| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | *  kernel/sched.c | 
|  | 3 | * | 
|  | 4 | *  Kernel scheduler and related syscalls | 
|  | 5 | * | 
|  | 6 | *  Copyright (C) 1991-2002  Linus Torvalds | 
|  | 7 | * | 
|  | 8 | *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
|  | 9 | *		make semaphores SMP safe | 
|  | 10 | *  1998-11-19	Implemented schedule_timeout() and related stuff | 
|  | 11 | *		by Andrea Arcangeli | 
|  | 12 | *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
|  | 13 | *		hybrid priority-list and round-robin design with | 
|  | 14 | *		an array-switch method of distributing timeslices | 
|  | 15 | *		and per-CPU runqueues.  Cleanups and useful suggestions | 
|  | 16 | *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
|  | 17 | *  2003-09-03	Interactivity tuning by Con Kolivas. | 
|  | 18 | *  2004-04-02	Scheduler domains code by Nick Piggin | 
|  | 19 | */ | 
|  | 20 |  | 
|  | 21 | #include <linux/mm.h> | 
|  | 22 | #include <linux/module.h> | 
|  | 23 | #include <linux/nmi.h> | 
|  | 24 | #include <linux/init.h> | 
|  | 25 | #include <asm/uaccess.h> | 
|  | 26 | #include <linux/highmem.h> | 
|  | 27 | #include <linux/smp_lock.h> | 
|  | 28 | #include <asm/mmu_context.h> | 
|  | 29 | #include <linux/interrupt.h> | 
|  | 30 | #include <linux/completion.h> | 
|  | 31 | #include <linux/kernel_stat.h> | 
|  | 32 | #include <linux/security.h> | 
|  | 33 | #include <linux/notifier.h> | 
|  | 34 | #include <linux/profile.h> | 
|  | 35 | #include <linux/suspend.h> | 
|  | 36 | #include <linux/blkdev.h> | 
|  | 37 | #include <linux/delay.h> | 
|  | 38 | #include <linux/smp.h> | 
|  | 39 | #include <linux/threads.h> | 
|  | 40 | #include <linux/timer.h> | 
|  | 41 | #include <linux/rcupdate.h> | 
|  | 42 | #include <linux/cpu.h> | 
|  | 43 | #include <linux/cpuset.h> | 
|  | 44 | #include <linux/percpu.h> | 
|  | 45 | #include <linux/kthread.h> | 
|  | 46 | #include <linux/seq_file.h> | 
|  | 47 | #include <linux/syscalls.h> | 
|  | 48 | #include <linux/times.h> | 
|  | 49 | #include <linux/acct.h> | 
|  | 50 | #include <asm/tlb.h> | 
|  | 51 |  | 
|  | 52 | #include <asm/unistd.h> | 
|  | 53 |  | 
|  | 54 | /* | 
|  | 55 | * Convert user-nice values [ -20 ... 0 ... 19 ] | 
|  | 56 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
|  | 57 | * and back. | 
|  | 58 | */ | 
|  | 59 | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
|  | 60 | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
|  | 61 | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
|  | 62 |  | 
|  | 63 | /* | 
|  | 64 | * 'User priority' is the nice value converted to something we | 
|  | 65 | * can work with better when scaling various scheduler parameters, | 
|  | 66 | * it's a [ 0 ... 39 ] range. | 
|  | 67 | */ | 
|  | 68 | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
|  | 69 | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
|  | 70 | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
|  | 71 |  | 
|  | 72 | /* | 
|  | 73 | * Some helpers for converting nanosecond timing to jiffy resolution | 
|  | 74 | */ | 
|  | 75 | #define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ)) | 
|  | 76 | #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ)) | 
|  | 77 |  | 
|  | 78 | /* | 
|  | 79 | * These are the 'tuning knobs' of the scheduler: | 
|  | 80 | * | 
|  | 81 | * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | 
|  | 82 | * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | 
|  | 83 | * Timeslices get refilled after they expire. | 
|  | 84 | */ | 
|  | 85 | #define MIN_TIMESLICE		max(5 * HZ / 1000, 1) | 
|  | 86 | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
|  | 87 | #define ON_RUNQUEUE_WEIGHT	 30 | 
|  | 88 | #define CHILD_PENALTY		 95 | 
|  | 89 | #define PARENT_PENALTY		100 | 
|  | 90 | #define EXIT_WEIGHT		  3 | 
|  | 91 | #define PRIO_BONUS_RATIO	 25 | 
|  | 92 | #define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100) | 
|  | 93 | #define INTERACTIVE_DELTA	  2 | 
|  | 94 | #define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS) | 
|  | 95 | #define STARVATION_LIMIT	(MAX_SLEEP_AVG) | 
|  | 96 | #define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG)) | 
|  | 97 |  | 
|  | 98 | /* | 
|  | 99 | * If a task is 'interactive' then we reinsert it in the active | 
|  | 100 | * array after it has expired its current timeslice. (it will not | 
|  | 101 | * continue to run immediately, it will still roundrobin with | 
|  | 102 | * other interactive tasks.) | 
|  | 103 | * | 
|  | 104 | * This part scales the interactivity limit depending on niceness. | 
|  | 105 | * | 
|  | 106 | * We scale it linearly, offset by the INTERACTIVE_DELTA delta. | 
|  | 107 | * Here are a few examples of different nice levels: | 
|  | 108 | * | 
|  | 109 | *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] | 
|  | 110 | *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] | 
|  | 111 | *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0] | 
|  | 112 | *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] | 
|  | 113 | *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] | 
|  | 114 | * | 
|  | 115 | * (the X axis represents the possible -5 ... 0 ... +5 dynamic | 
|  | 116 | *  priority range a task can explore, a value of '1' means the | 
|  | 117 | *  task is rated interactive.) | 
|  | 118 | * | 
|  | 119 | * Ie. nice +19 tasks can never get 'interactive' enough to be | 
|  | 120 | * reinserted into the active array. And only heavily CPU-hog nice -20 | 
|  | 121 | * tasks will be expired. Default nice 0 tasks are somewhere between, | 
|  | 122 | * it takes some effort for them to get interactive, but it's not | 
|  | 123 | * too hard. | 
|  | 124 | */ | 
|  | 125 |  | 
|  | 126 | #define CURRENT_BONUS(p) \ | 
|  | 127 | (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \ | 
|  | 128 | MAX_SLEEP_AVG) | 
|  | 129 |  | 
|  | 130 | #define GRANULARITY	(10 * HZ / 1000 ? : 1) | 
|  | 131 |  | 
|  | 132 | #ifdef CONFIG_SMP | 
|  | 133 | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | 134 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \ | 
|  | 135 | num_online_cpus()) | 
|  | 136 | #else | 
|  | 137 | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | 138 | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1))) | 
|  | 139 | #endif | 
|  | 140 |  | 
|  | 141 | #define SCALE(v1,v1_max,v2_max) \ | 
|  | 142 | (v1) * (v2_max) / (v1_max) | 
|  | 143 |  | 
|  | 144 | #define DELTA(p) \ | 
|  | 145 | (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA) | 
|  | 146 |  | 
|  | 147 | #define TASK_INTERACTIVE(p) \ | 
|  | 148 | ((p)->prio <= (p)->static_prio - DELTA(p)) | 
|  | 149 |  | 
|  | 150 | #define INTERACTIVE_SLEEP(p) \ | 
|  | 151 | (JIFFIES_TO_NS(MAX_SLEEP_AVG * \ | 
|  | 152 | (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1)) | 
|  | 153 |  | 
|  | 154 | #define TASK_PREEMPTS_CURR(p, rq) \ | 
|  | 155 | ((p)->prio < (rq)->curr->prio) | 
|  | 156 |  | 
|  | 157 | /* | 
|  | 158 | * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | 
|  | 159 | * to time slice values: [800ms ... 100ms ... 5ms] | 
|  | 160 | * | 
|  | 161 | * The higher a thread's priority, the bigger timeslices | 
|  | 162 | * it gets during one round of execution. But even the lowest | 
|  | 163 | * priority thread gets MIN_TIMESLICE worth of execution time. | 
|  | 164 | */ | 
|  | 165 |  | 
|  | 166 | #define SCALE_PRIO(x, prio) \ | 
|  | 167 | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) | 
|  | 168 |  | 
|  | 169 | static inline unsigned int task_timeslice(task_t *p) | 
|  | 170 | { | 
|  | 171 | if (p->static_prio < NICE_TO_PRIO(0)) | 
|  | 172 | return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); | 
|  | 173 | else | 
|  | 174 | return SCALE_PRIO(DEF_TIMESLICE, p->static_prio); | 
|  | 175 | } | 
|  | 176 | #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)	\ | 
|  | 177 | < (long long) (sd)->cache_hot_time) | 
|  | 178 |  | 
|  | 179 | /* | 
|  | 180 | * These are the runqueue data structures: | 
|  | 181 | */ | 
|  | 182 |  | 
|  | 183 | #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long)) | 
|  | 184 |  | 
|  | 185 | typedef struct runqueue runqueue_t; | 
|  | 186 |  | 
|  | 187 | struct prio_array { | 
|  | 188 | unsigned int nr_active; | 
|  | 189 | unsigned long bitmap[BITMAP_SIZE]; | 
|  | 190 | struct list_head queue[MAX_PRIO]; | 
|  | 191 | }; | 
|  | 192 |  | 
|  | 193 | /* | 
|  | 194 | * This is the main, per-CPU runqueue data structure. | 
|  | 195 | * | 
|  | 196 | * Locking rule: those places that want to lock multiple runqueues | 
|  | 197 | * (such as the load balancing or the thread migration code), lock | 
|  | 198 | * acquire operations must be ordered by ascending &runqueue. | 
|  | 199 | */ | 
|  | 200 | struct runqueue { | 
|  | 201 | spinlock_t lock; | 
|  | 202 |  | 
|  | 203 | /* | 
|  | 204 | * nr_running and cpu_load should be in the same cacheline because | 
|  | 205 | * remote CPUs use both these fields when doing load calculation. | 
|  | 206 | */ | 
|  | 207 | unsigned long nr_running; | 
|  | 208 | #ifdef CONFIG_SMP | 
|  | 209 | unsigned long cpu_load; | 
|  | 210 | #endif | 
|  | 211 | unsigned long long nr_switches; | 
|  | 212 |  | 
|  | 213 | /* | 
|  | 214 | * This is part of a global counter where only the total sum | 
|  | 215 | * over all CPUs matters. A task can increase this counter on | 
|  | 216 | * one CPU and if it got migrated afterwards it may decrease | 
|  | 217 | * it on another CPU. Always updated under the runqueue lock: | 
|  | 218 | */ | 
|  | 219 | unsigned long nr_uninterruptible; | 
|  | 220 |  | 
|  | 221 | unsigned long expired_timestamp; | 
|  | 222 | unsigned long long timestamp_last_tick; | 
|  | 223 | task_t *curr, *idle; | 
|  | 224 | struct mm_struct *prev_mm; | 
|  | 225 | prio_array_t *active, *expired, arrays[2]; | 
|  | 226 | int best_expired_prio; | 
|  | 227 | atomic_t nr_iowait; | 
|  | 228 |  | 
|  | 229 | #ifdef CONFIG_SMP | 
|  | 230 | struct sched_domain *sd; | 
|  | 231 |  | 
|  | 232 | /* For active balancing */ | 
|  | 233 | int active_balance; | 
|  | 234 | int push_cpu; | 
|  | 235 |  | 
|  | 236 | task_t *migration_thread; | 
|  | 237 | struct list_head migration_queue; | 
|  | 238 | #endif | 
|  | 239 |  | 
|  | 240 | #ifdef CONFIG_SCHEDSTATS | 
|  | 241 | /* latency stats */ | 
|  | 242 | struct sched_info rq_sched_info; | 
|  | 243 |  | 
|  | 244 | /* sys_sched_yield() stats */ | 
|  | 245 | unsigned long yld_exp_empty; | 
|  | 246 | unsigned long yld_act_empty; | 
|  | 247 | unsigned long yld_both_empty; | 
|  | 248 | unsigned long yld_cnt; | 
|  | 249 |  | 
|  | 250 | /* schedule() stats */ | 
|  | 251 | unsigned long sched_switch; | 
|  | 252 | unsigned long sched_cnt; | 
|  | 253 | unsigned long sched_goidle; | 
|  | 254 |  | 
|  | 255 | /* try_to_wake_up() stats */ | 
|  | 256 | unsigned long ttwu_cnt; | 
|  | 257 | unsigned long ttwu_local; | 
|  | 258 | #endif | 
|  | 259 | }; | 
|  | 260 |  | 
|  | 261 | static DEFINE_PER_CPU(struct runqueue, runqueues); | 
|  | 262 |  | 
|  | 263 | #define for_each_domain(cpu, domain) \ | 
|  | 264 | for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent) | 
|  | 265 |  | 
|  | 266 | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
|  | 267 | #define this_rq()		(&__get_cpu_var(runqueues)) | 
|  | 268 | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
|  | 269 | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
|  | 270 |  | 
|  | 271 | /* | 
|  | 272 | * Default context-switch locking: | 
|  | 273 | */ | 
|  | 274 | #ifndef prepare_arch_switch | 
|  | 275 | # define prepare_arch_switch(rq, next)	do { } while (0) | 
|  | 276 | # define finish_arch_switch(rq, next)	spin_unlock_irq(&(rq)->lock) | 
|  | 277 | # define task_running(rq, p)		((rq)->curr == (p)) | 
|  | 278 | #endif | 
|  | 279 |  | 
|  | 280 | /* | 
|  | 281 | * task_rq_lock - lock the runqueue a given task resides on and disable | 
|  | 282 | * interrupts.  Note the ordering: we can safely lookup the task_rq without | 
|  | 283 | * explicitly disabling preemption. | 
|  | 284 | */ | 
|  | 285 | static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags) | 
|  | 286 | __acquires(rq->lock) | 
|  | 287 | { | 
|  | 288 | struct runqueue *rq; | 
|  | 289 |  | 
|  | 290 | repeat_lock_task: | 
|  | 291 | local_irq_save(*flags); | 
|  | 292 | rq = task_rq(p); | 
|  | 293 | spin_lock(&rq->lock); | 
|  | 294 | if (unlikely(rq != task_rq(p))) { | 
|  | 295 | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | 296 | goto repeat_lock_task; | 
|  | 297 | } | 
|  | 298 | return rq; | 
|  | 299 | } | 
|  | 300 |  | 
|  | 301 | static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags) | 
|  | 302 | __releases(rq->lock) | 
|  | 303 | { | 
|  | 304 | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | #ifdef CONFIG_SCHEDSTATS | 
|  | 308 | /* | 
|  | 309 | * bump this up when changing the output format or the meaning of an existing | 
|  | 310 | * format, so that tools can adapt (or abort) | 
|  | 311 | */ | 
|  | 312 | #define SCHEDSTAT_VERSION 11 | 
|  | 313 |  | 
|  | 314 | static int show_schedstat(struct seq_file *seq, void *v) | 
|  | 315 | { | 
|  | 316 | int cpu; | 
|  | 317 |  | 
|  | 318 | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | 
|  | 319 | seq_printf(seq, "timestamp %lu\n", jiffies); | 
|  | 320 | for_each_online_cpu(cpu) { | 
|  | 321 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 322 | #ifdef CONFIG_SMP | 
|  | 323 | struct sched_domain *sd; | 
|  | 324 | int dcnt = 0; | 
|  | 325 | #endif | 
|  | 326 |  | 
|  | 327 | /* runqueue-specific stats */ | 
|  | 328 | seq_printf(seq, | 
|  | 329 | "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | 330 | cpu, rq->yld_both_empty, | 
|  | 331 | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | 
|  | 332 | rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | 
|  | 333 | rq->ttwu_cnt, rq->ttwu_local, | 
|  | 334 | rq->rq_sched_info.cpu_time, | 
|  | 335 | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | 
|  | 336 |  | 
|  | 337 | seq_printf(seq, "\n"); | 
|  | 338 |  | 
|  | 339 | #ifdef CONFIG_SMP | 
|  | 340 | /* domain-specific stats */ | 
|  | 341 | for_each_domain(cpu, sd) { | 
|  | 342 | enum idle_type itype; | 
|  | 343 | char mask_str[NR_CPUS]; | 
|  | 344 |  | 
|  | 345 | cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | 
|  | 346 | seq_printf(seq, "domain%d %s", dcnt++, mask_str); | 
|  | 347 | for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES; | 
|  | 348 | itype++) { | 
|  | 349 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | 350 | sd->lb_cnt[itype], | 
|  | 351 | sd->lb_balanced[itype], | 
|  | 352 | sd->lb_failed[itype], | 
|  | 353 | sd->lb_imbalance[itype], | 
|  | 354 | sd->lb_gained[itype], | 
|  | 355 | sd->lb_hot_gained[itype], | 
|  | 356 | sd->lb_nobusyq[itype], | 
|  | 357 | sd->lb_nobusyg[itype]); | 
|  | 358 | } | 
|  | 359 | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n", | 
|  | 360 | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | 
|  | 361 | sd->sbe_pushed, sd->sbe_attempts, | 
|  | 362 | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); | 
|  | 363 | } | 
|  | 364 | #endif | 
|  | 365 | } | 
|  | 366 | return 0; | 
|  | 367 | } | 
|  | 368 |  | 
|  | 369 | static int schedstat_open(struct inode *inode, struct file *file) | 
|  | 370 | { | 
|  | 371 | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | 
|  | 372 | char *buf = kmalloc(size, GFP_KERNEL); | 
|  | 373 | struct seq_file *m; | 
|  | 374 | int res; | 
|  | 375 |  | 
|  | 376 | if (!buf) | 
|  | 377 | return -ENOMEM; | 
|  | 378 | res = single_open(file, show_schedstat, NULL); | 
|  | 379 | if (!res) { | 
|  | 380 | m = file->private_data; | 
|  | 381 | m->buf = buf; | 
|  | 382 | m->size = size; | 
|  | 383 | } else | 
|  | 384 | kfree(buf); | 
|  | 385 | return res; | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | struct file_operations proc_schedstat_operations = { | 
|  | 389 | .open    = schedstat_open, | 
|  | 390 | .read    = seq_read, | 
|  | 391 | .llseek  = seq_lseek, | 
|  | 392 | .release = single_release, | 
|  | 393 | }; | 
|  | 394 |  | 
|  | 395 | # define schedstat_inc(rq, field)	do { (rq)->field++; } while (0) | 
|  | 396 | # define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0) | 
|  | 397 | #else /* !CONFIG_SCHEDSTATS */ | 
|  | 398 | # define schedstat_inc(rq, field)	do { } while (0) | 
|  | 399 | # define schedstat_add(rq, field, amt)	do { } while (0) | 
|  | 400 | #endif | 
|  | 401 |  | 
|  | 402 | /* | 
|  | 403 | * rq_lock - lock a given runqueue and disable interrupts. | 
|  | 404 | */ | 
|  | 405 | static inline runqueue_t *this_rq_lock(void) | 
|  | 406 | __acquires(rq->lock) | 
|  | 407 | { | 
|  | 408 | runqueue_t *rq; | 
|  | 409 |  | 
|  | 410 | local_irq_disable(); | 
|  | 411 | rq = this_rq(); | 
|  | 412 | spin_lock(&rq->lock); | 
|  | 413 |  | 
|  | 414 | return rq; | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | #ifdef CONFIG_SCHED_SMT | 
|  | 418 | static int cpu_and_siblings_are_idle(int cpu) | 
|  | 419 | { | 
|  | 420 | int sib; | 
|  | 421 | for_each_cpu_mask(sib, cpu_sibling_map[cpu]) { | 
|  | 422 | if (idle_cpu(sib)) | 
|  | 423 | continue; | 
|  | 424 | return 0; | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | return 1; | 
|  | 428 | } | 
|  | 429 | #else | 
|  | 430 | #define cpu_and_siblings_are_idle(A) idle_cpu(A) | 
|  | 431 | #endif | 
|  | 432 |  | 
|  | 433 | #ifdef CONFIG_SCHEDSTATS | 
|  | 434 | /* | 
|  | 435 | * Called when a process is dequeued from the active array and given | 
|  | 436 | * the cpu.  We should note that with the exception of interactive | 
|  | 437 | * tasks, the expired queue will become the active queue after the active | 
|  | 438 | * queue is empty, without explicitly dequeuing and requeuing tasks in the | 
|  | 439 | * expired queue.  (Interactive tasks may be requeued directly to the | 
|  | 440 | * active queue, thus delaying tasks in the expired queue from running; | 
|  | 441 | * see scheduler_tick()). | 
|  | 442 | * | 
|  | 443 | * This function is only called from sched_info_arrive(), rather than | 
|  | 444 | * dequeue_task(). Even though a task may be queued and dequeued multiple | 
|  | 445 | * times as it is shuffled about, we're really interested in knowing how | 
|  | 446 | * long it was from the *first* time it was queued to the time that it | 
|  | 447 | * finally hit a cpu. | 
|  | 448 | */ | 
|  | 449 | static inline void sched_info_dequeued(task_t *t) | 
|  | 450 | { | 
|  | 451 | t->sched_info.last_queued = 0; | 
|  | 452 | } | 
|  | 453 |  | 
|  | 454 | /* | 
|  | 455 | * Called when a task finally hits the cpu.  We can now calculate how | 
|  | 456 | * long it was waiting to run.  We also note when it began so that we | 
|  | 457 | * can keep stats on how long its timeslice is. | 
|  | 458 | */ | 
|  | 459 | static inline void sched_info_arrive(task_t *t) | 
|  | 460 | { | 
|  | 461 | unsigned long now = jiffies, diff = 0; | 
|  | 462 | struct runqueue *rq = task_rq(t); | 
|  | 463 |  | 
|  | 464 | if (t->sched_info.last_queued) | 
|  | 465 | diff = now - t->sched_info.last_queued; | 
|  | 466 | sched_info_dequeued(t); | 
|  | 467 | t->sched_info.run_delay += diff; | 
|  | 468 | t->sched_info.last_arrival = now; | 
|  | 469 | t->sched_info.pcnt++; | 
|  | 470 |  | 
|  | 471 | if (!rq) | 
|  | 472 | return; | 
|  | 473 |  | 
|  | 474 | rq->rq_sched_info.run_delay += diff; | 
|  | 475 | rq->rq_sched_info.pcnt++; | 
|  | 476 | } | 
|  | 477 |  | 
|  | 478 | /* | 
|  | 479 | * Called when a process is queued into either the active or expired | 
|  | 480 | * array.  The time is noted and later used to determine how long we | 
|  | 481 | * had to wait for us to reach the cpu.  Since the expired queue will | 
|  | 482 | * become the active queue after active queue is empty, without dequeuing | 
|  | 483 | * and requeuing any tasks, we are interested in queuing to either. It | 
|  | 484 | * is unusual but not impossible for tasks to be dequeued and immediately | 
|  | 485 | * requeued in the same or another array: this can happen in sched_yield(), | 
|  | 486 | * set_user_nice(), and even load_balance() as it moves tasks from runqueue | 
|  | 487 | * to runqueue. | 
|  | 488 | * | 
|  | 489 | * This function is only called from enqueue_task(), but also only updates | 
|  | 490 | * the timestamp if it is already not set.  It's assumed that | 
|  | 491 | * sched_info_dequeued() will clear that stamp when appropriate. | 
|  | 492 | */ | 
|  | 493 | static inline void sched_info_queued(task_t *t) | 
|  | 494 | { | 
|  | 495 | if (!t->sched_info.last_queued) | 
|  | 496 | t->sched_info.last_queued = jiffies; | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | /* | 
|  | 500 | * Called when a process ceases being the active-running process, either | 
|  | 501 | * voluntarily or involuntarily.  Now we can calculate how long we ran. | 
|  | 502 | */ | 
|  | 503 | static inline void sched_info_depart(task_t *t) | 
|  | 504 | { | 
|  | 505 | struct runqueue *rq = task_rq(t); | 
|  | 506 | unsigned long diff = jiffies - t->sched_info.last_arrival; | 
|  | 507 |  | 
|  | 508 | t->sched_info.cpu_time += diff; | 
|  | 509 |  | 
|  | 510 | if (rq) | 
|  | 511 | rq->rq_sched_info.cpu_time += diff; | 
|  | 512 | } | 
|  | 513 |  | 
|  | 514 | /* | 
|  | 515 | * Called when tasks are switched involuntarily due, typically, to expiring | 
|  | 516 | * their time slice.  (This may also be called when switching to or from | 
|  | 517 | * the idle task.)  We are only called when prev != next. | 
|  | 518 | */ | 
|  | 519 | static inline void sched_info_switch(task_t *prev, task_t *next) | 
|  | 520 | { | 
|  | 521 | struct runqueue *rq = task_rq(prev); | 
|  | 522 |  | 
|  | 523 | /* | 
|  | 524 | * prev now departs the cpu.  It's not interesting to record | 
|  | 525 | * stats about how efficient we were at scheduling the idle | 
|  | 526 | * process, however. | 
|  | 527 | */ | 
|  | 528 | if (prev != rq->idle) | 
|  | 529 | sched_info_depart(prev); | 
|  | 530 |  | 
|  | 531 | if (next != rq->idle) | 
|  | 532 | sched_info_arrive(next); | 
|  | 533 | } | 
|  | 534 | #else | 
|  | 535 | #define sched_info_queued(t)		do { } while (0) | 
|  | 536 | #define sched_info_switch(t, next)	do { } while (0) | 
|  | 537 | #endif /* CONFIG_SCHEDSTATS */ | 
|  | 538 |  | 
|  | 539 | /* | 
|  | 540 | * Adding/removing a task to/from a priority array: | 
|  | 541 | */ | 
|  | 542 | static void dequeue_task(struct task_struct *p, prio_array_t *array) | 
|  | 543 | { | 
|  | 544 | array->nr_active--; | 
|  | 545 | list_del(&p->run_list); | 
|  | 546 | if (list_empty(array->queue + p->prio)) | 
|  | 547 | __clear_bit(p->prio, array->bitmap); | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 | static void enqueue_task(struct task_struct *p, prio_array_t *array) | 
|  | 551 | { | 
|  | 552 | sched_info_queued(p); | 
|  | 553 | list_add_tail(&p->run_list, array->queue + p->prio); | 
|  | 554 | __set_bit(p->prio, array->bitmap); | 
|  | 555 | array->nr_active++; | 
|  | 556 | p->array = array; | 
|  | 557 | } | 
|  | 558 |  | 
|  | 559 | /* | 
|  | 560 | * Put task to the end of the run list without the overhead of dequeue | 
|  | 561 | * followed by enqueue. | 
|  | 562 | */ | 
|  | 563 | static void requeue_task(struct task_struct *p, prio_array_t *array) | 
|  | 564 | { | 
|  | 565 | list_move_tail(&p->run_list, array->queue + p->prio); | 
|  | 566 | } | 
|  | 567 |  | 
|  | 568 | static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array) | 
|  | 569 | { | 
|  | 570 | list_add(&p->run_list, array->queue + p->prio); | 
|  | 571 | __set_bit(p->prio, array->bitmap); | 
|  | 572 | array->nr_active++; | 
|  | 573 | p->array = array; | 
|  | 574 | } | 
|  | 575 |  | 
|  | 576 | /* | 
|  | 577 | * effective_prio - return the priority that is based on the static | 
|  | 578 | * priority but is modified by bonuses/penalties. | 
|  | 579 | * | 
|  | 580 | * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] | 
|  | 581 | * into the -5 ... 0 ... +5 bonus/penalty range. | 
|  | 582 | * | 
|  | 583 | * We use 25% of the full 0...39 priority range so that: | 
|  | 584 | * | 
|  | 585 | * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. | 
|  | 586 | * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. | 
