| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * linux/kernel/posix_timers.c | 
|  | 3 | * | 
|  | 4 | * | 
|  | 5 | * 2002-10-15  Posix Clocks & timers | 
|  | 6 | *                           by George Anzinger george@mvista.com | 
|  | 7 | * | 
|  | 8 | *			     Copyright (C) 2002 2003 by MontaVista Software. | 
|  | 9 | * | 
|  | 10 | * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | 
|  | 11 | *			     Copyright (C) 2004 Boris Hu | 
|  | 12 | * | 
|  | 13 | * This program is free software; you can redistribute it and/or modify | 
|  | 14 | * it under the terms of the GNU General Public License as published by | 
|  | 15 | * the Free Software Foundation; either version 2 of the License, or (at | 
|  | 16 | * your option) any later version. | 
|  | 17 | * | 
|  | 18 | * This program is distributed in the hope that it will be useful, but | 
|  | 19 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | 21 | * General Public License for more details. | 
|  | 22 |  | 
|  | 23 | * You should have received a copy of the GNU General Public License | 
|  | 24 | * along with this program; if not, write to the Free Software | 
|  | 25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | 26 | * | 
|  | 27 | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | 
|  | 28 | */ | 
|  | 29 |  | 
|  | 30 | /* These are all the functions necessary to implement | 
|  | 31 | * POSIX clocks & timers | 
|  | 32 | */ | 
|  | 33 | #include <linux/mm.h> | 
|  | 34 | #include <linux/smp_lock.h> | 
|  | 35 | #include <linux/interrupt.h> | 
|  | 36 | #include <linux/slab.h> | 
|  | 37 | #include <linux/time.h> | 
|  | 38 |  | 
|  | 39 | #include <asm/uaccess.h> | 
|  | 40 | #include <asm/semaphore.h> | 
|  | 41 | #include <linux/list.h> | 
|  | 42 | #include <linux/init.h> | 
|  | 43 | #include <linux/compiler.h> | 
|  | 44 | #include <linux/idr.h> | 
|  | 45 | #include <linux/posix-timers.h> | 
|  | 46 | #include <linux/syscalls.h> | 
|  | 47 | #include <linux/wait.h> | 
|  | 48 | #include <linux/workqueue.h> | 
|  | 49 | #include <linux/module.h> | 
|  | 50 |  | 
|  | 51 | #ifndef div_long_long_rem | 
|  | 52 | #include <asm/div64.h> | 
|  | 53 |  | 
|  | 54 | #define div_long_long_rem(dividend,divisor,remainder) ({ \ | 
|  | 55 | u64 result = dividend;		\ | 
|  | 56 | *remainder = do_div(result,divisor); \ | 
|  | 57 | result; }) | 
|  | 58 |  | 
|  | 59 | #endif | 
|  | 60 | #define CLOCK_REALTIME_RES TICK_NSEC  /* In nano seconds. */ | 
|  | 61 |  | 
|  | 62 | static inline u64  mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2) | 
|  | 63 | { | 
|  | 64 | return (u64)mpy1 * mpy2; | 
|  | 65 | } | 
|  | 66 | /* | 
|  | 67 | * Management arrays for POSIX timers.	 Timers are kept in slab memory | 
|  | 68 | * Timer ids are allocated by an external routine that keeps track of the | 
|  | 69 | * id and the timer.  The external interface is: | 
|  | 70 | * | 
|  | 71 | * void *idr_find(struct idr *idp, int id);           to find timer_id <id> | 
|  | 72 | * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and | 
|  | 73 | *                                                    related it to <ptr> | 
|  | 74 | * void idr_remove(struct idr *idp, int id);          to release <id> | 
|  | 75 | * void idr_init(struct idr *idp);                    to initialize <idp> | 
|  | 76 | *                                                    which we supply. | 
|  | 77 | * The idr_get_new *may* call slab for more memory so it must not be | 
|  | 78 | * called under a spin lock.  Likewise idr_remore may release memory | 
|  | 79 | * (but it may be ok to do this under a lock...). | 
|  | 80 | * idr_find is just a memory look up and is quite fast.  A -1 return | 
|  | 81 | * indicates that the requested id does not exist. | 
|  | 82 | */ | 
|  | 83 |  | 
|  | 84 | /* | 
|  | 85 | * Lets keep our timers in a slab cache :-) | 
|  | 86 | */ | 
|  | 87 | static kmem_cache_t *posix_timers_cache; | 
|  | 88 | static struct idr posix_timers_id; | 
|  | 89 | static DEFINE_SPINLOCK(idr_lock); | 
|  | 90 |  | 
|  | 91 | /* | 
|  | 92 | * Just because the timer is not in the timer list does NOT mean it is | 
|  | 93 | * inactive.  It could be in the "fire" routine getting a new expire time. | 
|  | 94 | */ | 
|  | 95 | #define TIMER_INACTIVE 1 | 
|  | 96 |  | 
|  | 97 | #ifdef CONFIG_SMP | 
|  | 98 | # define timer_active(tmr) \ | 
|  | 99 | ((tmr)->it.real.timer.entry.prev != (void *)TIMER_INACTIVE) | 
|  | 100 | # define set_timer_inactive(tmr) \ | 
|  | 101 | do { \ | 
|  | 102 | (tmr)->it.real.timer.entry.prev = (void *)TIMER_INACTIVE; \ | 
|  | 103 | } while (0) | 
|  | 104 | #else | 
|  | 105 | # define timer_active(tmr) BARFY	// error to use outside of SMP | 
|  | 106 | # define set_timer_inactive(tmr) do { } while (0) | 
|  | 107 | #endif | 
|  | 108 | /* | 
|  | 109 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | 
|  | 110 | * SIGEV values.  Here we put out an error if this assumption fails. | 
|  | 111 | */ | 
|  | 112 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | 
|  | 113 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | 
|  | 114 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | 
|  | 115 | #endif | 
|  | 116 |  | 
|  | 117 |  | 
|  | 118 | /* | 
|  | 119 | * The timer ID is turned into a timer address by idr_find(). | 
|  | 120 | * Verifying a valid ID consists of: | 
|  | 121 | * | 
|  | 122 | * a) checking that idr_find() returns other than -1. | 
|  | 123 | * b) checking that the timer id matches the one in the timer itself. | 
|  | 124 | * c) that the timer owner is in the callers thread group. | 
|  | 125 | */ | 
|  | 126 |  | 
|  | 127 | /* | 
|  | 128 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | 
|  | 129 | *	    to implement others.  This structure defines the various | 
|  | 130 | *	    clocks and allows the possibility of adding others.	 We | 
|  | 131 | *	    provide an interface to add clocks to the table and expect | 
|  | 132 | *	    the "arch" code to add at least one clock that is high | 
|  | 133 | *	    resolution.	 Here we define the standard CLOCK_REALTIME as a | 
|  | 134 | *	    1/HZ resolution clock. | 
|  | 135 | * | 
|  | 136 | * RESOLUTION: Clock resolution is used to round up timer and interval | 
|  | 137 | *	    times, NOT to report clock times, which are reported with as | 
|  | 138 | *	    much resolution as the system can muster.  In some cases this | 
|  | 139 | *	    resolution may depend on the underlying clock hardware and | 
|  | 140 | *	    may not be quantifiable until run time, and only then is the | 
|  | 141 | *	    necessary code is written.	The standard says we should say | 
|  | 142 | *	    something about this issue in the documentation... | 
|  | 143 | * | 
|  | 144 | * FUNCTIONS: The CLOCKs structure defines possible functions to handle | 
|  | 145 | *	    various clock functions.  For clocks that use the standard | 
|  | 146 | *	    system timer code these entries should be NULL.  This will | 
|  | 147 | *	    allow dispatch without the overhead of indirect function | 
|  | 148 | *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS) | 
|  | 149 | *	    must supply functions here, even if the function just returns | 
|  | 150 | *	    ENOSYS.  The standard POSIX timer management code assumes the | 
|  | 151 | *	    following: 1.) The k_itimer struct (sched.h) is used for the | 
|  | 152 | *	    timer.  2.) The list, it_lock, it_clock, it_id and it_process | 
|  | 153 | *	    fields are not modified by timer code. | 
|  | 154 | * | 
|  | 155 | *          At this time all functions EXCEPT clock_nanosleep can be | 
|  | 156 | *          redirected by the CLOCKS structure.  Clock_nanosleep is in | 
|  | 157 | *          there, but the code ignores it. | 
|  | 158 | * | 
|  | 159 | * Permissions: It is assumed that the clock_settime() function defined | 
|  | 160 | *	    for each clock will take care of permission checks.	 Some | 
|  | 161 | *	    clocks may be set able by any user (i.e. local process | 
|  | 162 | *	    clocks) others not.	 Currently the only set able clock we | 
|  | 163 | *	    have is CLOCK_REALTIME and its high res counter part, both of | 
|  | 164 | *	    which we beg off on and pass to do_sys_settimeofday(). | 
