONE; | 
|  | 1180 | } else if (current->ptrace & PT_TRACE_FORK) | 
|  | 1181 | return PTRACE_EVENT_FORK; | 
|  | 1182 |  | 
|  | 1183 | return 0; | 
|  | 1184 | } | 
|  | 1185 |  | 
|  | 1186 | /* | 
|  | 1187 | *  Ok, this is the main fork-routine. | 
|  | 1188 | * | 
|  | 1189 | * It copies the process, and if successful kick-starts | 
|  | 1190 | * it and waits for it to finish using the VM if required. | 
|  | 1191 | */ | 
|  | 1192 | long do_fork(unsigned long clone_flags, | 
|  | 1193 | unsigned long stack_start, | 
|  | 1194 | struct pt_regs *regs, | 
|  | 1195 | unsigned long stack_size, | 
|  | 1196 | int __user *parent_tidptr, | 
|  | 1197 | int __user *child_tidptr) | 
|  | 1198 | { | 
|  | 1199 | struct task_struct *p; | 
|  | 1200 | int trace = 0; | 
|  | 1201 | long pid = alloc_pidmap(); | 
|  | 1202 |  | 
|  | 1203 | if (pid < 0) | 
|  | 1204 | return -EAGAIN; | 
|  | 1205 | if (unlikely(current->ptrace)) { | 
|  | 1206 | trace = fork_traceflag (clone_flags); | 
|  | 1207 | if (trace) | 
|  | 1208 | clone_flags |= CLONE_PTRACE; | 
|  | 1209 | } | 
|  | 1210 |  | 
|  | 1211 | p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid); | 
|  | 1212 | /* | 
|  | 1213 | * Do this prior waking up the new thread - the thread pointer | 
|  | 1214 | * might get invalid after that point, if the thread exits quickly. | 
|  | 1215 | */ | 
|  | 1216 | if (!IS_ERR(p)) { | 
|  | 1217 | struct completion vfork; | 
|  | 1218 |  | 
|  | 1219 | if (clone_flags & CLONE_VFORK) { | 
|  | 1220 | p->vfork_done = &vfork; | 
|  | 1221 | init_completion(&vfork); | 
|  | 1222 | } | 
|  | 1223 |  | 
|  | 1224 | if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) { | 
|  | 1225 | /* | 
|  | 1226 | * We'll start up with an immediate SIGSTOP. | 
|  | 1227 | */ | 
|  | 1228 | sigaddset(&p->pending.signal, SIGSTOP); | 
|  | 1229 | set_tsk_thread_flag(p, TIF_SIGPENDING); | 
|  | 1230 | } | 
|  | 1231 |  | 
|  | 1232 | if (!(clone_flags & CLONE_STOPPED)) | 
|  | 1233 | wake_up_new_task(p, clone_flags); | 
|  | 1234 | else | 
|  | 1235 | p->state = TASK_STOPPED; | 
|  | 1236 |  | 
|  | 1237 | if (unlikely (trace)) { | 
|  | 1238 | current->ptrace_message = pid; | 
|  | 1239 | ptrace_notify ((trace << 8) | SIGTRAP); | 
|  | 1240 | } | 
|  | 1241 |  | 
|  | 1242 | if (clone_flags & CLONE_VFORK) { | 
|  | 1243 | wait_for_completion(&vfork); | 
|  | 1244 | if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) | 
|  | 1245 | ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP); | 
|  | 1246 | } | 
|  | 1247 | } else { | 
|  | 1248 | free_pidmap(pid); | 
|  | 1249 | pid = PTR_ERR(p); | 
|  | 1250 | } | 
|  | 1251 | return pid; | 
|  | 1252 | } | 
|  | 1253 |  | 
|  | 1254 | void __init proc_caches_init(void) | 
|  | 1255 | { | 
|  | 1256 | sighand_cachep = kmem_cache_create("sighand_cache", | 
|  | 1257 | sizeof(struct sighand_struct), 0, | 
|  | 1258 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  | 1259 | signal_cachep = kmem_cache_create("signal_cache", | 
|  | 1260 | sizeof(struct signal_struct), 0, | 
|  | 1261 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  | 1262 | files_cachep = kmem_cache_create("files_cache", | 
|  | 1263 | sizeof(struct files_struct), 0, | 
|  | 1264 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  | 1265 | fs_cachep = kmem_cache_create("fs_cache", | 
|  | 1266 | sizeof(struct fs_struct), 0, | 
|  | 1267 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  | 1268 | vm_area_cachep = kmem_cache_create("vm_area_struct", | 
|  | 1269 | sizeof(struct vm_area_struct), 0, | 
|  | 1270 | SLAB_PANIC, NULL, NULL); | 
|  | 1271 | mm_cachep = kmem_cache_create("mm_struct", | 
|  | 1272 | sizeof(struct mm_struct), 0, | 
|  | 1273 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  | 1274 | } |