|  | 587 | * | 
|  | 588 | * Both properties are important to certain workloads. | 
|  | 589 | */ | 
|  | 590 | static int effective_prio(task_t *p) | 
|  | 591 | { | 
|  | 592 | int bonus, prio; | 
|  | 593 |  | 
|  | 594 | if (rt_task(p)) | 
|  | 595 | return p->prio; | 
|  | 596 |  | 
|  | 597 | bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; | 
|  | 598 |  | 
|  | 599 | prio = p->static_prio - bonus; | 
|  | 600 | if (prio < MAX_RT_PRIO) | 
|  | 601 | prio = MAX_RT_PRIO; | 
|  | 602 | if (prio > MAX_PRIO-1) | 
|  | 603 | prio = MAX_PRIO-1; | 
|  | 604 | return prio; | 
|  | 605 | } | 
|  | 606 |  | 
|  | 607 | /* | 
|  | 608 | * __activate_task - move a task to the runqueue. | 
|  | 609 | */ | 
|  | 610 | static inline void __activate_task(task_t *p, runqueue_t *rq) | 
|  | 611 | { | 
|  | 612 | enqueue_task(p, rq->active); | 
|  | 613 | rq->nr_running++; | 
|  | 614 | } | 
|  | 615 |  | 
|  | 616 | /* | 
|  | 617 | * __activate_idle_task - move idle task to the _front_ of runqueue. | 
|  | 618 | */ | 
|  | 619 | static inline void __activate_idle_task(task_t *p, runqueue_t *rq) | 
|  | 620 | { | 
|  | 621 | enqueue_task_head(p, rq->active); | 
|  | 622 | rq->nr_running++; | 
|  | 623 | } | 
|  | 624 |  | 
|  | 625 | static void recalc_task_prio(task_t *p, unsigned long long now) | 
|  | 626 | { | 
|  | 627 | /* Caller must always ensure 'now >= p->timestamp' */ | 
|  | 628 | unsigned long long __sleep_time = now - p->timestamp; | 
|  | 629 | unsigned long sleep_time; | 
|  | 630 |  | 
|  | 631 | if (__sleep_time > NS_MAX_SLEEP_AVG) | 
|  | 632 | sleep_time = NS_MAX_SLEEP_AVG; | 
|  | 633 | else | 
|  | 634 | sleep_time = (unsigned long)__sleep_time; | 
|  | 635 |  | 
|  | 636 | if (likely(sleep_time > 0)) { | 
|  | 637 | /* | 
|  | 638 | * User tasks that sleep a long time are categorised as | 
|  | 639 | * idle and will get just interactive status to stay active & | 
|  | 640 | * prevent them suddenly becoming cpu hogs and starving | 
|  | 641 | * other processes. | 
|  | 642 | */ | 
|  | 643 | if (p->mm && p->activated != -1 && | 
|  | 644 | sleep_time > INTERACTIVE_SLEEP(p)) { | 
|  | 645 | p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG - | 
|  | 646 | DEF_TIMESLICE); | 
|  | 647 | } else { | 
|  | 648 | /* | 
|  | 649 | * The lower the sleep avg a task has the more | 
|  | 650 | * rapidly it will rise with sleep time. | 
|  | 651 | */ | 
|  | 652 | sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1; | 
|  | 653 |  | 
|  | 654 | /* | 
|  | 655 | * Tasks waking from uninterruptible sleep are | 
|  | 656 | * limited in their sleep_avg rise as they | 
|  | 657 | * are likely to be waiting on I/O | 
|  | 658 | */ | 
|  | 659 | if (p->activated == -1 && p->mm) { | 
|  | 660 | if (p->sleep_avg >= INTERACTIVE_SLEEP(p)) | 
|  | 661 | sleep_time = 0; | 
|  | 662 | else if (p->sleep_avg + sleep_time >= | 
|  | 663 | INTERACTIVE_SLEEP(p)) { | 
|  | 664 | p->sleep_avg = INTERACTIVE_SLEEP(p); | 
|  | 665 | sleep_time = 0; | 
|  | 666 | } | 
|  | 667 | } | 
|  | 668 |  | 
|  | 669 | /* | 
|  | 670 | * This code gives a bonus to interactive tasks. | 
|  | 671 | * | 
|  | 672 | * The boost works by updating the 'average sleep time' | 
|  | 673 | * value here, based on ->timestamp. The more time a | 
|  | 674 | * task spends sleeping, the higher the average gets - | 
|  | 675 | * and the higher the priority boost gets as well. | 
|  | 676 | */ | 
|  | 677 | p->sleep_avg += sleep_time; | 
|  | 678 |  | 
|  | 679 | if (p->sleep_avg > NS_MAX_SLEEP_AVG) | 
|  | 680 | p->sleep_avg = NS_MAX_SLEEP_AVG; | 
|  | 681 | } | 
|  | 682 | } | 
|  | 683 |  | 
|  | 684 | p->prio = effective_prio(p); | 
|  | 685 | } | 
|  | 686 |  | 
|  | 687 | /* | 
|  | 688 | * activate_task - move a task to the runqueue and do priority recalculation | 
|  | 689 | * | 
|  | 690 | * Update all the scheduling statistics stuff. (sleep average | 
|  | 691 | * calculation, priority modifiers, etc.) | 
|  | 692 | */ | 
|  | 693 | static void activate_task(task_t *p, runqueue_t *rq, int local) | 
|  | 694 | { | 
|  | 695 | unsigned long long now; | 
|  | 696 |  | 
|  | 697 | now = sched_clock(); | 
|  | 698 | #ifdef CONFIG_SMP | 
|  | 699 | if (!local) { | 
|  | 700 | /* Compensate for drifting sched_clock */ | 
|  | 701 | runqueue_t *this_rq = this_rq(); | 
|  | 702 | now = (now - this_rq->timestamp_last_tick) | 
|  | 703 | + rq->timestamp_last_tick; | 
|  | 704 | } | 
|  | 705 | #endif | 
|  | 706 |  | 
|  | 707 | recalc_task_prio(p, now); | 
|  | 708 |  | 
|  | 709 | /* | 
|  | 710 | * This checks to make sure it's not an uninterruptible task | 
|  | 711 | * that is now waking up. | 
|  | 712 | */ | 
|  | 713 | if (!p->activated) { | 
|  | 714 | /* | 
|  | 715 | * Tasks which were woken up by interrupts (ie. hw events) | 
|  | 716 | * are most likely of interactive nature. So we give them | 
|  | 717 | * the credit of extending their sleep time to the period | 
|  | 718 | * of time they spend on the runqueue, waiting for execution | 
|  | 719 | * on a CPU, first time around: | 
|  | 720 | */ | 
|  | 721 | if (in_interrupt()) | 
|  | 722 | p->activated = 2; | 
|  | 723 | else { | 
|  | 724 | /* | 
|  | 725 | * Normal first-time wakeups get a credit too for | 
|  | 726 | * on-runqueue time, but it will be weighted down: | 
|  | 727 | */ | 
|  | 728 | p->activated = 1; | 
|  | 729 | } | 
|  | 730 | } | 
|  | 731 | p->timestamp = now; | 
|  | 732 |  | 
|  | 733 | __activate_task(p, rq); | 
|  | 734 | } | 
|  | 735 |  | 
|  | 736 | /* | 
|  | 737 | * deactivate_task - remove a task from the runqueue. | 
|  | 738 | */ | 
|  | 739 | static void deactivate_task(struct task_struct *p, runqueue_t *rq) | 
|  | 740 | { | 
|  | 741 | rq->nr_running--; | 
|  | 742 | dequeue_task(p, p->array); | 
|  | 743 | p->array = NULL; | 
|  | 744 | } | 
|  | 745 |  | 
|  | 746 | /* | 
|  | 747 | * resched_task - mark a task 'to be rescheduled now'. | 
|  | 748 | * | 
|  | 749 | * On UP this means the setting of the need_resched flag, on SMP it | 
|  | 750 | * might also involve a cross-CPU call to trigger the scheduler on | 
|  | 751 | * the target CPU. | 
|  | 752 | */ | 
|  | 753 | #ifdef CONFIG_SMP | 
|  | 754 | static void resched_task(task_t *p) | 
|  | 755 | { | 
|  | 756 | int need_resched, nrpolling; | 
|  | 757 |  | 
|  | 758 | assert_spin_locked(&task_rq(p)->lock); | 
|  | 759 |  | 
|  | 760 | /* minimise the chance of sending an interrupt to poll_idle() */ | 
|  | 761 | nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | 
|  | 762 | need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED); | 
|  | 763 | nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | 
|  | 764 |  | 
|  | 765 | if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id())) | 
|  | 766 | smp_send_reschedule(task_cpu(p)); | 
|  | 767 | } | 
|  | 768 | #else | 
|  | 769 | static inline void resched_task(task_t *p) | 
|  | 770 | { | 
|  | 771 | set_tsk_need_resched(p); | 
|  | 772 | } | 
|  | 773 | #endif | 
|  | 774 |  | 
|  | 775 | /** | 
|  | 776 | * task_curr - is this task currently executing on a CPU? | 
|  | 777 | * @p: the task in question. | 
|  | 778 | */ | 
|  | 779 | inline int task_curr(const task_t *p) | 
|  | 780 | { | 
|  | 781 | return cpu_curr(task_cpu(p)) == p; | 
|  | 782 | } | 
|  | 783 |  | 
|  | 784 | #ifdef CONFIG_SMP | 
|  | 785 | enum request_type { | 
|  | 786 | REQ_MOVE_TASK, | 
|  | 787 | REQ_SET_DOMAIN, | 
|  | 788 | }; | 
|  | 789 |  | 
|  | 790 | typedef struct { | 
|  | 791 | struct list_head list; | 
|  | 792 | enum request_type type; | 
|  | 793 |  | 
|  | 794 | /* For REQ_MOVE_TASK */ | 
|  | 795 | task_t *task; | 
|  | 796 | int dest_cpu; | 
|  | 797 |  | 
|  | 798 | /* For REQ_SET_DOMAIN */ | 
|  | 799 | struct sched_domain *sd; | 
|  | 800 |  | 
|  | 801 | struct completion done; | 
|  | 802 | } migration_req_t; | 
|  | 803 |  | 
|  | 804 | /* | 
|  | 805 | * The task's runqueue lock must be held. | 
|  | 806 | * Returns true if you have to wait for migration thread. | 
|  | 807 | */ | 
|  | 808 | static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req) | 
|  | 809 | { | 
|  | 810 | runqueue_t *rq = task_rq(p); | 
|  | 811 |  | 
|  | 812 | /* | 
|  | 813 | * If the task is not on a runqueue (and not running), then | 
|  | 814 | * it is sufficient to simply update the task's cpu field. | 
|  | 815 | */ | 
|  | 816 | if (!p->array && !task_running(rq, p)) { | 
|  | 817 | set_task_cpu(p, dest_cpu); | 
|  | 818 | return 0; | 
|  | 819 | } | 
|  | 820 |  | 
|  | 821 | init_completion(&req->done); | 
|  | 822 | req->type = REQ_MOVE_TASK; | 
|  | 823 | req->task = p; | 
|  | 824 | req->dest_cpu = dest_cpu; | 
|  | 825 | list_add(&req->list, &rq->migration_queue); | 
|  | 826 | return 1; | 
|  | 827 | } | 
|  | 828 |  | 
|  | 829 | /* | 
|  | 830 | * wait_task_inactive - wait for a thread to unschedule. | 
|  | 831 | * | 
|  | 832 | * The caller must ensure that the task *will* unschedule sometime soon, | 
|  | 833 | * else this function might spin for a *long* time. This function can't | 
|  | 834 | * be called with interrupts off, or it may introduce deadlock with | 
|  | 835 | * smp_call_function() if an IPI is sent by the same process we are | 
|  | 836 | * waiting to become inactive. | 
|  | 837 | */ | 
|  | 838 | void wait_task_inactive(task_t * p) | 
|  | 839 | { | 
|  | 840 | unsigned long flags; | 
|  | 841 | runqueue_t *rq; | 
|  | 842 | int preempted; | 
|  | 843 |  | 
|  | 844 | repeat: | 
|  | 845 | rq = task_rq_lock(p, &flags); | 
|  | 846 | /* Must be off runqueue entirely, not preempted. */ | 
|  | 847 | if (unlikely(p->array || task_running(rq, p))) { | 
|  | 848 | /* If it's preempted, we yield.  It could be a while. */ | 
|  | 849 | preempted = !task_running(rq, p); | 
|  | 850 | task_rq_unlock(rq, &flags); | 
|  | 851 | cpu_relax(); | 
|  | 852 | if (preempted) | 
|  | 853 | yield(); | 
|  | 854 | goto repeat; | 
|  | 855 | } | 
|  | 856 | task_rq_unlock(rq, &flags); | 
|  | 857 | } | 
|  | 858 |  | 
|  | 859 | /*** | 
|  | 860 | * kick_process - kick a running thread to enter/exit the kernel | 
|  | 861 | * @p: the to-be-kicked thread | 
|  | 862 | * | 
|  | 863 | * Cause a process which is running on another CPU to enter | 
|  | 864 | * kernel-mode, without any delay. (to get signals handled.) | 
|  | 865 | * | 
|  | 866 | * NOTE: this function doesnt have to take the runqueue lock, | 
|  | 867 | * because all it wants to ensure is that the remote task enters | 
|  | 868 | * the kernel. If the IPI races and the task has been migrated | 
|  | 869 | * to another CPU then no harm is done and the purpose has been | 
|  | 870 | * achieved as well. | 
|  | 871 | */ | 
|  | 872 | void kick_process(task_t *p) | 
|  | 873 | { | 
|  | 874 | int cpu; | 
|  | 875 |  | 
|  | 876 | preempt_disable(); | 
|  | 877 | cpu = task_cpu(p); | 
|  | 878 | if ((cpu != smp_processor_id()) && task_curr(p)) | 
|  | 879 | smp_send_reschedule(cpu); | 
|  | 880 | preempt_enable(); | 
|  | 881 | } | 
|  | 882 |  | 
|  | 883 | /* | 
|  | 884 | * Return a low guess at the load of a migration-source cpu. | 
|  | 885 | * | 
|  | 886 | * We want to under-estimate the load of migration sources, to | 
|  | 887 | * balance conservatively. | 
|  | 888 | */ | 
|  | 889 | static inline unsigned long source_load(int cpu) | 
|  | 890 | { | 
|  | 891 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 892 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
|  | 893 |  | 
|  | 894 | return min(rq->cpu_load, load_now); | 
|  | 895 | } | 
|  | 896 |  | 
|  | 897 | /* | 
|  | 898 | * Return a high guess at the load of a migration-target cpu | 
|  | 899 | */ | 
|  | 900 | static inline unsigned long target_load(int cpu) | 
|  | 901 | { | 
|  | 902 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 903 | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
|  | 904 |  | 
|  | 905 | return max(rq->cpu_load, load_now); | 
|  | 906 | } | 
|  | 907 |  | 
|  | 908 | #endif | 
|  | 909 |  | 
|  | 910 | /* | 
|  | 911 | * wake_idle() will wake a task on an idle cpu if task->cpu is | 
|  | 912 | * not idle and an idle cpu is available.  The span of cpus to | 
|  | 913 | * search starts with cpus closest then further out as needed, | 
|  | 914 | * so we always favor a closer, idle cpu. | 
|  | 915 | * | 
|  | 916 | * Returns the CPU we should wake onto. | 
|  | 917 | */ | 
|  | 918 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
|  | 919 | static int wake_idle(int cpu, task_t *p) | 
|  | 920 | { | 
|  | 921 | cpumask_t tmp; | 
|  | 922 | struct sched_domain *sd; | 
|  | 923 | int i; | 
|  | 924 |  | 
|  | 925 | if (idle_cpu(cpu)) | 
|  | 926 | return cpu; | 
|  | 927 |  | 
|  | 928 | for_each_domain(cpu, sd) { | 
|  | 929 | if (sd->flags & SD_WAKE_IDLE) { | 
|  | 930 | cpus_and(tmp, sd->span, cpu_online_map); | 
|  | 931 | cpus_and(tmp, tmp, p->cpus_allowed); | 
|  | 932 | for_each_cpu_mask(i, tmp) { | 
|  | 933 | if (idle_cpu(i)) | 
|  | 934 | return i; | 
|  | 935 | } | 
|  | 936 | } | 
|  | 937 | else break; | 
|  | 938 | } | 
|  | 939 | return cpu; | 
|  | 940 | } | 
|  | 941 | #else | 
|  | 942 | static inline int wake_idle(int cpu, task_t *p) | 
|  | 943 | { | 
|  | 944 | return cpu; | 
|  | 945 | } | 
|  | 946 | #endif | 
|  | 947 |  | 
|  | 948 | /*** | 
|  | 949 | * try_to_wake_up - wake up a thread | 
|  | 950 | * @p: the to-be-woken-up thread | 
|  | 951 | * @state: the mask of task states that can be woken | 
|  | 952 | * @sync: do a synchronous wakeup? | 
|  | 953 | * | 
|  | 954 | * Put it on the run-queue if it's not already there. The "current" | 
|  | 955 | * thread is always on the run-queue (except when the actual | 
|  | 956 | * re-schedule is in progress), and as such you're allowed to do | 
|  | 957 | * the simpler "current->state = TASK_RUNNING" to mark yourself | 
|  | 958 | * runnable without the overhead of this. | 
|  | 959 | * | 
|  | 960 | * returns failure only if the task is already active. | 
|  | 961 | */ | 
|  | 962 | static int try_to_wake_up(task_t * p, unsigned int state, int sync) | 
|  | 963 | { | 
|  | 964 | int cpu, this_cpu, success = 0; | 
|  | 965 | unsigned long flags; | 
|  | 966 | long old_state; | 
|  | 967 | runqueue_t *rq; | 
|  | 968 | #ifdef CONFIG_SMP | 
|  | 969 | unsigned long load, this_load; | 
|  | 970 | struct sched_domain *sd; | 
|  | 971 | int new_cpu; | 
|  | 972 | #endif | 
|  | 973 |  | 
|  | 974 | rq = task_rq_lock(p, &flags); | 
|  | 975 | old_state = p->state; | 
|  | 976 | if (!(old_state & state)) | 
|  | 977 | goto out; | 
|  | 978 |  | 
|  | 979 | if (p->array) | 
|  | 980 | goto out_running; | 
|  | 981 |  | 
|  | 982 | cpu = task_cpu(p); | 
|  | 983 | this_cpu = smp_processor_id(); | 
|  | 984 |  | 
|  | 985 | #ifdef CONFIG_SMP | 
|  | 986 | if (unlikely(task_running(rq, p))) | 
|  | 987 | goto out_activate; | 
|  | 988 |  | 
|  | 989 | #ifdef CONFIG_SCHEDSTATS | 
|  | 990 | schedstat_inc(rq, ttwu_cnt); | 
|  | 991 | if (cpu == this_cpu) { | 
|  | 992 | schedstat_inc(rq, ttwu_local); | 
|  | 993 | } else { | 
|  | 994 | for_each_domain(this_cpu, sd) { | 
|  | 995 | if (cpu_isset(cpu, sd->span)) { | 
|  | 996 | schedstat_inc(sd, ttwu_wake_remote); | 
|  | 997 | break; | 
|  | 998 | } | 
|  | 999 | } | 
|  | 1000 | } | 
|  | 1001 | #endif | 
|  | 1002 |  | 
|  | 1003 | new_cpu = cpu; | 
|  | 1004 | if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | 
|  | 1005 | goto out_set_cpu; | 
|  | 1006 |  | 
|  | 1007 | load = source_load(cpu); | 
|  | 1008 | this_load = target_load(this_cpu); | 
|  | 1009 |  | 
|  | 1010 | /* | 
|  | 1011 | * If sync wakeup then subtract the (maximum possible) effect of | 
|  | 1012 | * the currently running task from the load of the current CPU: | 
|  | 1013 | */ | 
|  | 1014 | if (sync) | 
|  | 1015 | this_load -= SCHED_LOAD_SCALE; | 
|  | 1016 |  | 
|  | 1017 | /* Don't pull the task off an idle CPU to a busy one */ | 
|  | 1018 | if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2) | 
|  | 1019 | goto out_set_cpu; | 
|  | 1020 |  | 
|  | 1021 | new_cpu = this_cpu; /* Wake to this CPU if we can */ | 
|  | 1022 |  | 
|  | 1023 | /* | 
|  | 1024 | * Scan domains for affine wakeup and passive balancing | 
|  | 1025 | * possibilities. | 
|  | 1026 | */ | 
|  | 1027 | for_each_domain(this_cpu, sd) { | 
|  | 1028 | unsigned int imbalance; | 
|  | 1029 | /* | 
|  | 1030 | * Start passive balancing when half the imbalance_pct | 
|  | 1031 | * limit is reached. | 
|  | 1032 | */ | 
|  | 1033 | imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2; | 
|  | 1034 |  | 
|  | 1035 | if ((sd->flags & SD_WAKE_AFFINE) && | 
|  | 1036 | !task_hot(p, rq->timestamp_last_tick, sd)) { | 
|  | 1037 | /* | 
|  | 1038 | * This domain has SD_WAKE_AFFINE and p is cache cold | 
|  | 1039 | * in this domain. | 
|  | 1040 | */ | 
|  | 1041 | if (cpu_isset(cpu, sd->span)) { | 
|  | 1042 | schedstat_inc(sd, ttwu_move_affine); | 
|  | 1043 | goto out_set_cpu; | 
|  | 1044 | } | 
|  | 1045 | } else if ((sd->flags & SD_WAKE_BALANCE) && | 
|  | 1046 | imbalance*this_load <= 100*load) { | 
|  | 1047 | /* | 
|  | 1048 | * This domain has SD_WAKE_BALANCE and there is | 
|  | 1049 | * an imbalance. | 
|  | 1050 | */ | 
|  | 1051 | if (cpu_isset(cpu, sd->span)) { | 
|  | 1052 | schedstat_inc(sd, ttwu_move_balance); | 
|  | 1053 | goto out_set_cpu; | 
|  | 1054 | } | 
|  | 1055 | } | 
|  | 1056 | } | 
|  | 1057 |  | 
|  | 1058 | new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | 
|  | 1059 | out_set_cpu: | 
|  | 1060 | new_cpu = wake_idle(new_cpu, p); | 
|  | 1061 | if (new_cpu != cpu) { | 
|  | 1062 | set_task_cpu(p, new_cpu); | 
|  | 1063 | task_rq_unlock(rq, &flags); | 
|  | 1064 | /* might preempt at this point */ | 
|  | 1065 | rq = task_rq_lock(p, &flags); | 
|  | 1066 | old_state = p->state; | 
|  | 1067 | if (!(old_state & state)) | 
|  | 1068 | goto out; | 
|  | 1069 | if (p->array) | 
|  | 1070 | goto out_running; | 
|  | 1071 |  | 
|  | 1072 | this_cpu = smp_processor_id(); | 
|  | 1073 | cpu = task_cpu(p); | 
|  | 1074 | } | 
|  | 1075 |  | 
|  | 1076 | out_activate: | 
|  | 1077 | #endif /* CONFIG_SMP */ | 
|  | 1078 | if (old_state == TASK_UNINTERRUPTIBLE) { | 
|  | 1079 | rq->nr_uninterruptible--; | 
|  | 1080 | /* | 
|  | 1081 | * Tasks on involuntary sleep don't earn | 
|  | 1082 | * sleep_avg beyond just interactive state. | 
|  | 1083 | */ | 
|  | 1084 | p->activated = -1; | 
|  | 1085 | } | 
|  | 1086 |  | 
|  | 1087 | /* | 
|  | 1088 | * Sync wakeups (i.e. those types of wakeups where the waker | 
|  | 1089 | * has indicated that it will leave the CPU in short order) | 
|  | 1090 | * don't trigger a preemption, if the woken up task will run on | 
|  | 1091 | * this cpu. (in this case the 'I will reschedule' promise of | 
|  | 1092 | * the waker guarantees that the freshly woken up task is going | 
|  | 1093 | * to be considered on this CPU.) | 
|  | 1094 | */ | 
|  | 1095 | activate_task(p, rq, cpu == this_cpu); | 
|  | 1096 | if (!sync || cpu != this_cpu) { | 
|  | 1097 | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | 1098 | resched_task(rq->curr); | 
|  | 1099 | } | 
|  | 1100 | success = 1; | 
|  | 1101 |  | 
|  | 1102 | out_running: | 
|  | 1103 | p->state = TASK_RUNNING; | 
|  | 1104 | out: | 
|  | 1105 | task_rq_unlock(rq, &flags); | 
|  | 1106 |  | 
|  | 1107 | return success; | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | int fastcall wake_up_process(task_t * p) | 
|  | 1111 | { | 
|  | 1112 | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | 
|  | 1113 | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | 
|  | 1114 | } | 
|  | 1115 |  | 
|  | 1116 | EXPORT_SYMBOL(wake_up_process); | 
|  | 1117 |  | 
|  | 1118 | int fastcall wake_up_state(task_t *p, unsigned int state) | 
|  | 1119 | { | 
|  | 1120 | return try_to_wake_up(p, state, 0); | 
|  | 1121 | } | 
|  | 1122 |  | 
|  | 1123 | #ifdef CONFIG_SMP | 
|  | 1124 | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | 
|  | 1125 | struct sched_domain *sd); | 
|  | 1126 | #endif | 
|  | 1127 |  | 
|  | 1128 | /* | 
|  | 1129 | * Perform scheduler related setup for a newly forked process p. | 
|  | 1130 | * p is forked by current. | 
|  | 1131 | */ | 
|  | 1132 | void fastcall sched_fork(task_t *p) | 
|  | 1133 | { | 
|  | 1134 | /* | 
|  | 1135 | * We mark the process as running here, but have not actually | 
|  | 1136 | * inserted it onto the runqueue yet. This guarantees that | 
|  | 1137 | * nobody will actually run it, and a signal or other external | 
|  | 1138 | * event cannot wake it up and insert it on the runqueue either. | 
|  | 1139 | */ | 
|  | 1140 | p->state = TASK_RUNNING; | 
|  | 1141 | INIT_LIST_HEAD(&p->run_list); | 
|  | 1142 | p->array = NULL; | 
|  | 1143 | spin_lock_init(&p->switch_lock); | 
|  | 1144 | #ifdef CONFIG_SCHEDSTATS | 
|  | 1145 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
|  | 1146 | #endif | 
|  | 1147 | #ifdef CONFIG_PREEMPT | 
|  | 1148 | /* | 
|  | 1149 | * During context-switch we hold precisely one spinlock, which | 
|  | 1150 | * schedule_tail drops. (in the common case it's this_rq()->lock, | 
|  | 1151 | * but it also can be p->switch_lock.) So we compensate with a count | 
|  | 1152 | * of 1. Also, we want to start with kernel preemption disabled. | 
|  | 1153 | */ | 
|  | 1154 | p->thread_info->preempt_count = 1; | 
|  | 1155 | #endif | 
|  | 1156 | /* | 
|  | 1157 | * Share the timeslice between parent and child, thus the | 
|  | 1158 | * total amount of pending timeslices in the system doesn't change, | 
|  | 1159 | * resulting in more scheduling fairness. | 
|  | 1160 | */ | 
|  | 1161 | local_irq_disable(); | 
|  | 1162 | p->time_slice = (current->time_slice + 1) >> 1; | 
|  | 1163 | /* | 
|  | 1164 | * The remainder of the first timeslice might be recovered by | 
|  | 1165 | * the parent if the child exits early enough. | 
|  | 1166 | */ | 
|  | 1167 | p->first_time_slice = 1; | 
|  | 1168 | current->time_slice >>= 1; | 
|  | 1169 | p->timestamp = sched_clock(); | 
|  | 1170 | if (unlikely(!current->time_slice)) { | 
|  | 1171 | /* | 
|  | 1172 | * This case is rare, it happens when the parent has only | 
|  | 1173 | * a single jiffy left from its timeslice. Taking the | 
|  | 1174 | * runqueue lock is not a problem. | 
|  | 1175 | */ | 
|  | 1176 | current->time_slice = 1; | 
|  | 1177 | preempt_disable(); | 
|  | 1178 | scheduler_tick(); | 
|  | 1179 | local_irq_enable(); | 
|  | 1180 | preempt_enable(); | 
|  | 1181 | } else | 
|  | 1182 | local_irq_enable(); | 
|  | 1183 | } | 
|  | 1184 |  | 
|  | 1185 | /* | 
|  | 1186 | * wake_up_new_task - wake up a newly created task for the first time. | 
|  | 1187 | * | 
|  | 1188 | * This function will do some initial scheduler statistics housekeeping | 
|  | 1189 | * that must be done for every newly created context, then puts the task | 
|  | 1190 | * on the runqueue and wakes it. | 
|  | 1191 | */ | 
|  | 1192 | void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags) | 
|  | 1193 | { | 
|  | 1194 | unsigned long flags; | 
|  | 1195 | int this_cpu, cpu; | 
|  | 1196 | runqueue_t *rq, *this_rq; | 
|  | 1197 |  | 
|  | 1198 | rq = task_rq_lock(p, &flags); | 
|  | 1199 | cpu = task_cpu(p); | 
|  | 1200 | this_cpu = smp_processor_id(); | 
|  | 1201 |  | 
|  | 1202 | BUG_ON(p->state != TASK_RUNNING); | 
|  | 1203 |  | 
|  | 1204 | /* | 
|  | 1205 | * We decrease the sleep average of forking parents | 
|  | 1206 | * and children as well, to keep max-interactive tasks | 
|  | 1207 | * from forking tasks that are max-interactive. The parent | 
|  | 1208 | * (current) is done further down, under its lock. | 
|  | 1209 | */ | 
|  | 1210 | p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) * | 
|  | 1211 | CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  | 1212 |  | 
|  | 1213 | p->prio = effective_prio(p); | 
|  | 1214 |  | 
|  | 1215 | if (likely(cpu == this_cpu)) { | 
|  | 1216 | if (!(clone_flags & CLONE_VM)) { | 
|  | 1217 | /* | 
|  | 1218 | * The VM isn't cloned, so we're in a good position to | 
|  | 1219 | * do child-runs-first in anticipation of an exec. This | 
|  | 1220 | * usually avoids a lot of COW overhead. | 
|  | 1221 | */ | 
|  | 1222 | if (unlikely(!current->array)) | 
|  | 1223 | __activate_task(p, rq); | 
|  | 1224 | else { | 
|  | 1225 | p->prio = current->prio; | 
|  | 1226 | list_add_tail(&p->run_list, ¤t->run_list); | 
|  | 1227 | p->array = current->array; | 