|  | 165 | */ | 
|  | 166 |  | 
|  | 167 | static struct k_clock posix_clocks[MAX_CLOCKS]; | 
|  | 168 | /* | 
|  | 169 | * We only have one real clock that can be set so we need only one abs list, | 
|  | 170 | * even if we should want to have several clocks with differing resolutions. | 
|  | 171 | */ | 
|  | 172 | static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list), | 
|  | 173 | .lock = SPIN_LOCK_UNLOCKED}; | 
|  | 174 |  | 
|  | 175 | static void posix_timer_fn(unsigned long); | 
|  | 176 | static u64 do_posix_clock_monotonic_gettime_parts( | 
|  | 177 | struct timespec *tp, struct timespec *mo); | 
|  | 178 | int do_posix_clock_monotonic_gettime(struct timespec *tp); | 
|  | 179 | static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp); | 
|  | 180 |  | 
|  | 181 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | 
|  | 182 |  | 
|  | 183 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | 
|  | 184 | { | 
|  | 185 | spin_unlock_irqrestore(&timr->it_lock, flags); | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | /* | 
|  | 189 | * Call the k_clock hook function if non-null, or the default function. | 
|  | 190 | */ | 
|  | 191 | #define CLOCK_DISPATCH(clock, call, arglist) \ | 
|  | 192 | ((clock) < 0 ? posix_cpu_##call arglist : \ | 
|  | 193 | (posix_clocks[clock].call != NULL \ | 
|  | 194 | ? (*posix_clocks[clock].call) arglist : common_##call arglist)) | 
|  | 195 |  | 
|  | 196 | /* | 
|  | 197 | * Default clock hook functions when the struct k_clock passed | 
|  | 198 | * to register_posix_clock leaves a function pointer null. | 
|  | 199 | * | 
|  | 200 | * The function common_CALL is the default implementation for | 
|  | 201 | * the function pointer CALL in struct k_clock. | 
|  | 202 | */ | 
|  | 203 |  | 
|  | 204 | static inline int common_clock_getres(clockid_t which_clock, | 
|  | 205 | struct timespec *tp) | 
|  | 206 | { | 
|  | 207 | tp->tv_sec = 0; | 
|  | 208 | tp->tv_nsec = posix_clocks[which_clock].res; | 
|  | 209 | return 0; | 
|  | 210 | } | 
|  | 211 |  | 
|  | 212 | static inline int common_clock_get(clockid_t which_clock, struct timespec *tp) | 
|  | 213 | { | 
|  | 214 | getnstimeofday(tp); | 
|  | 215 | return 0; | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | static inline int common_clock_set(clockid_t which_clock, struct timespec *tp) | 
|  | 219 | { | 
|  | 220 | return do_sys_settimeofday(tp, NULL); | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | static inline int common_timer_create(struct k_itimer *new_timer) | 
|  | 224 | { | 
|  | 225 | INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry); | 
|  | 226 | init_timer(&new_timer->it.real.timer); | 
|  | 227 | new_timer->it.real.timer.data = (unsigned long) new_timer; | 
|  | 228 | new_timer->it.real.timer.function = posix_timer_fn; | 
|  | 229 | set_timer_inactive(new_timer); | 
|  | 230 | return 0; | 
|  | 231 | } | 
|  | 232 |  | 
|  | 233 | /* | 
|  | 234 | * These ones are defined below. | 
|  | 235 | */ | 
|  | 236 | static int common_nsleep(clockid_t, int flags, struct timespec *t); | 
|  | 237 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | 
|  | 238 | static int common_timer_set(struct k_itimer *, int, | 
|  | 239 | struct itimerspec *, struct itimerspec *); | 
|  | 240 | static int common_timer_del(struct k_itimer *timer); | 
|  | 241 |  | 
|  | 242 | /* | 
|  | 243 | * Return nonzero iff we know a priori this clockid_t value is bogus. | 
|  | 244 | */ | 
|  | 245 | static inline int invalid_clockid(clockid_t which_clock) | 
|  | 246 | { | 
|  | 247 | if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */ | 
|  | 248 | return 0; | 
|  | 249 | if ((unsigned) which_clock >= MAX_CLOCKS) | 
|  | 250 | return 1; | 
|  | 251 | if (posix_clocks[which_clock].clock_getres != NULL) | 
|  | 252 | return 0; | 
|  | 253 | #ifndef CLOCK_DISPATCH_DIRECT | 
|  | 254 | if (posix_clocks[which_clock].res != 0) | 
|  | 255 | return 0; | 
|  | 256 | #endif | 
|  | 257 | return 1; | 
|  | 258 | } | 
|  | 259 |  | 
|  | 260 |  | 
|  | 261 | /* | 
|  | 262 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 
|  | 263 | */ | 
|  | 264 | static __init int init_posix_timers(void) | 
|  | 265 | { | 
|  | 266 | struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES, | 
|  | 267 | .abs_struct = &abs_list | 
|  | 268 | }; | 
|  | 269 | struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES, | 
|  | 270 | .abs_struct = NULL, | 
|  | 271 | .clock_get = do_posix_clock_monotonic_get, | 
|  | 272 | .clock_set = do_posix_clock_nosettime | 
|  | 273 | }; | 
|  | 274 |  | 
|  | 275 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 
|  | 276 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 
|  | 277 |  | 
|  | 278 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 
|  | 279 | sizeof (struct k_itimer), 0, 0, NULL, NULL); | 
|  | 280 | idr_init(&posix_timers_id); | 
|  | 281 | return 0; | 
|  | 282 | } | 
|  | 283 |  | 
|  | 284 | __initcall(init_posix_timers); | 
|  | 285 |  | 
|  | 286 | static void tstojiffie(struct timespec *tp, int res, u64 *jiff) | 
|  | 287 | { | 
|  | 288 | long sec = tp->tv_sec; | 
|  | 289 | long nsec = tp->tv_nsec + res - 1; | 
|  | 290 |  | 
|  | 291 | if (nsec > NSEC_PER_SEC) { | 
|  | 292 | sec++; | 
|  | 293 | nsec -= NSEC_PER_SEC; | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | /* | 
|  | 297 | * The scaling constants are defined in <linux/time.h> | 
|  | 298 | * The difference between there and here is that we do the | 
|  | 299 | * res rounding and compute a 64-bit result (well so does that | 
|  | 300 | * but it then throws away the high bits). | 
|  | 301 | */ | 
|  | 302 | *jiff =  (mpy_l_X_l_ll(sec, SEC_CONVERSION) + | 
|  | 303 | (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> | 
|  | 304 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | /* | 
|  | 308 | * This function adjusts the timer as needed as a result of the clock | 
|  | 309 | * being set.  It should only be called for absolute timers, and then | 
|  | 310 | * under the abs_list lock.  It computes the time difference and sets | 
|  | 311 | * the new jiffies value in the timer.  It also updates the timers | 
|  | 312 | * reference wall_to_monotonic value.  It is complicated by the fact | 
|  | 313 | * that tstojiffies() only handles positive times and it needs to work | 
|  | 314 | * with both positive and negative times.  Also, for negative offsets, | 
|  | 315 | * we need to defeat the res round up. | 
|  | 316 | * | 
|  | 317 | * Return is true if there is a new time, else false. | 
|  | 318 | */ | 
|  | 319 | static long add_clockset_delta(struct k_itimer *timr, | 
|  | 320 | struct timespec *new_wall_to) | 
|  | 321 | { | 
|  | 322 | struct timespec delta; | 
|  | 323 | int sign = 0; | 
|  | 324 | u64 exp; | 
|  | 325 |  | 
|  | 326 | set_normalized_timespec(&delta, | 
|  | 327 | new_wall_to->tv_sec - | 
|  | 328 | timr->it.real.wall_to_prev.tv_sec, | 
|  | 329 | new_wall_to->tv_nsec - | 
|  | 330 | timr->it.real.wall_to_prev.tv_nsec); | 
|  | 331 | if (likely(!(delta.tv_sec | delta.tv_nsec))) | 
|  | 332 | return 0; | 
|  | 333 | if (delta.tv_sec < 0) { | 
|  | 334 | set_normalized_timespec(&delta, | 
|  | 335 | -delta.tv_sec, | 
|  | 336 | 1 - delta.tv_nsec - | 
|  | 337 | posix_clocks[timr->it_clock].res); | 
|  | 338 | sign++; | 
|  | 339 | } | 
|  | 340 | tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp); | 
|  | 341 | timr->it.real.wall_to_prev = *new_wall_to; | 
|  | 342 | timr->it.real.timer.expires += (sign ? -exp : exp); | 
|  | 343 | return 1; | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | static void remove_from_abslist(struct k_itimer *timr) | 
|  | 347 | { | 
|  | 348 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | 
|  | 349 | spin_lock(&abs_list.lock); | 
|  | 350 | list_del_init(&timr->it.real.abs_timer_entry); | 
|  | 351 | spin_unlock(&abs_list.lock); | 
|  | 352 | } | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | static void schedule_next_timer(struct k_itimer *timr) | 
|  | 356 | { | 
|  | 357 | struct timespec new_wall_to; | 
|  | 358 | struct now_struct now; | 
|  | 359 | unsigned long seq; | 
|  | 360 |  | 
