| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Generic pidhash and scalable, time-bounded PID allocator | 
|  | 3 | * | 
|  | 4 | * (C) 2002-2003 William Irwin, IBM | 
|  | 5 | * (C) 2004 William Irwin, Oracle | 
|  | 6 | * (C) 2002-2004 Ingo Molnar, Red Hat | 
|  | 7 | * | 
|  | 8 | * pid-structures are backing objects for tasks sharing a given ID to chain | 
|  | 9 | * against. There is very little to them aside from hashing them and | 
|  | 10 | * parking tasks using given ID's on a list. | 
|  | 11 | * | 
|  | 12 | * The hash is always changed with the tasklist_lock write-acquired, | 
|  | 13 | * and the hash is only accessed with the tasklist_lock at least | 
|  | 14 | * read-acquired, so there's no additional SMP locking needed here. | 
|  | 15 | * | 
|  | 16 | * We have a list of bitmap pages, which bitmaps represent the PID space. | 
|  | 17 | * Allocating and freeing PIDs is completely lockless. The worst-case | 
|  | 18 | * allocation scenario when all but one out of 1 million PIDs possible are | 
|  | 19 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
|  | 20 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
|  | 21 | */ | 
|  | 22 |  | 
|  | 23 | #include <linux/mm.h> | 
|  | 24 | #include <linux/module.h> | 
|  | 25 | #include <linux/slab.h> | 
|  | 26 | #include <linux/init.h> | 
|  | 27 | #include <linux/bootmem.h> | 
|  | 28 | #include <linux/hash.h> | 
|  | 29 |  | 
|  | 30 | #define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift) | 
|  | 31 | static struct hlist_head *pid_hash[PIDTYPE_MAX]; | 
|  | 32 | static int pidhash_shift; | 
|  | 33 |  | 
|  | 34 | int pid_max = PID_MAX_DEFAULT; | 
|  | 35 | int last_pid; | 
|  | 36 |  | 
|  | 37 | #define RESERVED_PIDS		300 | 
|  | 38 |  | 
|  | 39 | int pid_max_min = RESERVED_PIDS + 1; | 
|  | 40 | int pid_max_max = PID_MAX_LIMIT; | 
|  | 41 |  | 
|  | 42 | #define PIDMAP_ENTRIES		((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8) | 
|  | 43 | #define BITS_PER_PAGE		(PAGE_SIZE*8) | 
|  | 44 | #define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1) | 
|  | 45 | #define mk_pid(map, off)	(((map) - pidmap_array)*BITS_PER_PAGE + (off)) | 
|  | 46 | #define find_next_offset(map, off)					\ | 
|  | 47 | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | 
|  | 48 |  | 
|  | 49 | /* | 
|  | 50 | * PID-map pages start out as NULL, they get allocated upon | 
|  | 51 | * first use and are never deallocated. This way a low pid_max | 
|  | 52 | * value does not cause lots of bitmaps to be allocated, but | 
|  | 53 | * the scheme scales to up to 4 million PIDs, runtime. | 
|  | 54 | */ | 
|  | 55 | typedef struct pidmap { | 
|  | 56 | atomic_t nr_free; | 
|  | 57 | void *page; | 
|  | 58 | } pidmap_t; | 
|  | 59 |  | 
|  | 60 | static pidmap_t pidmap_array[PIDMAP_ENTRIES] = | 
|  | 61 | { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } }; | 
|  | 62 |  | 
|  | 63 | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
|  | 64 |  | 
|  | 65 | fastcall void free_pidmap(int pid) | 
|  | 66 | { | 
|  | 67 | pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE; | 
|  | 68 | int offset = pid & BITS_PER_PAGE_MASK; | 
|  | 69 |  | 
|  | 70 | clear_bit(offset, map->page); | 
|  | 71 | atomic_inc(&map->nr_free); | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | int alloc_pidmap(void) | 
|  | 75 | { | 
|  | 76 | int i, offset, max_scan, pid, last = last_pid; | 
|  | 77 | pidmap_t *map; | 
|  | 78 |  | 
|  | 79 | pid = last + 1; | 
|  | 80 | if (pid >= pid_max) | 
|  | 81 | pid = RESERVED_PIDS; | 
|  | 82 | offset = pid & BITS_PER_PAGE_MASK; | 
|  | 83 | map = &pidmap_array[pid/BITS_PER_PAGE]; | 
|  | 84 | max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; | 
|  | 85 | for (i = 0; i <= max_scan; ++i) { | 