|  | 1228 | p->array->nr_active++; | 
|  | 1229 | rq->nr_running++; | 
|  | 1230 | } | 
|  | 1231 | set_need_resched(); | 
|  | 1232 | } else | 
|  | 1233 | /* Run child last */ | 
|  | 1234 | __activate_task(p, rq); | 
|  | 1235 | /* | 
|  | 1236 | * We skip the following code due to cpu == this_cpu | 
|  | 1237 | * | 
|  | 1238 | *   task_rq_unlock(rq, &flags); | 
|  | 1239 | *   this_rq = task_rq_lock(current, &flags); | 
|  | 1240 | */ | 
|  | 1241 | this_rq = rq; | 
|  | 1242 | } else { | 
|  | 1243 | this_rq = cpu_rq(this_cpu); | 
|  | 1244 |  | 
|  | 1245 | /* | 
|  | 1246 | * Not the local CPU - must adjust timestamp. This should | 
|  | 1247 | * get optimised away in the !CONFIG_SMP case. | 
|  | 1248 | */ | 
|  | 1249 | p->timestamp = (p->timestamp - this_rq->timestamp_last_tick) | 
|  | 1250 | + rq->timestamp_last_tick; | 
|  | 1251 | __activate_task(p, rq); | 
|  | 1252 | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | 1253 | resched_task(rq->curr); | 
|  | 1254 |  | 
|  | 1255 | /* | 
|  | 1256 | * Parent and child are on different CPUs, now get the | 
|  | 1257 | * parent runqueue to update the parent's ->sleep_avg: | 
|  | 1258 | */ | 
|  | 1259 | task_rq_unlock(rq, &flags); | 
|  | 1260 | this_rq = task_rq_lock(current, &flags); | 
|  | 1261 | } | 
|  | 1262 | current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) * | 
|  | 1263 | PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  | 1264 | task_rq_unlock(this_rq, &flags); | 
|  | 1265 | } | 
|  | 1266 |  | 
|  | 1267 | /* | 
|  | 1268 | * Potentially available exiting-child timeslices are | 
|  | 1269 | * retrieved here - this way the parent does not get | 
|  | 1270 | * penalized for creating too many threads. | 
|  | 1271 | * | 
|  | 1272 | * (this cannot be used to 'generate' timeslices | 
|  | 1273 | * artificially, because any timeslice recovered here | 
|  | 1274 | * was given away by the parent in the first place.) | 
|  | 1275 | */ | 
|  | 1276 | void fastcall sched_exit(task_t * p) | 
|  | 1277 | { | 
|  | 1278 | unsigned long flags; | 
|  | 1279 | runqueue_t *rq; | 
|  | 1280 |  | 
|  | 1281 | /* | 
|  | 1282 | * If the child was a (relative-) CPU hog then decrease | 
|  | 1283 | * the sleep_avg of the parent as well. | 
|  | 1284 | */ | 
|  | 1285 | rq = task_rq_lock(p->parent, &flags); | 
|  | 1286 | if (p->first_time_slice) { | 
|  | 1287 | p->parent->time_slice += p->time_slice; | 
|  | 1288 | if (unlikely(p->parent->time_slice > task_timeslice(p))) | 
|  | 1289 | p->parent->time_slice = task_timeslice(p); | 
|  | 1290 | } | 
|  | 1291 | if (p->sleep_avg < p->parent->sleep_avg) | 
|  | 1292 | p->parent->sleep_avg = p->parent->sleep_avg / | 
|  | 1293 | (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg / | 
|  | 1294 | (EXIT_WEIGHT + 1); | 
|  | 1295 | task_rq_unlock(rq, &flags); | 
|  | 1296 | } | 
|  | 1297 |  | 
|  | 1298 | /** | 
|  | 1299 | * finish_task_switch - clean up after a task-switch | 
|  | 1300 | * @prev: the thread we just switched away from. | 
|  | 1301 | * | 
|  | 1302 | * We enter this with the runqueue still locked, and finish_arch_switch() | 
|  | 1303 | * will unlock it along with doing any other architecture-specific cleanup | 
|  | 1304 | * actions. | 
|  | 1305 | * | 
|  | 1306 | * Note that we may have delayed dropping an mm in context_switch(). If | 
|  | 1307 | * so, we finish that here outside of the runqueue lock.  (Doing it | 
|  | 1308 | * with the lock held can cause deadlocks; see schedule() for | 
|  | 1309 | * details.) | 
|  | 1310 | */ | 
|  | 1311 | static inline void finish_task_switch(task_t *prev) | 
|  | 1312 | __releases(rq->lock) | 
|  | 1313 | { | 
|  | 1314 | runqueue_t *rq = this_rq(); | 
|  | 1315 | struct mm_struct *mm = rq->prev_mm; | 
|  | 1316 | unsigned long prev_task_flags; | 
|  | 1317 |  | 
|  | 1318 | rq->prev_mm = NULL; | 
|  | 1319 |  | 
|  | 1320 | /* | 
|  | 1321 | * A task struct has one reference for the use as "current". | 
|  | 1322 | * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and | 
|  | 1323 | * calls schedule one last time. The schedule call will never return, | 
|  | 1324 | * and the scheduled task must drop that reference. | 
|  | 1325 | * The test for EXIT_ZOMBIE must occur while the runqueue locks are | 
|  | 1326 | * still held, otherwise prev could be scheduled on another cpu, die | 
|  | 1327 | * there before we look at prev->state, and then the reference would | 
|  | 1328 | * be dropped twice. | 
|  | 1329 | *		Manfred Spraul <manfred@colorfullife.com> | 
|  | 1330 | */ | 
|  | 1331 | prev_task_flags = prev->flags; | 
|  | 1332 | finish_arch_switch(rq, prev); | 
|  | 1333 | if (mm) | 
|  | 1334 | mmdrop(mm); | 
|  | 1335 | if (unlikely(prev_task_flags & PF_DEAD)) | 
|  | 1336 | put_task_struct(prev); | 
|  | 1337 | } | 
|  | 1338 |  | 
|  | 1339 | /** | 
|  | 1340 | * schedule_tail - first thing a freshly forked thread must call. | 
|  | 1341 | * @prev: the thread we just switched away from. | 
|  | 1342 | */ | 
|  | 1343 | asmlinkage void schedule_tail(task_t *prev) | 
|  | 1344 | __releases(rq->lock) | 
|  | 1345 | { | 
|  | 1346 | finish_task_switch(prev); | 
|  | 1347 |  | 
|  | 1348 | if (current->set_child_tid) | 
|  | 1349 | put_user(current->pid, current->set_child_tid); | 
|  | 1350 | } | 
|  | 1351 |  | 
|  | 1352 | /* | 
|  | 1353 | * context_switch - switch to the new MM and the new | 
|  | 1354 | * thread's register state. | 
|  | 1355 | */ | 
|  | 1356 | static inline | 
|  | 1357 | task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next) | 
|  | 1358 | { | 
|  | 1359 | struct mm_struct *mm = next->mm; | 
|  | 1360 | struct mm_struct *oldmm = prev->active_mm; | 
|  | 1361 |  | 
|  | 1362 | if (unlikely(!mm)) { | 
|  | 1363 | next->active_mm = oldmm; | 
|  | 1364 | atomic_inc(&oldmm->mm_count); | 
|  | 1365 | enter_lazy_tlb(oldmm, next); | 
|  | 1366 | } else | 
|  | 1367 | switch_mm(oldmm, mm, next); | 
|  | 1368 |  | 
|  | 1369 | if (unlikely(!prev->mm)) { | 
|  | 1370 | prev->active_mm = NULL; | 
|  | 1371 | WARN_ON(rq->prev_mm); | 
|  | 1372 | rq->prev_mm = oldmm; | 
|  | 1373 | } | 
|  | 1374 |  | 
|  | 1375 | /* Here we just switch the register state and the stack. */ | 
|  | 1376 | switch_to(prev, next, prev); | 
|  | 1377 |  | 
|  | 1378 | return prev; | 
|  | 1379 | } | 
|  | 1380 |  | 
|  | 1381 | /* | 
|  | 1382 | * nr_running, nr_uninterruptible and nr_context_switches: | 
|  | 1383 | * | 
|  | 1384 | * externally visible scheduler statistics: current number of runnable | 
|  | 1385 | * threads, current number of uninterruptible-sleeping threads, total | 
|  | 1386 | * number of context switches performed since bootup. | 
|  | 1387 | */ | 
|  | 1388 | unsigned long nr_running(void) | 
|  | 1389 | { | 
|  | 1390 | unsigned long i, sum = 0; | 
|  | 1391 |  | 
|  | 1392 | for_each_online_cpu(i) | 
|  | 1393 | sum += cpu_rq(i)->nr_running; | 
|  | 1394 |  | 
|  | 1395 | return sum; | 
|  | 1396 | } | 
|  | 1397 |  | 
|  | 1398 | unsigned long nr_uninterruptible(void) | 
|  | 1399 | { | 
|  | 1400 | unsigned long i, sum = 0; | 
|  | 1401 |  | 
|  | 1402 | for_each_cpu(i) | 
|  | 1403 | sum += cpu_rq(i)->nr_uninterruptible; | 
|  | 1404 |  | 
|  | 1405 | /* | 
|  | 1406 | * Since we read the counters lockless, it might be slightly | 
|  | 1407 | * inaccurate. Do not allow it to go below zero though: | 
|  | 1408 | */ | 
|  | 1409 | if (unlikely((long)sum < 0)) | 
|  | 1410 | sum = 0; | 
|  | 1411 |  | 
|  | 1412 | return sum; | 
|  | 1413 | } | 
|  | 1414 |  | 
|  | 1415 | unsigned long long nr_context_switches(void) | 
|  | 1416 | { | 
|  | 1417 | unsigned long long i, sum = 0; | 
|  | 1418 |  | 
|  | 1419 | for_each_cpu(i) | 
|  | 1420 | sum += cpu_rq(i)->nr_switches; | 
|  | 1421 |  | 
|  | 1422 | return sum; | 
|  | 1423 | } | 
|  | 1424 |  | 
|  | 1425 | unsigned long nr_iowait(void) | 
|  | 1426 | { | 
|  | 1427 | unsigned long i, sum = 0; | 
|  | 1428 |  | 
|  | 1429 | for_each_cpu(i) | 
|  | 1430 | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
|  | 1431 |  | 
|  | 1432 | return sum; | 
|  | 1433 | } | 
|  | 1434 |  | 
|  | 1435 | #ifdef CONFIG_SMP | 
|  | 1436 |  | 
|  | 1437 | /* | 
|  | 1438 | * double_rq_lock - safely lock two runqueues | 
|  | 1439 | * | 
|  | 1440 | * Note this does not disable interrupts like task_rq_lock, | 
|  | 1441 | * you need to do so manually before calling. | 
|  | 1442 | */ | 
|  | 1443 | static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) | 
|  | 1444 | __acquires(rq1->lock) | 
|  | 1445 | __acquires(rq2->lock) | 
|  | 1446 | { | 
|  | 1447 | if (rq1 == rq2) { | 
|  | 1448 | spin_lock(&rq1->lock); | 
|  | 1449 | __acquire(rq2->lock);	/* Fake it out ;) */ | 
|  | 1450 | } else { | 
|  | 1451 | if (rq1 < rq2) { | 
|  | 1452 | spin_lock(&rq1->lock); | 
|  | 1453 | spin_lock(&rq2->lock); | 
|  | 1454 | } else { | 
|  | 1455 | spin_lock(&rq2->lock); | 
|  | 1456 | spin_lock(&rq1->lock); | 
|  | 1457 | } | 
|  | 1458 | } | 
|  | 1459 | } | 
|  | 1460 |  | 
|  | 1461 | /* | 
|  | 1462 | * double_rq_unlock - safely unlock two runqueues | 
|  | 1463 | * | 
|  | 1464 | * Note this does not restore interrupts like task_rq_unlock, | 
|  | 1465 | * you need to do so manually after calling. | 
|  | 1466 | */ | 
|  | 1467 | static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2) | 
|  | 1468 | __releases(rq1->lock) | 
|  | 1469 | __releases(rq2->lock) | 
|  | 1470 | { | 
|  | 1471 | spin_unlock(&rq1->lock); | 
|  | 1472 | if (rq1 != rq2) | 
|  | 1473 | spin_unlock(&rq2->lock); | 
|  | 1474 | else | 
|  | 1475 | __release(rq2->lock); | 
|  | 1476 | } | 
|  | 1477 |  | 
|  | 1478 | /* | 
|  | 1479 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
|  | 1480 | */ | 
|  | 1481 | static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest) | 
|  | 1482 | __releases(this_rq->lock) | 
|  | 1483 | __acquires(busiest->lock) | 
|  | 1484 | __acquires(this_rq->lock) | 
|  | 1485 | { | 
|  | 1486 | if (unlikely(!spin_trylock(&busiest->lock))) { | 
|  | 1487 | if (busiest < this_rq) { | 
|  | 1488 | spin_unlock(&this_rq->lock); | 
|  | 1489 | spin_lock(&busiest->lock); | 
|  | 1490 | spin_lock(&this_rq->lock); | 
|  | 1491 | } else | 
|  | 1492 | spin_lock(&busiest->lock); | 
|  | 1493 | } | 
|  | 1494 | } | 
|  | 1495 |  | 
|  | 1496 | /* | 
|  | 1497 | * find_idlest_cpu - find the least busy runqueue. | 
|  | 1498 | */ | 
|  | 1499 | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | 
|  | 1500 | struct sched_domain *sd) | 
|  | 1501 | { | 
|  | 1502 | unsigned long load, min_load, this_load; | 
|  | 1503 | int i, min_cpu; | 
|  | 1504 | cpumask_t mask; | 
|  | 1505 |  | 
|  | 1506 | min_cpu = UINT_MAX; | 
|  | 1507 | min_load = ULONG_MAX; | 
|  | 1508 |  | 
|  | 1509 | cpus_and(mask, sd->span, p->cpus_allowed); | 
|  | 1510 |  | 
|  | 1511 | for_each_cpu_mask(i, mask) { | 
|  | 1512 | load = target_load(i); | 
|  | 1513 |  | 
|  | 1514 | if (load < min_load) { | 
|  | 1515 | min_cpu = i; | 
|  | 1516 | min_load = load; | 
|  | 1517 |  | 
|  | 1518 | /* break out early on an idle CPU: */ | 
|  | 1519 | if (!min_load) | 
|  | 1520 | break; | 
|  | 1521 | } | 
|  | 1522 | } | 
|  | 1523 |  | 
|  | 1524 | /* add +1 to account for the new task */ | 
|  | 1525 | this_load = source_load(this_cpu) + SCHED_LOAD_SCALE; | 
|  | 1526 |  | 
|  | 1527 | /* | 
|  | 1528 | * Would with the addition of the new task to the | 
|  | 1529 | * current CPU there be an imbalance between this | 
|  | 1530 | * CPU and the idlest CPU? | 
|  | 1531 | * | 
|  | 1532 | * Use half of the balancing threshold - new-context is | 
|  | 1533 | * a good opportunity to balance. | 
|  | 1534 | */ | 
|  | 1535 | if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100) | 
|  | 1536 | return min_cpu; | 
|  | 1537 |  | 
|  | 1538 | return this_cpu; | 
|  | 1539 | } | 
|  | 1540 |  | 
|  | 1541 | /* | 
|  | 1542 | * If dest_cpu is allowed for this process, migrate the task to it. | 
|  | 1543 | * This is accomplished by forcing the cpu_allowed mask to only | 
|  | 1544 | * allow dest_cpu, which will force the cpu onto dest_cpu.  Then | 
|  | 1545 | * the cpu_allowed mask is restored. | 
|  | 1546 | */ | 
|  | 1547 | static void sched_migrate_task(task_t *p, int dest_cpu) | 
|  | 1548 | { | 
|  | 1549 | migration_req_t req; | 
|  | 1550 | runqueue_t *rq; | 
|  | 1551 | unsigned long flags; | 
|  | 1552 |  | 
|  | 1553 | rq = task_rq_lock(p, &flags); | 
|  | 1554 | if (!cpu_isset(dest_cpu, p->cpus_allowed) | 
|  | 1555 | || unlikely(cpu_is_offline(dest_cpu))) | 
|  | 1556 | goto out; | 
|  | 1557 |  | 
|  | 1558 | /* force the process onto the specified CPU */ | 
|  | 1559 | if (migrate_task(p, dest_cpu, &req)) { | 
|  | 1560 | /* Need to wait for migration thread (might exit: take ref). */ | 
|  | 1561 | struct task_struct *mt = rq->migration_thread; | 
|  | 1562 | get_task_struct(mt); | 
|  | 1563 | task_rq_unlock(rq, &flags); | 
|  | 1564 | wake_up_process(mt); | 
|  | 1565 | put_task_struct(mt); | 
|  | 1566 | wait_for_completion(&req.done); | 
|  | 1567 | return; | 
|  | 1568 | } | 
|  | 1569 | out: | 
|  | 1570 | task_rq_unlock(rq, &flags); | 
|  | 1571 | } | 
|  | 1572 |  | 
|  | 1573 | /* | 
|  | 1574 | * sched_exec(): find the highest-level, exec-balance-capable | 
|  | 1575 | * domain and try to migrate the task to the least loaded CPU. | 
|  | 1576 | * | 
|  | 1577 | * execve() is a valuable balancing opportunity, because at this point | 
|  | 1578 | * the task has the smallest effective memory and cache footprint. | 
|  | 1579 | */ | 
|  | 1580 | void sched_exec(void) | 
|  | 1581 | { | 
|  | 1582 | struct sched_domain *tmp, *sd = NULL; | 
|  | 1583 | int new_cpu, this_cpu = get_cpu(); | 
|  | 1584 |  | 
|  | 1585 | /* Prefer the current CPU if there's only this task running */ | 
|  | 1586 | if (this_rq()->nr_running <= 1) | 
|  | 1587 | goto out; | 
|  | 1588 |  | 
|  | 1589 | for_each_domain(this_cpu, tmp) | 
|  | 1590 | if (tmp->flags & SD_BALANCE_EXEC) | 
|  | 1591 | sd = tmp; | 
|  | 1592 |  | 
|  | 1593 | if (sd) { | 
|  | 1594 | schedstat_inc(sd, sbe_attempts); | 
|  | 1595 | new_cpu = find_idlest_cpu(current, this_cpu, sd); | 
|  | 1596 | if (new_cpu != this_cpu) { | 
|  | 1597 | schedstat_inc(sd, sbe_pushed); | 
|  | 1598 | put_cpu(); | 
|  | 1599 | sched_migrate_task(current, new_cpu); | 
|  | 1600 | return; | 
|  | 1601 | } | 
|  | 1602 | } | 
|  | 1603 | out: | 
|  | 1604 | put_cpu(); | 
|  | 1605 | } | 
|  | 1606 |  | 
|  | 1607 | /* | 
|  | 1608 | * pull_task - move a task from a remote runqueue to the local runqueue. | 
|  | 1609 | * Both runqueues must be locked. | 
|  | 1610 | */ | 
|  | 1611 | static inline | 
|  | 1612 | void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, | 
|  | 1613 | runqueue_t *this_rq, prio_array_t *this_array, int this_cpu) | 
|  | 1614 | { | 
|  | 1615 | dequeue_task(p, src_array); | 
|  | 1616 | src_rq->nr_running--; | 
|  | 1617 | set_task_cpu(p, this_cpu); | 
|  | 1618 | this_rq->nr_running++; | 
|  | 1619 | enqueue_task(p, this_array); | 
|  | 1620 | p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) | 
|  | 1621 | + this_rq->timestamp_last_tick; | 
|  | 1622 | /* | 
|  | 1623 | * Note that idle threads have a prio of MAX_PRIO, for this test | 
|  | 1624 | * to be always true for them. | 
|  | 1625 | */ | 
|  | 1626 | if (TASK_PREEMPTS_CURR(p, this_rq)) | 
|  | 1627 | resched_task(this_rq->curr); | 
|  | 1628 | } | 
|  | 1629 |  | 
|  | 1630 | /* | 
|  | 1631 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|  | 1632 | */ | 
|  | 1633 | static inline | 
|  | 1634 | int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | 
|  | 1635 | struct sched_domain *sd, enum idle_type idle) | 
|  | 1636 | { | 
|  | 1637 | /* | 
|  | 1638 | * We do not migrate tasks that are: | 
|  | 1639 | * 1) running (obviously), or | 
|  | 1640 | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
|  | 1641 | * 3) are cache-hot on their current CPU. | 
|  | 1642 | */ | 
|  | 1643 | if (task_running(rq, p)) | 
|  | 1644 | return 0; | 
|  | 1645 | if (!cpu_isset(this_cpu, p->cpus_allowed)) | 
|  | 1646 | return 0; | 
|  | 1647 |  | 
|  | 1648 | /* | 
|  | 1649 | * Aggressive migration if: | 
|  | 1650 | * 1) the [whole] cpu is idle, or | 
|  | 1651 | * 2) too many balance attempts have failed. | 
|  | 1652 | */ | 
|  | 1653 |  | 
|  | 1654 | if (cpu_and_siblings_are_idle(this_cpu) || \ | 
|  | 1655 | sd->nr_balance_failed > sd->cache_nice_tries) | 
|  | 1656 | return 1; | 
|  | 1657 |  | 
|  | 1658 | if (task_hot(p, rq->timestamp_last_tick, sd)) | 
|  | 1659 | return 0; | 
|  | 1660 | return 1; | 
|  | 1661 | } | 
|  | 1662 |  | 
|  | 1663 | /* | 
|  | 1664 | * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq, | 
|  | 1665 | * as part of a balancing operation within "domain". Returns the number of | 
|  | 1666 | * tasks moved. | 
|  | 1667 | * | 
|  | 1668 | * Called with both runqueues locked. | 
|  | 1669 | */ | 
|  | 1670 | static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, | 
|  | 1671 | unsigned long max_nr_move, struct sched_domain *sd, | 
|  | 1672 | enum idle_type idle) | 
|  | 1673 | { | 
|  | 1674 | prio_array_t *array, *dst_array; | 
|  | 1675 | struct list_head *head, *curr; | 
|  | 1676 | int idx, pulled = 0; | 
|  | 1677 | task_t *tmp; | 
|  | 1678 |  | 
|  | 1679 | if (max_nr_move <= 0 || busiest->nr_running <= 1) | 
|  | 1680 | goto out; | 
|  | 1681 |  | 
|  | 1682 | /* | 
|  | 1683 | * We first consider expired tasks. Those will likely not be | 
|  | 1684 | * executed in the near future, and they are most likely to | 
|  | 1685 | * be cache-cold, thus switching CPUs has the least effect | 
|  | 1686 | * on them. | 
|  | 1687 | */ | 
|  | 1688 | if (busiest->expired->nr_active) { | 
|  | 1689 | array = busiest->expired; | 
|  | 1690 | dst_array = this_rq->expired; | 
|  | 1691 | } else { | 
|  | 1692 | array = busiest->active; | 
|  | 1693 | dst_array = this_rq->active; | 
|  | 1694 | } | 
|  | 1695 |  | 
|  | 1696 | new_array: | 
|  | 1697 | /* Start searching at priority 0: */ | 
|  | 1698 | idx = 0; | 
|  | 1699 | skip_bitmap: | 
|  | 1700 | if (!idx) | 
|  | 1701 | idx = sched_find_first_bit(array->bitmap); | 
|  | 1702 | else | 
|  | 1703 | idx = find_next_bit(array->bitmap, MAX_PRIO, idx); | 
|  | 1704 | if (idx >= MAX_PRIO) { | 
|  | 1705 | if (array == busiest->expired && busiest->active->nr_active) { | 
|  | 1706 | array = busiest->active; | 
|  | 1707 | dst_array = this_rq->active; | 
|  | 1708 | goto new_array; | 
|  | 1709 | } | 
|  | 1710 | goto out; | 
|  | 1711 | } | 
|  | 1712 |  | 
|  | 1713 | head = array->queue + idx; | 
|  | 1714 | curr = head->prev; | 
|  | 1715 | skip_queue: | 
|  | 1716 | tmp = list_entry(curr, task_t, run_list); | 
|  | 1717 |  | 
|  | 1718 | curr = curr->prev; | 
|  | 1719 |  | 
|  | 1720 | if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) { | 
|  | 1721 | if (curr != head) | 
|  | 1722 | goto skip_queue; | 
|  | 1723 | idx++; | 
|  | 1724 | goto skip_bitmap; | 
|  | 1725 | } | 
|  | 1726 |  | 
|  | 1727 | #ifdef CONFIG_SCHEDSTATS | 
|  | 1728 | if (task_hot(tmp, busiest->timestamp_last_tick, sd)) | 
|  | 1729 | schedstat_inc(sd, lb_hot_gained[idle]); | 
|  | 1730 | #endif | 
|  | 1731 |  | 
|  | 1732 | pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); | 
|  | 1733 | pulled++; | 
|  | 1734 |  | 
|  | 1735 | /* We only want to steal up to the prescribed number of tasks. */ | 
|  | 1736 | if (pulled < max_nr_move) { | 
|  | 1737 | if (curr != head) | 
|  | 1738 | goto skip_queue; | 
|  | 1739 | idx++; | 
|  | 1740 | goto skip_bitmap; | 
|  | 1741 | } | 
|  | 1742 | out: | 
|  | 1743 | /* | 
|  | 1744 | * Right now, this is the only place pull_task() is called, | 
|  | 1745 | * so we can safely collect pull_task() stats here rather than | 
|  | 1746 | * inside pull_task(). | 
|  | 1747 | */ | 
|  | 1748 | schedstat_add(sd, lb_gained[idle], pulled); | 
|  | 1749 | return pulled; | 
|  | 1750 | } | 
|  | 1751 |  | 
|  | 1752 | /* | 
|  | 1753 | * find_busiest_group finds and returns the busiest CPU group within the | 
|  | 1754 | * domain. It calculates and returns the number of tasks which should be | 
|  | 1755 | * moved to restore balance via the imbalance parameter. | 
|  | 1756 | */ | 
|  | 1757 | static struct sched_group * | 
|  | 1758 | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
|  | 1759 | unsigned long *imbalance, enum idle_type idle) | 
|  | 1760 | { | 
|  | 1761 | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 
|  | 1762 | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 
|  | 1763 |  | 
|  | 1764 | max_load = this_load = total_load = total_pwr = 0; | 
|  | 1765 |  | 
|  | 1766 | do { | 
|  | 1767 | unsigned long load; | 
|  | 1768 | int local_group; | 
|  | 1769 | int i; | 
|  | 1770 |  | 
|  | 1771 | local_group = cpu_isset(this_cpu, group->cpumask); | 
|  | 1772 |  | 
|  | 1773 | /* Tally up the load of all CPUs in the group */ | 
|  | 1774 | avg_load = 0; | 
|  | 1775 |  | 
|  | 1776 | for_each_cpu_mask(i, group->cpumask) { | 
|  | 1777 | /* Bias balancing toward cpus of our domain */ | 
|  | 1778 | if (local_group) | 
|  | 1779 | load = target_load(i); | 
|  | 1780 | else | 
|  | 1781 | load = source_load(i); | 
|  | 1782 |  | 
|  | 1783 | avg_load += load; | 
|  | 1784 | } | 
|  | 1785 |  | 
|  | 1786 | total_load += avg_load; | 
|  | 1787 | total_pwr += group->cpu_power; | 
|  | 1788 |  | 
|  | 1789 | /* Adjust by relative CPU power of the group */ | 
|  | 1790 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
|  | 1791 |  | 
|  | 1792 | if (local_group) { | 
|  | 1793 | this_load = avg_load; | 
|  | 1794 | this = group; | 
|  | 1795 | goto nextgroup; | 
|  | 1796 | } else if (avg_load > max_load) { | 
|  | 1797 | max_load = avg_load; | 
|  | 1798 | busiest = group; | 
|  | 1799 | } | 
|  | 1800 | nextgroup: | 
|  | 1801 | group = group->next; | 
|  | 1802 | } while (group != sd->groups); | 
|  | 1803 |  | 
|  | 1804 | if (!busiest || this_load >= max_load) | 
|  | 1805 | goto out_balanced; | 
|  | 1806 |  | 
|  | 1807 | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 
|  | 1808 |  | 
|  | 1809 | if (this_load >= avg_load || | 
|  | 1810 | 100*max_load <= sd->imbalance_pct*this_load) | 
|  | 1811 | goto out_balanced; | 
|  | 1812 |  | 
|  | 1813 | /* | 
|  | 1814 | * We're trying to get all the cpus to the average_load, so we don't | 
|  | 1815 | * want to push ourselves above the average load, nor do we wish to | 
|  | 1816 | * reduce the max loaded cpu below the average load, as either of these | 
|  | 1817 | * actions would just result in more rebalancing later, and ping-pong | 
|  | 1818 | * tasks around. Thus we look for the minimum possible imbalance. | 
|  | 1819 | * Negative imbalances (*we* are more loaded than anyone else) will | 
|  | 1820 | * be counted as no imbalance for these purposes -- we can't fix that | 
|  | 1821 | * by pulling tasks to us.  Be careful of negative numbers as they'll | 
|  | 1822 | * appear as very large values with unsigned longs. | 
|  | 1823 | */ | 
|  | 1824 | /* How much load to actually move to equalise the imbalance */ | 
|  | 1825 | *imbalance = min((max_load - avg_load) * busiest->cpu_power, | 
|  | 1826 | (avg_load - this_load) * this->cpu_power) | 
|  | 1827 | / SCHED_LOAD_SCALE; | 
|  | 1828 |  | 
|  | 1829 | if (*imbalance < SCHED_LOAD_SCALE) { | 
|  | 1830 | unsigned long pwr_now = 0, pwr_move = 0; | 
|  | 1831 | unsigned long tmp; | 
|  | 1832 |  | 
|  | 1833 | if (max_load - this_load >= SCHED_LOAD_SCALE*2) { | 
|  | 1834 | *imbalance = 1; | 
|  | 1835 | return busiest; | 
|  | 1836 | } | 
|  | 1837 |  | 
|  | 1838 | /* | 
|  | 1839 | * OK, we don't have enough imbalance to justify moving tasks, | 
|  | 1840 | * however we may be able to increase total CPU power used by | 
|  | 1841 | * moving them. | 
|  | 1842 | */ | 
|  | 1843 |  | 
|  | 1844 | pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load); | 
|  | 1845 | pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load); | 
|  | 1846 | pwr_now /= SCHED_LOAD_SCALE; | 
|  | 1847 |  | 
|  | 1848 | /* Amount of load we'd subtract */ | 
|  | 1849 | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power; | 
|  | 1850 | if (max_load > tmp) | 
|  | 1851 | pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE, | 
|  | 1852 | max_load - tmp); | 
|  | 1853 |  | 
|  | 1854 | /* Amount of load we'd add */ | 