|  | 361 | /* | 
|  | 362 | * Set up the timer for the next interval (if there is one). | 
|  | 363 | * Note: this code uses the abs_timer_lock to protect | 
|  | 364 | * it.real.wall_to_prev and must hold it until exp is set, not exactly | 
|  | 365 | * obvious... | 
|  | 366 |  | 
|  | 367 | * This function is used for CLOCK_REALTIME* and | 
|  | 368 | * CLOCK_MONOTONIC* timers.  If we ever want to handle other | 
|  | 369 | * CLOCKs, the calling code (do_schedule_next_timer) would need | 
|  | 370 | * to pull the "clock" info from the timer and dispatch the | 
|  | 371 | * "other" CLOCKs "next timer" code (which, I suppose should | 
|  | 372 | * also be added to the k_clock structure). | 
|  | 373 | */ | 
|  | 374 | if (!timr->it.real.incr) | 
|  | 375 | return; | 
|  | 376 |  | 
|  | 377 | do { | 
|  | 378 | seq = read_seqbegin(&xtime_lock); | 
|  | 379 | new_wall_to =	wall_to_monotonic; | 
|  | 380 | posix_get_now(&now); | 
|  | 381 | } while (read_seqretry(&xtime_lock, seq)); | 
|  | 382 |  | 
|  | 383 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | 
|  | 384 | spin_lock(&abs_list.lock); | 
|  | 385 | add_clockset_delta(timr, &new_wall_to); | 
|  | 386 |  | 
|  | 387 | posix_bump_timer(timr, now); | 
|  | 388 |  | 
|  | 389 | spin_unlock(&abs_list.lock); | 
|  | 390 | } else { | 
|  | 391 | posix_bump_timer(timr, now); | 
|  | 392 | } | 
|  | 393 | timr->it_overrun_last = timr->it_overrun; | 
|  | 394 | timr->it_overrun = -1; | 
|  | 395 | ++timr->it_requeue_pending; | 
|  | 396 | add_timer(&timr->it.real.timer); | 
|  | 397 | } | 
|  | 398 |  | 
|  | 399 | /* | 
|  | 400 | * This function is exported for use by the signal deliver code.  It is | 
|  | 401 | * called just prior to the info block being released and passes that | 
|  | 402 | * block to us.  It's function is to update the overrun entry AND to | 
|  | 403 | * restart the timer.  It should only be called if the timer is to be | 
|  | 404 | * restarted (i.e. we have flagged this in the sys_private entry of the | 
|  | 405 | * info block). | 
|  | 406 | * | 
|  | 407 | * To protect aginst the timer going away while the interrupt is queued, | 
|  | 408 | * we require that the it_requeue_pending flag be set. | 
|  | 409 | */ | 
|  | 410 | void do_schedule_next_timer(struct siginfo *info) | 
|  | 411 | { | 
|  | 412 | struct k_itimer *timr; | 
|  | 413 | unsigned long flags; | 
|  | 414 |  | 
|  | 415 | timr = lock_timer(info->si_tid, &flags); | 
|  | 416 |  | 
|  | 417 | if (!timr || timr->it_requeue_pending != info->si_sys_private) | 
|  | 418 | goto exit; | 
|  | 419 |  | 
|  | 420 | if (timr->it_clock < 0)	/* CPU clock */ | 
|  | 421 | posix_cpu_timer_schedule(timr); | 
|  | 422 | else | 
|  | 423 | schedule_next_timer(timr); | 
|  | 424 | info->si_overrun = timr->it_overrun_last; | 
|  | 425 | exit: | 
|  | 426 | if (timr) | 
|  | 427 | unlock_timer(timr, flags); | 
|  | 428 | } | 
|  | 429 |  | 
|  | 430 | int posix_timer_event(struct k_itimer *timr,int si_private) | 
|  | 431 | { | 
|  | 432 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); | 
|  | 433 | timr->sigq->info.si_sys_private = si_private; | 
|  | 434 | /* | 
|  | 435 | * Send signal to the process that owns this timer. | 
|  | 436 |  | 
|  | 437 | * This code assumes that all the possible abs_lists share the | 
|  | 438 | * same lock (there is only one list at this time). If this is | 
|  | 439 | * not the case, the CLOCK info would need to be used to find | 
|  | 440 | * the proper abs list lock. | 
|  | 441 | */ | 
|  | 442 |  | 
|  | 443 | timr->sigq->info.si_signo = timr->it_sigev_signo; | 
|  | 444 | timr->sigq->info.si_errno = 0; | 
|  | 445 | timr->sigq->info.si_code = SI_TIMER; | 
|  | 446 | timr->sigq->info.si_tid = timr->it_id; | 
|  | 447 | timr->sigq->info.si_value = timr->it_sigev_value; | 
|  | 448 | if (timr->it_sigev_notify & SIGEV_THREAD_ID) { | 
|  | 449 | if (unlikely(timr->it_process->flags & PF_EXITING)) { | 
|  | 450 | timr->it_sigev_notify = SIGEV_SIGNAL; | 
|  | 451 | put_task_struct(timr->it_process); | 
|  | 452 | timr->it_process = timr->it_process->group_leader; | 
|  | 453 | goto group; | 
|  | 454 | } | 
|  | 455 | return send_sigqueue(timr->it_sigev_signo, timr->sigq, | 
|  | 456 | timr->it_process); | 
|  | 457 | } | 
|  | 458 | else { | 
|  | 459 | group: | 
|  | 460 | return send_group_sigqueue(timr->it_sigev_signo, timr->sigq, | 
|  | 461 | timr->it_process); | 
|  | 462 | } | 
|  | 463 | } | 
|  | 464 | EXPORT_SYMBOL_GPL(posix_timer_event); | 
|  | 465 |  | 
|  | 466 | /* | 
|  | 467 | * This function gets called when a POSIX.1b interval timer expires.  It | 
|  | 468 | * is used as a callback from the kernel internal timer.  The | 
|  | 469 | * run_timer_list code ALWAYS calls with interrupts on. | 
|  | 470 |  | 
|  | 471 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 
|  | 472 | */ | 
|  | 473 | static void posix_timer_fn(unsigned long __data) | 
|  | 474 | { | 
|  | 475 | struct k_itimer *timr = (struct k_itimer *) __data; | 
|  | 476 | unsigned long flags; | 
|  | 477 | unsigned long seq; | 
|  | 478 | struct timespec delta, new_wall_to; | 
|  | 479 | u64 exp = 0; | 
|  | 480 | int do_notify = 1; | 
|  | 481 |  | 
|  | 482 | spin_lock_irqsave(&timr->it_lock, flags); | 
|  | 483 | set_timer_inactive(timr); | 
|  | 484 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | 
|  | 485 | spin_lock(&abs_list.lock); | 
|  | 486 | do { | 
|  | 487 | seq = read_seqbegin(&xtime_lock); | 
|  | 488 | new_wall_to =	wall_to_monotonic; | 
|  | 489 | } while (read_seqretry(&xtime_lock, seq)); | 
|  | 490 | set_normalized_timespec(&delta, | 
|  | 491 | new_wall_to.tv_sec - | 
|  | 492 | timr->it.real.wall_to_prev.tv_sec, | 
|  | 493 | new_wall_to.tv_nsec - | 
|  | 494 | timr->it.real.wall_to_prev.tv_nsec); | 
|  | 495 | if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) { | 
|  | 496 | /* do nothing, timer is on time */ | 
|  | 497 | } else if (delta.tv_sec < 0) { | 
|  | 498 | /* do nothing, timer is already late */ | 
|  | 499 | } else { | 
|  | 500 | /* timer is early due to a clock set */ | 
|  | 501 | tstojiffie(&delta, | 
|  | 502 | posix_clocks[timr->it_clock].res, | 
|  | 503 | &exp); | 
|  | 504 | timr->it.real.wall_to_prev = new_wall_to; | 
|  | 505 | timr->it.real.timer.expires += exp; | 
|  | 506 | add_timer(&timr->it.real.timer); | 
|  | 507 | do_notify = 0; | 
|  | 508 | } | 
|  | 509 | spin_unlock(&abs_list.lock); | 
|  | 510 |  | 
|  | 511 | } | 
|  | 512 | if (do_notify)  { | 
|  | 513 | int si_private=0; | 
|  | 514 |  | 
|  | 515 | if (timr->it.real.incr) | 
|  | 516 | si_private = ++timr->it_requeue_pending; | 
|  | 517 | else { | 
|  | 518 | remove_from_abslist(timr); | 
|  | 519 | } | 
|  | 520 |  | 
|  | 521 | if (posix_timer_event(timr, si_private)) | 
|  | 522 | /* | 
|  | 523 | * signal was not sent because of sig_ignor | 
|  | 524 | * we will not get a call back to restart it AND | 
|  | 525 | * it should be restarted. | 
|  | 526 | */ | 
|  | 527 | schedule_next_timer(timr); | 
|  | 528 | } | 
|  | 529 | unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */ | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 |  | 
|  | 533 | static inline struct task_struct * good_sigevent(sigevent_t * event) | 
|  | 534 | { | 
|  | 535 | struct task_struct *rtn = current->group_leader; | 
|  | 536 |  | 
|  | 537 | if ((event->sigev_notify & SIGEV_THREAD_ID ) && | 
|  | 538 | (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) || | 
|  | 539 | rtn->tgid != current->tgid || | 
|  | 540 | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) | 
|  | 541 | return NULL; | 
|  | 542 |  | 
|  | 543 | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | 
|  | 544 | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | 
|  | 545 | return NULL; | 
|  | 546 |  | 
|  | 547 | return rtn; | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock) | 
|  | 551 | { | 
|  | 552 | if ((unsigned) clock_id >= MAX_CLOCKS) { | 
|  | 553 | printk("POSIX clock register failed for clock_id %d\n", | 
|  | 554 | clock_id); | 
|  | 555 | return; | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | posix_clocks[clock_id] = *new_clock; | 
|  | 559 | } | 