|  | 86 | if (unlikely(!map->page)) { | 
|  | 87 | unsigned long page = get_zeroed_page(GFP_KERNEL); | 
|  | 88 | /* | 
|  | 89 | * Free the page if someone raced with us | 
|  | 90 | * installing it: | 
|  | 91 | */ | 
|  | 92 | spin_lock(&pidmap_lock); | 
|  | 93 | if (map->page) | 
|  | 94 | free_page(page); | 
|  | 95 | else | 
|  | 96 | map->page = (void *)page; | 
|  | 97 | spin_unlock(&pidmap_lock); | 
|  | 98 | if (unlikely(!map->page)) | 
|  | 99 | break; | 
|  | 100 | } | 
|  | 101 | if (likely(atomic_read(&map->nr_free))) { | 
|  | 102 | do { | 
|  | 103 | if (!test_and_set_bit(offset, map->page)) { | 
|  | 104 | atomic_dec(&map->nr_free); | 
|  | 105 | last_pid = pid; | 
|  | 106 | return pid; | 
|  | 107 | } | 
|  | 108 | offset = find_next_offset(map, offset); | 
|  | 109 | pid = mk_pid(map, offset); | 
|  | 110 | /* | 
|  | 111 | * find_next_offset() found a bit, the pid from it | 
|  | 112 | * is in-bounds, and if we fell back to the last | 
|  | 113 | * bitmap block and the final block was the same | 
|  | 114 | * as the starting point, pid is before last_pid. | 
|  | 115 | */ | 
|  | 116 | } while (offset < BITS_PER_PAGE && pid < pid_max && | 
|  | 117 | (i != max_scan || pid < last || | 
|  | 118 | !((last+1) & BITS_PER_PAGE_MASK))); | 
|  | 119 | } | 
|  | 120 | if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) { | 
|  | 121 | ++map; | 
|  | 122 | offset = 0; | 
|  | 123 | } else { | 
|  | 124 | map = &pidmap_array[0]; | 
|  | 125 | offset = RESERVED_PIDS; | 
|  | 126 | if (unlikely(last == offset)) | 
|  | 127 | break; | 
|  | 128 | } | 
|  | 129 | pid = mk_pid(map, offset); | 
|  | 130 | } | 
|  | 131 | return -1; | 
|  | 132 | } | 
|  | 133 |  | 
|  | 134 | struct pid * fastcall find_pid(enum pid_type type, int nr) | 
|  | 135 | { | 
|  | 136 | struct hlist_node *elem; | 
|  | 137 | struct pid *pid; | 
|  | 138 |  | 
|  | 139 | hlist_for_each_entry(pid, elem, | 
|  | 140 | &pid_hash[type][pid_hashfn(nr)], pid_chain) { | 
|  | 141 | if (pid->nr == nr) | 
|  | 142 | return pid; | 
|  | 143 | } | 
|  | 144 | return NULL; | 
|  | 145 | } | 
|  | 146 |  | 
|  | 147 | int fastcall attach_pid(task_t *task, enum pid_type type, int nr) | 
|  | 148 | { | 
|  | 149 | struct pid *pid, *task_pid; | 
|  | 150 |  | 
|  | 151 | task_pid = &task->pids[type]; | 
|  | 152 | pid = find_pid(type, nr); | 
|  | 153 | if (pid == NULL) { | 
|  | 154 | hlist_add_head(&task_pid->pid_chain, | 
|  | 155 | &pid_hash[type][pid_hashfn(nr)]); | 
|  | 156 | INIT_LIST_HEAD(&task_pid->pid_list); | 
|  | 157 | } else { | 
|  | 158 | INIT_HLIST_NODE(&task_pid->pid_chain); | 
|  | 159 | list_add_tail(&task_pid->pid_list, &pid->pid_list); | 
|  | 160 | } | 
|  | 161 | task_pid->nr = nr; | 
|  | 162 |  | 
|  | 163 | return 0; | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | static fastcall int __detach_pid(task_t *task, enum pid_type type) | 
|  | 167 | { | 
|  | 168 | struct pid *pid, *pid_next; | 
|  | 169 | int nr = 0; | 
|  | 170 |  | 
|  | 171 | pid = &task->pids[type]; | 
|  | 172 | if (!hlist_unhashed(&pid->pid_chain)) { | 
|  | 173 | hlist_del(&pid->pid_chain); | 
|  | 174 |  | 
|  | 175 | if (list_empty(&pid->pid_list)) | 
|  | 176 | nr = pid->nr; | 
|  | 177 | else { | 
|  | 178 | pid_next = list_entry(pid->pid_list.next, | 
|  | 179 | struct pid, pid_list); | 
|  | 180 | /* insert next pid from pid_list to hash */ | 
|  | 181 | hlist_add_head(&pid_next->pid_chain, | 
|  | 182 | &pid_hash[type][pid_hashfn(pid_next->nr)]); | 
|  | 183 | } | 
|  | 184 | } | 
|  | 185 |  | 
|  | 186 | list_del(&pid->pid_list); | 
|  | 187 | pid->nr = 0; | 
|  | 188 |  | 
|  | 189 | return nr; | 
|  | 190 | } | 
|  | 191 |  | 
|  | 192 | void fastcall detach_pid(task_t *task, enum pid_type type) | 
|  | 193 | { | 