|  | 1855 | if (max_load*busiest->cpu_power < | 
|  | 1856 | SCHED_LOAD_SCALE*SCHED_LOAD_SCALE) | 
|  | 1857 | tmp = max_load*busiest->cpu_power/this->cpu_power; | 
|  | 1858 | else | 
|  | 1859 | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power; | 
|  | 1860 | pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp); | 
|  | 1861 | pwr_move /= SCHED_LOAD_SCALE; | 
|  | 1862 |  | 
|  | 1863 | /* Move if we gain throughput */ | 
|  | 1864 | if (pwr_move <= pwr_now) | 
|  | 1865 | goto out_balanced; | 
|  | 1866 |  | 
|  | 1867 | *imbalance = 1; | 
|  | 1868 | return busiest; | 
|  | 1869 | } | 
|  | 1870 |  | 
|  | 1871 | /* Get rid of the scaling factor, rounding down as we divide */ | 
|  | 1872 | *imbalance = *imbalance / SCHED_LOAD_SCALE; | 
|  | 1873 |  | 
|  | 1874 | return busiest; | 
|  | 1875 |  | 
|  | 1876 | out_balanced: | 
|  | 1877 | if (busiest && (idle == NEWLY_IDLE || | 
|  | 1878 | (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) { | 
|  | 1879 | *imbalance = 1; | 
|  | 1880 | return busiest; | 
|  | 1881 | } | 
|  | 1882 |  | 
|  | 1883 | *imbalance = 0; | 
|  | 1884 | return NULL; | 
|  | 1885 | } | 
|  | 1886 |  | 
|  | 1887 | /* | 
|  | 1888 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
|  | 1889 | */ | 
|  | 1890 | static runqueue_t *find_busiest_queue(struct sched_group *group) | 
|  | 1891 | { | 
|  | 1892 | unsigned long load, max_load = 0; | 
|  | 1893 | runqueue_t *busiest = NULL; | 
|  | 1894 | int i; | 
|  | 1895 |  | 
|  | 1896 | for_each_cpu_mask(i, group->cpumask) { | 
|  | 1897 | load = source_load(i); | 
|  | 1898 |  | 
|  | 1899 | if (load > max_load) { | 
|  | 1900 | max_load = load; | 
|  | 1901 | busiest = cpu_rq(i); | 
|  | 1902 | } | 
|  | 1903 | } | 
|  | 1904 |  | 
|  | 1905 | return busiest; | 
|  | 1906 | } | 
|  | 1907 |  | 
|  | 1908 | /* | 
|  | 1909 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | 1910 | * tasks if there is an imbalance. | 
|  | 1911 | * | 
|  | 1912 | * Called with this_rq unlocked. | 
|  | 1913 | */ | 
|  | 1914 | static int load_balance(int this_cpu, runqueue_t *this_rq, | 
|  | 1915 | struct sched_domain *sd, enum idle_type idle) | 
|  | 1916 | { | 
|  | 1917 | struct sched_group *group; | 
|  | 1918 | runqueue_t *busiest; | 
|  | 1919 | unsigned long imbalance; | 
|  | 1920 | int nr_moved; | 
|  | 1921 |  | 
|  | 1922 | spin_lock(&this_rq->lock); | 
|  | 1923 | schedstat_inc(sd, lb_cnt[idle]); | 
|  | 1924 |  | 
|  | 1925 | group = find_busiest_group(sd, this_cpu, &imbalance, idle); | 
|  | 1926 | if (!group) { | 
|  | 1927 | schedstat_inc(sd, lb_nobusyg[idle]); | 
|  | 1928 | goto out_balanced; | 
|  | 1929 | } | 
|  | 1930 |  | 
|  | 1931 | busiest = find_busiest_queue(group); | 
|  | 1932 | if (!busiest) { | 
|  | 1933 | schedstat_inc(sd, lb_nobusyq[idle]); | 
|  | 1934 | goto out_balanced; | 
|  | 1935 | } | 
|  | 1936 |  | 
|  | 1937 | /* | 
|  | 1938 | * This should be "impossible", but since load | 
|  | 1939 | * balancing is inherently racy and statistical, | 
|  | 1940 | * it could happen in theory. | 
|  | 1941 | */ | 
|  | 1942 | if (unlikely(busiest == this_rq)) { | 
|  | 1943 | WARN_ON(1); | 
|  | 1944 | goto out_balanced; | 
|  | 1945 | } | 
|  | 1946 |  | 
|  | 1947 | schedstat_add(sd, lb_imbalance[idle], imbalance); | 
|  | 1948 |  | 
|  | 1949 | nr_moved = 0; | 
|  | 1950 | if (busiest->nr_running > 1) { | 
|  | 1951 | /* | 
|  | 1952 | * Attempt to move tasks. If find_busiest_group has found | 
|  | 1953 | * an imbalance but busiest->nr_running <= 1, the group is | 
|  | 1954 | * still unbalanced. nr_moved simply stays zero, so it is | 
|  | 1955 | * correctly treated as an imbalance. | 
|  | 1956 | */ | 
|  | 1957 | double_lock_balance(this_rq, busiest); | 
|  | 1958 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | 1959 | imbalance, sd, idle); | 
|  | 1960 | spin_unlock(&busiest->lock); | 
|  | 1961 | } | 
|  | 1962 | spin_unlock(&this_rq->lock); | 
|  | 1963 |  | 
|  | 1964 | if (!nr_moved) { | 
|  | 1965 | schedstat_inc(sd, lb_failed[idle]); | 
|  | 1966 | sd->nr_balance_failed++; | 
|  | 1967 |  | 
|  | 1968 | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 
|  | 1969 | int wake = 0; | 
|  | 1970 |  | 
|  | 1971 | spin_lock(&busiest->lock); | 
|  | 1972 | if (!busiest->active_balance) { | 
|  | 1973 | busiest->active_balance = 1; | 
|  | 1974 | busiest->push_cpu = this_cpu; | 
|  | 1975 | wake = 1; | 
|  | 1976 | } | 
|  | 1977 | spin_unlock(&busiest->lock); | 
|  | 1978 | if (wake) | 
|  | 1979 | wake_up_process(busiest->migration_thread); | 
|  | 1980 |  | 
|  | 1981 | /* | 
|  | 1982 | * We've kicked active balancing, reset the failure | 
|  | 1983 | * counter. | 
|  | 1984 | */ | 
|  | 1985 | sd->nr_balance_failed = sd->cache_nice_tries; | 
|  | 1986 | } | 
|  | 1987 |  | 
|  | 1988 | /* | 
|  | 1989 | * We were unbalanced, but unsuccessful in move_tasks(), | 
|  | 1990 | * so bump the balance_interval to lessen the lock contention. | 
|  | 1991 | */ | 
|  | 1992 | if (sd->balance_interval < sd->max_interval) | 
|  | 1993 | sd->balance_interval++; | 
|  | 1994 | } else { | 
|  | 1995 | sd->nr_balance_failed = 0; | 
|  | 1996 |  | 
|  | 1997 | /* We were unbalanced, so reset the balancing interval */ | 
|  | 1998 | sd->balance_interval = sd->min_interval; | 
|  | 1999 | } | 
|  | 2000 |  | 
|  | 2001 | return nr_moved; | 
|  | 2002 |  | 
|  | 2003 | out_balanced: | 
|  | 2004 | spin_unlock(&this_rq->lock); | 
|  | 2005 |  | 
|  | 2006 | schedstat_inc(sd, lb_balanced[idle]); | 
|  | 2007 |  | 
|  | 2008 | /* tune up the balancing interval */ | 
|  | 2009 | if (sd->balance_interval < sd->max_interval) | 
|  | 2010 | sd->balance_interval *= 2; | 
|  | 2011 |  | 
|  | 2012 | return 0; | 
|  | 2013 | } | 
|  | 2014 |  | 
|  | 2015 | /* | 
|  | 2016 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | 2017 | * tasks if there is an imbalance. | 
|  | 2018 | * | 
|  | 2019 | * Called from schedule when this_rq is about to become idle (NEWLY_IDLE). | 
|  | 2020 | * this_rq is locked. | 
|  | 2021 | */ | 
|  | 2022 | static int load_balance_newidle(int this_cpu, runqueue_t *this_rq, | 
|  | 2023 | struct sched_domain *sd) | 
|  | 2024 | { | 
|  | 2025 | struct sched_group *group; | 
|  | 2026 | runqueue_t *busiest = NULL; | 
|  | 2027 | unsigned long imbalance; | 
|  | 2028 | int nr_moved = 0; | 
|  | 2029 |  | 
|  | 2030 | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | 
|  | 2031 | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE); | 
|  | 2032 | if (!group) { | 
|  | 2033 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | 
|  | 2034 | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); | 
|  | 2035 | goto out; | 
|  | 2036 | } | 
|  | 2037 |  | 
|  | 2038 | busiest = find_busiest_queue(group); | 
|  | 2039 | if (!busiest || busiest == this_rq) { | 
|  | 2040 | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | 
|  | 2041 | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); | 
|  | 2042 | goto out; | 
|  | 2043 | } | 
|  | 2044 |  | 
|  | 2045 | /* Attempt to move tasks */ | 
|  | 2046 | double_lock_balance(this_rq, busiest); | 
|  | 2047 |  | 
|  | 2048 | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); | 
|  | 2049 | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | 2050 | imbalance, sd, NEWLY_IDLE); | 
|  | 2051 | if (!nr_moved) | 
|  | 2052 | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); | 
|  | 2053 |  | 
|  | 2054 | spin_unlock(&busiest->lock); | 
|  | 2055 |  | 
|  | 2056 | out: | 
|  | 2057 | return nr_moved; | 
|  | 2058 | } | 
|  | 2059 |  | 
|  | 2060 | /* | 
|  | 2061 | * idle_balance is called by schedule() if this_cpu is about to become | 
|  | 2062 | * idle. Attempts to pull tasks from other CPUs. | 
|  | 2063 | */ | 
|  | 2064 | static inline void idle_balance(int this_cpu, runqueue_t *this_rq) | 
|  | 2065 | { | 
|  | 2066 | struct sched_domain *sd; | 
|  | 2067 |  | 
|  | 2068 | for_each_domain(this_cpu, sd) { | 
|  | 2069 | if (sd->flags & SD_BALANCE_NEWIDLE) { | 
|  | 2070 | if (load_balance_newidle(this_cpu, this_rq, sd)) { | 
|  | 2071 | /* We've pulled tasks over so stop searching */ | 
|  | 2072 | break; | 
|  | 2073 | } | 
|  | 2074 | } | 
|  | 2075 | } | 
|  | 2076 | } | 
|  | 2077 |  | 
|  | 2078 | /* | 
|  | 2079 | * active_load_balance is run by migration threads. It pushes running tasks | 
|  | 2080 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 
|  | 2081 | * running on each physical CPU where possible, and avoids physical / | 
|  | 2082 | * logical imbalances. | 
|  | 2083 | * | 
|  | 2084 | * Called with busiest_rq locked. | 
|  | 2085 | */ | 
|  | 2086 | static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu) | 
|  | 2087 | { | 
|  | 2088 | struct sched_domain *sd; | 
|  | 2089 | struct sched_group *cpu_group; | 
|  | 2090 | runqueue_t *target_rq; | 
|  | 2091 | cpumask_t visited_cpus; | 
|  | 2092 | int cpu; | 
|  | 2093 |  | 
|  | 2094 | /* | 
|  | 2095 | * Search for suitable CPUs to push tasks to in successively higher | 
|  | 2096 | * domains with SD_LOAD_BALANCE set. | 
|  | 2097 | */ | 
|  | 2098 | visited_cpus = CPU_MASK_NONE; | 
|  | 2099 | for_each_domain(busiest_cpu, sd) { | 
|  | 2100 | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | 2101 | /* no more domains to search */ | 
|  | 2102 | break; | 
|  | 2103 |  | 
|  | 2104 | schedstat_inc(sd, alb_cnt); | 
|  | 2105 |  | 
|  | 2106 | cpu_group = sd->groups; | 
|  | 2107 | do { | 
|  | 2108 | for_each_cpu_mask(cpu, cpu_group->cpumask) { | 
|  | 2109 | if (busiest_rq->nr_running <= 1) | 
|  | 2110 | /* no more tasks left to move */ | 
|  | 2111 | return; | 
|  | 2112 | if (cpu_isset(cpu, visited_cpus)) | 
|  | 2113 | continue; | 
|  | 2114 | cpu_set(cpu, visited_cpus); | 
|  | 2115 | if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu) | 
|  | 2116 | continue; | 
|  | 2117 |  | 
|  | 2118 | target_rq = cpu_rq(cpu); | 
|  | 2119 | /* | 
|  | 2120 | * This condition is "impossible", if it occurs | 
|  | 2121 | * we need to fix it.  Originally reported by | 
|  | 2122 | * Bjorn Helgaas on a 128-cpu setup. | 
|  | 2123 | */ | 
|  | 2124 | BUG_ON(busiest_rq == target_rq); | 
|  | 2125 |  | 
|  | 2126 | /* move a task from busiest_rq to target_rq */ | 
|  | 2127 | double_lock_balance(busiest_rq, target_rq); | 
|  | 2128 | if (move_tasks(target_rq, cpu, busiest_rq, | 
|  | 2129 | 1, sd, SCHED_IDLE)) { | 
|  | 2130 | schedstat_inc(sd, alb_pushed); | 
|  | 2131 | } else { | 
|  | 2132 | schedstat_inc(sd, alb_failed); | 
|  | 2133 | } | 
|  | 2134 | spin_unlock(&target_rq->lock); | 
|  | 2135 | } | 
|  | 2136 | cpu_group = cpu_group->next; | 
|  | 2137 | } while (cpu_group != sd->groups); | 
|  | 2138 | } | 
|  | 2139 | } | 
|  | 2140 |  | 
|  | 2141 | /* | 
|  | 2142 | * rebalance_tick will get called every timer tick, on every CPU. | 
|  | 2143 | * | 
|  | 2144 | * It checks each scheduling domain to see if it is due to be balanced, | 
|  | 2145 | * and initiates a balancing operation if so. | 
|  | 2146 | * | 
|  | 2147 | * Balancing parameters are set up in arch_init_sched_domains. | 
|  | 2148 | */ | 
|  | 2149 |  | 
|  | 2150 | /* Don't have all balancing operations going off at once */ | 
|  | 2151 | #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS) | 
|  | 2152 |  | 
|  | 2153 | static void rebalance_tick(int this_cpu, runqueue_t *this_rq, | 
|  | 2154 | enum idle_type idle) | 
|  | 2155 | { | 
|  | 2156 | unsigned long old_load, this_load; | 
|  | 2157 | unsigned long j = jiffies + CPU_OFFSET(this_cpu); | 
|  | 2158 | struct sched_domain *sd; | 
|  | 2159 |  | 
|  | 2160 | /* Update our load */ | 
|  | 2161 | old_load = this_rq->cpu_load; | 
|  | 2162 | this_load = this_rq->nr_running * SCHED_LOAD_SCALE; | 
|  | 2163 | /* | 
|  | 2164 | * Round up the averaging division if load is increasing. This | 
|  | 2165 | * prevents us from getting stuck on 9 if the load is 10, for | 
|  | 2166 | * example. | 
|  | 2167 | */ | 
|  | 2168 | if (this_load > old_load) | 
|  | 2169 | old_load++; | 
|  | 2170 | this_rq->cpu_load = (old_load + this_load) / 2; | 
|  | 2171 |  | 
|  | 2172 | for_each_domain(this_cpu, sd) { | 
|  | 2173 | unsigned long interval; | 
|  | 2174 |  | 
|  | 2175 | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | 2176 | continue; | 
|  | 2177 |  | 
|  | 2178 | interval = sd->balance_interval; | 
|  | 2179 | if (idle != SCHED_IDLE) | 
|  | 2180 | interval *= sd->busy_factor; | 
|  | 2181 |  | 
|  | 2182 | /* scale ms to jiffies */ | 
|  | 2183 | interval = msecs_to_jiffies(interval); | 
|  | 2184 | if (unlikely(!interval)) | 
|  | 2185 | interval = 1; | 
|  | 2186 |  | 
|  | 2187 | if (j - sd->last_balance >= interval) { | 
|  | 2188 | if (load_balance(this_cpu, this_rq, sd, idle)) { | 
|  | 2189 | /* We've pulled tasks over so no longer idle */ | 
|  | 2190 | idle = NOT_IDLE; | 
|  | 2191 | } | 
|  | 2192 | sd->last_balance += interval; | 
|  | 2193 | } | 
|  | 2194 | } | 
|  | 2195 | } | 
|  | 2196 | #else | 
|  | 2197 | /* | 
|  | 2198 | * on UP we do not need to balance between CPUs: | 
|  | 2199 | */ | 
|  | 2200 | static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle) | 
|  | 2201 | { | 
|  | 2202 | } | 
|  | 2203 | static inline void idle_balance(int cpu, runqueue_t *rq) | 
|  | 2204 | { | 
|  | 2205 | } | 
|  | 2206 | #endif | 
|  | 2207 |  | 
|  | 2208 | static inline int wake_priority_sleeper(runqueue_t *rq) | 
|  | 2209 | { | 
|  | 2210 | int ret = 0; | 
|  | 2211 | #ifdef CONFIG_SCHED_SMT | 
|  | 2212 | spin_lock(&rq->lock); | 
|  | 2213 | /* | 
|  | 2214 | * If an SMT sibling task has been put to sleep for priority | 
|  | 2215 | * reasons reschedule the idle task to see if it can now run. | 
|  | 2216 | */ | 
|  | 2217 | if (rq->nr_running) { | 
|  | 2218 | resched_task(rq->idle); | 
|  | 2219 | ret = 1; | 
|  | 2220 | } | 
|  | 2221 | spin_unlock(&rq->lock); | 
|  | 2222 | #endif | 
|  | 2223 | return ret; | 
|  | 2224 | } | 
|  | 2225 |  | 
|  | 2226 | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
|  | 2227 |  | 
|  | 2228 | EXPORT_PER_CPU_SYMBOL(kstat); | 
|  | 2229 |  | 
|  | 2230 | /* | 
|  | 2231 | * This is called on clock ticks and on context switches. | 
|  | 2232 | * Bank in p->sched_time the ns elapsed since the last tick or switch. | 
|  | 2233 | */ | 
|  | 2234 | static inline void update_cpu_clock(task_t *p, runqueue_t *rq, | 
|  | 2235 | unsigned long long now) | 
|  | 2236 | { | 
|  | 2237 | unsigned long long last = max(p->timestamp, rq->timestamp_last_tick); | 
|  | 2238 | p->sched_time += now - last; | 
|  | 2239 | } | 
|  | 2240 |  | 
|  | 2241 | /* | 
|  | 2242 | * Return current->sched_time plus any more ns on the sched_clock | 
|  | 2243 | * that have not yet been banked. | 
|  | 2244 | */ | 
|  | 2245 | unsigned long long current_sched_time(const task_t *tsk) | 
|  | 2246 | { | 
|  | 2247 | unsigned long long ns; | 
|  | 2248 | unsigned long flags; | 
|  | 2249 | local_irq_save(flags); | 
|  | 2250 | ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick); | 
|  | 2251 | ns = tsk->sched_time + (sched_clock() - ns); | 
|  | 2252 | local_irq_restore(flags); | 
|  | 2253 | return ns; | 
|  | 2254 | } | 
|  | 2255 |  | 
|  | 2256 | /* | 
|  | 2257 | * We place interactive tasks back into the active array, if possible. | 
|  | 2258 | * | 
|  | 2259 | * To guarantee that this does not starve expired tasks we ignore the | 
|  | 2260 | * interactivity of a task if the first expired task had to wait more | 
|  | 2261 | * than a 'reasonable' amount of time. This deadline timeout is | 
|  | 2262 | * load-dependent, as the frequency of array switched decreases with | 
|  | 2263 | * increasing number of running tasks. We also ignore the interactivity | 
|  | 2264 | * if a better static_prio task has expired: | 
|  | 2265 | */ | 
|  | 2266 | #define EXPIRED_STARVING(rq) \ | 
|  | 2267 | ((STARVATION_LIMIT && ((rq)->expired_timestamp && \ | 
|  | 2268 | (jiffies - (rq)->expired_timestamp >= \ | 
|  | 2269 | STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \ | 
|  | 2270 | ((rq)->curr->static_prio > (rq)->best_expired_prio)) | 
|  | 2271 |  | 
|  | 2272 | /* | 
|  | 2273 | * Account user cpu time to a process. | 
|  | 2274 | * @p: the process that the cpu time gets accounted to | 
|  | 2275 | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | 2276 | * @cputime: the cpu time spent in user space since the last update | 
|  | 2277 | */ | 
|  | 2278 | void account_user_time(struct task_struct *p, cputime_t cputime) | 
|  | 2279 | { | 
|  | 2280 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | 2281 | cputime64_t tmp; | 
|  | 2282 |  | 
|  | 2283 | p->utime = cputime_add(p->utime, cputime); | 
|  | 2284 |  | 
|  | 2285 | /* Add user time to cpustat. */ | 
|  | 2286 | tmp = cputime_to_cputime64(cputime); | 
|  | 2287 | if (TASK_NICE(p) > 0) | 
|  | 2288 | cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
|  | 2289 | else | 
|  | 2290 | cpustat->user = cputime64_add(cpustat->user, tmp); | 
|  | 2291 | } | 
|  | 2292 |  | 
|  | 2293 | /* | 
|  | 2294 | * Account system cpu time to a process. | 
|  | 2295 | * @p: the process that the cpu time gets accounted to | 
|  | 2296 | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | 2297 | * @cputime: the cpu time spent in kernel space since the last update | 
|  | 2298 | */ | 
|  | 2299 | void account_system_time(struct task_struct *p, int hardirq_offset, | 
|  | 2300 | cputime_t cputime) | 
|  | 2301 | { | 
|  | 2302 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | 2303 | runqueue_t *rq = this_rq(); | 
|  | 2304 | cputime64_t tmp; | 
|  | 2305 |  | 
|  | 2306 | p->stime = cputime_add(p->stime, cputime); | 
|  | 2307 |  | 
|  | 2308 | /* Add system time to cpustat. */ | 
|  | 2309 | tmp = cputime_to_cputime64(cputime); | 
|  | 2310 | if (hardirq_count() - hardirq_offset) | 
|  | 2311 | cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
|  | 2312 | else if (softirq_count()) | 
|  | 2313 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
|  | 2314 | else if (p != rq->idle) | 
|  | 2315 | cpustat->system = cputime64_add(cpustat->system, tmp); | 
|  | 2316 | else if (atomic_read(&rq->nr_iowait) > 0) | 
|  | 2317 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | 2318 | else | 
|  | 2319 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | 2320 | /* Account for system time used */ | 
|  | 2321 | acct_update_integrals(p); | 
|  | 2322 | /* Update rss highwater mark */ | 
|  | 2323 | update_mem_hiwater(p); | 
|  | 2324 | } | 
|  | 2325 |  | 
|  | 2326 | /* | 
|  | 2327 | * Account for involuntary wait time. | 
|  | 2328 | * @p: the process from which the cpu time has been stolen | 
|  | 2329 | * @steal: the cpu time spent in involuntary wait | 
|  | 2330 | */ | 
|  | 2331 | void account_steal_time(struct task_struct *p, cputime_t steal) | 
|  | 2332 | { | 
|  | 2333 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | 2334 | cputime64_t tmp = cputime_to_cputime64(steal); | 
|  | 2335 | runqueue_t *rq = this_rq(); | 
|  | 2336 |  | 
|  | 2337 | if (p == rq->idle) { | 
|  | 2338 | p->stime = cputime_add(p->stime, steal); | 
|  | 2339 | if (atomic_read(&rq->nr_iowait) > 0) | 
|  | 2340 | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | 2341 | else | 
|  | 2342 | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | 2343 | } else | 
|  | 2344 | cpustat->steal = cputime64_add(cpustat->steal, tmp); | 
|  | 2345 | } | 
|  | 2346 |  | 
|  | 2347 | /* | 
|  | 2348 | * This function gets called by the timer code, with HZ frequency. | 
|  | 2349 | * We call it with interrupts disabled. | 
|  | 2350 | * | 
|  | 2351 | * It also gets called by the fork code, when changing the parent's | 
|  | 2352 | * timeslices. | 
|  | 2353 | */ | 
|  | 2354 | void scheduler_tick(void) | 
|  | 2355 | { | 
|  | 2356 | int cpu = smp_processor_id(); | 
|  | 2357 | runqueue_t *rq = this_rq(); | 
|  | 2358 | task_t *p = current; | 
|  | 2359 | unsigned long long now = sched_clock(); | 
|  | 2360 |  | 
|  | 2361 | update_cpu_clock(p, rq, now); | 
|  | 2362 |  | 
|  | 2363 | rq->timestamp_last_tick = now; | 
|  | 2364 |  | 
|  | 2365 | if (p == rq->idle) { | 
|  | 2366 | if (wake_priority_sleeper(rq)) | 
|  | 2367 | goto out; | 
|  | 2368 | rebalance_tick(cpu, rq, SCHED_IDLE); | 
|  | 2369 | return; | 
|  | 2370 | } | 
|  | 2371 |  | 
|  | 2372 | /* Task might have expired already, but not scheduled off yet */ | 
|  | 2373 | if (p->array != rq->active) { | 
|  | 2374 | set_tsk_need_resched(p); | 
|  | 2375 | goto out; | 
|  | 2376 | } | 
|  | 2377 | spin_lock(&rq->lock); | 
|  | 2378 | /* | 
|  | 2379 | * The task was running during this tick - update the | 
|  | 2380 | * time slice counter. Note: we do not update a thread's | 
|  | 2381 | * priority until it either goes to sleep or uses up its | 
|  | 2382 | * timeslice. This makes it possible for interactive tasks | 
|  | 2383 | * to use up their timeslices at their highest priority levels. | 
|  | 2384 | */ | 
|  | 2385 | if (rt_task(p)) { | 
|  | 2386 | /* | 
|  | 2387 | * RR tasks need a special form of timeslice management. | 
|  | 2388 | * FIFO tasks have no timeslices. | 
|  | 2389 | */ | 
|  | 2390 | if ((p->policy == SCHED_RR) && !--p->time_slice) { | 
|  | 2391 | p->time_slice = task_timeslice(p); | 
|  | 2392 | p->first_time_slice = 0; | 
|  | 2393 | set_tsk_need_resched(p); | 
|  | 2394 |  | 
|  | 2395 | /* put it at the end of the queue: */ | 
|  | 2396 | requeue_task(p, rq->active); | 
|  | 2397 | } | 
|  | 2398 | goto out_unlock; | 
|  | 2399 | } | 
|  | 2400 | if (!--p->time_slice) { | 
|  | 2401 | dequeue_task(p, rq->active); | 
|  | 2402 | set_tsk_need_resched(p); | 
|  | 2403 | p->prio = effective_prio(p); | 
|  | 2404 | p->time_slice = task_timeslice(p); | 
|  | 2405 | p->first_time_slice = 0; | 
|  | 2406 |  | 
|  | 2407 | if (!rq->expired_timestamp) | 
|  | 2408 | rq->expired_timestamp = jiffies; | 
|  | 2409 | if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) { | 
|  | 2410 | enqueue_task(p, rq->expired); | 
|  | 2411 | if (p->static_prio < rq->best_expired_prio) | 
|  | 2412 | rq->best_expired_prio = p->static_prio; | 
|  | 2413 | } else | 
|  | 2414 | enqueue_task(p, rq->active); | 
|  | 2415 | } else { | 
|  | 2416 | /* | 
|  | 2417 | * Prevent a too long timeslice allowing a task to monopolize | 
|  | 2418 | * the CPU. We do this by splitting up the timeslice into | 
|  | 2419 | * smaller pieces. | 
|  | 2420 | * | 
|  | 2421 | * Note: this does not mean the task's timeslices expire or | 
|  | 2422 | * get lost in any way, they just might be preempted by | 
|  | 2423 | * another task of equal priority. (one with higher | 
|  | 2424 | * priority would have preempted this task already.) We | 
|  | 2425 | * requeue this task to the end of the list on this priority | 
|  | 2426 | * level, which is in essence a round-robin of tasks with | 
|  | 2427 | * equal priority. | 
|  | 2428 | * | 
|  | 2429 | * This only applies to tasks in the interactive | 
|  | 2430 | * delta range with at least TIMESLICE_GRANULARITY to requeue. | 
|  | 2431 | */ | 
|  | 2432 | if (TASK_INTERACTIVE(p) && !((task_timeslice(p) - | 
|  | 2433 | p->time_slice) % TIMESLICE_GRANULARITY(p)) && | 
|  | 2434 | (p->time_slice >= TIMESLICE_GRANULARITY(p)) && | 
|  | 2435 | (p->array == rq->active)) { | 
|  | 2436 |  | 
|  | 2437 | requeue_task(p, rq->active); | 
|  | 2438 | set_tsk_need_resched(p); | 
|  | 2439 | } | 
|  | 2440 | } | 
|  | 2441 | out_unlock: | 
|  | 2442 | spin_unlock(&rq->lock); | 
|  | 2443 | out: | 
|  | 2444 | rebalance_tick(cpu, rq, NOT_IDLE); | 
|  | 2445 | } | 
|  | 2446 |  | 
|  | 2447 | #ifdef CONFIG_SCHED_SMT | 
|  | 2448 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
|  | 2449 | { | 
|  | 2450 | struct sched_domain *sd = this_rq->sd; | 
|  | 2451 | cpumask_t sibling_map; | 
|  | 2452 | int i; | 
|  | 2453 |  | 
|  | 2454 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | 
|  | 2455 | return; | 
|  | 2456 |  | 
|  | 2457 | /* | 
|  | 2458 | * Unlock the current runqueue because we have to lock in | 
|  | 2459 | * CPU order to avoid deadlocks. Caller knows that we might | 
|  | 2460 | * unlock. We keep IRQs disabled. | 
|  | 2461 | */ | 
|  | 2462 | spin_unlock(&this_rq->lock); | 
|  | 2463 |  | 
|  | 2464 | sibling_map = sd->span; | 
|  | 2465 |  | 
|  | 2466 | for_each_cpu_mask(i, sibling_map) | 
|  | 2467 | spin_lock(&cpu_rq(i)->lock); | 
|  | 2468 | /* | 