|  | 560 | EXPORT_SYMBOL_GPL(register_posix_clock); | 
|  | 561 |  | 
|  | 562 | static struct k_itimer * alloc_posix_timer(void) | 
|  | 563 | { | 
|  | 564 | struct k_itimer *tmr; | 
|  | 565 | tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL); | 
|  | 566 | if (!tmr) | 
|  | 567 | return tmr; | 
|  | 568 | memset(tmr, 0, sizeof (struct k_itimer)); | 
|  | 569 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { | 
|  | 570 | kmem_cache_free(posix_timers_cache, tmr); | 
|  | 571 | tmr = NULL; | 
|  | 572 | } | 
|  | 573 | return tmr; | 
|  | 574 | } | 
|  | 575 |  | 
|  | 576 | #define IT_ID_SET	1 | 
|  | 577 | #define IT_ID_NOT_SET	0 | 
|  | 578 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | 
|  | 579 | { | 
|  | 580 | if (it_id_set) { | 
|  | 581 | unsigned long flags; | 
|  | 582 | spin_lock_irqsave(&idr_lock, flags); | 
|  | 583 | idr_remove(&posix_timers_id, tmr->it_id); | 
|  | 584 | spin_unlock_irqrestore(&idr_lock, flags); | 
|  | 585 | } | 
|  | 586 | sigqueue_free(tmr->sigq); | 
|  | 587 | if (unlikely(tmr->it_process) && | 
|  | 588 | tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | 589 | put_task_struct(tmr->it_process); | 
|  | 590 | kmem_cache_free(posix_timers_cache, tmr); | 
|  | 591 | } | 
|  | 592 |  | 
|  | 593 | /* Create a POSIX.1b interval timer. */ | 
|  | 594 |  | 
|  | 595 | asmlinkage long | 
|  | 596 | sys_timer_create(clockid_t which_clock, | 
|  | 597 | struct sigevent __user *timer_event_spec, | 
|  | 598 | timer_t __user * created_timer_id) | 
|  | 599 | { | 
|  | 600 | int error = 0; | 
|  | 601 | struct k_itimer *new_timer = NULL; | 
|  | 602 | int new_timer_id; | 
|  | 603 | struct task_struct *process = NULL; | 
|  | 604 | unsigned long flags; | 
|  | 605 | sigevent_t event; | 
|  | 606 | int it_id_set = IT_ID_NOT_SET; | 
|  | 607 |  | 
|  | 608 | if (invalid_clockid(which_clock)) | 
|  | 609 | return -EINVAL; | 
|  | 610 |  | 
|  | 611 | new_timer = alloc_posix_timer(); | 
|  | 612 | if (unlikely(!new_timer)) | 
|  | 613 | return -EAGAIN; | 
|  | 614 |  | 
|  | 615 | spin_lock_init(&new_timer->it_lock); | 
|  | 616 | retry: | 
|  | 617 | if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { | 
|  | 618 | error = -EAGAIN; | 
|  | 619 | goto out; | 
|  | 620 | } | 
|  | 621 | spin_lock_irq(&idr_lock); | 
|  | 622 | error = idr_get_new(&posix_timers_id, | 
|  | 623 | (void *) new_timer, | 
|  | 624 | &new_timer_id); | 
|  | 625 | spin_unlock_irq(&idr_lock); | 
|  | 626 | if (error == -EAGAIN) | 
|  | 627 | goto retry; | 
|  | 628 | else if (error) { | 
|  | 629 | /* | 
|  | 630 | * Wierd looking, but we return EAGAIN if the IDR is | 
|  | 631 | * full (proper POSIX return value for this) | 
|  | 632 | */ | 
|  | 633 | error = -EAGAIN; | 
|  | 634 | goto out; | 
|  | 635 | } | 
|  | 636 |  | 
|  | 637 | it_id_set = IT_ID_SET; | 
|  | 638 | new_timer->it_id = (timer_t) new_timer_id; | 
|  | 639 | new_timer->it_clock = which_clock; | 
|  | 640 | new_timer->it_overrun = -1; | 
|  | 641 | error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); | 
|  | 642 | if (error) | 
|  | 643 | goto out; | 
|  | 644 |  | 
|  | 645 | /* | 
|  | 646 | * return the timer_id now.  The next step is hard to | 
|  | 647 | * back out if there is an error. | 
|  | 648 | */ | 
|  | 649 | if (copy_to_user(created_timer_id, | 
|  | 650 | &new_timer_id, sizeof (new_timer_id))) { | 
|  | 651 | error = -EFAULT; | 
|  | 652 | goto out; | 
|  | 653 | } | 
|  | 654 | if (timer_event_spec) { | 
|  | 655 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | 
|  | 656 | error = -EFAULT; | 
|  | 657 | goto out; | 
|  | 658 | } | 
|  | 659 | new_timer->it_sigev_notify = event.sigev_notify; | 
|  | 660 | new_timer->it_sigev_signo = event.sigev_signo; | 
|  | 661 | new_timer->it_sigev_value = event.sigev_value; | 
|  | 662 |  | 
|  | 663 | read_lock(&tasklist_lock); | 
|  | 664 | if ((process = good_sigevent(&event))) { | 
|  | 665 | /* | 
|  | 666 | * We may be setting up this process for another | 
|  | 667 | * thread.  It may be exiting.  To catch this | 
|  | 668 | * case the we check the PF_EXITING flag.  If | 
|  | 669 | * the flag is not set, the siglock will catch | 
|  | 670 | * him before it is too late (in exit_itimers). | 
|  | 671 | * | 
|  | 672 | * The exec case is a bit more invloved but easy | 
|  | 673 | * to code.  If the process is in our thread | 
|  | 674 | * group (and it must be or we would not allow | 
|  | 675 | * it here) and is doing an exec, it will cause | 
|  | 676 | * us to be killed.  In this case it will wait | 
|  | 677 | * for us to die which means we can finish this | 
|  | 678 | * linkage with our last gasp. I.e. no code :) | 
|  | 679 | */ | 
|  | 680 | spin_lock_irqsave(&process->sighand->siglock, flags); | 
|  | 681 | if (!(process->flags & PF_EXITING)) { | 
|  | 682 | new_timer->it_process = process; | 
|  | 683 | list_add(&new_timer->list, | 
|  | 684 | &process->signal->posix_timers); | 
|  | 685 | spin_unlock_irqrestore(&process->sighand->siglock, flags); | 
|  | 686 | if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | 687 | get_task_struct(process); | 
|  | 688 | } else { | 
|  | 689 | spin_unlock_irqrestore(&process->sighand->siglock, flags); | 
|  | 690 | process = NULL; | 
|  | 691 | } | 
|  | 692 | } | 
|  | 693 | read_unlock(&tasklist_lock); | 
|  | 694 | if (!process) { | 
|  | 695 | error = -EINVAL; | 
|  | 696 | goto out; | 
|  | 697 | } | 
|  | 698 | } else { | 
|  | 699 | new_timer->it_sigev_notify = SIGEV_SIGNAL; | 
|  | 700 | new_timer->it_sigev_signo = SIGALRM; | 
|  | 701 | new_timer->it_sigev_value.sival_int = new_timer->it_id; | 
|  | 702 | process = current->group_leader; | 
|  | 703 | spin_lock_irqsave(&process->sighand->siglock, flags); | 
|  | 704 | new_timer->it_process = process; | 
|  | 705 | list_add(&new_timer->list, &process->signal->posix_timers); | 
|  | 706 | spin_unlock_irqrestore(&process->sighand->siglock, flags); | 
|  | 707 | } | 
|  | 708 |  | 
|  | 709 | /* | 
|  | 710 | * In the case of the timer belonging to another task, after | 
|  | 711 | * the task is unlocked, the timer is owned by the other task | 
|  | 712 | * and may cease to exist at any time.  Don't use or modify | 
|  | 713 | * new_timer after the unlock call. | 
|  | 714 | */ | 
|  | 715 |  | 
|  | 716 | out: | 
|  | 717 | if (error) | 
|  | 718 | release_posix_timer(new_timer, it_id_set); | 
|  | 719 |  | 
|  | 720 | return error; | 
|  | 721 | } | 
|  | 722 |  | 
|  | 723 | /* | 
|  | 724 | * good_timespec | 
|  | 725 | * | 
|  | 726 | * This function checks the elements of a timespec structure. | 
|  | 727 | * | 
|  | 728 | * Arguments: | 
|  | 729 | * ts	     : Pointer to the timespec structure to check | 
|  | 730 | * | 
|  | 731 | * Return value: | 
|  | 732 | * If a NULL pointer was passed in, or the tv_nsec field was less than 0 | 
|  | 733 | * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0, | 
|  | 734 | * this function returns 0. Otherwise it returns 1. | 
|  | 735 | */ | 
|  | 736 | static int good_timespec(const struct timespec *ts) | 
|  | 737 | { | 
|  | 738 | if ((!ts) || (ts->tv_sec < 0) || | 
|  | 739 | ((unsigned) ts->tv_nsec >= NSEC_PER_SEC)) | 
|  | 740 | return 0; | 
|  | 741 | return 1; | 
|  | 742 | } | 
|  | 743 |  | 
|  | 744 | /* | 
|  | 745 | * Locking issues: We need to protect the result of the id look up until | 
|  | 746 | * we get the timer locked down so it is not deleted under us.  The | 
|  | 747 | * removal is done under the idr spinlock so we use that here to bridge | 
|  | 748 | * the find to the timer lock.  To avoid a dead lock, the timer id MUST | 
|  | 749 | * be release with out holding the timer lock. | 
|  | 750 | */ | 
|  | 751 | static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) | 
|  | 752 | { | 
|  | 753 | struct k_itimer *timr; | 
|  | 754 | /* | 
|  | 755 | * Watch out here.  We do a irqsave on the idr_lock and pass the | 
|  | 756 | * flags part over to the timer lock.  Must not let interrupts in | 
|  | 757 | * while we are moving the lock. | 
|  | 758 | */ | 
|  | 759 |  | 
|  | 760 | spin_lock_irqsave(&idr_lock, *flags); | 
|  | 761 | timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id); | 
|  | 762 | if (timr) { | 