|  | 194 | int tmp, nr; | 
|  | 195 |  | 
|  | 196 | nr = __detach_pid(task, type); | 
|  | 197 | if (!nr) | 
|  | 198 | return; | 
|  | 199 |  | 
|  | 200 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
|  | 201 | if (tmp != type && find_pid(tmp, nr)) | 
|  | 202 | return; | 
|  | 203 |  | 
|  | 204 | free_pidmap(nr); | 
|  | 205 | } | 
|  | 206 |  | 
|  | 207 | task_t *find_task_by_pid_type(int type, int nr) | 
|  | 208 | { | 
|  | 209 | struct pid *pid; | 
|  | 210 |  | 
|  | 211 | pid = find_pid(type, nr); | 
|  | 212 | if (!pid) | 
|  | 213 | return NULL; | 
|  | 214 |  | 
|  | 215 | return pid_task(&pid->pid_list, type); | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | EXPORT_SYMBOL(find_task_by_pid_type); | 
|  | 219 |  | 
|  | 220 | /* | 
|  | 221 | * This function switches the PIDs if a non-leader thread calls | 
|  | 222 | * sys_execve() - this must be done without releasing the PID. | 
|  | 223 | * (which a detach_pid() would eventually do.) | 
|  | 224 | */ | 
|  | 225 | void switch_exec_pids(task_t *leader, task_t *thread) | 
|  | 226 | { | 
|  | 227 | __detach_pid(leader, PIDTYPE_PID); | 
|  | 228 | __detach_pid(leader, PIDTYPE_TGID); | 
|  | 229 | __detach_pid(leader, PIDTYPE_PGID); | 
|  | 230 | __detach_pid(leader, PIDTYPE_SID); | 
|  | 231 |  | 
|  | 232 | __detach_pid(thread, PIDTYPE_PID); | 
|  | 233 | __detach_pid(thread, PIDTYPE_TGID); | 
|  | 234 |  | 
|  | 235 | leader->pid = leader->tgid = thread->pid; | 
|  | 236 | thread->pid = thread->tgid; | 
|  | 237 |  | 
|  | 238 | attach_pid(thread, PIDTYPE_PID, thread->pid); | 
|  | 239 | attach_pid(thread, PIDTYPE_TGID, thread->tgid); | 
|  | 240 | attach_pid(thread, PIDTYPE_PGID, thread->signal->pgrp); | 
|  | 241 | attach_pid(thread, PIDTYPE_SID, thread->signal->session); | 
|  | 242 | list_add_tail(&thread->tasks, &init_task.tasks); | 
|  | 243 |  | 
|  | 244 | attach_pid(leader, PIDTYPE_PID, leader->pid); | 
|  | 245 | attach_pid(leader, PIDTYPE_TGID, leader->tgid); | 
|  | 246 | attach_pid(leader, PIDTYPE_PGID, leader->signal->pgrp); | 
|  | 247 | attach_pid(leader, PIDTYPE_SID, leader->signal->session); | 
|  | 248 | } | 
|  | 249 |  | 
|  | 250 | /* | 
|  | 251 | * The pid hash table is scaled according to the amount of memory in the | 
|  | 252 | * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or | 
|  | 253 | * more. | 
|  | 254 | */ | 
|  | 255 | void __init pidhash_init(void) | 
|  | 256 | { | 
|  | 257 | int i, j, pidhash_size; | 
|  | 258 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | 
|  | 259 |  | 
|  | 260 | pidhash_shift = max(4, fls(megabytes * 4)); | 
|  | 261 | pidhash_shift = min(12, pidhash_shift); | 
|  | 262 | pidhash_size = 1 << pidhash_shift; | 
|  | 263 |  | 
|  | 264 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | 
|  | 265 | pidhash_size, pidhash_shift, | 
|  | 266 | PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head)); | 
|  | 267 |  | 
|  | 268 | for (i = 0; i < PIDTYPE_MAX; i++) { | 
|  | 269 | pid_hash[i] = alloc_bootmem(pidhash_size * | 
|  | 270 | sizeof(*(pid_hash[i]))); | 
|  | 271 | if (!pid_hash[i]) | 
|  | 272 | panic("Could not alloc pidhash!\n"); | 
|  | 273 | for (j = 0; j < pidhash_size; j++) | 
|  | 274 | INIT_HLIST_HEAD(&pid_hash[i][j]); | 
|  | 275 | } | 
|  | 276 | } | 
|  | 277 |  | 
|  | 278 | void __init pidmap_init(void) | 
|  | 279 | { | 
|  | 280 | int i; | 
|  | 281 |  | 
|  | 282 | pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | 283 | set_bit(0, pidmap_array->page); | 
|  | 284 | atomic_dec(&pidmap_array->nr_free); | 
|  | 285 |  | 
|  | 286 | /* | 
|  | 287 | * Allocate PID 0, and hash it via all PID types: | 
|  | 288 | */ | 
|  | 289 |  | 
|  | 290 | for (i = 0; i < PIDTYPE_MAX; i++) | 
|  | 291 | attach_pid(current, i, 0); | 
|  | 292 | } |