|  | 2469 | * We clear this CPU from the mask. This both simplifies the | 
|  | 2470 | * inner loop and keps this_rq locked when we exit: | 
|  | 2471 | */ | 
|  | 2472 | cpu_clear(this_cpu, sibling_map); | 
|  | 2473 |  | 
|  | 2474 | for_each_cpu_mask(i, sibling_map) { | 
|  | 2475 | runqueue_t *smt_rq = cpu_rq(i); | 
|  | 2476 |  | 
|  | 2477 | /* | 
|  | 2478 | * If an SMT sibling task is sleeping due to priority | 
|  | 2479 | * reasons wake it up now. | 
|  | 2480 | */ | 
|  | 2481 | if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running) | 
|  | 2482 | resched_task(smt_rq->idle); | 
|  | 2483 | } | 
|  | 2484 |  | 
|  | 2485 | for_each_cpu_mask(i, sibling_map) | 
|  | 2486 | spin_unlock(&cpu_rq(i)->lock); | 
|  | 2487 | /* | 
|  | 2488 | * We exit with this_cpu's rq still held and IRQs | 
|  | 2489 | * still disabled: | 
|  | 2490 | */ | 
|  | 2491 | } | 
|  | 2492 |  | 
|  | 2493 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
|  | 2494 | { | 
|  | 2495 | struct sched_domain *sd = this_rq->sd; | 
|  | 2496 | cpumask_t sibling_map; | 
|  | 2497 | prio_array_t *array; | 
|  | 2498 | int ret = 0, i; | 
|  | 2499 | task_t *p; | 
|  | 2500 |  | 
|  | 2501 | if (!(sd->flags & SD_SHARE_CPUPOWER)) | 
|  | 2502 | return 0; | 
|  | 2503 |  | 
|  | 2504 | /* | 
|  | 2505 | * The same locking rules and details apply as for | 
|  | 2506 | * wake_sleeping_dependent(): | 
|  | 2507 | */ | 
|  | 2508 | spin_unlock(&this_rq->lock); | 
|  | 2509 | sibling_map = sd->span; | 
|  | 2510 | for_each_cpu_mask(i, sibling_map) | 
|  | 2511 | spin_lock(&cpu_rq(i)->lock); | 
|  | 2512 | cpu_clear(this_cpu, sibling_map); | 
|  | 2513 |  | 
|  | 2514 | /* | 
|  | 2515 | * Establish next task to be run - it might have gone away because | 
|  | 2516 | * we released the runqueue lock above: | 
|  | 2517 | */ | 
|  | 2518 | if (!this_rq->nr_running) | 
|  | 2519 | goto out_unlock; | 
|  | 2520 | array = this_rq->active; | 
|  | 2521 | if (!array->nr_active) | 
|  | 2522 | array = this_rq->expired; | 
|  | 2523 | BUG_ON(!array->nr_active); | 
|  | 2524 |  | 
|  | 2525 | p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next, | 
|  | 2526 | task_t, run_list); | 
|  | 2527 |  | 
|  | 2528 | for_each_cpu_mask(i, sibling_map) { | 
|  | 2529 | runqueue_t *smt_rq = cpu_rq(i); | 
|  | 2530 | task_t *smt_curr = smt_rq->curr; | 
|  | 2531 |  | 
|  | 2532 | /* | 
|  | 2533 | * If a user task with lower static priority than the | 
|  | 2534 | * running task on the SMT sibling is trying to schedule, | 
|  | 2535 | * delay it till there is proportionately less timeslice | 
|  | 2536 | * left of the sibling task to prevent a lower priority | 
|  | 2537 | * task from using an unfair proportion of the | 
|  | 2538 | * physical cpu's resources. -ck | 
|  | 2539 | */ | 
|  | 2540 | if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) > | 
|  | 2541 | task_timeslice(p) || rt_task(smt_curr)) && | 
|  | 2542 | p->mm && smt_curr->mm && !rt_task(p)) | 
|  | 2543 | ret = 1; | 
|  | 2544 |  | 
|  | 2545 | /* | 
|  | 2546 | * Reschedule a lower priority task on the SMT sibling, | 
|  | 2547 | * or wake it up if it has been put to sleep for priority | 
|  | 2548 | * reasons. | 
|  | 2549 | */ | 
|  | 2550 | if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) > | 
|  | 2551 | task_timeslice(smt_curr) || rt_task(p)) && | 
|  | 2552 | smt_curr->mm && p->mm && !rt_task(smt_curr)) || | 
|  | 2553 | (smt_curr == smt_rq->idle && smt_rq->nr_running)) | 
|  | 2554 | resched_task(smt_curr); | 
|  | 2555 | } | 
|  | 2556 | out_unlock: | 
|  | 2557 | for_each_cpu_mask(i, sibling_map) | 
|  | 2558 | spin_unlock(&cpu_rq(i)->lock); | 
|  | 2559 | return ret; | 
|  | 2560 | } | 
|  | 2561 | #else | 
|  | 2562 | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
|  | 2563 | { | 
|  | 2564 | } | 
|  | 2565 |  | 
|  | 2566 | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
|  | 2567 | { | 
|  | 2568 | return 0; | 
|  | 2569 | } | 
|  | 2570 | #endif | 
|  | 2571 |  | 
|  | 2572 | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | 
|  | 2573 |  | 
|  | 2574 | void fastcall add_preempt_count(int val) | 
|  | 2575 | { | 
|  | 2576 | /* | 
|  | 2577 | * Underflow? | 
|  | 2578 | */ | 
|  | 2579 | BUG_ON(((int)preempt_count() < 0)); | 
|  | 2580 | preempt_count() += val; | 
|  | 2581 | /* | 
|  | 2582 | * Spinlock count overflowing soon? | 
|  | 2583 | */ | 
|  | 2584 | BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10); | 
|  | 2585 | } | 
|  | 2586 | EXPORT_SYMBOL(add_preempt_count); | 
|  | 2587 |  | 
|  | 2588 | void fastcall sub_preempt_count(int val) | 
|  | 2589 | { | 
|  | 2590 | /* | 
|  | 2591 | * Underflow? | 
|  | 2592 | */ | 
|  | 2593 | BUG_ON(val > preempt_count()); | 
|  | 2594 | /* | 
|  | 2595 | * Is the spinlock portion underflowing? | 
|  | 2596 | */ | 
|  | 2597 | BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK)); | 
|  | 2598 | preempt_count() -= val; | 
|  | 2599 | } | 
|  | 2600 | EXPORT_SYMBOL(sub_preempt_count); | 
|  | 2601 |  | 
|  | 2602 | #endif | 
|  | 2603 |  | 
|  | 2604 | /* | 
|  | 2605 | * schedule() is the main scheduler function. | 
|  | 2606 | */ | 
|  | 2607 | asmlinkage void __sched schedule(void) | 
|  | 2608 | { | 
|  | 2609 | long *switch_count; | 
|  | 2610 | task_t *prev, *next; | 
|  | 2611 | runqueue_t *rq; | 
|  | 2612 | prio_array_t *array; | 
|  | 2613 | struct list_head *queue; | 
|  | 2614 | unsigned long long now; | 
|  | 2615 | unsigned long run_time; | 
|  | 2616 | int cpu, idx; | 
|  | 2617 |  | 
|  | 2618 | /* | 
|  | 2619 | * Test if we are atomic.  Since do_exit() needs to call into | 
|  | 2620 | * schedule() atomically, we ignore that path for now. | 
|  | 2621 | * Otherwise, whine if we are scheduling when we should not be. | 
|  | 2622 | */ | 
|  | 2623 | if (likely(!current->exit_state)) { | 
|  | 2624 | if (unlikely(in_atomic())) { | 
|  | 2625 | printk(KERN_ERR "scheduling while atomic: " | 
|  | 2626 | "%s/0x%08x/%d\n", | 
|  | 2627 | current->comm, preempt_count(), current->pid); | 
|  | 2628 | dump_stack(); | 
|  | 2629 | } | 
|  | 2630 | } | 
|  | 2631 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
|  | 2632 |  | 
|  | 2633 | need_resched: | 
|  | 2634 | preempt_disable(); | 
|  | 2635 | prev = current; | 
|  | 2636 | release_kernel_lock(prev); | 
|  | 2637 | need_resched_nonpreemptible: | 
|  | 2638 | rq = this_rq(); | 
|  | 2639 |  | 
|  | 2640 | /* | 
|  | 2641 | * The idle thread is not allowed to schedule! | 
|  | 2642 | * Remove this check after it has been exercised a bit. | 
|  | 2643 | */ | 
|  | 2644 | if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) { | 
|  | 2645 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | 
|  | 2646 | dump_stack(); | 
|  | 2647 | } | 
|  | 2648 |  | 
|  | 2649 | schedstat_inc(rq, sched_cnt); | 
|  | 2650 | now = sched_clock(); | 
| Ingo Molnar | 238628e | 2005-04-18 10:58:36 -0700 | [diff] [blame] | 2651 | if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2652 | run_time = now - prev->timestamp; | 
| Ingo Molnar | 238628e | 2005-04-18 10:58:36 -0700 | [diff] [blame] | 2653 | if (unlikely((long long)(now - prev->timestamp) < 0)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2654 | run_time = 0; | 
|  | 2655 | } else | 
|  | 2656 | run_time = NS_MAX_SLEEP_AVG; | 
|  | 2657 |  | 
|  | 2658 | /* | 
|  | 2659 | * Tasks charged proportionately less run_time at high sleep_avg to | 
|  | 2660 | * delay them losing their interactive status | 
|  | 2661 | */ | 
|  | 2662 | run_time /= (CURRENT_BONUS(prev) ? : 1); | 
|  | 2663 |  | 
|  | 2664 | spin_lock_irq(&rq->lock); | 
|  | 2665 |  | 
|  | 2666 | if (unlikely(prev->flags & PF_DEAD)) | 
|  | 2667 | prev->state = EXIT_DEAD; | 
|  | 2668 |  | 
|  | 2669 | switch_count = &prev->nivcsw; | 
|  | 2670 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
|  | 2671 | switch_count = &prev->nvcsw; | 
|  | 2672 | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 
|  | 2673 | unlikely(signal_pending(prev)))) | 
|  | 2674 | prev->state = TASK_RUNNING; | 
|  | 2675 | else { | 
|  | 2676 | if (prev->state == TASK_UNINTERRUPTIBLE) | 
|  | 2677 | rq->nr_uninterruptible++; | 
|  | 2678 | deactivate_task(prev, rq); | 
|  | 2679 | } | 
|  | 2680 | } | 
|  | 2681 |  | 
|  | 2682 | cpu = smp_processor_id(); | 
|  | 2683 | if (unlikely(!rq->nr_running)) { | 
|  | 2684 | go_idle: | 
|  | 2685 | idle_balance(cpu, rq); | 
|  | 2686 | if (!rq->nr_running) { | 
|  | 2687 | next = rq->idle; | 
|  | 2688 | rq->expired_timestamp = 0; | 
|  | 2689 | wake_sleeping_dependent(cpu, rq); | 
|  | 2690 | /* | 
|  | 2691 | * wake_sleeping_dependent() might have released | 
|  | 2692 | * the runqueue, so break out if we got new | 
|  | 2693 | * tasks meanwhile: | 
|  | 2694 | */ | 
|  | 2695 | if (!rq->nr_running) | 
|  | 2696 | goto switch_tasks; | 
|  | 2697 | } | 
|  | 2698 | } else { | 
|  | 2699 | if (dependent_sleeper(cpu, rq)) { | 
|  | 2700 | next = rq->idle; | 
|  | 2701 | goto switch_tasks; | 
|  | 2702 | } | 
|  | 2703 | /* | 
|  | 2704 | * dependent_sleeper() releases and reacquires the runqueue | 
|  | 2705 | * lock, hence go into the idle loop if the rq went | 
|  | 2706 | * empty meanwhile: | 
|  | 2707 | */ | 
|  | 2708 | if (unlikely(!rq->nr_running)) | 
|  | 2709 | goto go_idle; | 
|  | 2710 | } | 
|  | 2711 |  | 
|  | 2712 | array = rq->active; | 
|  | 2713 | if (unlikely(!array->nr_active)) { | 
|  | 2714 | /* | 
|  | 2715 | * Switch the active and expired arrays. | 
|  | 2716 | */ | 
|  | 2717 | schedstat_inc(rq, sched_switch); | 
|  | 2718 | rq->active = rq->expired; | 
|  | 2719 | rq->expired = array; | 
|  | 2720 | array = rq->active; | 
|  | 2721 | rq->expired_timestamp = 0; | 
|  | 2722 | rq->best_expired_prio = MAX_PRIO; | 
|  | 2723 | } | 
|  | 2724 |  | 
|  | 2725 | idx = sched_find_first_bit(array->bitmap); | 
|  | 2726 | queue = array->queue + idx; | 
|  | 2727 | next = list_entry(queue->next, task_t, run_list); | 
|  | 2728 |  | 
|  | 2729 | if (!rt_task(next) && next->activated > 0) { | 
|  | 2730 | unsigned long long delta = now - next->timestamp; | 
| Ingo Molnar | 238628e | 2005-04-18 10:58:36 -0700 | [diff] [blame] | 2731 | if (unlikely((long long)(now - next->timestamp) < 0)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2732 | delta = 0; | 
|  | 2733 |  | 
|  | 2734 | if (next->activated == 1) | 
|  | 2735 | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; | 
|  | 2736 |  | 
|  | 2737 | array = next->array; | 
|  | 2738 | dequeue_task(next, array); | 
|  | 2739 | recalc_task_prio(next, next->timestamp + delta); | 
|  | 2740 | enqueue_task(next, array); | 
|  | 2741 | } | 
|  | 2742 | next->activated = 0; | 
|  | 2743 | switch_tasks: | 
|  | 2744 | if (next == rq->idle) | 
|  | 2745 | schedstat_inc(rq, sched_goidle); | 
|  | 2746 | prefetch(next); | 
|  | 2747 | clear_tsk_need_resched(prev); | 
|  | 2748 | rcu_qsctr_inc(task_cpu(prev)); | 
|  | 2749 |  | 
|  | 2750 | update_cpu_clock(prev, rq, now); | 
|  | 2751 |  | 
|  | 2752 | prev->sleep_avg -= run_time; | 
|  | 2753 | if ((long)prev->sleep_avg <= 0) | 
|  | 2754 | prev->sleep_avg = 0; | 
|  | 2755 | prev->timestamp = prev->last_ran = now; | 
|  | 2756 |  | 
|  | 2757 | sched_info_switch(prev, next); | 
|  | 2758 | if (likely(prev != next)) { | 
|  | 2759 | next->timestamp = now; | 
|  | 2760 | rq->nr_switches++; | 
|  | 2761 | rq->curr = next; | 
|  | 2762 | ++*switch_count; | 
|  | 2763 |  | 
|  | 2764 | prepare_arch_switch(rq, next); | 
|  | 2765 | prev = context_switch(rq, prev, next); | 
|  | 2766 | barrier(); | 
|  | 2767 |  | 
|  | 2768 | finish_task_switch(prev); | 
|  | 2769 | } else | 
|  | 2770 | spin_unlock_irq(&rq->lock); | 
|  | 2771 |  | 
|  | 2772 | prev = current; | 
|  | 2773 | if (unlikely(reacquire_kernel_lock(prev) < 0)) | 
|  | 2774 | goto need_resched_nonpreemptible; | 
|  | 2775 | preempt_enable_no_resched(); | 
|  | 2776 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | 2777 | goto need_resched; | 
|  | 2778 | } | 
|  | 2779 |  | 
|  | 2780 | EXPORT_SYMBOL(schedule); | 
|  | 2781 |  | 
|  | 2782 | #ifdef CONFIG_PREEMPT | 
|  | 2783 | /* | 
|  | 2784 | * this is is the entry point to schedule() from in-kernel preemption | 
|  | 2785 | * off of preempt_enable.  Kernel preemptions off return from interrupt | 
|  | 2786 | * occur there and call schedule directly. | 
|  | 2787 | */ | 
|  | 2788 | asmlinkage void __sched preempt_schedule(void) | 
|  | 2789 | { | 
|  | 2790 | struct thread_info *ti = current_thread_info(); | 
|  | 2791 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 2792 | struct task_struct *task = current; | 
|  | 2793 | int saved_lock_depth; | 
|  | 2794 | #endif | 
|  | 2795 | /* | 
|  | 2796 | * If there is a non-zero preempt_count or interrupts are disabled, | 
|  | 2797 | * we do not want to preempt the current task.  Just return.. | 
|  | 2798 | */ | 
|  | 2799 | if (unlikely(ti->preempt_count || irqs_disabled())) | 
|  | 2800 | return; | 
|  | 2801 |  | 
|  | 2802 | need_resched: | 
|  | 2803 | add_preempt_count(PREEMPT_ACTIVE); | 
|  | 2804 | /* | 
|  | 2805 | * We keep the big kernel semaphore locked, but we | 
|  | 2806 | * clear ->lock_depth so that schedule() doesnt | 
|  | 2807 | * auto-release the semaphore: | 
|  | 2808 | */ | 
|  | 2809 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 2810 | saved_lock_depth = task->lock_depth; | 
|  | 2811 | task->lock_depth = -1; | 
|  | 2812 | #endif | 
|  | 2813 | schedule(); | 
|  | 2814 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 2815 | task->lock_depth = saved_lock_depth; | 
|  | 2816 | #endif | 
|  | 2817 | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | 2818 |  | 
|  | 2819 | /* we could miss a preemption opportunity between schedule and now */ | 
|  | 2820 | barrier(); | 
|  | 2821 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | 2822 | goto need_resched; | 
|  | 2823 | } | 
|  | 2824 |  | 
|  | 2825 | EXPORT_SYMBOL(preempt_schedule); | 
|  | 2826 |  | 
|  | 2827 | /* | 
|  | 2828 | * this is is the entry point to schedule() from kernel preemption | 
|  | 2829 | * off of irq context. | 
|  | 2830 | * Note, that this is called and return with irqs disabled. This will | 
|  | 2831 | * protect us against recursive calling from irq. | 
|  | 2832 | */ | 
|  | 2833 | asmlinkage void __sched preempt_schedule_irq(void) | 
|  | 2834 | { | 
|  | 2835 | struct thread_info *ti = current_thread_info(); | 
|  | 2836 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 2837 | struct task_struct *task = current; | 
|  | 2838 | int saved_lock_depth; | 
|  | 2839 | #endif | 
|  | 2840 | /* Catch callers which need to be fixed*/ | 
|  | 2841 | BUG_ON(ti->preempt_count || !irqs_disabled()); | 
|  | 2842 |  | 
|  | 2843 | need_resched: | 
|  | 2844 | add_preempt_count(PREEMPT_ACTIVE); | 
|  | 2845 | /* | 
|  | 2846 | * We keep the big kernel semaphore locked, but we | 
|  | 2847 | * clear ->lock_depth so that schedule() doesnt | 
|  | 2848 | * auto-release the semaphore: | 
|  | 2849 | */ | 
|  | 2850 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 2851 | saved_lock_depth = task->lock_depth; | 
|  | 2852 | task->lock_depth = -1; | 
|  | 2853 | #endif | 
|  | 2854 | local_irq_enable(); | 
|  | 2855 | schedule(); | 
|  | 2856 | local_irq_disable(); | 
|  | 2857 | #ifdef CONFIG_PREEMPT_BKL | 
|  | 2858 | task->lock_depth = saved_lock_depth; | 
|  | 2859 | #endif | 
|  | 2860 | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | 2861 |  | 
|  | 2862 | /* we could miss a preemption opportunity between schedule and now */ | 
|  | 2863 | barrier(); | 
|  | 2864 | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | 2865 | goto need_resched; | 
|  | 2866 | } | 
|  | 2867 |  | 
|  | 2868 | #endif /* CONFIG_PREEMPT */ | 
|  | 2869 |  | 
|  | 2870 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key) | 
|  | 2871 | { | 
|  | 2872 | task_t *p = curr->task; | 
|  | 2873 | return try_to_wake_up(p, mode, sync); | 
|  | 2874 | } | 
|  | 2875 |  | 
|  | 2876 | EXPORT_SYMBOL(default_wake_function); | 
|  | 2877 |  | 
|  | 2878 | /* | 
|  | 2879 | * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just | 
|  | 2880 | * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve | 
|  | 2881 | * number) then we wake all the non-exclusive tasks and one exclusive task. | 
|  | 2882 | * | 
|  | 2883 | * There are circumstances in which we can try to wake a task which has already | 
|  | 2884 | * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns | 
|  | 2885 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
|  | 2886 | */ | 
|  | 2887 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
|  | 2888 | int nr_exclusive, int sync, void *key) | 
|  | 2889 | { | 
|  | 2890 | struct list_head *tmp, *next; | 
|  | 2891 |  | 
|  | 2892 | list_for_each_safe(tmp, next, &q->task_list) { | 
|  | 2893 | wait_queue_t *curr; | 
|  | 2894 | unsigned flags; | 
|  | 2895 | curr = list_entry(tmp, wait_queue_t, task_list); | 
|  | 2896 | flags = curr->flags; | 
|  | 2897 | if (curr->func(curr, mode, sync, key) && | 
|  | 2898 | (flags & WQ_FLAG_EXCLUSIVE) && | 
|  | 2899 | !--nr_exclusive) | 
|  | 2900 | break; | 
|  | 2901 | } | 
|  | 2902 | } | 
|  | 2903 |  | 
|  | 2904 | /** | 
|  | 2905 | * __wake_up - wake up threads blocked on a waitqueue. | 
|  | 2906 | * @q: the waitqueue | 
|  | 2907 | * @mode: which threads | 
|  | 2908 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
| Martin Waitz | 67be2dd | 2005-05-01 08:59:26 -0700 | [diff] [blame] | 2909 | * @key: is directly passed to the wakeup function | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2910 | */ | 
|  | 2911 | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | 
|  | 2912 | int nr_exclusive, void *key) | 
|  | 2913 | { | 
|  | 2914 | unsigned long flags; | 
|  | 2915 |  | 
|  | 2916 | spin_lock_irqsave(&q->lock, flags); | 
|  | 2917 | __wake_up_common(q, mode, nr_exclusive, 0, key); | 
|  | 2918 | spin_unlock_irqrestore(&q->lock, flags); | 
|  | 2919 | } | 
|  | 2920 |  | 
|  | 2921 | EXPORT_SYMBOL(__wake_up); | 
|  | 2922 |  | 
|  | 2923 | /* | 
|  | 2924 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
|  | 2925 | */ | 
|  | 2926 | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
|  | 2927 | { | 
|  | 2928 | __wake_up_common(q, mode, 1, 0, NULL); | 
|  | 2929 | } | 
|  | 2930 |  | 
|  | 2931 | /** | 
| Martin Waitz | 67be2dd | 2005-05-01 08:59:26 -0700 | [diff] [blame] | 2932 | * __wake_up_sync - wake up threads blocked on a waitqueue. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2933 | * @q: the waitqueue | 
|  | 2934 | * @mode: which threads | 
|  | 2935 | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | 2936 | * | 
|  | 2937 | * The sync wakeup differs that the waker knows that it will schedule | 
|  | 2938 | * away soon, so while the target thread will be woken up, it will not | 
|  | 2939 | * be migrated to another CPU - ie. the two threads are 'synchronized' | 
|  | 2940 | * with each other. This can prevent needless bouncing between CPUs. | 
|  | 2941 | * | 
|  | 2942 | * On UP it can prevent extra preemption. | 
|  | 2943 | */ | 
|  | 2944 | void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
|  | 2945 | { | 
|  | 2946 | unsigned long flags; | 
|  | 2947 | int sync = 1; | 
|  | 2948 |  | 
|  | 2949 | if (unlikely(!q)) | 
|  | 2950 | return; | 
|  | 2951 |  | 
|  | 2952 | if (unlikely(!nr_exclusive)) | 
|  | 2953 | sync = 0; | 
|  | 2954 |  | 
|  | 2955 | spin_lock_irqsave(&q->lock, flags); | 
|  | 2956 | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 
|  | 2957 | spin_unlock_irqrestore(&q->lock, flags); | 
|  | 2958 | } | 
|  | 2959 | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
|  | 2960 |  | 
|  | 2961 | void fastcall complete(struct completion *x) | 
|  | 2962 | { | 
|  | 2963 | unsigned long flags; | 
|  | 2964 |  | 
|  | 2965 | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | 2966 | x->done++; | 
|  | 2967 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 2968 | 1, 0, NULL); | 
|  | 2969 | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | 2970 | } | 
|  | 2971 | EXPORT_SYMBOL(complete); | 
|  | 2972 |  | 
|  | 2973 | void fastcall complete_all(struct completion *x) | 
|  | 2974 | { | 
|  | 2975 | unsigned long flags; | 
|  | 2976 |  | 
|  | 2977 | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | 2978 | x->done += UINT_MAX/2; | 
|  | 2979 | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 2980 | 0, 0, NULL); | 
|  | 2981 | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | 2982 | } | 
|  | 2983 | EXPORT_SYMBOL(complete_all); | 
|  | 2984 |  | 
|  | 2985 | void fastcall __sched wait_for_completion(struct completion *x) | 
|  | 2986 | { | 
|  | 2987 | might_sleep(); | 
|  | 2988 | spin_lock_irq(&x->wait.lock); | 
|  | 2989 | if (!x->done) { | 
|  | 2990 | DECLARE_WAITQUEUE(wait, current); | 
|  | 2991 |  | 
|  | 2992 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 2993 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 2994 | do { | 
|  | 2995 | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | 2996 | spin_unlock_irq(&x->wait.lock); | 
|  | 2997 | schedule(); | 
|  | 2998 | spin_lock_irq(&x->wait.lock); | 
|  | 2999 | } while (!x->done); | 
|  | 3000 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3001 | } | 
|  | 3002 | x->done--; | 
|  | 3003 | spin_unlock_irq(&x->wait.lock); | 
|  | 3004 | } | 
|  | 3005 | EXPORT_SYMBOL(wait_for_completion); | 
|  | 3006 |  | 
|  | 3007 | unsigned long fastcall __sched | 
|  | 3008 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
|  | 3009 | { | 
|  | 3010 | might_sleep(); | 
|  | 3011 |  | 
|  | 3012 | spin_lock_irq(&x->wait.lock); | 
|  | 3013 | if (!x->done) { | 
|  | 3014 | DECLARE_WAITQUEUE(wait, current); | 
|  | 3015 |  | 
|  | 3016 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 3017 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 3018 | do { | 
|  | 3019 | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | 3020 | spin_unlock_irq(&x->wait.lock); | 
|  | 3021 | timeout = schedule_timeout(timeout); | 
|  | 3022 | spin_lock_irq(&x->wait.lock); | 
|  | 3023 | if (!timeout) { | 
|  | 3024 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3025 | goto out; | 
|  | 3026 | } | 
|  | 3027 | } while (!x->done); | 
|  | 3028 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3029 | } | 
|  | 3030 | x->done--; | 
|  | 3031 | out: | 
|  | 3032 | spin_unlock_irq(&x->wait.lock); | 
|  | 3033 | return timeout; | 
|  | 3034 | } | 
|  | 3035 | EXPORT_SYMBOL(wait_for_completion_timeout); | 
|  | 3036 |  | 
|  | 3037 | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | 
|  | 3038 | { | 
|  | 3039 | int ret = 0; | 
|  | 3040 |  | 
|  | 3041 | might_sleep(); | 
|  | 3042 |  | 
|  | 3043 | spin_lock_irq(&x->wait.lock); | 
|  | 3044 | if (!x->done) { | 
|  | 3045 | DECLARE_WAITQUEUE(wait, current); | 
|  | 3046 |  | 
|  | 3047 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 3048 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 3049 | do { | 
|  | 3050 | if (signal_pending(current)) { | 
|  | 3051 | ret = -ERESTARTSYS; | 
|  | 3052 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3053 | goto out; | 
|  | 3054 | } | 
|  | 3055 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 3056 | spin_unlock_irq(&x->wait.lock); | 
|  | 3057 | schedule(); | 
|  | 3058 | spin_lock_irq(&x->wait.lock); | 
|  | 3059 | } while (!x->done); | 
|  | 3060 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3061 | } | 
|  | 3062 | x->done--; | 
|  | 3063 | out: | 
|  | 3064 | spin_unlock_irq(&x->wait.lock); | 
|  | 3065 |  | 
|  | 3066 | return ret; | 
|  | 3067 | } | 
|  | 3068 | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
|  | 3069 |  | 
|  | 3070 | unsigned long fastcall __sched | 
|  | 3071 | wait_for_completion_interruptible_timeout(struct completion *x, | 
|  | 3072 | unsigned long timeout) | 
|  | 3073 | { | 
|  | 3074 | might_sleep(); | 
|  | 3075 |  | 
|  | 3076 | spin_lock_irq(&x->wait.lock); | 
|  | 3077 | if (!x->done) { | 
|  | 3078 | DECLARE_WAITQUEUE(wait, current); | 
|  | 3079 |  | 
|  | 3080 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | 3081 | __add_wait_queue_tail(&x->wait, &wait); | 
|  | 3082 | do { | 
|  | 3083 | if (signal_pending(current)) { | 
|  | 3084 | timeout = -ERESTARTSYS; | 
|  | 3085 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3086 | goto out; | 
|  | 3087 | } | 