|  | 763 | spin_lock(&timr->it_lock); | 
|  | 764 | spin_unlock(&idr_lock); | 
|  | 765 |  | 
|  | 766 | if ((timr->it_id != timer_id) || !(timr->it_process) || | 
|  | 767 | timr->it_process->tgid != current->tgid) { | 
|  | 768 | unlock_timer(timr, *flags); | 
|  | 769 | timr = NULL; | 
|  | 770 | } | 
|  | 771 | } else | 
|  | 772 | spin_unlock_irqrestore(&idr_lock, *flags); | 
|  | 773 |  | 
|  | 774 | return timr; | 
|  | 775 | } | 
|  | 776 |  | 
|  | 777 | /* | 
|  | 778 | * Get the time remaining on a POSIX.1b interval timer.  This function | 
|  | 779 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | 
|  | 780 | * mess with irq. | 
|  | 781 | * | 
|  | 782 | * We have a couple of messes to clean up here.  First there is the case | 
|  | 783 | * of a timer that has a requeue pending.  These timers should appear to | 
|  | 784 | * be in the timer list with an expiry as if we were to requeue them | 
|  | 785 | * now. | 
|  | 786 | * | 
|  | 787 | * The second issue is the SIGEV_NONE timer which may be active but is | 
|  | 788 | * not really ever put in the timer list (to save system resources). | 
|  | 789 | * This timer may be expired, and if so, we will do it here.  Otherwise | 
|  | 790 | * it is the same as a requeue pending timer WRT to what we should | 
|  | 791 | * report. | 
|  | 792 | */ | 
|  | 793 | static void | 
|  | 794 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 
|  | 795 | { | 
|  | 796 | unsigned long expires; | 
|  | 797 | struct now_struct now; | 
|  | 798 |  | 
|  | 799 | do | 
|  | 800 | expires = timr->it.real.timer.expires; | 
|  | 801 | while ((volatile long) (timr->it.real.timer.expires) != expires); | 
|  | 802 |  | 
|  | 803 | posix_get_now(&now); | 
|  | 804 |  | 
|  | 805 | if (expires && | 
|  | 806 | ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) && | 
|  | 807 | !timr->it.real.incr && | 
|  | 808 | posix_time_before(&timr->it.real.timer, &now)) | 
|  | 809 | timr->it.real.timer.expires = expires = 0; | 
|  | 810 | if (expires) { | 
|  | 811 | if (timr->it_requeue_pending & REQUEUE_PENDING || | 
|  | 812 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | 
|  | 813 | posix_bump_timer(timr, now); | 
|  | 814 | expires = timr->it.real.timer.expires; | 
|  | 815 | } | 
|  | 816 | else | 
|  | 817 | if (!timer_pending(&timr->it.real.timer)) | 
|  | 818 | expires = 0; | 
|  | 819 | if (expires) | 
|  | 820 | expires -= now.jiffies; | 
|  | 821 | } | 
|  | 822 | jiffies_to_timespec(expires, &cur_setting->it_value); | 
|  | 823 | jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval); | 
|  | 824 |  | 
|  | 825 | if (cur_setting->it_value.tv_sec < 0) { | 
|  | 826 | cur_setting->it_value.tv_nsec = 1; | 
|  | 827 | cur_setting->it_value.tv_sec = 0; | 
|  | 828 | } | 
|  | 829 | } | 
|  | 830 |  | 
|  | 831 | /* Get the time remaining on a POSIX.1b interval timer. */ | 
|  | 832 | asmlinkage long | 
|  | 833 | sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | 
|  | 834 | { | 
|  | 835 | struct k_itimer *timr; | 
|  | 836 | struct itimerspec cur_setting; | 
|  | 837 | unsigned long flags; | 
|  | 838 |  | 
|  | 839 | timr = lock_timer(timer_id, &flags); | 
|  | 840 | if (!timr) | 
|  | 841 | return -EINVAL; | 
|  | 842 |  | 
|  | 843 | CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting)); | 
|  | 844 |  | 
|  | 845 | unlock_timer(timr, flags); | 
|  | 846 |  | 
|  | 847 | if (copy_to_user(setting, &cur_setting, sizeof (cur_setting))) | 
|  | 848 | return -EFAULT; | 
|  | 849 |  | 
|  | 850 | return 0; | 
|  | 851 | } | 
|  | 852 | /* | 
|  | 853 | * Get the number of overruns of a POSIX.1b interval timer.  This is to | 
|  | 854 | * be the overrun of the timer last delivered.  At the same time we are | 
|  | 855 | * accumulating overruns on the next timer.  The overrun is frozen when | 
|  | 856 | * the signal is delivered, either at the notify time (if the info block | 
|  | 857 | * is not queued) or at the actual delivery time (as we are informed by | 
|  | 858 | * the call back to do_schedule_next_timer().  So all we need to do is | 
|  | 859 | * to pick up the frozen overrun. | 
|  | 860 | */ | 
|  | 861 |  | 
|  | 862 | asmlinkage long | 
|  | 863 | sys_timer_getoverrun(timer_t timer_id) | 
|  | 864 | { | 
|  | 865 | struct k_itimer *timr; | 
|  | 866 | int overrun; | 
|  | 867 | long flags; | 
|  | 868 |  | 
|  | 869 | timr = lock_timer(timer_id, &flags); | 
|  | 870 | if (!timr) | 
|  | 871 | return -EINVAL; | 
|  | 872 |  | 
|  | 873 | overrun = timr->it_overrun_last; | 
|  | 874 | unlock_timer(timr, flags); | 
|  | 875 |  | 
|  | 876 | return overrun; | 
|  | 877 | } | 
|  | 878 | /* | 
|  | 879 | * Adjust for absolute time | 
|  | 880 | * | 
|  | 881 | * If absolute time is given and it is not CLOCK_MONOTONIC, we need to | 
|  | 882 | * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and | 
|  | 883 | * what ever clock he is using. | 
|  | 884 | * | 
|  | 885 | * If it is relative time, we need to add the current (CLOCK_MONOTONIC) | 
|  | 886 | * time to it to get the proper time for the timer. | 
|  | 887 | */ | 
|  | 888 | static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, | 
|  | 889 | int abs, u64 *exp, struct timespec *wall_to) | 
|  | 890 | { | 
|  | 891 | struct timespec now; | 
|  | 892 | struct timespec oc = *tp; | 
|  | 893 | u64 jiffies_64_f; | 
|  | 894 | int rtn =0; | 
|  | 895 |  | 
|  | 896 | if (abs) { | 
|  | 897 | /* | 
|  | 898 | * The mask pick up the 4 basic clocks | 
|  | 899 | */ | 
|  | 900 | if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) { | 
|  | 901 | jiffies_64_f = do_posix_clock_monotonic_gettime_parts( | 
|  | 902 | &now,  wall_to); | 
|  | 903 | /* | 
|  | 904 | * If we are doing a MONOTONIC clock | 
|  | 905 | */ | 
|  | 906 | if((clock - &posix_clocks[0]) & CLOCKS_MONO){ | 
|  | 907 | now.tv_sec += wall_to->tv_sec; | 
|  | 908 | now.tv_nsec += wall_to->tv_nsec; | 
|  | 909 | } | 
|  | 910 | } else { | 
|  | 911 | /* | 
|  | 912 | * Not one of the basic clocks | 
|  | 913 | */ | 
|  | 914 | clock->clock_get(clock - posix_clocks, &now); | 
|  | 915 | jiffies_64_f = get_jiffies_64(); | 
|  | 916 | } | 
|  | 917 | /* | 
|  | 918 | * Take away now to get delta | 
|  | 919 | */ | 
|  | 920 | oc.tv_sec -= now.tv_sec; | 
|  | 921 | oc.tv_nsec -= now.tv_nsec; | 
|  | 922 | /* | 
|  | 923 | * Normalize... | 
|  | 924 | */ | 
|  | 925 | while ((oc.tv_nsec - NSEC_PER_SEC) >= 0) { | 
|  | 926 | oc.tv_nsec -= NSEC_PER_SEC; | 
|  | 927 | oc.tv_sec++; | 
|  | 928 | } | 
|  | 929 | while ((oc.tv_nsec) < 0) { | 
|  | 930 | oc.tv_nsec += NSEC_PER_SEC; | 
|  | 931 | oc.tv_sec--; | 
|  | 932 | } | 
|  | 933 | }else{ | 
|  | 934 | jiffies_64_f = get_jiffies_64(); | 
|  | 935 | } | 
|  | 936 | /* | 
|  | 937 | * Check if the requested time is prior to now (if so set now) | 
|  | 938 | */ | 
|  | 939 | if (oc.tv_sec < 0) | 
|  | 940 | oc.tv_sec = oc.tv_nsec = 0; | 
|  | 941 |  | 
|  | 942 | if (oc.tv_sec | oc.tv_nsec) | 
|  | 943 | set_normalized_timespec(&oc, oc.tv_sec, | 
|  | 944 | oc.tv_nsec + clock->res); | 
|  | 945 | tstojiffie(&oc, clock->res, exp); | 
|  | 946 |  | 
|  | 947 | /* | 
|  | 948 | * Check if the requested time is more than the timer code | 
|  | 949 | * can handle (if so we error out but return the value too). | 
|  | 950 | */ | 
|  | 951 | if (*exp > ((u64)MAX_JIFFY_OFFSET)) | 
|  | 952 | /* | 
|  | 953 | * This is a considered response, not exactly in | 
|  | 954 | * line with the standard (in fact it is silent on | 
|  | 955 | * possible overflows).  We assume such a large | 
|  | 956 | * value is ALMOST always a programming error and | 
|  | 957 | * try not to compound it by setting a really dumb | 
|  | 958 | * value. | 
|  | 959 | */ | 
|  | 960 | rtn = -EINVAL; | 
|  | 961 | /* | 
|  | 962 | * return the actual jiffies expire time, full 64 bits | 
|  | 963 | */ | 
|  | 964 | *exp += jiffies_64_f; | 
|  | 965 | return rtn; | 
|  | 966 | } | 
|  | 967 |  | 
|  | 968 | /* Set a POSIX.1b interval timer. */ | 
|  | 969 | /* timr->it_lock is taken. */ | 
|  | 970 | static inline int | 
|  | 971 | common_timer_set(struct k_itimer *timr, int flags, | 
|  | 972 | struct itimerspec *new_setting, struct itimerspec *old_setting) | 
|  | 973 | { | 