|  | 3088 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 3089 | spin_unlock_irq(&x->wait.lock); | 
|  | 3090 | timeout = schedule_timeout(timeout); | 
|  | 3091 | spin_lock_irq(&x->wait.lock); | 
|  | 3092 | if (!timeout) { | 
|  | 3093 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3094 | goto out; | 
|  | 3095 | } | 
|  | 3096 | } while (!x->done); | 
|  | 3097 | __remove_wait_queue(&x->wait, &wait); | 
|  | 3098 | } | 
|  | 3099 | x->done--; | 
|  | 3100 | out: | 
|  | 3101 | spin_unlock_irq(&x->wait.lock); | 
|  | 3102 | return timeout; | 
|  | 3103 | } | 
|  | 3104 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
|  | 3105 |  | 
|  | 3106 |  | 
|  | 3107 | #define	SLEEP_ON_VAR					\ | 
|  | 3108 | unsigned long flags;				\ | 
|  | 3109 | wait_queue_t wait;				\ | 
|  | 3110 | init_waitqueue_entry(&wait, current); | 
|  | 3111 |  | 
|  | 3112 | #define SLEEP_ON_HEAD					\ | 
|  | 3113 | spin_lock_irqsave(&q->lock,flags);		\ | 
|  | 3114 | __add_wait_queue(q, &wait);			\ | 
|  | 3115 | spin_unlock(&q->lock); | 
|  | 3116 |  | 
|  | 3117 | #define	SLEEP_ON_TAIL					\ | 
|  | 3118 | spin_lock_irq(&q->lock);			\ | 
|  | 3119 | __remove_wait_queue(q, &wait);			\ | 
|  | 3120 | spin_unlock_irqrestore(&q->lock, flags); | 
|  | 3121 |  | 
|  | 3122 | void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q) | 
|  | 3123 | { | 
|  | 3124 | SLEEP_ON_VAR | 
|  | 3125 |  | 
|  | 3126 | current->state = TASK_INTERRUPTIBLE; | 
|  | 3127 |  | 
|  | 3128 | SLEEP_ON_HEAD | 
|  | 3129 | schedule(); | 
|  | 3130 | SLEEP_ON_TAIL | 
|  | 3131 | } | 
|  | 3132 |  | 
|  | 3133 | EXPORT_SYMBOL(interruptible_sleep_on); | 
|  | 3134 |  | 
|  | 3135 | long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | 3136 | { | 
|  | 3137 | SLEEP_ON_VAR | 
|  | 3138 |  | 
|  | 3139 | current->state = TASK_INTERRUPTIBLE; | 
|  | 3140 |  | 
|  | 3141 | SLEEP_ON_HEAD | 
|  | 3142 | timeout = schedule_timeout(timeout); | 
|  | 3143 | SLEEP_ON_TAIL | 
|  | 3144 |  | 
|  | 3145 | return timeout; | 
|  | 3146 | } | 
|  | 3147 |  | 
|  | 3148 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
|  | 3149 |  | 
|  | 3150 | void fastcall __sched sleep_on(wait_queue_head_t *q) | 
|  | 3151 | { | 
|  | 3152 | SLEEP_ON_VAR | 
|  | 3153 |  | 
|  | 3154 | current->state = TASK_UNINTERRUPTIBLE; | 
|  | 3155 |  | 
|  | 3156 | SLEEP_ON_HEAD | 
|  | 3157 | schedule(); | 
|  | 3158 | SLEEP_ON_TAIL | 
|  | 3159 | } | 
|  | 3160 |  | 
|  | 3161 | EXPORT_SYMBOL(sleep_on); | 
|  | 3162 |  | 
|  | 3163 | long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | 3164 | { | 
|  | 3165 | SLEEP_ON_VAR | 
|  | 3166 |  | 
|  | 3167 | current->state = TASK_UNINTERRUPTIBLE; | 
|  | 3168 |  | 
|  | 3169 | SLEEP_ON_HEAD | 
|  | 3170 | timeout = schedule_timeout(timeout); | 
|  | 3171 | SLEEP_ON_TAIL | 
|  | 3172 |  | 
|  | 3173 | return timeout; | 
|  | 3174 | } | 
|  | 3175 |  | 
|  | 3176 | EXPORT_SYMBOL(sleep_on_timeout); | 
|  | 3177 |  | 
|  | 3178 | void set_user_nice(task_t *p, long nice) | 
|  | 3179 | { | 
|  | 3180 | unsigned long flags; | 
|  | 3181 | prio_array_t *array; | 
|  | 3182 | runqueue_t *rq; | 
|  | 3183 | int old_prio, new_prio, delta; | 
|  | 3184 |  | 
|  | 3185 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
|  | 3186 | return; | 
|  | 3187 | /* | 
|  | 3188 | * We have to be careful, if called from sys_setpriority(), | 
|  | 3189 | * the task might be in the middle of scheduling on another CPU. | 
|  | 3190 | */ | 
|  | 3191 | rq = task_rq_lock(p, &flags); | 
|  | 3192 | /* | 
|  | 3193 | * The RT priorities are set via sched_setscheduler(), but we still | 
|  | 3194 | * allow the 'normal' nice value to be set - but as expected | 
|  | 3195 | * it wont have any effect on scheduling until the task is | 
|  | 3196 | * not SCHED_NORMAL: | 
|  | 3197 | */ | 
|  | 3198 | if (rt_task(p)) { | 
|  | 3199 | p->static_prio = NICE_TO_PRIO(nice); | 
|  | 3200 | goto out_unlock; | 
|  | 3201 | } | 
|  | 3202 | array = p->array; | 
|  | 3203 | if (array) | 
|  | 3204 | dequeue_task(p, array); | 
|  | 3205 |  | 
|  | 3206 | old_prio = p->prio; | 
|  | 3207 | new_prio = NICE_TO_PRIO(nice); | 
|  | 3208 | delta = new_prio - old_prio; | 
|  | 3209 | p->static_prio = NICE_TO_PRIO(nice); | 
|  | 3210 | p->prio += delta; | 
|  | 3211 |  | 
|  | 3212 | if (array) { | 
|  | 3213 | enqueue_task(p, array); | 
|  | 3214 | /* | 
|  | 3215 | * If the task increased its priority or is running and | 
|  | 3216 | * lowered its priority, then reschedule its CPU: | 
|  | 3217 | */ | 
|  | 3218 | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
|  | 3219 | resched_task(rq->curr); | 
|  | 3220 | } | 
|  | 3221 | out_unlock: | 
|  | 3222 | task_rq_unlock(rq, &flags); | 
|  | 3223 | } | 
|  | 3224 |  | 
|  | 3225 | EXPORT_SYMBOL(set_user_nice); | 
|  | 3226 |  | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3227 | /* | 
|  | 3228 | * can_nice - check if a task can reduce its nice value | 
|  | 3229 | * @p: task | 
|  | 3230 | * @nice: nice value | 
|  | 3231 | */ | 
|  | 3232 | int can_nice(const task_t *p, const int nice) | 
|  | 3233 | { | 
|  | 3234 | /* convert nice value [19,-20] to rlimit style value [0,39] */ | 
|  | 3235 | int nice_rlim = 19 - nice; | 
|  | 3236 | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 
|  | 3237 | capable(CAP_SYS_NICE)); | 
|  | 3238 | } | 
|  | 3239 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3240 | #ifdef __ARCH_WANT_SYS_NICE | 
|  | 3241 |  | 
|  | 3242 | /* | 
|  | 3243 | * sys_nice - change the priority of the current process. | 
|  | 3244 | * @increment: priority increment | 
|  | 3245 | * | 
|  | 3246 | * sys_setpriority is a more generic, but much slower function that | 
|  | 3247 | * does similar things. | 
|  | 3248 | */ | 
|  | 3249 | asmlinkage long sys_nice(int increment) | 
|  | 3250 | { | 
|  | 3251 | int retval; | 
|  | 3252 | long nice; | 
|  | 3253 |  | 
|  | 3254 | /* | 
|  | 3255 | * Setpriority might change our priority at the same moment. | 
|  | 3256 | * We don't have to worry. Conceptually one call occurs first | 
|  | 3257 | * and we have a single winner. | 
|  | 3258 | */ | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3259 | if (increment < -40) | 
|  | 3260 | increment = -40; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3261 | if (increment > 40) | 
|  | 3262 | increment = 40; | 
|  | 3263 |  | 
|  | 3264 | nice = PRIO_TO_NICE(current->static_prio) + increment; | 
|  | 3265 | if (nice < -20) | 
|  | 3266 | nice = -20; | 
|  | 3267 | if (nice > 19) | 
|  | 3268 | nice = 19; | 
|  | 3269 |  | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3270 | if (increment < 0 && !can_nice(current, nice)) | 
|  | 3271 | return -EPERM; | 
|  | 3272 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3273 | retval = security_task_setnice(current, nice); | 
|  | 3274 | if (retval) | 
|  | 3275 | return retval; | 
|  | 3276 |  | 
|  | 3277 | set_user_nice(current, nice); | 
|  | 3278 | return 0; | 
|  | 3279 | } | 
|  | 3280 |  | 
|  | 3281 | #endif | 
|  | 3282 |  | 
|  | 3283 | /** | 
|  | 3284 | * task_prio - return the priority value of a given task. | 
|  | 3285 | * @p: the task in question. | 
|  | 3286 | * | 
|  | 3287 | * This is the priority value as seen by users in /proc. | 
|  | 3288 | * RT tasks are offset by -200. Normal tasks are centered | 
|  | 3289 | * around 0, value goes from -16 to +15. | 
|  | 3290 | */ | 
|  | 3291 | int task_prio(const task_t *p) | 
|  | 3292 | { | 
|  | 3293 | return p->prio - MAX_RT_PRIO; | 
|  | 3294 | } | 
|  | 3295 |  | 
|  | 3296 | /** | 
|  | 3297 | * task_nice - return the nice value of a given task. | 
|  | 3298 | * @p: the task in question. | 
|  | 3299 | */ | 
|  | 3300 | int task_nice(const task_t *p) | 
|  | 3301 | { | 
|  | 3302 | return TASK_NICE(p); | 
|  | 3303 | } | 
|  | 3304 |  | 
|  | 3305 | /* | 
|  | 3306 | * The only users of task_nice are binfmt_elf and binfmt_elf32. | 
|  | 3307 | * binfmt_elf is no longer modular, but binfmt_elf32 still is. | 
|  | 3308 | * Therefore, task_nice is needed if there is a compat_mode. | 
|  | 3309 | */ | 
|  | 3310 | #ifdef CONFIG_COMPAT | 
|  | 3311 | EXPORT_SYMBOL_GPL(task_nice); | 
|  | 3312 | #endif | 
|  | 3313 |  | 
|  | 3314 | /** | 
|  | 3315 | * idle_cpu - is a given cpu idle currently? | 
|  | 3316 | * @cpu: the processor in question. | 
|  | 3317 | */ | 
|  | 3318 | int idle_cpu(int cpu) | 
|  | 3319 | { | 
|  | 3320 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
|  | 3321 | } | 
|  | 3322 |  | 
|  | 3323 | EXPORT_SYMBOL_GPL(idle_cpu); | 
|  | 3324 |  | 
|  | 3325 | /** | 
|  | 3326 | * idle_task - return the idle task for a given cpu. | 
|  | 3327 | * @cpu: the processor in question. | 
|  | 3328 | */ | 
|  | 3329 | task_t *idle_task(int cpu) | 
|  | 3330 | { | 
|  | 3331 | return cpu_rq(cpu)->idle; | 
|  | 3332 | } | 
|  | 3333 |  | 
|  | 3334 | /** | 
|  | 3335 | * find_process_by_pid - find a process with a matching PID value. | 
|  | 3336 | * @pid: the pid in question. | 
|  | 3337 | */ | 
|  | 3338 | static inline task_t *find_process_by_pid(pid_t pid) | 
|  | 3339 | { | 
|  | 3340 | return pid ? find_task_by_pid(pid) : current; | 
|  | 3341 | } | 
|  | 3342 |  | 
|  | 3343 | /* Actually do priority change: must hold rq lock. */ | 
|  | 3344 | static void __setscheduler(struct task_struct *p, int policy, int prio) | 
|  | 3345 | { | 
|  | 3346 | BUG_ON(p->array); | 
|  | 3347 | p->policy = policy; | 
|  | 3348 | p->rt_priority = prio; | 
|  | 3349 | if (policy != SCHED_NORMAL) | 
|  | 3350 | p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority; | 
|  | 3351 | else | 
|  | 3352 | p->prio = p->static_prio; | 
|  | 3353 | } | 
|  | 3354 |  | 
|  | 3355 | /** | 
|  | 3356 | * sched_setscheduler - change the scheduling policy and/or RT priority of | 
|  | 3357 | * a thread. | 
|  | 3358 | * @p: the task in question. | 
|  | 3359 | * @policy: new policy. | 
|  | 3360 | * @param: structure containing the new RT priority. | 
|  | 3361 | */ | 
|  | 3362 | int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param) | 
|  | 3363 | { | 
|  | 3364 | int retval; | 
|  | 3365 | int oldprio, oldpolicy = -1; | 
|  | 3366 | prio_array_t *array; | 
|  | 3367 | unsigned long flags; | 
|  | 3368 | runqueue_t *rq; | 
|  | 3369 |  | 
|  | 3370 | recheck: | 
|  | 3371 | /* double check policy once rq lock held */ | 
|  | 3372 | if (policy < 0) | 
|  | 3373 | policy = oldpolicy = p->policy; | 
|  | 3374 | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 
|  | 3375 | policy != SCHED_NORMAL) | 
|  | 3376 | return -EINVAL; | 
|  | 3377 | /* | 
|  | 3378 | * Valid priorities for SCHED_FIFO and SCHED_RR are | 
|  | 3379 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0. | 
|  | 3380 | */ | 
|  | 3381 | if (param->sched_priority < 0 || | 
|  | 3382 | param->sched_priority > MAX_USER_RT_PRIO-1) | 
|  | 3383 | return -EINVAL; | 
|  | 3384 | if ((policy == SCHED_NORMAL) != (param->sched_priority == 0)) | 
|  | 3385 | return -EINVAL; | 
|  | 3386 |  | 
|  | 3387 | if ((policy == SCHED_FIFO || policy == SCHED_RR) && | 
| Matt Mackall | e43379f | 2005-05-01 08:59:00 -0700 | [diff] [blame] | 3388 | param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur && | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3389 | !capable(CAP_SYS_NICE)) | 
|  | 3390 | return -EPERM; | 
|  | 3391 | if ((current->euid != p->euid) && (current->euid != p->uid) && | 
|  | 3392 | !capable(CAP_SYS_NICE)) | 
|  | 3393 | return -EPERM; | 
|  | 3394 |  | 
|  | 3395 | retval = security_task_setscheduler(p, policy, param); | 
|  | 3396 | if (retval) | 
|  | 3397 | return retval; | 
|  | 3398 | /* | 
|  | 3399 | * To be able to change p->policy safely, the apropriate | 
|  | 3400 | * runqueue lock must be held. | 
|  | 3401 | */ | 
|  | 3402 | rq = task_rq_lock(p, &flags); | 
|  | 3403 | /* recheck policy now with rq lock held */ | 
|  | 3404 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
|  | 3405 | policy = oldpolicy = -1; | 
|  | 3406 | task_rq_unlock(rq, &flags); | 
|  | 3407 | goto recheck; | 
|  | 3408 | } | 
|  | 3409 | array = p->array; | 
|  | 3410 | if (array) | 
|  | 3411 | deactivate_task(p, rq); | 
|  | 3412 | oldprio = p->prio; | 
|  | 3413 | __setscheduler(p, policy, param->sched_priority); | 
|  | 3414 | if (array) { | 
|  | 3415 | __activate_task(p, rq); | 
|  | 3416 | /* | 
|  | 3417 | * Reschedule if we are currently running on this runqueue and | 
|  | 3418 | * our priority decreased, or if we are not currently running on | 
|  | 3419 | * this runqueue and our priority is higher than the current's | 
|  | 3420 | */ | 
|  | 3421 | if (task_running(rq, p)) { | 
|  | 3422 | if (p->prio > oldprio) | 
|  | 3423 | resched_task(rq->curr); | 
|  | 3424 | } else if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | 3425 | resched_task(rq->curr); | 
|  | 3426 | } | 
|  | 3427 | task_rq_unlock(rq, &flags); | 
|  | 3428 | return 0; | 
|  | 3429 | } | 
|  | 3430 | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
|  | 3431 |  | 
|  | 3432 | static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
|  | 3433 | { | 
|  | 3434 | int retval; | 
|  | 3435 | struct sched_param lparam; | 
|  | 3436 | struct task_struct *p; | 
|  | 3437 |  | 
|  | 3438 | if (!param || pid < 0) | 
|  | 3439 | return -EINVAL; | 
|  | 3440 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
|  | 3441 | return -EFAULT; | 
|  | 3442 | read_lock_irq(&tasklist_lock); | 
|  | 3443 | p = find_process_by_pid(pid); | 
|  | 3444 | if (!p) { | 
|  | 3445 | read_unlock_irq(&tasklist_lock); | 
|  | 3446 | return -ESRCH; | 
|  | 3447 | } | 
|  | 3448 | retval = sched_setscheduler(p, policy, &lparam); | 
|  | 3449 | read_unlock_irq(&tasklist_lock); | 
|  | 3450 | return retval; | 
|  | 3451 | } | 
|  | 3452 |  | 
|  | 3453 | /** | 
|  | 3454 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
|  | 3455 | * @pid: the pid in question. | 
|  | 3456 | * @policy: new policy. | 
|  | 3457 | * @param: structure containing the new RT priority. | 
|  | 3458 | */ | 
|  | 3459 | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | 
|  | 3460 | struct sched_param __user *param) | 
|  | 3461 | { | 
|  | 3462 | return do_sched_setscheduler(pid, policy, param); | 
|  | 3463 | } | 
|  | 3464 |  | 
|  | 3465 | /** | 
|  | 3466 | * sys_sched_setparam - set/change the RT priority of a thread | 
|  | 3467 | * @pid: the pid in question. | 
|  | 3468 | * @param: structure containing the new RT priority. | 
|  | 3469 | */ | 
|  | 3470 | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 
|  | 3471 | { | 
|  | 3472 | return do_sched_setscheduler(pid, -1, param); | 
|  | 3473 | } | 
|  | 3474 |  | 
|  | 3475 | /** | 
|  | 3476 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
|  | 3477 | * @pid: the pid in question. | 
|  | 3478 | */ | 
|  | 3479 | asmlinkage long sys_sched_getscheduler(pid_t pid) | 
|  | 3480 | { | 
|  | 3481 | int retval = -EINVAL; | 
|  | 3482 | task_t *p; | 
|  | 3483 |  | 
|  | 3484 | if (pid < 0) | 
|  | 3485 | goto out_nounlock; | 
|  | 3486 |  | 
|  | 3487 | retval = -ESRCH; | 
|  | 3488 | read_lock(&tasklist_lock); | 
|  | 3489 | p = find_process_by_pid(pid); | 
|  | 3490 | if (p) { | 
|  | 3491 | retval = security_task_getscheduler(p); | 
|  | 3492 | if (!retval) | 
|  | 3493 | retval = p->policy; | 
|  | 3494 | } | 
|  | 3495 | read_unlock(&tasklist_lock); | 
|  | 3496 |  | 
|  | 3497 | out_nounlock: | 
|  | 3498 | return retval; | 
|  | 3499 | } | 
|  | 3500 |  | 
|  | 3501 | /** | 
|  | 3502 | * sys_sched_getscheduler - get the RT priority of a thread | 
|  | 3503 | * @pid: the pid in question. | 
|  | 3504 | * @param: structure containing the RT priority. | 
|  | 3505 | */ | 
|  | 3506 | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 
|  | 3507 | { | 
|  | 3508 | struct sched_param lp; | 
|  | 3509 | int retval = -EINVAL; | 
|  | 3510 | task_t *p; | 
|  | 3511 |  | 
|  | 3512 | if (!param || pid < 0) | 
|  | 3513 | goto out_nounlock; | 
|  | 3514 |  | 
|  | 3515 | read_lock(&tasklist_lock); | 
|  | 3516 | p = find_process_by_pid(pid); | 
|  | 3517 | retval = -ESRCH; | 
|  | 3518 | if (!p) | 
|  | 3519 | goto out_unlock; | 
|  | 3520 |  | 
|  | 3521 | retval = security_task_getscheduler(p); | 
|  | 3522 | if (retval) | 
|  | 3523 | goto out_unlock; | 
|  | 3524 |  | 
|  | 3525 | lp.sched_priority = p->rt_priority; | 
|  | 3526 | read_unlock(&tasklist_lock); | 
|  | 3527 |  | 
|  | 3528 | /* | 
|  | 3529 | * This one might sleep, we cannot do it with a spinlock held ... | 
|  | 3530 | */ | 
|  | 3531 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
|  | 3532 |  | 
|  | 3533 | out_nounlock: | 
|  | 3534 | return retval; | 
|  | 3535 |  | 
|  | 3536 | out_unlock: | 
|  | 3537 | read_unlock(&tasklist_lock); | 
|  | 3538 | return retval; | 
|  | 3539 | } | 
|  | 3540 |  | 
|  | 3541 | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | 
|  | 3542 | { | 
|  | 3543 | task_t *p; | 
|  | 3544 | int retval; | 
|  | 3545 | cpumask_t cpus_allowed; | 
|  | 3546 |  | 
|  | 3547 | lock_cpu_hotplug(); | 
|  | 3548 | read_lock(&tasklist_lock); | 
|  | 3549 |  | 
|  | 3550 | p = find_process_by_pid(pid); | 
|  | 3551 | if (!p) { | 
|  | 3552 | read_unlock(&tasklist_lock); | 
|  | 3553 | unlock_cpu_hotplug(); | 
|  | 3554 | return -ESRCH; | 
|  | 3555 | } | 
|  | 3556 |  | 
|  | 3557 | /* | 
|  | 3558 | * It is not safe to call set_cpus_allowed with the | 
|  | 3559 | * tasklist_lock held.  We will bump the task_struct's | 
|  | 3560 | * usage count and then drop tasklist_lock. | 
|  | 3561 | */ | 
|  | 3562 | get_task_struct(p); | 
|  | 3563 | read_unlock(&tasklist_lock); | 
|  | 3564 |  | 
|  | 3565 | retval = -EPERM; | 
|  | 3566 | if ((current->euid != p->euid) && (current->euid != p->uid) && | 
|  | 3567 | !capable(CAP_SYS_NICE)) | 
|  | 3568 | goto out_unlock; | 
|  | 3569 |  | 
|  | 3570 | cpus_allowed = cpuset_cpus_allowed(p); | 
|  | 3571 | cpus_and(new_mask, new_mask, cpus_allowed); | 
|  | 3572 | retval = set_cpus_allowed(p, new_mask); | 
|  | 3573 |  | 
|  | 3574 | out_unlock: | 
|  | 3575 | put_task_struct(p); | 
|  | 3576 | unlock_cpu_hotplug(); | 
|  | 3577 | return retval; | 
|  | 3578 | } | 
|  | 3579 |  | 
|  | 3580 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
|  | 3581 | cpumask_t *new_mask) | 
|  | 3582 | { | 
|  | 3583 | if (len < sizeof(cpumask_t)) { | 
|  | 3584 | memset(new_mask, 0, sizeof(cpumask_t)); | 
|  | 3585 | } else if (len > sizeof(cpumask_t)) { | 
|  | 3586 | len = sizeof(cpumask_t); | 
|  | 3587 | } | 
|  | 3588 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
|  | 3589 | } | 
|  | 3590 |  | 
|  | 3591 | /** | 
|  | 3592 | * sys_sched_setaffinity - set the cpu affinity of a process | 
|  | 3593 | * @pid: pid of the process | 
|  | 3594 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | 3595 | * @user_mask_ptr: user-space pointer to the new cpu mask | 
|  | 3596 | */ | 
|  | 3597 | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 
|  | 3598 | unsigned long __user *user_mask_ptr) | 
|  | 3599 | { | 
|  | 3600 | cpumask_t new_mask; | 
|  | 3601 | int retval; | 
|  | 3602 |  | 
|  | 3603 | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 
|  | 3604 | if (retval) | 
|  | 3605 | return retval; | 
|  | 3606 |  | 
|  | 3607 | return sched_setaffinity(pid, new_mask); | 
|  | 3608 | } | 
|  | 3609 |  | 
|  | 3610 | /* | 
|  | 3611 | * Represents all cpu's present in the system | 
|  | 3612 | * In systems capable of hotplug, this map could dynamically grow | 
|  | 3613 | * as new cpu's are detected in the system via any platform specific | 
|  | 3614 | * method, such as ACPI for e.g. | 
|  | 3615 | */ | 
|  | 3616 |  | 
|  | 3617 | cpumask_t cpu_present_map; | 
|  | 3618 | EXPORT_SYMBOL(cpu_present_map); | 
|  | 3619 |  | 
|  | 3620 | #ifndef CONFIG_SMP | 
|  | 3621 | cpumask_t cpu_online_map = CPU_MASK_ALL; | 
|  | 3622 | cpumask_t cpu_possible_map = CPU_MASK_ALL; | 
|  | 3623 | #endif | 
|  | 3624 |  | 
|  | 3625 | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 
|  | 3626 | { | 
|  | 3627 | int retval; | 
|  | 3628 | task_t *p; | 
|  | 3629 |  | 
|  | 3630 | lock_cpu_hotplug(); | 
|  | 3631 | read_lock(&tasklist_lock); | 
|  | 3632 |  | 
|  | 3633 | retval = -ESRCH; | 
|  | 3634 | p = find_process_by_pid(pid); | 
|  | 3635 | if (!p) | 
|  | 3636 | goto out_unlock; | 
|  | 3637 |  | 
|  | 3638 | retval = 0; | 
|  | 3639 | cpus_and(*mask, p->cpus_allowed, cpu_possible_map); | 
|  | 3640 |  | 
|  | 3641 | out_unlock: | 
|  | 3642 | read_unlock(&tasklist_lock); | 
|  | 3643 | unlock_cpu_hotplug(); | 
|  | 3644 | if (retval) | 
|  | 3645 | return retval; | 
|  | 3646 |  | 
|  | 3647 | return 0; | 
|  | 3648 | } | 
|  | 3649 |  | 
|  | 3650 | /** | 
|  | 3651 | * sys_sched_getaffinity - get the cpu affinity of a process | 
|  | 3652 | * @pid: pid of the process | 
|  | 3653 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | 3654 | * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
|  | 3655 | */ | 
|  | 3656 | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 
|  | 3657 | unsigned long __user *user_mask_ptr) | 
|  | 3658 | { | 
|  | 3659 | int ret; | 
|  | 3660 | cpumask_t mask; | 
|  | 3661 |  | 
|  | 3662 | if (len < sizeof(cpumask_t)) | 
|  | 3663 | return -EINVAL; | 
|  | 3664 |  | 
|  | 3665 | ret = sched_getaffinity(pid, &mask); | 
|  | 3666 | if (ret < 0) | 
|  | 3667 | return ret; | 
|  | 3668 |  | 
|  | 3669 | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 
|  | 3670 | return -EFAULT; | 
|  | 3671 |  | 
|  | 3672 | return sizeof(cpumask_t); | 
|  | 3673 | } | 
|  | 3674 |  | 
|  | 3675 | /** | 
|  | 3676 | * sys_sched_yield - yield the current processor to other threads. | 
|  | 3677 | * | 
|  | 3678 | * this function yields the current CPU by moving the calling thread | 
|  | 3679 | * to the expired array. If there are no other threads running on this | 
|  | 3680 | * CPU then this function will return. | 
|  | 3681 | */ | 
|  | 3682 | asmlinkage long sys_sched_yield(void) | 
|  | 3683 | { | 
|  | 3684 | runqueue_t *rq = this_rq_lock(); | 
|  | 3685 | prio_array_t *array = current->array; | 
|  | 3686 | prio_array_t *target = rq->expired; | 
|  | 3687 |  | 
|  | 3688 | schedstat_inc(rq, yld_cnt); | 
|  | 3689 | /* | 
|  | 3690 | * We implement yielding by moving the task into the expired | 
|  | 3691 | * queue. | 
|  | 3692 | * | 
|  | 3693 | * (special rule: RT tasks will just roundrobin in the active | 
|  | 3694 | *  array.) | 
|  | 3695 | */ | 
|  | 3696 | if (rt_task(current)) | 
|  | 3697 | target = rq->active; | 
|  | 3698 |  | 
|  | 3699 | if (current->array->nr_active == 1) { | 
|  | 3700 | schedstat_inc(rq, yld_act_empty); | 
|  | 3701 | if (!rq->expired->nr_active) | 
|  | 3702 | schedstat_inc(rq, yld_both_empty); | 
|  | 3703 | } else if (!rq->expired->nr_active) | 
|  | 3704 | schedstat_inc(rq, yld_exp_empty); | 
|  | 3705 |  | 
|  | 3706 | if (array != target) { | 
|  | 3707 | dequeue_task(current, array); | 
|  | 3708 | enqueue_task(current, target); | 
|  | 3709 | } else | 
|  | 3710 | /* | 
|  | 3711 | * requeue_task is cheaper so perform that if possible. | 
|  | 3712 | */ | 
|  | 3713 | requeue_task(current, array); | 
|  | 3714 |  | 
|  | 3715 | /* | 
|  | 3716 | * Since we are going to call schedule() anyway, there's | 
|  | 3717 | * no need to preempt or enable interrupts: | 
|  | 3718 | */ | 
|  | 3719 | __release(rq->lock); | 
|  | 3720 | _raw_spin_unlock(&rq->lock); | 
|  | 3721 | preempt_enable_no_resched(); | 
|  | 3722 |  | 
|  | 3723 | schedule(); | 
|  | 3724 |  | 
|  | 3725 | return 0; | 
|  | 3726 | } | 
|  | 3727 |  | 
|  | 3728 | static inline void __cond_resched(void) | 
|  | 3729 | { | 
|  | 3730 | do { | 
|  | 3731 | add_preempt_count(PREEMPT_ACTIVE); | 
|  | 3732 | schedule(); | 
|  | 3733 | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | 3734 | } while (need_resched()); | 
|  | 3735 | } | 
|  | 3736 |  | 
|  | 3737 | int __sched cond_resched(void) | 
|  | 3738 | { | 
|  | 3739 | if (need_resched()) { | 
|  | 3740 | __cond_resched(); | 
|  | 3741 | return 1; | 
|  | 3742 | } | 
|  | 3743 | return 0; | 
|  | 3744 | } | 
|  | 3745 |  | 
|  | 3746 | EXPORT_SYMBOL(cond_resched); | 
|  | 3747 |  | 
|  | 3748 | /* | 
|  | 3749 | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
|  | 3750 | * call schedule, and on return reacquire the lock. | 
|  | 3751 | * | 
|  | 3752 | * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level | 