|  | 974 | struct k_clock *clock = &posix_clocks[timr->it_clock]; | 
|  | 975 | u64 expire_64; | 
|  | 976 |  | 
|  | 977 | if (old_setting) | 
|  | 978 | common_timer_get(timr, old_setting); | 
|  | 979 |  | 
|  | 980 | /* disable the timer */ | 
|  | 981 | timr->it.real.incr = 0; | 
|  | 982 | /* | 
|  | 983 | * careful here.  If smp we could be in the "fire" routine which will | 
|  | 984 | * be spinning as we hold the lock.  But this is ONLY an SMP issue. | 
|  | 985 | */ | 
|  | 986 | #ifdef CONFIG_SMP | 
|  | 987 | if (timer_active(timr) && !del_timer(&timr->it.real.timer)) | 
|  | 988 | /* | 
|  | 989 | * It can only be active if on an other cpu.  Since | 
|  | 990 | * we have cleared the interval stuff above, it should | 
|  | 991 | * clear once we release the spin lock.  Of course once | 
|  | 992 | * we do that anything could happen, including the | 
|  | 993 | * complete melt down of the timer.  So return with | 
|  | 994 | * a "retry" exit status. | 
|  | 995 | */ | 
|  | 996 | return TIMER_RETRY; | 
|  | 997 |  | 
|  | 998 | set_timer_inactive(timr); | 
|  | 999 | #else | 
|  | 1000 | del_timer(&timr->it.real.timer); | 
|  | 1001 | #endif | 
|  | 1002 | remove_from_abslist(timr); | 
|  | 1003 |  | 
|  | 1004 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | 
|  | 1005 | ~REQUEUE_PENDING; | 
|  | 1006 | timr->it_overrun_last = 0; | 
|  | 1007 | timr->it_overrun = -1; | 
|  | 1008 | /* | 
|  | 1009 | *switch off the timer when it_value is zero | 
|  | 1010 | */ | 
|  | 1011 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) { | 
|  | 1012 | timr->it.real.timer.expires = 0; | 
|  | 1013 | return 0; | 
|  | 1014 | } | 
|  | 1015 |  | 
|  | 1016 | if (adjust_abs_time(clock, | 
|  | 1017 | &new_setting->it_value, flags & TIMER_ABSTIME, | 
|  | 1018 | &expire_64, &(timr->it.real.wall_to_prev))) { | 
|  | 1019 | return -EINVAL; | 
|  | 1020 | } | 
|  | 1021 | timr->it.real.timer.expires = (unsigned long)expire_64; | 
|  | 1022 | tstojiffie(&new_setting->it_interval, clock->res, &expire_64); | 
|  | 1023 | timr->it.real.incr = (unsigned long)expire_64; | 
|  | 1024 |  | 
|  | 1025 | /* | 
|  | 1026 | * We do not even queue SIGEV_NONE timers!  But we do put them | 
|  | 1027 | * in the abs list so we can do that right. | 
|  | 1028 | */ | 
|  | 1029 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)) | 
|  | 1030 | add_timer(&timr->it.real.timer); | 
|  | 1031 |  | 
|  | 1032 | if (flags & TIMER_ABSTIME && clock->abs_struct) { | 
|  | 1033 | spin_lock(&clock->abs_struct->lock); | 
|  | 1034 | list_add_tail(&(timr->it.real.abs_timer_entry), | 
|  | 1035 | &(clock->abs_struct->list)); | 
|  | 1036 | spin_unlock(&clock->abs_struct->lock); | 
|  | 1037 | } | 
|  | 1038 | return 0; | 
|  | 1039 | } | 
|  | 1040 |  | 
|  | 1041 | /* Set a POSIX.1b interval timer */ | 
|  | 1042 | asmlinkage long | 
|  | 1043 | sys_timer_settime(timer_t timer_id, int flags, | 
|  | 1044 | const struct itimerspec __user *new_setting, | 
|  | 1045 | struct itimerspec __user *old_setting) | 
|  | 1046 | { | 
|  | 1047 | struct k_itimer *timr; | 
|  | 1048 | struct itimerspec new_spec, old_spec; | 
|  | 1049 | int error = 0; | 
|  | 1050 | long flag; | 
|  | 1051 | struct itimerspec *rtn = old_setting ? &old_spec : NULL; | 
|  | 1052 |  | 
|  | 1053 | if (!new_setting) | 
|  | 1054 | return -EINVAL; | 
|  | 1055 |  | 
|  | 1056 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 
|  | 1057 | return -EFAULT; | 
|  | 1058 |  | 
|  | 1059 | if ((!good_timespec(&new_spec.it_interval)) || | 
|  | 1060 | (!good_timespec(&new_spec.it_value))) | 
|  | 1061 | return -EINVAL; | 
|  | 1062 | retry: | 
|  | 1063 | timr = lock_timer(timer_id, &flag); | 
|  | 1064 | if (!timr) | 
|  | 1065 | return -EINVAL; | 
|  | 1066 |  | 
|  | 1067 | error = CLOCK_DISPATCH(timr->it_clock, timer_set, | 
|  | 1068 | (timr, flags, &new_spec, rtn)); | 
|  | 1069 |  | 
|  | 1070 | unlock_timer(timr, flag); | 
|  | 1071 | if (error == TIMER_RETRY) { | 
|  | 1072 | rtn = NULL;	// We already got the old time... | 
|  | 1073 | goto retry; | 
|  | 1074 | } | 
|  | 1075 |  | 
|  | 1076 | if (old_setting && !error && copy_to_user(old_setting, | 
|  | 1077 | &old_spec, sizeof (old_spec))) | 
|  | 1078 | error = -EFAULT; | 
|  | 1079 |  | 
|  | 1080 | return error; | 
|  | 1081 | } | 
|  | 1082 |  | 
|  | 1083 | static inline int common_timer_del(struct k_itimer *timer) | 
|  | 1084 | { | 
|  | 1085 | timer->it.real.incr = 0; | 
|  | 1086 | #ifdef CONFIG_SMP | 
|  | 1087 | if (timer_active(timer) && !del_timer(&timer->it.real.timer)) | 
|  | 1088 | /* | 
|  | 1089 | * It can only be active if on an other cpu.  Since | 
|  | 1090 | * we have cleared the interval stuff above, it should | 
|  | 1091 | * clear once we release the spin lock.  Of course once | 
|  | 1092 | * we do that anything could happen, including the | 
|  | 1093 | * complete melt down of the timer.  So return with | 
|  | 1094 | * a "retry" exit status. | 
|  | 1095 | */ | 
|  | 1096 | return TIMER_RETRY; | 
|  | 1097 | #else | 
|  | 1098 | del_timer(&timer->it.real.timer); | 
|  | 1099 | #endif | 
|  | 1100 | remove_from_abslist(timer); | 
|  | 1101 |  | 
|  | 1102 | return 0; | 
|  | 1103 | } | 
|  | 1104 |  | 
|  | 1105 | static inline int timer_delete_hook(struct k_itimer *timer) | 
|  | 1106 | { | 
|  | 1107 | return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer)); | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | /* Delete a POSIX.1b interval timer. */ | 
|  | 1111 | asmlinkage long | 
|  | 1112 | sys_timer_delete(timer_t timer_id) | 
|  | 1113 | { | 
|  | 1114 | struct k_itimer *timer; | 
|  | 1115 | long flags; | 
|  | 1116 |  | 
|  | 1117 | #ifdef CONFIG_SMP | 
|  | 1118 | int error; | 
|  | 1119 | retry_delete: | 
|  | 1120 | #endif | 
|  | 1121 | timer = lock_timer(timer_id, &flags); | 
|  | 1122 | if (!timer) | 
|  | 1123 | return -EINVAL; | 
|  | 1124 |  | 
|  | 1125 | #ifdef CONFIG_SMP | 
|  | 1126 | error = timer_delete_hook(timer); | 
|  | 1127 |  | 
|  | 1128 | if (error == TIMER_RETRY) { | 
|  | 1129 | unlock_timer(timer, flags); | 
|  | 1130 | goto retry_delete; | 
|  | 1131 | } | 
|  | 1132 | #else | 
|  | 1133 | timer_delete_hook(timer); | 
|  | 1134 | #endif | 
|  | 1135 | spin_lock(¤t->sighand->siglock); | 
|  | 1136 | list_del(&timer->list); | 
|  | 1137 | spin_unlock(¤t->sighand->siglock); | 
|  | 1138 | /* | 
|  | 1139 | * This keeps any tasks waiting on the spin lock from thinking | 
|  | 1140 | * they got something (see the lock code above). | 
|  | 1141 | */ | 
|  | 1142 | if (timer->it_process) { | 
|  | 1143 | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | 1144 | put_task_struct(timer->it_process); | 
|  | 1145 | timer->it_process = NULL; | 
|  | 1146 | } | 
|  | 1147 | unlock_timer(timer, flags); | 
|  | 1148 | release_posix_timer(timer, IT_ID_SET); | 
|  | 1149 | return 0; | 
|  | 1150 | } | 
|  | 1151 | /* | 
|  | 1152 | * return timer owned by the process, used by exit_itimers | 
|  | 1153 | */ | 
|  | 1154 | static inline void itimer_delete(struct k_itimer *timer) | 
|  | 1155 | { | 
|  | 1156 | unsigned long flags; | 
|  | 1157 |  | 
|  | 1158 | #ifdef CONFIG_SMP | 
|  | 1159 | int error; | 
|  | 1160 | retry_delete: | 
|  | 1161 | #endif | 
|  | 1162 | spin_lock_irqsave(&timer->it_lock, flags); | 
|  | 1163 |  | 
|  | 1164 | #ifdef CONFIG_SMP | 
|  | 1165 | error = timer_delete_hook(timer); | 
|  | 1166 |  | 
|  | 1167 | if (error == TIMER_RETRY) { | 
|  | 1168 | unlock_timer(timer, flags); | 
|  | 1169 | goto retry_delete; | 
|  | 1170 | } | 
|  | 1171 | #else | 
|  | 1172 | timer_delete_hook(timer); | 
|  | 1173 | #endif | 
|  | 1174 | list_del(&timer->list); | 
|  | 1175 | /* | 
|  | 1176 | * This keeps any tasks waiting on the spin lock from thinking | 
|  | 1177 | * they got something (see the lock code above). | 
|  | 1178 | */ | 
|  | 1179 | if (timer->it_process) { | 
|  | 1180 | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | 1181 | put_task_struct(timer->it_process); | 
|  | 1182 | timer->it_process = NULL; | 
|  | 1183 | } | 
|  | 1184 | unlock_timer(timer, flags); | 
|  | 1185 | release_posix_timer(timer, IT_ID_SET); | 
|  | 1186 | } | 
|  | 1187 |  | 