|  | 3753 | * operations here to prevent schedule() from being called twice (once via | 
|  | 3754 | * spin_unlock(), once by hand). | 
|  | 3755 | */ | 
|  | 3756 | int cond_resched_lock(spinlock_t * lock) | 
|  | 3757 | { | 
|  | 3758 | if (need_lockbreak(lock)) { | 
|  | 3759 | spin_unlock(lock); | 
|  | 3760 | cpu_relax(); | 
|  | 3761 | spin_lock(lock); | 
|  | 3762 | } | 
|  | 3763 | if (need_resched()) { | 
|  | 3764 | _raw_spin_unlock(lock); | 
|  | 3765 | preempt_enable_no_resched(); | 
|  | 3766 | __cond_resched(); | 
|  | 3767 | spin_lock(lock); | 
|  | 3768 | return 1; | 
|  | 3769 | } | 
|  | 3770 | return 0; | 
|  | 3771 | } | 
|  | 3772 |  | 
|  | 3773 | EXPORT_SYMBOL(cond_resched_lock); | 
|  | 3774 |  | 
|  | 3775 | int __sched cond_resched_softirq(void) | 
|  | 3776 | { | 
|  | 3777 | BUG_ON(!in_softirq()); | 
|  | 3778 |  | 
|  | 3779 | if (need_resched()) { | 
|  | 3780 | __local_bh_enable(); | 
|  | 3781 | __cond_resched(); | 
|  | 3782 | local_bh_disable(); | 
|  | 3783 | return 1; | 
|  | 3784 | } | 
|  | 3785 | return 0; | 
|  | 3786 | } | 
|  | 3787 |  | 
|  | 3788 | EXPORT_SYMBOL(cond_resched_softirq); | 
|  | 3789 |  | 
|  | 3790 |  | 
|  | 3791 | /** | 
|  | 3792 | * yield - yield the current processor to other threads. | 
|  | 3793 | * | 
|  | 3794 | * this is a shortcut for kernel-space yielding - it marks the | 
|  | 3795 | * thread runnable and calls sys_sched_yield(). | 
|  | 3796 | */ | 
|  | 3797 | void __sched yield(void) | 
|  | 3798 | { | 
|  | 3799 | set_current_state(TASK_RUNNING); | 
|  | 3800 | sys_sched_yield(); | 
|  | 3801 | } | 
|  | 3802 |  | 
|  | 3803 | EXPORT_SYMBOL(yield); | 
|  | 3804 |  | 
|  | 3805 | /* | 
|  | 3806 | * This task is about to go to sleep on IO.  Increment rq->nr_iowait so | 
|  | 3807 | * that process accounting knows that this is a task in IO wait state. | 
|  | 3808 | * | 
|  | 3809 | * But don't do that if it is a deliberate, throttling IO wait (this task | 
|  | 3810 | * has set its backing_dev_info: the queue against which it should throttle) | 
|  | 3811 | */ | 
|  | 3812 | void __sched io_schedule(void) | 
|  | 3813 | { | 
|  | 3814 | struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id()); | 
|  | 3815 |  | 
|  | 3816 | atomic_inc(&rq->nr_iowait); | 
|  | 3817 | schedule(); | 
|  | 3818 | atomic_dec(&rq->nr_iowait); | 
|  | 3819 | } | 
|  | 3820 |  | 
|  | 3821 | EXPORT_SYMBOL(io_schedule); | 
|  | 3822 |  | 
|  | 3823 | long __sched io_schedule_timeout(long timeout) | 
|  | 3824 | { | 
|  | 3825 | struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id()); | 
|  | 3826 | long ret; | 
|  | 3827 |  | 
|  | 3828 | atomic_inc(&rq->nr_iowait); | 
|  | 3829 | ret = schedule_timeout(timeout); | 
|  | 3830 | atomic_dec(&rq->nr_iowait); | 
|  | 3831 | return ret; | 
|  | 3832 | } | 
|  | 3833 |  | 
|  | 3834 | /** | 
|  | 3835 | * sys_sched_get_priority_max - return maximum RT priority. | 
|  | 3836 | * @policy: scheduling class. | 
|  | 3837 | * | 
|  | 3838 | * this syscall returns the maximum rt_priority that can be used | 
|  | 3839 | * by a given scheduling class. | 
|  | 3840 | */ | 
|  | 3841 | asmlinkage long sys_sched_get_priority_max(int policy) | 
|  | 3842 | { | 
|  | 3843 | int ret = -EINVAL; | 
|  | 3844 |  | 
|  | 3845 | switch (policy) { | 
|  | 3846 | case SCHED_FIFO: | 
|  | 3847 | case SCHED_RR: | 
|  | 3848 | ret = MAX_USER_RT_PRIO-1; | 
|  | 3849 | break; | 
|  | 3850 | case SCHED_NORMAL: | 
|  | 3851 | ret = 0; | 
|  | 3852 | break; | 
|  | 3853 | } | 
|  | 3854 | return ret; | 
|  | 3855 | } | 
|  | 3856 |  | 
|  | 3857 | /** | 
|  | 3858 | * sys_sched_get_priority_min - return minimum RT priority. | 
|  | 3859 | * @policy: scheduling class. | 
|  | 3860 | * | 
|  | 3861 | * this syscall returns the minimum rt_priority that can be used | 
|  | 3862 | * by a given scheduling class. | 
|  | 3863 | */ | 
|  | 3864 | asmlinkage long sys_sched_get_priority_min(int policy) | 
|  | 3865 | { | 
|  | 3866 | int ret = -EINVAL; | 
|  | 3867 |  | 
|  | 3868 | switch (policy) { | 
|  | 3869 | case SCHED_FIFO: | 
|  | 3870 | case SCHED_RR: | 
|  | 3871 | ret = 1; | 
|  | 3872 | break; | 
|  | 3873 | case SCHED_NORMAL: | 
|  | 3874 | ret = 0; | 
|  | 3875 | } | 
|  | 3876 | return ret; | 
|  | 3877 | } | 
|  | 3878 |  | 
|  | 3879 | /** | 
|  | 3880 | * sys_sched_rr_get_interval - return the default timeslice of a process. | 
|  | 3881 | * @pid: pid of the process. | 
|  | 3882 | * @interval: userspace pointer to the timeslice value. | 
|  | 3883 | * | 
|  | 3884 | * this syscall writes the default timeslice value of a given process | 
|  | 3885 | * into the user-space timespec buffer. A value of '0' means infinity. | 
|  | 3886 | */ | 
|  | 3887 | asmlinkage | 
|  | 3888 | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 
|  | 3889 | { | 
|  | 3890 | int retval = -EINVAL; | 
|  | 3891 | struct timespec t; | 
|  | 3892 | task_t *p; | 
|  | 3893 |  | 
|  | 3894 | if (pid < 0) | 
|  | 3895 | goto out_nounlock; | 
|  | 3896 |  | 
|  | 3897 | retval = -ESRCH; | 
|  | 3898 | read_lock(&tasklist_lock); | 
|  | 3899 | p = find_process_by_pid(pid); | 
|  | 3900 | if (!p) | 
|  | 3901 | goto out_unlock; | 
|  | 3902 |  | 
|  | 3903 | retval = security_task_getscheduler(p); | 
|  | 3904 | if (retval) | 
|  | 3905 | goto out_unlock; | 
|  | 3906 |  | 
|  | 3907 | jiffies_to_timespec(p->policy & SCHED_FIFO ? | 
|  | 3908 | 0 : task_timeslice(p), &t); | 
|  | 3909 | read_unlock(&tasklist_lock); | 
|  | 3910 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
|  | 3911 | out_nounlock: | 
|  | 3912 | return retval; | 
|  | 3913 | out_unlock: | 
|  | 3914 | read_unlock(&tasklist_lock); | 
|  | 3915 | return retval; | 
|  | 3916 | } | 
|  | 3917 |  | 
|  | 3918 | static inline struct task_struct *eldest_child(struct task_struct *p) | 
|  | 3919 | { | 
|  | 3920 | if (list_empty(&p->children)) return NULL; | 
|  | 3921 | return list_entry(p->children.next,struct task_struct,sibling); | 
|  | 3922 | } | 
|  | 3923 |  | 
|  | 3924 | static inline struct task_struct *older_sibling(struct task_struct *p) | 
|  | 3925 | { | 
|  | 3926 | if (p->sibling.prev==&p->parent->children) return NULL; | 
|  | 3927 | return list_entry(p->sibling.prev,struct task_struct,sibling); | 
|  | 3928 | } | 
|  | 3929 |  | 
|  | 3930 | static inline struct task_struct *younger_sibling(struct task_struct *p) | 
|  | 3931 | { | 
|  | 3932 | if (p->sibling.next==&p->parent->children) return NULL; | 
|  | 3933 | return list_entry(p->sibling.next,struct task_struct,sibling); | 
|  | 3934 | } | 
|  | 3935 |  | 
|  | 3936 | static void show_task(task_t * p) | 
|  | 3937 | { | 
|  | 3938 | task_t *relative; | 
|  | 3939 | unsigned state; | 
|  | 3940 | unsigned long free = 0; | 
|  | 3941 | static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" }; | 
|  | 3942 |  | 
|  | 3943 | printk("%-13.13s ", p->comm); | 
|  | 3944 | state = p->state ? __ffs(p->state) + 1 : 0; | 
|  | 3945 | if (state < ARRAY_SIZE(stat_nam)) | 
|  | 3946 | printk(stat_nam[state]); | 
|  | 3947 | else | 
|  | 3948 | printk("?"); | 
|  | 3949 | #if (BITS_PER_LONG == 32) | 
|  | 3950 | if (state == TASK_RUNNING) | 
|  | 3951 | printk(" running "); | 
|  | 3952 | else | 
|  | 3953 | printk(" %08lX ", thread_saved_pc(p)); | 
|  | 3954 | #else | 
|  | 3955 | if (state == TASK_RUNNING) | 
|  | 3956 | printk("  running task   "); | 
|  | 3957 | else | 
|  | 3958 | printk(" %016lx ", thread_saved_pc(p)); | 
|  | 3959 | #endif | 
|  | 3960 | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | 3961 | { | 
|  | 3962 | unsigned long * n = (unsigned long *) (p->thread_info+1); | 
|  | 3963 | while (!*n) | 
|  | 3964 | n++; | 
|  | 3965 | free = (unsigned long) n - (unsigned long)(p->thread_info+1); | 
|  | 3966 | } | 
|  | 3967 | #endif | 
|  | 3968 | printk("%5lu %5d %6d ", free, p->pid, p->parent->pid); | 
|  | 3969 | if ((relative = eldest_child(p))) | 
|  | 3970 | printk("%5d ", relative->pid); | 
|  | 3971 | else | 
|  | 3972 | printk("      "); | 
|  | 3973 | if ((relative = younger_sibling(p))) | 
|  | 3974 | printk("%7d", relative->pid); | 
|  | 3975 | else | 
|  | 3976 | printk("       "); | 
|  | 3977 | if ((relative = older_sibling(p))) | 
|  | 3978 | printk(" %5d", relative->pid); | 
|  | 3979 | else | 
|  | 3980 | printk("      "); | 
|  | 3981 | if (!p->mm) | 
|  | 3982 | printk(" (L-TLB)\n"); | 
|  | 3983 | else | 
|  | 3984 | printk(" (NOTLB)\n"); | 
|  | 3985 |  | 
|  | 3986 | if (state != TASK_RUNNING) | 
|  | 3987 | show_stack(p, NULL); | 
|  | 3988 | } | 
|  | 3989 |  | 
|  | 3990 | void show_state(void) | 
|  | 3991 | { | 
|  | 3992 | task_t *g, *p; | 
|  | 3993 |  | 
|  | 3994 | #if (BITS_PER_LONG == 32) | 
|  | 3995 | printk("\n" | 
|  | 3996 | "                                               sibling\n"); | 
|  | 3997 | printk("  task             PC      pid father child younger older\n"); | 
|  | 3998 | #else | 
|  | 3999 | printk("\n" | 
|  | 4000 | "                                                       sibling\n"); | 
|  | 4001 | printk("  task                 PC          pid father child younger older\n"); | 
|  | 4002 | #endif | 
|  | 4003 | read_lock(&tasklist_lock); | 
|  | 4004 | do_each_thread(g, p) { | 
|  | 4005 | /* | 
|  | 4006 | * reset the NMI-timeout, listing all files on a slow | 
|  | 4007 | * console might take alot of time: | 
|  | 4008 | */ | 
|  | 4009 | touch_nmi_watchdog(); | 
|  | 4010 | show_task(p); | 
|  | 4011 | } while_each_thread(g, p); | 
|  | 4012 |  | 
|  | 4013 | read_unlock(&tasklist_lock); | 
|  | 4014 | } | 
|  | 4015 |  | 
|  | 4016 | void __devinit init_idle(task_t *idle, int cpu) | 
|  | 4017 | { | 
|  | 4018 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 4019 | unsigned long flags; | 
|  | 4020 |  | 
|  | 4021 | idle->sleep_avg = 0; | 
|  | 4022 | idle->array = NULL; | 
|  | 4023 | idle->prio = MAX_PRIO; | 
|  | 4024 | idle->state = TASK_RUNNING; | 
|  | 4025 | idle->cpus_allowed = cpumask_of_cpu(cpu); | 
|  | 4026 | set_task_cpu(idle, cpu); | 
|  | 4027 |  | 
|  | 4028 | spin_lock_irqsave(&rq->lock, flags); | 
|  | 4029 | rq->curr = rq->idle = idle; | 
|  | 4030 | set_tsk_need_resched(idle); | 
|  | 4031 | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | 4032 |  | 
|  | 4033 | /* Set the preempt count _outside_ the spinlocks! */ | 
|  | 4034 | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | 
|  | 4035 | idle->thread_info->preempt_count = (idle->lock_depth >= 0); | 
|  | 4036 | #else | 
|  | 4037 | idle->thread_info->preempt_count = 0; | 
|  | 4038 | #endif | 
|  | 4039 | } | 
|  | 4040 |  | 
|  | 4041 | /* | 
|  | 4042 | * In a system that switches off the HZ timer nohz_cpu_mask | 
|  | 4043 | * indicates which cpus entered this state. This is used | 
|  | 4044 | * in the rcu update to wait only for active cpus. For system | 
|  | 4045 | * which do not switch off the HZ timer nohz_cpu_mask should | 
|  | 4046 | * always be CPU_MASK_NONE. | 
|  | 4047 | */ | 
|  | 4048 | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 
|  | 4049 |  | 
|  | 4050 | #ifdef CONFIG_SMP | 
|  | 4051 | /* | 
|  | 4052 | * This is how migration works: | 
|  | 4053 | * | 
|  | 4054 | * 1) we queue a migration_req_t structure in the source CPU's | 
|  | 4055 | *    runqueue and wake up that CPU's migration thread. | 
|  | 4056 | * 2) we down() the locked semaphore => thread blocks. | 
|  | 4057 | * 3) migration thread wakes up (implicitly it forces the migrated | 
|  | 4058 | *    thread off the CPU) | 
|  | 4059 | * 4) it gets the migration request and checks whether the migrated | 
|  | 4060 | *    task is still in the wrong runqueue. | 
|  | 4061 | * 5) if it's in the wrong runqueue then the migration thread removes | 
|  | 4062 | *    it and puts it into the right queue. | 
|  | 4063 | * 6) migration thread up()s the semaphore. | 
|  | 4064 | * 7) we wake up and the migration is done. | 
|  | 4065 | */ | 
|  | 4066 |  | 
|  | 4067 | /* | 
|  | 4068 | * Change a given task's CPU affinity. Migrate the thread to a | 
|  | 4069 | * proper CPU and schedule it away if the CPU it's executing on | 
|  | 4070 | * is removed from the allowed bitmask. | 
|  | 4071 | * | 
|  | 4072 | * NOTE: the caller must have a valid reference to the task, the | 
|  | 4073 | * task must not exit() & deallocate itself prematurely.  The | 
|  | 4074 | * call is not atomic; no spinlocks may be held. | 
|  | 4075 | */ | 
|  | 4076 | int set_cpus_allowed(task_t *p, cpumask_t new_mask) | 
|  | 4077 | { | 
|  | 4078 | unsigned long flags; | 
|  | 4079 | int ret = 0; | 
|  | 4080 | migration_req_t req; | 
|  | 4081 | runqueue_t *rq; | 
|  | 4082 |  | 
|  | 4083 | rq = task_rq_lock(p, &flags); | 
|  | 4084 | if (!cpus_intersects(new_mask, cpu_online_map)) { | 
|  | 4085 | ret = -EINVAL; | 
|  | 4086 | goto out; | 
|  | 4087 | } | 
|  | 4088 |  | 
|  | 4089 | p->cpus_allowed = new_mask; | 
|  | 4090 | /* Can the task run on the task's current CPU? If so, we're done */ | 
|  | 4091 | if (cpu_isset(task_cpu(p), new_mask)) | 
|  | 4092 | goto out; | 
|  | 4093 |  | 
|  | 4094 | if (migrate_task(p, any_online_cpu(new_mask), &req)) { | 
|  | 4095 | /* Need help from migration thread: drop lock and wait. */ | 
|  | 4096 | task_rq_unlock(rq, &flags); | 
|  | 4097 | wake_up_process(rq->migration_thread); | 
|  | 4098 | wait_for_completion(&req.done); | 
|  | 4099 | tlb_migrate_finish(p->mm); | 
|  | 4100 | return 0; | 
|  | 4101 | } | 
|  | 4102 | out: | 
|  | 4103 | task_rq_unlock(rq, &flags); | 
|  | 4104 | return ret; | 
|  | 4105 | } | 
|  | 4106 |  | 
|  | 4107 | EXPORT_SYMBOL_GPL(set_cpus_allowed); | 
|  | 4108 |  | 
|  | 4109 | /* | 
|  | 4110 | * Move (not current) task off this cpu, onto dest cpu.  We're doing | 
|  | 4111 | * this because either it can't run here any more (set_cpus_allowed() | 
|  | 4112 | * away from this CPU, or CPU going down), or because we're | 
|  | 4113 | * attempting to rebalance this task on exec (sched_exec). | 
|  | 4114 | * | 
|  | 4115 | * So we race with normal scheduler movements, but that's OK, as long | 
|  | 4116 | * as the task is no longer on this CPU. | 
|  | 4117 | */ | 
|  | 4118 | static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
|  | 4119 | { | 
|  | 4120 | runqueue_t *rq_dest, *rq_src; | 
|  | 4121 |  | 
|  | 4122 | if (unlikely(cpu_is_offline(dest_cpu))) | 
|  | 4123 | return; | 
|  | 4124 |  | 
|  | 4125 | rq_src = cpu_rq(src_cpu); | 
|  | 4126 | rq_dest = cpu_rq(dest_cpu); | 
|  | 4127 |  | 
|  | 4128 | double_rq_lock(rq_src, rq_dest); | 
|  | 4129 | /* Already moved. */ | 
|  | 4130 | if (task_cpu(p) != src_cpu) | 
|  | 4131 | goto out; | 
|  | 4132 | /* Affinity changed (again). */ | 
|  | 4133 | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 
|  | 4134 | goto out; | 
|  | 4135 |  | 
|  | 4136 | set_task_cpu(p, dest_cpu); | 
|  | 4137 | if (p->array) { | 
|  | 4138 | /* | 
|  | 4139 | * Sync timestamp with rq_dest's before activating. | 
|  | 4140 | * The same thing could be achieved by doing this step | 
|  | 4141 | * afterwards, and pretending it was a local activate. | 
|  | 4142 | * This way is cleaner and logically correct. | 
|  | 4143 | */ | 
|  | 4144 | p->timestamp = p->timestamp - rq_src->timestamp_last_tick | 
|  | 4145 | + rq_dest->timestamp_last_tick; | 
|  | 4146 | deactivate_task(p, rq_src); | 
|  | 4147 | activate_task(p, rq_dest, 0); | 
|  | 4148 | if (TASK_PREEMPTS_CURR(p, rq_dest)) | 
|  | 4149 | resched_task(rq_dest->curr); | 
|  | 4150 | } | 
|  | 4151 |  | 
|  | 4152 | out: | 
|  | 4153 | double_rq_unlock(rq_src, rq_dest); | 
|  | 4154 | } | 
|  | 4155 |  | 
|  | 4156 | /* | 
|  | 4157 | * migration_thread - this is a highprio system thread that performs | 
|  | 4158 | * thread migration by bumping thread off CPU then 'pushing' onto | 
|  | 4159 | * another runqueue. | 
|  | 4160 | */ | 
|  | 4161 | static int migration_thread(void * data) | 
|  | 4162 | { | 
|  | 4163 | runqueue_t *rq; | 
|  | 4164 | int cpu = (long)data; | 
|  | 4165 |  | 
|  | 4166 | rq = cpu_rq(cpu); | 
|  | 4167 | BUG_ON(rq->migration_thread != current); | 
|  | 4168 |  | 
|  | 4169 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4170 | while (!kthread_should_stop()) { | 
|  | 4171 | struct list_head *head; | 
|  | 4172 | migration_req_t *req; | 
|  | 4173 |  | 
|  | 4174 | if (current->flags & PF_FREEZE) | 
|  | 4175 | refrigerator(PF_FREEZE); | 
|  | 4176 |  | 
|  | 4177 | spin_lock_irq(&rq->lock); | 
|  | 4178 |  | 
|  | 4179 | if (cpu_is_offline(cpu)) { | 
|  | 4180 | spin_unlock_irq(&rq->lock); | 
|  | 4181 | goto wait_to_die; | 
|  | 4182 | } | 
|  | 4183 |  | 
|  | 4184 | if (rq->active_balance) { | 
|  | 4185 | active_load_balance(rq, cpu); | 
|  | 4186 | rq->active_balance = 0; | 
|  | 4187 | } | 
|  | 4188 |  | 
|  | 4189 | head = &rq->migration_queue; | 
|  | 4190 |  | 
|  | 4191 | if (list_empty(head)) { | 
|  | 4192 | spin_unlock_irq(&rq->lock); | 
|  | 4193 | schedule(); | 
|  | 4194 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4195 | continue; | 
|  | 4196 | } | 
|  | 4197 | req = list_entry(head->next, migration_req_t, list); | 
|  | 4198 | list_del_init(head->next); | 
|  | 4199 |  | 
|  | 4200 | if (req->type == REQ_MOVE_TASK) { | 
|  | 4201 | spin_unlock(&rq->lock); | 
|  | 4202 | __migrate_task(req->task, cpu, req->dest_cpu); | 
|  | 4203 | local_irq_enable(); | 
|  | 4204 | } else if (req->type == REQ_SET_DOMAIN) { | 
|  | 4205 | rq->sd = req->sd; | 
|  | 4206 | spin_unlock_irq(&rq->lock); | 
|  | 4207 | } else { | 
|  | 4208 | spin_unlock_irq(&rq->lock); | 
|  | 4209 | WARN_ON(1); | 
|  | 4210 | } | 
|  | 4211 |  | 
|  | 4212 | complete(&req->done); | 
|  | 4213 | } | 
|  | 4214 | __set_current_state(TASK_RUNNING); | 
|  | 4215 | return 0; | 
|  | 4216 |  | 
|  | 4217 | wait_to_die: | 
|  | 4218 | /* Wait for kthread_stop */ | 
|  | 4219 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4220 | while (!kthread_should_stop()) { | 
|  | 4221 | schedule(); | 
|  | 4222 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 4223 | } | 
|  | 4224 | __set_current_state(TASK_RUNNING); | 
|  | 4225 | return 0; | 
|  | 4226 | } | 
|  | 4227 |  | 
|  | 4228 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 4229 | /* Figure out where task on dead CPU should go, use force if neccessary. */ | 
|  | 4230 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk) | 
|  | 4231 | { | 
|  | 4232 | int dest_cpu; | 
|  | 4233 | cpumask_t mask; | 
|  | 4234 |  | 
|  | 4235 | /* On same node? */ | 
|  | 4236 | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 
|  | 4237 | cpus_and(mask, mask, tsk->cpus_allowed); | 
|  | 4238 | dest_cpu = any_online_cpu(mask); | 
|  | 4239 |  | 
|  | 4240 | /* On any allowed CPU? */ | 
|  | 4241 | if (dest_cpu == NR_CPUS) | 
|  | 4242 | dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
|  | 4243 |  | 
|  | 4244 | /* No more Mr. Nice Guy. */ | 
|  | 4245 | if (dest_cpu == NR_CPUS) { | 
|  | 4246 | tsk->cpus_allowed = cpuset_cpus_allowed(tsk); | 
|  | 4247 | dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
|  | 4248 |  | 
|  | 4249 | /* | 
|  | 4250 | * Don't tell them about moving exiting tasks or | 
|  | 4251 | * kernel threads (both mm NULL), since they never | 
|  | 4252 | * leave kernel. | 
|  | 4253 | */ | 
|  | 4254 | if (tsk->mm && printk_ratelimit()) | 
|  | 4255 | printk(KERN_INFO "process %d (%s) no " | 
|  | 4256 | "longer affine to cpu%d\n", | 
|  | 4257 | tsk->pid, tsk->comm, dead_cpu); | 
|  | 4258 | } | 
|  | 4259 | __migrate_task(tsk, dead_cpu, dest_cpu); | 
|  | 4260 | } | 
|  | 4261 |  | 
|  | 4262 | /* | 
|  | 4263 | * While a dead CPU has no uninterruptible tasks queued at this point, | 
|  | 4264 | * it might still have a nonzero ->nr_uninterruptible counter, because | 
|  | 4265 | * for performance reasons the counter is not stricly tracking tasks to | 
|  | 4266 | * their home CPUs. So we just add the counter to another CPU's counter, | 
|  | 4267 | * to keep the global sum constant after CPU-down: | 
|  | 4268 | */ | 
|  | 4269 | static void migrate_nr_uninterruptible(runqueue_t *rq_src) | 
|  | 4270 | { | 
|  | 4271 | runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); | 
|  | 4272 | unsigned long flags; | 
|  | 4273 |  | 
|  | 4274 | local_irq_save(flags); | 
|  | 4275 | double_rq_lock(rq_src, rq_dest); | 
|  | 4276 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
|  | 4277 | rq_src->nr_uninterruptible = 0; | 
|  | 4278 | double_rq_unlock(rq_src, rq_dest); | 
|  | 4279 | local_irq_restore(flags); | 
|  | 4280 | } | 
|  | 4281 |  | 
|  | 4282 | /* Run through task list and migrate tasks from the dead cpu. */ | 
|  | 4283 | static void migrate_live_tasks(int src_cpu) | 
|  | 4284 | { | 
|  | 4285 | struct task_struct *tsk, *t; | 
|  | 4286 |  | 
|  | 4287 | write_lock_irq(&tasklist_lock); | 
|  | 4288 |  | 
|  | 4289 | do_each_thread(t, tsk) { | 
|  | 4290 | if (tsk == current) | 
|  | 4291 | continue; | 
|  | 4292 |  | 
|  | 4293 | if (task_cpu(tsk) == src_cpu) | 
|  | 4294 | move_task_off_dead_cpu(src_cpu, tsk); | 
|  | 4295 | } while_each_thread(t, tsk); | 
|  | 4296 |  | 
|  | 4297 | write_unlock_irq(&tasklist_lock); | 
|  | 4298 | } | 
|  | 4299 |  | 
|  | 4300 | /* Schedules idle task to be the next runnable task on current CPU. | 
|  | 4301 | * It does so by boosting its priority to highest possible and adding it to | 
|  | 4302 | * the _front_ of runqueue. Used by CPU offline code. | 
|  | 4303 | */ | 
|  | 4304 | void sched_idle_next(void) | 
|  | 4305 | { | 
|  | 4306 | int cpu = smp_processor_id(); | 
|  | 4307 | runqueue_t *rq = this_rq(); | 
|  | 4308 | struct task_struct *p = rq->idle; | 
|  | 4309 | unsigned long flags; | 
|  | 4310 |  | 
|  | 4311 | /* cpu has to be offline */ | 
|  | 4312 | BUG_ON(cpu_online(cpu)); | 
|  | 4313 |  | 
|  | 4314 | /* Strictly not necessary since rest of the CPUs are stopped by now | 
|  | 4315 | * and interrupts disabled on current cpu. | 
|  | 4316 | */ | 
|  | 4317 | spin_lock_irqsave(&rq->lock, flags); | 
|  | 4318 |  | 
|  | 4319 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | 4320 | /* Add idle task to _front_ of it's priority queue */ | 
|  | 4321 | __activate_idle_task(p, rq); | 
|  | 4322 |  | 
|  | 4323 | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | 4324 | } | 
|  | 4325 |  | 
|  | 4326 | /* Ensures that the idle task is using init_mm right before its cpu goes | 
|  | 4327 | * offline. | 
|  | 4328 | */ | 
|  | 4329 | void idle_task_exit(void) | 
|  | 4330 | { | 
|  | 4331 | struct mm_struct *mm = current->active_mm; | 
|  | 4332 |  | 
|  | 4333 | BUG_ON(cpu_online(smp_processor_id())); | 
|  | 4334 |  | 
|  | 4335 | if (mm != &init_mm) | 
|  | 4336 | switch_mm(mm, &init_mm, current); | 
|  | 4337 | mmdrop(mm); | 
|  | 4338 | } | 
|  | 4339 |  | 
|  | 4340 | static void migrate_dead(unsigned int dead_cpu, task_t *tsk) | 
|  | 4341 | { | 
|  | 4342 | struct runqueue *rq = cpu_rq(dead_cpu); | 
|  | 4343 |  | 
|  | 4344 | /* Must be exiting, otherwise would be on tasklist. */ | 
|  | 4345 | BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD); | 
|  | 4346 |  | 
|  | 4347 | /* Cannot have done final schedule yet: would have vanished. */ | 
|  | 4348 | BUG_ON(tsk->flags & PF_DEAD); | 
|  | 4349 |  | 
|  | 4350 | get_task_struct(tsk); | 
|  | 4351 |  | 
|  | 4352 | /* | 
|  | 4353 | * Drop lock around migration; if someone else moves it, | 
|  | 4354 | * that's OK.  No task can be added to this CPU, so iteration is | 
|  | 4355 | * fine. | 
|  | 4356 | */ | 
|  | 4357 | spin_unlock_irq(&rq->lock); | 
|  | 4358 | move_task_off_dead_cpu(dead_cpu, tsk); | 
|  | 4359 | spin_lock_irq(&rq->lock); | 
|  | 4360 |  | 
|  | 4361 | put_task_struct(tsk); | 
|  | 4362 | } | 
|  | 4363 |  | 
|  | 4364 | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
|  | 4365 | static void migrate_dead_tasks(unsigned int dead_cpu) | 
|  | 4366 | { | 
|  | 4367 | unsigned arr, i; | 
|  | 4368 | struct runqueue *rq = cpu_rq(dead_cpu); | 
|  | 4369 |  | 
|  | 4370 | for (arr = 0; arr < 2; arr++) { | 
|  | 4371 | for (i = 0; i < MAX_PRIO; i++) { | 
|  | 4372 | struct list_head *list = &rq->arrays[arr].queue[i]; | 
|  | 4373 | while (!list_empty(list)) | 
|  | 4374 | migrate_dead(dead_cpu, | 
|  | 4375 | list_entry(list->next, task_t, | 
|  | 4376 | run_list)); | 
|  | 4377 | } | 
|  | 4378 | } | 
|  | 4379 | } | 
|  | 4380 | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  | 4381 |  | 
|  | 4382 | /* | 
|  | 4383 | * migration_call - callback that gets triggered when a CPU is added. | 
|  | 4384 | * Here we can start up the necessary migration thread for the new CPU. | 
|  | 4385 | */ | 
|  | 4386 | static int migration_call(struct notifier_block *nfb, unsigned long action, | 
|  | 4387 | void *hcpu) | 
|  | 4388 | { | 
|  | 4389 | int cpu = (long)hcpu; | 
|  | 4390 | struct task_struct *p; | 
|  | 4391 | struct runqueue *rq; | 
|  | 4392 | unsigned long flags; | 
|  | 4393 |  | 
|  | 4394 | switch (action) { | 
|  | 4395 | case CPU_UP_PREPARE: | 
|  | 4396 | p = kthread_create(migration_thread, hcpu, "migration/%d",cpu); | 
|  | 4397 | if (IS_ERR(p)) | 
|  | 4398 | return NOTIFY_BAD; | 
|  | 4399 | p->flags |= PF_NOFREEZE; | 
|  | 4400 | kthread_bind(p, cpu); | 
|  | 4401 | /* Must be high prio: stop_machine expects to yield to it. */ | 
|  | 4402 | rq = task_rq_lock(p, &flags); | 
|  | 4403 | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | 4404 | task_rq_unlock(rq, &flags); | 
|  | 4405 | cpu_rq(cpu)->migration_thread = p; | 
|  | 4406 | break; | 
|  | 4407 | case CPU_ONLINE: | 
|  | 4408 | /* Strictly unneccessary, as first user will wake it. */ | 
|  | 4409 | wake_up_process(cpu_rq(cpu)->migration_thread); | 
|  | 4410 | break; | 
|  | 4411 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 4412 | case CPU_UP_CANCELED: | 
|  | 4413 | /* Unbind it from offline cpu so it can run.  Fall thru. */ | 
|  | 4414 | kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id()); | 
|  | 4415 | kthread_stop(cpu_rq(cpu)->migration_thread); | 
|  | 4416 | cpu_rq(cpu)->migration_thread = NULL; | 
|  | 4417 | break; | 
|  | 4418 | case CPU_DEAD: | 
|  | 4419 | migrate_live_tasks(cpu); | 
|  | 4420 | rq = cpu_rq(cpu); | 
|  | 4421 | kthread_stop(rq->migration_thread); | 
|  | 4422 | rq->migration_thread = NULL; | 
|  | 4423 | /* Idle task back to normal (off runqueue, low prio) */ | 
|  | 4424 | rq = task_rq_lock(rq->idle, &flags); | 
|  | 4425 | deactivate_task(rq->idle, rq); | 
|  | 4426 | rq->idle->static_prio = MAX_PRIO; | 
|  | 4427 | __setscheduler(rq->idle, SCHED_NORMAL, 0); | 
|  | 4428 | migrate_dead_tasks(cpu); | 
|  | 4429 | task_rq_unlock(rq, &flags); | 
|  | 4430 | migrate_nr_uninterruptible(rq); | 
|  | 4431 | BUG_ON(rq->nr_running != 0); | 
|  | 4432 |  | 
|  | 4433 | /* No need to migrate the tasks: it was best-effort if | 
|  | 4434 | * they didn't do lock_cpu_hotplug().  Just wake up | 
|  | 4435 | * the requestors. */ | 
|  | 4436 | spin_lock_irq(&rq->lock); | 
|  | 4437 | while (!list_empty(&rq->migration_queue)) { | 
|  | 4438 | migration_req_t *req; | 
|  | 4439 | req = list_entry(rq->migration_queue.next, | 
|  | 4440 | migration_req_t, list); | 
|  | 4441 | BUG_ON(req->type != REQ_MOVE_TASK); | 
|  | 4442 | list_del_init(&req->list); | 
|  | 4443 | complete(&req->done); | 
|  | 4444 | } | 
|  | 4445 | spin_unlock_irq(&rq->lock); | 
|  | 4446 | break; | 
|  | 4447 | #endif | 
|  | 4448 | } | 
|  | 4449 | return NOTIFY_OK; | 
|  | 4450 | } | 
|  | 4451 |  | 
|  | 4452 | /* Register at highest priority so that task migration (migrate_all_tasks) | 
|  | 4453 | * happens before everything else. | 
|  | 4454 | */ | 
|  | 4455 | static struct notifier_block __devinitdata migration_notifier = { | 
|  | 4456 | .notifier_call = migration_call, | 
|  | 4457 | .priority = 10 | 
|  | 4458 | }; | 
|  | 4459 |  | 
|  | 4460 | int __init migration_init(void) | 
|  | 4461 | { | 
|  | 4462 | void *cpu = (void *)(long)smp_processor_id(); | 
|  | 4463 | /* Start one for boot CPU. */ | 
|  | 4464 | migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
|  | 4465 | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
|  | 4466 | register_cpu_notifier(&migration_notifier); | 
|  | 4467 | return 0; | 
|  | 4468 | } | 
|  | 4469 | #endif | 
|  | 4470 |  | 
|  | 4471 | #ifdef CONFIG_SMP | 
|  | 4472 | #define SCHED_DOMAIN_DEBUG | 
|  | 4473 | #ifdef SCHED_DOMAIN_DEBUG | 
|  | 4474 | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
|  | 4475 | { | 
|  | 4476 | int level = 0; | 
|  | 4477 |  | 
|  | 4478 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
|  | 4479 |  | 
|  | 4480 | do { | 
|  | 4481 | int i; | 
|  | 4482 | char str[NR_CPUS]; | 
|  | 4483 | struct sched_group *group = sd->groups; | 
|  | 4484 | cpumask_t groupmask; | 
|  | 4485 |  | 
|  | 4486 | cpumask_scnprintf(str, NR_CPUS, sd->span); | 
|  | 4487 | cpus_clear(groupmask); | 
|  | 4488 |  | 
|  | 4489 | printk(KERN_DEBUG); | 
|  | 4490 | for (i = 0; i < level + 1; i++) | 
|  | 4491 | printk(" "); | 
|  | 4492 | printk("domain %d: ", level); | 
|  | 4493 |  | 
|  | 4494 | if (!(sd->flags & SD_LOAD_BALANCE)) { | 
|  | 4495 | printk("does not load-balance\n"); | 
|  | 4496 | if (sd->parent) | 
|  | 4497 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); | 
|  | 4498 | break; | 
|  | 4499 | } | 
|  | 4500 |  | 
|  | 4501 | printk("span %s\n", str); | 
|  | 4502 |  | 
|  | 4503 | if (!cpu_isset(cpu, sd->span)) | 
|  | 4504 | printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); | 
|  | 4505 | if (!cpu_isset(cpu, group->cpumask)) | 
|  | 4506 | printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); | 
|  | 4507 |  | 
|  | 4508 | printk(KERN_DEBUG); | 
|  | 4509 | for (i = 0; i < level + 2; i++) | 
|  | 4510 | printk(" "); | 
|  | 4511 | printk("groups:"); | 
|  | 4512 | do { | 
|  | 4513 | if (!group) { | 
|  | 4514 | printk("\n"); | 
|  | 4515 | printk(KERN_ERR "ERROR: group is NULL\n"); | 
|  | 4516 | break; | 
|  | 4517 | } | 
|  | 4518 |  | 
|  | 4519 | if (!group->cpu_power) { | 
|  | 4520 | printk("\n"); | 
|  | 4521 | printk(KERN_ERR "ERROR: domain->cpu_power not set\n"); | 
|  | 4522 | } | 
|  | 4523 |  | 
|  | 4524 | if (!cpus_weight(group->cpumask)) { | 
|  | 4525 | printk("\n"); | 
|  | 4526 | printk(KERN_ERR "ERROR: empty group\n"); | 
|  | 4527 | } | 
|  | 4528 |  | 
|  | 4529 | if (cpus_intersects(groupmask, group->cpumask)) { | 
|  | 4530 | printk("\n"); | 
|  | 4531 | printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
|  | 4532 | } | 
|  | 4533 |  | 
|  | 4534 | cpus_or(groupmask, groupmask, group->cpumask); | 
|  | 4535 |  | 
|  | 4536 | cpumask_scnprintf(str, NR_CPUS, group->cpumask); | 
|  | 4537 | printk(" %s", str); | 
|  | 4538 |  | 
|  | 4539 | group = group->next; | 
|  | 4540 | } while (group != sd->groups); | 
|  | 4541 | printk("\n"); | 
|  | 4542 |  | 
|  | 4543 | if (!cpus_equal(sd->span, groupmask)) | 
|  | 4544 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
|  | 4545 |  | 
|  | 4546 | level++; | 
|  | 4547 | sd = sd->parent; | 
|  | 4548 |  | 
|  | 4549 | if (sd) { | 
|  | 4550 | if (!cpus_subset(groupmask, sd->span)) | 
|  | 4551 | printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); | 
|  | 4552 | } | 
|  | 4553 |  | 
|  | 4554 | } while (sd); | 
|  | 4555 | } | 
|  | 4556 | #else | 
|  | 4557 | #define sched_domain_debug(sd, cpu) {} | 
|  | 4558 | #endif | 
|  | 4559 |  | 
|  | 4560 | /* | 
|  | 4561 | * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must | 
|  | 4562 | * hold the hotplug lock. | 
|  | 4563 | */ | 
|  | 4564 | void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu) | 
|  | 4565 | { | 
|  | 4566 | migration_req_t req; | 
|  | 4567 | unsigned long flags; | 
|  | 4568 | runqueue_t *rq = cpu_rq(cpu); | 
|  | 4569 | int local = 1; | 
|  | 4570 |  | 
|  | 4571 | sched_domain_debug(sd, cpu); | 
|  | 4572 |  | 
|  | 4573 | spin_lock_irqsave(&rq->lock, flags); | 
|  | 4574 |  | 
|  | 4575 | if (cpu == smp_processor_id() || !cpu_online(cpu)) { | 
|  | 4576 | rq->sd = sd; | 
|  | 4577 | } else { | 
|  | 4578 | init_completion(&req.done); | 
|  | 4579 | req.type = REQ_SET_DOMAIN; | 
|  | 4580 | req.sd = sd; | 
|  | 4581 | list_add(&req.list, &rq->migration_queue); | 
|  | 4582 | local = 0; | 
|  | 4583 | } | 
|  | 4584 |  | 
|  | 4585 | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | 4586 |  | 
|  | 4587 | if (!local) { | 
|  | 4588 | wake_up_process(rq->migration_thread); | 
|  | 4589 | wait_for_completion(&req.done); | 
|  | 4590 | } | 
|  | 4591 | } | 
|  | 4592 |  | 
|  | 4593 | /* cpus with isolated domains */ | 
|  | 4594 | cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE; | 
|  | 4595 |  | 
|  | 4596 | /* Setup the mask of cpus configured for isolated domains */ | 
|  | 4597 | static int __init isolated_cpu_setup(char *str) | 
|  | 4598 | { | 
|  | 4599 | int ints[NR_CPUS], i; | 
|  | 4600 |  | 
|  | 4601 | str = get_options(str, ARRAY_SIZE(ints), ints); | 
|  | 4602 | cpus_clear(cpu_isolated_map); | 
|  | 4603 | for (i = 1; i <= ints[0]; i++) | 
|  | 4604 | if (ints[i] < NR_CPUS) | 
|  | 4605 | cpu_set(ints[i], cpu_isolated_map); | 
|  | 4606 | return 1; | 
|  | 4607 | } | 
|  | 4608 |  | 
|  | 4609 | __setup ("isolcpus=", isolated_cpu_setup); | 
|  | 4610 |  | 
|  | 4611 | /* | 
|  | 4612 | * init_sched_build_groups takes an array of groups, the cpumask we wish | 
|  | 4613 | * to span, and a pointer to a function which identifies what group a CPU | 
|  | 4614 | * belongs to. The return value of group_fn must be a valid index into the | 
|  | 4615 | * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we | 
|  | 4616 | * keep track of groups covered with a cpumask_t). | 
|  | 4617 | * | 
|  | 4618 | * init_sched_build_groups will build a circular linked list of the groups | 
|  | 4619 | * covered by the given span, and will set each group's ->cpumask correctly, | 
|  | 4620 | * and ->cpu_power to 0. | 
|  | 4621 | */ | 
|  | 4622 | void __devinit init_sched_build_groups(struct sched_group groups[], | 
|  | 4623 | cpumask_t span, int (*group_fn)(int cpu)) | 
|  | 4624 | { | 
|  | 4625 | struct sched_group *first = NULL, *last = NULL; | 
|  | 4626 | cpumask_t covered = CPU_MASK_NONE; | 
|  | 4627 | int i; | 
|  | 4628 |  | 
|  | 4629 | for_each_cpu_mask(i, span) { | 
|  | 4630 | int group = group_fn(i); | 
|  | 4631 | struct sched_group *sg = &groups[group]; | 
|  | 4632 | int j; | 
|  | 4633 |  | 
|  | 4634 | if (cpu_isset(i, covered)) | 
|  | 4635 | continue; | 
|  | 4636 |  | 
|  | 4637 | sg->cpumask = CPU_MASK_NONE; | 
|  | 4638 | sg->cpu_power = 0; | 
|  | 4639 |  | 
|  | 4640 | for_each_cpu_mask(j, span) { | 
|  | 4641 | if (group_fn(j) != group) | 
|  | 4642 | continue; | 
|  | 4643 |  | 
|  | 4644 | cpu_set(j, covered); | 
|  | 4645 | cpu_set(j, sg->cpumask); | 
|  | 4646 | } | 
|  | 4647 | if (!first) | 
|  | 4648 | first = sg; | 
|  | 4649 | if (last) | 
|  | 4650 | last->next = sg; | 
|  | 4651 | last = sg; | 
|  | 4652 | } | 
|  | 4653 | last->next = first; | 
|  | 4654 | } | 
|  | 4655 |  | 
|  | 4656 |  | 
|  | 4657 | #ifdef ARCH_HAS_SCHED_DOMAIN | 
|  | 4658 | extern void __devinit arch_init_sched_domains(void); | 
|  | 4659 | extern void __devinit arch_destroy_sched_domains(void); | 
|  | 4660 | #else | 
|  | 4661 | #ifdef CONFIG_SCHED_SMT | 
|  | 4662 | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 
|  | 4663 | static struct sched_group sched_group_cpus[NR_CPUS]; | 
|  | 4664 | static int __devinit cpu_to_cpu_group(int cpu) | 
|  | 4665 | { | 
|  | 4666 | return cpu; | 
|  | 4667 | } | 
|  | 4668 | #endif | 
|  | 4669 |  | 
|  | 4670 | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 
|  | 4671 | static struct sched_group sched_group_phys[NR_CPUS]; | 
|  | 4672 | static int __devinit cpu_to_phys_group(int cpu) | 
|  | 4673 | { | 
|  | 4674 | #ifdef CONFIG_SCHED_SMT | 
|  | 4675 | return first_cpu(cpu_sibling_map[cpu]); | 
|  | 4676 | #else | 
|  | 4677 | return cpu; | 
|  | 4678 | #endif | 
|  | 4679 | } | 
|  | 4680 |  | 
|  | 4681 | #ifdef CONFIG_NUMA | 
|  | 4682 |  | 
|  | 4683 | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 
|  | 4684 | static struct sched_group sched_group_nodes[MAX_NUMNODES]; | 
|  | 4685 | static int __devinit cpu_to_node_group(int cpu) | 
|  | 4686 | { | 
|  | 4687 | return cpu_to_node(cpu); | 
|  | 4688 | } | 
|  | 4689 | #endif | 
|  | 4690 |  | 
|  | 4691 | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | 
|  | 4692 | /* | 
|  | 4693 | * The domains setup code relies on siblings not spanning | 
|  | 4694 | * multiple nodes. Make sure the architecture has a proper | 
|  | 4695 | * siblings map: | 
|  | 4696 | */ | 
|  | 4697 | static void check_sibling_maps(void) | 
|  | 4698 | { | 
|  | 4699 | int i, j; | 
|  | 4700 |  | 
|  | 4701 | for_each_online_cpu(i) { | 
|  | 4702 | for_each_cpu_mask(j, cpu_sibling_map[i]) { | 
|  | 4703 | if (cpu_to_node(i) != cpu_to_node(j)) { | 
|  | 4704 | printk(KERN_INFO "warning: CPU %d siblings map " | 
|  | 4705 | "to different node - isolating " | 
|  | 4706 | "them.\n", i); | 
|  | 4707 | cpu_sibling_map[i] = cpumask_of_cpu(i); | 
|  | 4708 | break; | 
|  | 4709 | } | 
|  | 4710 | } | 
|  | 4711 | } | 
|  | 4712 | } | 
|  | 4713 | #endif | 
|  | 4714 |  | 
|  | 4715 | /* | 
|  | 4716 | * Set up scheduler domains and groups.  Callers must hold the hotplug lock. | 
|  | 4717 | */ | 
|  | 4718 | static void __devinit arch_init_sched_domains(void) | 
|  | 4719 | { | 
|  | 4720 | int i; | 
|  | 4721 | cpumask_t cpu_default_map; | 
|  | 4722 |  | 
|  | 4723 | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | 
|  | 4724 | check_sibling_maps(); | 
|  | 4725 | #endif | 
|  | 4726 | /* | 
|  | 4727 | * Setup mask for cpus without special case scheduling requirements. | 
|  | 4728 | * For now this just excludes isolated cpus, but could be used to | 
|  | 4729 | * exclude other special cases in the future. | 
|  | 4730 | */ | 
|  | 4731 | cpus_complement(cpu_default_map, cpu_isolated_map); | 
|  | 4732 | cpus_and(cpu_default_map, cpu_default_map, cpu_online_map); | 
|  | 4733 |  | 
|  | 4734 | /* | 
|  | 4735 | * Set up domains. Isolated domains just stay on the dummy domain. | 
|  | 4736 | */ | 
|  | 4737 | for_each_cpu_mask(i, cpu_default_map) { | 
|  | 4738 | int group; | 
|  | 4739 | struct sched_domain *sd = NULL, *p; | 
|  | 4740 | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | 
|  | 4741 |  | 
|  | 4742 | cpus_and(nodemask, nodemask, cpu_default_map); | 
|  | 4743 |  | 
|  | 4744 | #ifdef CONFIG_NUMA | 
|  | 4745 | sd = &per_cpu(node_domains, i); | 
|  | 4746 | group = cpu_to_node_group(i); | 
|  | 4747 | *sd = SD_NODE_INIT; | 
|  | 4748 | sd->span = cpu_default_map; | 
|  | 4749 | sd->groups = &sched_group_nodes[group]; | 
|  | 4750 | #endif | 
|  | 4751 |  | 
|  | 4752 | p = sd; | 
|  | 4753 | sd = &per_cpu(phys_domains, i); | 
|  | 4754 | group = cpu_to_phys_group(i); | 
|  | 4755 | *sd = SD_CPU_INIT; | 
|  | 4756 | sd->span = nodemask; | 
|  | 4757 | sd->parent = p; | 
|  | 4758 | sd->groups = &sched_group_phys[group]; | 
|  | 4759 |  | 
|  | 4760 | #ifdef CONFIG_SCHED_SMT | 
|  | 4761 | p = sd; | 
|  | 4762 | sd = &per_cpu(cpu_domains, i); | 
|  | 4763 | group = cpu_to_cpu_group(i); | 
|  | 4764 | *sd = SD_SIBLING_INIT; | 
|  | 4765 | sd->span = cpu_sibling_map[i]; | 
|  | 4766 | cpus_and(sd->span, sd->span, cpu_default_map); | 
|  | 4767 | sd->parent = p; | 
|  | 4768 | sd->groups = &sched_group_cpus[group]; | 
|  | 4769 | #endif | 
|  | 4770 | } | 
|  | 4771 |  | 
|  | 4772 | #ifdef CONFIG_SCHED_SMT | 
|  | 4773 | /* Set up CPU (sibling) groups */ | 
|  | 4774 | for_each_online_cpu(i) { | 
|  | 4775 | cpumask_t this_sibling_map = cpu_sibling_map[i]; | 
|  | 4776 | cpus_and(this_sibling_map, this_sibling_map, cpu_default_map); | 
|  | 4777 | if (i != first_cpu(this_sibling_map)) | 
|  | 4778 | continue; | 
|  | 4779 |  | 
|  | 4780 | init_sched_build_groups(sched_group_cpus, this_sibling_map, | 
|  | 4781 | &cpu_to_cpu_group); | 
|  | 4782 | } | 
|  | 4783 | #endif | 
|  | 4784 |  | 
|  | 4785 | /* Set up physical groups */ | 
|  | 4786 | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | 4787 | cpumask_t nodemask = node_to_cpumask(i); | 
|  | 4788 |  | 
|  | 4789 | cpus_and(nodemask, nodemask, cpu_default_map); | 
|  | 4790 | if (cpus_empty(nodemask)) | 
|  | 4791 | continue; | 
|  | 4792 |  | 
|  | 4793 | init_sched_build_groups(sched_group_phys, nodemask, | 
|  | 4794 | &cpu_to_phys_group); | 
|  | 4795 | } | 
|  | 4796 |  | 
|  | 4797 | #ifdef CONFIG_NUMA | 
|  | 4798 | /* Set up node groups */ | 
|  | 4799 | init_sched_build_groups(sched_group_nodes, cpu_default_map, | 
|  | 4800 | &cpu_to_node_group); | 
|  | 4801 | #endif | 
|  | 4802 |  | 
|  | 4803 | /* Calculate CPU power for physical packages and nodes */ | 
|  | 4804 | for_each_cpu_mask(i, cpu_default_map) { | 
|  | 4805 | int power; | 
|  | 4806 | struct sched_domain *sd; | 
|  | 4807 | #ifdef CONFIG_SCHED_SMT | 
|  | 4808 | sd = &per_cpu(cpu_domains, i); | 
|  | 4809 | power = SCHED_LOAD_SCALE; | 
|  | 4810 | sd->groups->cpu_power = power; | 
|  | 4811 | #endif | 
|  | 4812 |  | 
|  | 4813 | sd = &per_cpu(phys_domains, i); | 
|  | 4814 | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | 
|  | 4815 | (cpus_weight(sd->groups->cpumask)-1) / 10; | 
|  | 4816 | sd->groups->cpu_power = power; | 
|  | 4817 |  | 
|  | 4818 | #ifdef CONFIG_NUMA | 
|  | 4819 | if (i == first_cpu(sd->groups->cpumask)) { | 
|  | 4820 | /* Only add "power" once for each physical package. */ | 
|  | 4821 | sd = &per_cpu(node_domains, i); | 
|  | 4822 | sd->groups->cpu_power += power; | 
|  | 4823 | } | 
|  | 4824 | #endif | 
|  | 4825 | } | 
|  | 4826 |  | 
|  | 4827 | /* Attach the domains */ | 
|  | 4828 | for_each_online_cpu(i) { | 
|  | 4829 | struct sched_domain *sd; | 
|  | 4830 | #ifdef CONFIG_SCHED_SMT | 
|  | 4831 | sd = &per_cpu(cpu_domains, i); | 
|  | 4832 | #else | 
|  | 4833 | sd = &per_cpu(phys_domains, i); | 
|  | 4834 | #endif | 
|  | 4835 | cpu_attach_domain(sd, i); | 
|  | 4836 | } | 
|  | 4837 | } | 
|  | 4838 |  | 
|  | 4839 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 4840 | static void __devinit arch_destroy_sched_domains(void) | 
|  | 4841 | { | 
|  | 4842 | /* Do nothing: everything is statically allocated. */ | 
|  | 4843 | } | 
|  | 4844 | #endif | 
|  | 4845 |  | 
|  | 4846 | #endif /* ARCH_HAS_SCHED_DOMAIN */ | 
|  | 4847 |  | 
|  | 4848 | /* | 
|  | 4849 | * Initial dummy domain for early boot and for hotplug cpu. Being static, | 
|  | 4850 | * it is initialized to zero, so all balancing flags are cleared which is | 
|  | 4851 | * what we want. | 
|  | 4852 | */ | 
|  | 4853 | static struct sched_domain sched_domain_dummy; | 
|  | 4854 |  | 
|  | 4855 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 4856 | /* | 
|  | 4857 | * Force a reinitialization of the sched domains hierarchy.  The domains | 
|  | 4858 | * and groups cannot be updated in place without racing with the balancing | 
|  | 4859 | * code, so we temporarily attach all running cpus to a "dummy" domain | 
|  | 4860 | * which will prevent rebalancing while the sched domains are recalculated. | 
|  | 4861 | */ | 
|  | 4862 | static int update_sched_domains(struct notifier_block *nfb, | 
|  | 4863 | unsigned long action, void *hcpu) | 
|  | 4864 | { | 
|  | 4865 | int i; | 
|  | 4866 |  | 
|  | 4867 | switch (action) { | 
|  | 4868 | case CPU_UP_PREPARE: | 
|  | 4869 | case CPU_DOWN_PREPARE: | 
|  | 4870 | for_each_online_cpu(i) | 
|  | 4871 | cpu_attach_domain(&sched_domain_dummy, i); | 
|  | 4872 | arch_destroy_sched_domains(); | 
|  | 4873 | return NOTIFY_OK; | 
|  | 4874 |  | 
|  | 4875 | case CPU_UP_CANCELED: | 
|  | 4876 | case CPU_DOWN_FAILED: | 
|  | 4877 | case CPU_ONLINE: | 
|  | 4878 | case CPU_DEAD: | 
|  | 4879 | /* | 
|  | 4880 | * Fall through and re-initialise the domains. | 
|  | 4881 | */ | 
|  | 4882 | break; | 
|  | 4883 | default: | 
|  | 4884 | return NOTIFY_DONE; | 
|  | 4885 | } | 
|  | 4886 |  | 
|  | 4887 | /* The hotplug lock is already held by cpu_up/cpu_down */ | 
|  | 4888 | arch_init_sched_domains(); | 
|  | 4889 |  | 
|  | 4890 | return NOTIFY_OK; | 
|  | 4891 | } | 
|  | 4892 | #endif | 
|  | 4893 |  | 
|  | 4894 | void __init sched_init_smp(void) | 
|  | 4895 | { | 
|  | 4896 | lock_cpu_hotplug(); | 
|  | 4897 | arch_init_sched_domains(); | 
|  | 4898 | unlock_cpu_hotplug(); | 
|  | 4899 | /* XXX: Theoretical race here - CPU may be hotplugged now */ | 
|  | 4900 | hotcpu_notifier(update_sched_domains, 0); | 
|  | 4901 | } | 
|  | 4902 | #else | 
|  | 4903 | void __init sched_init_smp(void) | 
|  | 4904 | { | 
|  | 4905 | } | 
|  | 4906 | #endif /* CONFIG_SMP */ | 
|  | 4907 |  | 
|  | 4908 | int in_sched_functions(unsigned long addr) | 
|  | 4909 | { | 
|  | 4910 | /* Linker adds these: start and end of __sched functions */ | 
|  | 4911 | extern char __sched_text_start[], __sched_text_end[]; | 
|  | 4912 | return in_lock_functions(addr) || | 
|  | 4913 | (addr >= (unsigned long)__sched_text_start | 
|  | 4914 | && addr < (unsigned long)__sched_text_end); | 
|  | 4915 | } | 
|  | 4916 |  | 
|  | 4917 | void __init sched_init(void) | 
|  | 4918 | { | 
|  | 4919 | runqueue_t *rq; | 
|  | 4920 | int i, j, k; | 
|  | 4921 |  | 
|  | 4922 | for (i = 0; i < NR_CPUS; i++) { | 
|  | 4923 | prio_array_t *array; | 
|  | 4924 |  | 
|  | 4925 | rq = cpu_rq(i); | 
|  | 4926 | spin_lock_init(&rq->lock); | 
|  | 4927 | rq->active = rq->arrays; | 
|  | 4928 | rq->expired = rq->arrays + 1; | 
|  | 4929 | rq->best_expired_prio = MAX_PRIO; | 
|  | 4930 |  | 
|  | 4931 | #ifdef CONFIG_SMP | 
|  | 4932 | rq->sd = &sched_domain_dummy; | 
|  | 4933 | rq->cpu_load = 0; | 
|  | 4934 | rq->active_balance = 0; | 
|  | 4935 | rq->push_cpu = 0; | 
|  | 4936 | rq->migration_thread = NULL; | 
|  | 4937 | INIT_LIST_HEAD(&rq->migration_queue); | 
|  | 4938 | #endif | 
|  | 4939 | atomic_set(&rq->nr_iowait, 0); | 
|  | 4940 |  | 
|  | 4941 | for (j = 0; j < 2; j++) { | 
|  | 4942 | array = rq->arrays + j; | 
|  | 4943 | for (k = 0; k < MAX_PRIO; k++) { | 
|  | 4944 | INIT_LIST_HEAD(array->queue + k); | 
|  | 4945 | __clear_bit(k, array->bitmap); | 
|  | 4946 | } | 
|  | 4947 | // delimiter for bitsearch | 
|  | 4948 | __set_bit(MAX_PRIO, array->bitmap); | 
|  | 4949 | } | 
|  | 4950 | } | 
|  | 4951 |  | 
|  | 4952 | /* | 
|  | 4953 | * The boot idle thread does lazy MMU switching as well: | 
|  | 4954 | */ | 
|  | 4955 | atomic_inc(&init_mm.mm_count); | 
|  | 4956 | enter_lazy_tlb(&init_mm, current); | 
|  | 4957 |  | 
|  | 4958 | /* | 
|  | 4959 | * Make us the idle thread. Technically, schedule() should not be | 
|  | 4960 | * called from this thread, however somewhere below it might be, | 
|  | 4961 | * but because we are the idle thread, we just pick up running again | 
|  | 4962 | * when this runqueue becomes "idle". | 
|  | 4963 | */ | 
|  | 4964 | init_idle(current, smp_processor_id()); | 
|  | 4965 | } | 
|  | 4966 |  | 
|  | 4967 | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | 4968 | void __might_sleep(char *file, int line) | 
|  | 4969 | { | 
|  | 4970 | #if defined(in_atomic) | 
|  | 4971 | static unsigned long prev_jiffy;	/* ratelimiting */ | 
|  | 4972 |  | 
|  | 4973 | if ((in_atomic() || irqs_disabled()) && | 
|  | 4974 | system_state == SYSTEM_RUNNING && !oops_in_progress) { | 
|  | 4975 | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|  | 4976 | return; | 
|  | 4977 | prev_jiffy = jiffies; | 
|  | 4978 | printk(KERN_ERR "Debug: sleeping function called from invalid" | 
|  | 4979 | " context at %s:%d\n", file, line); | 
|  | 4980 | printk("in_atomic():%d, irqs_disabled():%d\n", | 
|  | 4981 | in_atomic(), irqs_disabled()); | 
|  | 4982 | dump_stack(); | 
|  | 4983 | } | 
|  | 4984 | #endif | 
|  | 4985 | } | 
|  | 4986 | EXPORT_SYMBOL(__might_sleep); | 
|  | 4987 | #endif | 
|  | 4988 |  | 
|  | 4989 | #ifdef CONFIG_MAGIC_SYSRQ | 
|  | 4990 | void normalize_rt_tasks(void) | 
|  | 4991 | { | 
|  | 4992 | struct task_struct *p; | 
|  | 4993 | prio_array_t *array; | 
|  | 4994 | unsigned long flags; | 
|  | 4995 | runqueue_t *rq; | 
|  | 4996 |  | 
|  | 4997 | read_lock_irq(&tasklist_lock); | 
|  | 4998 | for_each_process (p) { | 
|  | 4999 | if (!rt_task(p)) | 
|  | 5000 | continue; | 
|  | 5001 |  | 
|  | 5002 | rq = task_rq_lock(p, &flags); | 
|  | 5003 |  | 
|  | 5004 | array = p->array; | 
|  | 5005 | if (array) | 
|  | 5006 | deactivate_task(p, task_rq(p)); | 
|  | 5007 | __setscheduler(p, SCHED_NORMAL, 0); | 
|  | 5008 | if (array) { | 
|  | 5009 | __activate_task(p, task_rq(p)); | 
|  | 5010 | resched_task(rq->curr); | 
|  | 5011 | } | 
|  | 5012 |  | 
|  | 5013 | task_rq_unlock(rq, &flags); | 
|  | 5014 | } | 
|  | 5015 | read_unlock_irq(&tasklist_lock); | 
|  | 5016 | } | 
|  | 5017 |  | 
|  | 5018 | #endif /* CONFIG_MAGIC_SYSRQ */ |