|  | 1188 | /* | 
|  | 1189 | * This is called by __exit_signal, only when there are no more | 
|  | 1190 | * references to the shared signal_struct. | 
|  | 1191 | */ | 
|  | 1192 | void exit_itimers(struct signal_struct *sig) | 
|  | 1193 | { | 
|  | 1194 | struct k_itimer *tmr; | 
|  | 1195 |  | 
|  | 1196 | while (!list_empty(&sig->posix_timers)) { | 
|  | 1197 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | 
|  | 1198 | itimer_delete(tmr); | 
|  | 1199 | } | 
|  | 1200 | } | 
|  | 1201 |  | 
|  | 1202 | /* | 
|  | 1203 | * And now for the "clock" calls | 
|  | 1204 | * | 
|  | 1205 | * These functions are called both from timer functions (with the timer | 
|  | 1206 | * spin_lock_irq() held and from clock calls with no locking.	They must | 
|  | 1207 | * use the save flags versions of locks. | 
|  | 1208 | */ | 
|  | 1209 |  | 
|  | 1210 | /* | 
|  | 1211 | * We do ticks here to avoid the irq lock ( they take sooo long). | 
|  | 1212 | * The seqlock is great here.  Since we a reader, we don't really care | 
|  | 1213 | * if we are interrupted since we don't take lock that will stall us or | 
|  | 1214 | * any other cpu. Voila, no irq lock is needed. | 
|  | 1215 | * | 
|  | 1216 | */ | 
|  | 1217 |  | 
|  | 1218 | static u64 do_posix_clock_monotonic_gettime_parts( | 
|  | 1219 | struct timespec *tp, struct timespec *mo) | 
|  | 1220 | { | 
|  | 1221 | u64 jiff; | 
|  | 1222 | unsigned int seq; | 
|  | 1223 |  | 
|  | 1224 | do { | 
|  | 1225 | seq = read_seqbegin(&xtime_lock); | 
|  | 1226 | getnstimeofday(tp); | 
|  | 1227 | *mo = wall_to_monotonic; | 
|  | 1228 | jiff = jiffies_64; | 
|  | 1229 |  | 
|  | 1230 | } while(read_seqretry(&xtime_lock, seq)); | 
|  | 1231 |  | 
|  | 1232 | return jiff; | 
|  | 1233 | } | 
|  | 1234 |  | 
|  | 1235 | static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp) | 
|  | 1236 | { | 
|  | 1237 | struct timespec wall_to_mono; | 
|  | 1238 |  | 
|  | 1239 | do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono); | 
|  | 1240 |  | 
|  | 1241 | tp->tv_sec += wall_to_mono.tv_sec; | 
|  | 1242 | tp->tv_nsec += wall_to_mono.tv_nsec; | 
|  | 1243 |  | 
|  | 1244 | if ((tp->tv_nsec - NSEC_PER_SEC) > 0) { | 
|  | 1245 | tp->tv_nsec -= NSEC_PER_SEC; | 
|  | 1246 | tp->tv_sec++; | 
|  | 1247 | } | 
|  | 1248 | return 0; | 
|  | 1249 | } | 
|  | 1250 |  | 
|  | 1251 | int do_posix_clock_monotonic_gettime(struct timespec *tp) | 
|  | 1252 | { | 
|  | 1253 | return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp); | 
|  | 1254 | } | 
|  | 1255 |  | 
|  | 1256 | int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp) | 
|  | 1257 | { | 
|  | 1258 | return -EINVAL; | 
|  | 1259 | } | 
|  | 1260 | EXPORT_SYMBOL_GPL(do_posix_clock_nosettime); | 
|  | 1261 |  | 
|  | 1262 | int do_posix_clock_notimer_create(struct k_itimer *timer) | 
|  | 1263 | { | 
|  | 1264 | return -EINVAL; | 
|  | 1265 | } | 
|  | 1266 | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); | 
|  | 1267 |  | 
|  | 1268 | int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) | 
|  | 1269 | { | 
|  | 1270 | #ifndef ENOTSUP | 
|  | 1271 | return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */ | 
|  | 1272 | #else  /*  parisc does define it separately.  */ | 
|  | 1273 | return -ENOTSUP; | 
|  | 1274 | #endif | 
|  | 1275 | } | 
|  | 1276 | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); | 
|  | 1277 |  | 
|  | 1278 | asmlinkage long | 
|  | 1279 | sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) | 
|  | 1280 | { | 
|  | 1281 | struct timespec new_tp; | 
|  | 1282 |  | 
|  | 1283 | if (invalid_clockid(which_clock)) | 
|  | 1284 | return -EINVAL; | 
|  | 1285 | if (copy_from_user(&new_tp, tp, sizeof (*tp))) | 
|  | 1286 | return -EFAULT; | 
|  | 1287 |  | 
|  | 1288 | return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp)); | 
|  | 1289 | } | 
|  | 1290 |  | 
|  | 1291 | asmlinkage long | 
|  | 1292 | sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) | 
|  | 1293 | { | 
|  | 1294 | struct timespec kernel_tp; | 
|  | 1295 | int error; | 
|  | 1296 |  | 
|  | 1297 | if (invalid_clockid(which_clock)) | 
|  | 1298 | return -EINVAL; | 
|  | 1299 | error = CLOCK_DISPATCH(which_clock, clock_get, | 
|  | 1300 | (which_clock, &kernel_tp)); | 
|  | 1301 | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) | 
|  | 1302 | error = -EFAULT; | 
|  | 1303 |  | 
|  | 1304 | return error; | 
|  | 1305 |  | 
|  | 1306 | } | 
|  | 1307 |  | 
|  | 1308 | asmlinkage long | 
|  | 1309 | sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) | 
|  | 1310 | { | 
|  | 1311 | struct timespec rtn_tp; | 
|  | 1312 | int error; | 
|  | 1313 |  | 
|  | 1314 | if (invalid_clockid(which_clock)) | 
|  | 1315 | return -EINVAL; | 
|  | 1316 |  | 
|  | 1317 | error = CLOCK_DISPATCH(which_clock, clock_getres, | 
|  | 1318 | (which_clock, &rtn_tp)); | 
|  | 1319 |  | 
|  | 1320 | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) { | 
|  | 1321 | error = -EFAULT; | 
|  | 1322 | } | 
|  | 1323 |  | 
|  | 1324 | return error; | 
|  | 1325 | } | 
|  | 1326 |  | 
|  | 1327 | static void nanosleep_wake_up(unsigned long __data) | 
|  | 1328 | { | 
|  | 1329 | struct task_struct *p = (struct task_struct *) __data; | 
|  | 1330 |  | 
|  | 1331 | wake_up_process(p); | 
|  | 1332 | } | 
|  | 1333 |  | 
|  | 1334 | /* | 
|  | 1335 | * The standard says that an absolute nanosleep call MUST wake up at | 
|  | 1336 | * the requested time in spite of clock settings.  Here is what we do: | 
|  | 1337 | * For each nanosleep call that needs it (only absolute and not on | 
|  | 1338 | * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure | 
|  | 1339 | * into the "nanosleep_abs_list".  All we need is the task_struct pointer. | 
|  | 1340 | * When ever the clock is set we just wake up all those tasks.	 The rest | 
|  | 1341 | * is done by the while loop in clock_nanosleep(). | 
|  | 1342 | * | 
|  | 1343 | * On locking, clock_was_set() is called from update_wall_clock which | 
|  | 1344 | * holds (or has held for it) a write_lock_irq( xtime_lock) and is | 
|  | 1345 | * called from the timer bh code.  Thus we need the irq save locks. | 
|  | 1346 | * | 
|  | 1347 | * Also, on the call from update_wall_clock, that is done as part of a | 
|  | 1348 | * softirq thing.  We don't want to delay the system that much (possibly | 
|  | 1349 | * long list of timers to fix), so we defer that work to keventd. | 
|  | 1350 | */ | 
|  | 1351 |  | 
|  | 1352 | static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue); | 
|  | 1353 | static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL); | 
|  | 1354 |  | 
|  | 1355 | static DECLARE_MUTEX(clock_was_set_lock); | 
|  | 1356 |  | 
|  | 1357 | void clock_was_set(void) | 
|  | 1358 | { | 
|  | 1359 | struct k_itimer *timr; | 
|  | 1360 | struct timespec new_wall_to; | 
|  | 1361 | LIST_HEAD(cws_list); | 
|  | 1362 | unsigned long seq; | 
|  | 1363 |  | 
|  | 1364 |  | 
|  | 1365 | if (unlikely(in_interrupt())) { | 
|  | 1366 | schedule_work(&clock_was_set_work); | 
|  | 1367 | return; | 
|  | 1368 | } | 
|  | 1369 | wake_up_all(&nanosleep_abs_wqueue); | 
|  | 1370 |  | 
|  | 1371 | /* | 
|  | 1372 | * Check if there exist TIMER_ABSTIME timers to correct. | 
|  | 1373 | * | 
|  | 1374 | * Notes on locking: This code is run in task context with irq | 
|  | 1375 | * on.  We CAN be interrupted!  All other usage of the abs list | 
|  | 1376 | * lock is under the timer lock which holds the irq lock as | 
|  | 1377 | * well.  We REALLY don't want to scan the whole list with the | 
|  | 1378 | * interrupt system off, AND we would like a sequence lock on | 
|  | 1379 | * this code as well.  Since we assume that the clock will not | 
|  | 1380 | * be set often, it seems ok to take and release the irq lock | 
|  | 1381 | * for each timer.  In fact add_timer will do this, so this is | 
|  | 1382 | * not an issue.  So we know when we are done, we will move the | 
|  | 1383 | * whole list to a new location.  Then as we process each entry, | 
|  | 1384 | * we will move it to the actual list again.  This way, when our | 
|  | 1385 | * copy is empty, we are done.  We are not all that concerned | 
|  | 1386 | * about preemption so we will use a semaphore lock to protect | 
|  | 1387 | * aginst reentry.  This way we will not stall another | 
|  | 1388 | * processor.  It is possible that this may delay some timers | 
|  | 1389 | * that should have expired, given the new clock, but even this | 
|  | 1390 | * will be minimal as we will always update to the current time, | 
|  | 1391 | * even if it was set by a task that is waiting for entry to | 
|  | 1392 | * this code.  Timers that expire too early will be caught by | 
|  | 1393 | * the expire code and restarted. | 
|  | 1394 |  | 
|  | 1395 | * Absolute timers that repeat are left in the abs list while | 
|  | 1396 | * waiting for the task to pick up the signal.  This means we | 
|  | 1397 | * may find timers that are not in the "add_timer" list, but are | 
|  | 1398 | * in the abs list.  We do the same thing for these, save | 
|  | 1399 | * putting them back in the "add_timer" list.  (Note, these are | 
|  | 1400 | * left in the abs list mainly to indicate that they are | 
|  | 1401 | * ABSOLUTE timers, a fact that is used by the re-arm code, and | 
|  | 1402 | * for which we have no other flag.) | 
|  | 1403 |  | 
|  | 1404 | */ | 
|  | 1405 |  | 
|  | 1406 | down(&clock_was_set_lock); | 
|  | 1407 | spin_lock_irq(&abs_list.lock); | 
|  | 1408 | list_splice_init(&abs_list.list, &cws_list); | 
|  | 1409 | spin_unlock_irq(&abs_list.lock); | 
|  | 1410 | do { | 
|  | 1411 | do { | 
|  | 1412 | seq = read_seqbegin(&xtime_lock); | 
|  | 1413 | new_wall_to =	wall_to_monotonic; | 
|  | 1414 | } while (read_seqretry(&xtime_lock, seq)); | 
|  | 1415 |  | 
|  | 1416 | spin_lock_irq(&abs_list.lock); | 
|  | 1417 | if (list_empty(&cws_list)) { | 
|  | 1418 | spin_unlock_irq(&abs_list.lock); | 
|  | 1419 | break; | 
|  | 1420 | } | 
|  | 1421 | timr = list_entry(cws_list.next, struct k_itimer, | 
|  | 1422 | it.real.abs_timer_entry); | 
|  | 1423 |  | 
|  | 1424 | list_del_init(&timr->it.real.abs_timer_entry); | 
|  | 1425 | if (add_clockset_delta(timr, &new_wall_to) && | 
|  | 1426 | del_timer(&timr->it.real.timer))  /* timer run yet? */ | 
|  | 1427 | add_timer(&timr->it.real.timer); | 
|  | 1428 | list_add(&timr->it.real.abs_timer_entry, &abs_list.list); | 
|  | 1429 | spin_unlock_irq(&abs_list.lock); | 
|  | 1430 | } while (1); | 
|  | 1431 |  | 
|  | 1432 | up(&clock_was_set_lock); | 
|  | 1433 | } | 
|  | 1434 |  | 
|  | 1435 | long clock_nanosleep_restart(struct restart_block *restart_block); | 
|  | 1436 |  | 
|  | 1437 | asmlinkage long | 
|  | 1438 | sys_clock_nanosleep(clockid_t which_clock, int flags, | 
|  | 1439 | const struct timespec __user *rqtp, | 
|  | 1440 | struct timespec __user *rmtp) | 
|  | 1441 | { | 
|  | 1442 | struct timespec t; | 
|  | 1443 | struct restart_block *restart_block = | 
|  | 1444 | &(current_thread_info()->restart_block); | 
|  | 1445 | int ret; | 
|  | 1446 |  | 
|  | 1447 | if (invalid_clockid(which_clock)) | 
|  | 1448 | return -EINVAL; | 
|  | 1449 |  | 
|  | 1450 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | 
|  | 1451 | return -EFAULT; | 
|  | 1452 |  | 
|  | 1453 | if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0) | 
|  | 1454 | return -EINVAL; | 
|  | 1455 |  | 
|  | 1456 | /* | 
|  | 1457 | * Do this here as nsleep function does not have the real address. | 
|  | 1458 | */ | 
|  | 1459 | restart_block->arg1 = (unsigned long)rmtp; | 
|  | 1460 |  | 
|  | 1461 | ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t)); | 
|  | 1462 |  | 
|  | 1463 | if ((ret == -ERESTART_RESTARTBLOCK) && rmtp && | 
|  | 1464 | copy_to_user(rmtp, &t, sizeof (t))) | 
|  | 1465 | return -EFAULT; | 
|  | 1466 | return ret; | 
|  | 1467 | } | 
|  | 1468 |  | 
|  | 1469 |  | 
|  | 1470 | static int common_nsleep(clockid_t which_clock, | 
|  | 1471 | int flags, struct timespec *tsave) | 
|  | 1472 | { | 
|  | 1473 | struct timespec t, dum; | 
|  | 1474 | struct timer_list new_timer; | 
|  | 1475 | DECLARE_WAITQUEUE(abs_wqueue, current); | 
|  | 1476 | u64 rq_time = (u64)0; | 
|  | 1477 | s64 left; | 
|  | 1478 | int abs; | 
|  | 1479 | struct restart_block *restart_block = | 
|  | 1480 | ¤t_thread_info()->restart_block; | 
|  | 1481 |  | 
|  | 1482 | abs_wqueue.flags = 0; | 
|  | 1483 | init_timer(&new_timer); | 
|  | 1484 | new_timer.expires = 0; | 
|  | 1485 | new_timer.data = (unsigned long) current; | 
|  | 1486 | new_timer.function = nanosleep_wake_up; | 
|  | 1487 | abs = flags & TIMER_ABSTIME; | 
|  | 1488 |  | 
|  | 1489 | if (restart_block->fn == clock_nanosleep_restart) { | 
|  | 1490 | /* | 
|  | 1491 | * Interrupted by a non-delivered signal, pick up remaining | 
|  | 1492 | * time and continue.  Remaining time is in arg2 & 3. | 
|  | 1493 | */ | 
|  | 1494 | restart_block->fn = do_no_restart_syscall; | 
|  | 1495 |  | 
|  | 1496 | rq_time = restart_block->arg3; | 
|  | 1497 | rq_time = (rq_time << 32) + restart_block->arg2; | 
|  | 1498 | if (!rq_time) | 
|  | 1499 | return -EINTR; | 
|  | 1500 | left = rq_time - get_jiffies_64(); | 
|  | 1501 | if (left <= (s64)0) | 
|  | 1502 | return 0;	/* Already passed */ | 
|  | 1503 | } | 
|  | 1504 |  | 
|  | 1505 | if (abs && (posix_clocks[which_clock].clock_get != | 
|  | 1506 | posix_clocks[CLOCK_MONOTONIC].clock_get)) | 
|  | 1507 | add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue); | 
|  | 1508 |  | 
|  | 1509 | do { | 
|  | 1510 | t = *tsave; | 
|  | 1511 | if (abs || !rq_time) { | 
|  | 1512 | adjust_abs_time(&posix_clocks[which_clock], &t, abs, | 
|  | 1513 | &rq_time, &dum); | 
|  | 1514 | } | 
|  | 1515 |  | 
|  | 1516 | left = rq_time - get_jiffies_64(); | 
|  | 1517 | if (left >= (s64)MAX_JIFFY_OFFSET) | 
|  | 1518 | left = (s64)MAX_JIFFY_OFFSET; | 
|  | 1519 | if (left < (s64)0) | 
|  | 1520 | break; | 
|  | 1521 |  | 
|  | 1522 | new_timer.expires = jiffies + left; | 
|  | 1523 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1524 | add_timer(&new_timer); | 
|  | 1525 |  | 
|  | 1526 | schedule(); | 
|  | 1527 |  | 
|  | 1528 | del_timer_sync(&new_timer); | 
|  | 1529 | left = rq_time - get_jiffies_64(); | 
|  | 1530 | } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING)); | 
|  | 1531 |  | 
|  | 1532 | if (abs_wqueue.task_list.next) | 
|  | 1533 | finish_wait(&nanosleep_abs_wqueue, &abs_wqueue); | 
|  | 1534 |  | 
|  | 1535 | if (left > (s64)0) { | 
|  | 1536 |  | 
|  | 1537 | /* | 
|  | 1538 | * Always restart abs calls from scratch to pick up any | 
|  | 1539 | * clock shifting that happened while we are away. | 
|  | 1540 | */ | 
|  | 1541 | if (abs) | 
|  | 1542 | return -ERESTARTNOHAND; | 
|  | 1543 |  | 
|  | 1544 | left *= TICK_NSEC; | 
|  | 1545 | tsave->tv_sec = div_long_long_rem(left, | 
|  | 1546 | NSEC_PER_SEC, | 
|  | 1547 | &tsave->tv_nsec); | 
|  | 1548 | /* | 
|  | 1549 | * Restart works by saving the time remaing in | 
|  | 1550 | * arg2 & 3 (it is 64-bits of jiffies).  The other | 
|  | 1551 | * info we need is the clock_id (saved in arg0). | 
|  | 1552 | * The sys_call interface needs the users | 
|  | 1553 | * timespec return address which _it_ saves in arg1. | 
|  | 1554 | * Since we have cast the nanosleep call to a clock_nanosleep | 
|  | 1555 | * both can be restarted with the same code. | 
|  | 1556 | */ | 
|  | 1557 | restart_block->fn = clock_nanosleep_restart; | 
|  | 1558 | restart_block->arg0 = which_clock; | 
|  | 1559 | /* | 
|  | 1560 | * Caller sets arg1 | 
|  | 1561 | */ | 
|  | 1562 | restart_block->arg2 = rq_time & 0xffffffffLL; | 
|  | 1563 | restart_block->arg3 = rq_time >> 32; | 
|  | 1564 |  | 
|  | 1565 | return -ERESTART_RESTARTBLOCK; | 
|  | 1566 | } | 
|  | 1567 |  | 
|  | 1568 | return 0; | 
|  | 1569 | } | 
|  | 1570 | /* | 
|  | 1571 | * This will restart clock_nanosleep. | 
|  | 1572 | */ | 
|  | 1573 | long | 
|  | 1574 | clock_nanosleep_restart(struct restart_block *restart_block) | 
|  | 1575 | { | 
|  | 1576 | struct timespec t; | 
|  | 1577 | int ret = common_nsleep(restart_block->arg0, 0, &t); | 
|  | 1578 |  | 
|  | 1579 | if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 && | 
|  | 1580 | copy_to_user((struct timespec __user *)(restart_block->arg1), &t, | 
|  | 1581 | sizeof (t))) | 
|  | 1582 | return -EFAULT; | 
|  | 1583 | return ret; | 
|  | 1584 | } |