blob: 06f3c179e345744598233a04ecdd604b2090aef2 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * arch/sh64/kernel/time.c
7 *
8 * Copyright (C) 2000, 2001 Paolo Alberelli
9 * Copyright (C) 2003, 2004 Paul Mundt
10 * Copyright (C) 2003 Richard Curnow
11 *
12 * Original TMU/RTC code taken from sh version.
13 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
14 * Some code taken from i386 version.
15 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
16 */
17
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include <linux/errno.h>
19#include <linux/rwsem.h>
20#include <linux/sched.h>
21#include <linux/kernel.h>
22#include <linux/param.h>
23#include <linux/string.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/time.h>
27#include <linux/delay.h>
28#include <linux/init.h>
29#include <linux/profile.h>
30#include <linux/smp.h>
Alexey Dobriyan4940fb42006-02-01 03:06:09 -080031#include <linux/module.h>
Matt Mackall4f3a36a2006-03-28 01:56:10 -080032#include <linux/bcd.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070033
34#include <asm/registers.h> /* required by inline __asm__ stmt. */
35
36#include <asm/processor.h>
37#include <asm/uaccess.h>
38#include <asm/io.h>
39#include <asm/irq.h>
40#include <asm/delay.h>
41
42#include <linux/timex.h>
43#include <linux/irq.h>
44#include <asm/hardware.h>
45
46#define TMU_TOCR_INIT 0x00
47#define TMU0_TCR_INIT 0x0020
48#define TMU_TSTR_INIT 1
49#define TMU_TSTR_OFF 0
50
51/* RCR1 Bits */
52#define RCR1_CF 0x80 /* Carry Flag */
53#define RCR1_CIE 0x10 /* Carry Interrupt Enable */
54#define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
55#define RCR1_AF 0x01 /* Alarm Flag */
56
57/* RCR2 Bits */
58#define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
59#define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
60#define RCR2_RTCEN 0x08 /* ENable RTC */
61#define RCR2_ADJ 0x04 /* ADJustment (30-second) */
62#define RCR2_RESET 0x02 /* Reset bit */
63#define RCR2_START 0x01 /* Start bit */
64
65/* Clock, Power and Reset Controller */
66#define CPRC_BLOCK_OFF 0x01010000
67#define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
68
69#define FRQCR (cprc_base+0x0)
70#define WTCSR (cprc_base+0x0018)
71#define STBCR (cprc_base+0x0030)
72
73/* Time Management Unit */
74#define TMU_BLOCK_OFF 0x01020000
75#define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
76#define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
77#define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
78#define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
79
80#define TMU_TOCR tmu_base+0x0 /* Byte access */
81#define TMU_TSTR tmu_base+0x4 /* Byte access */
82
83#define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
84#define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
85#define TMU0_TCR TMU0_BASE+0x8 /* Word access */
86
87/* Real Time Clock */
88#define RTC_BLOCK_OFF 0x01040000
89#define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
90
91#define R64CNT rtc_base+0x00
92#define RSECCNT rtc_base+0x04
93#define RMINCNT rtc_base+0x08
94#define RHRCNT rtc_base+0x0c
95#define RWKCNT rtc_base+0x10
96#define RDAYCNT rtc_base+0x14
97#define RMONCNT rtc_base+0x18
98#define RYRCNT rtc_base+0x1c /* 16bit */
99#define RSECAR rtc_base+0x20
100#define RMINAR rtc_base+0x24
101#define RHRAR rtc_base+0x28
102#define RWKAR rtc_base+0x2c
103#define RDAYAR rtc_base+0x30
104#define RMONAR rtc_base+0x34
105#define RCR1 rtc_base+0x38
106#define RCR2 rtc_base+0x3c
107
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108#define TICK_SIZE (tick_nsec / 1000)
109
Linus Torvalds1da177e2005-04-16 15:20:36 -0700110static unsigned long tmu_base, rtc_base;
111unsigned long cprc_base;
112
113/* Variables to allow interpolation of time of day to resolution better than a
114 * jiffy. */
115
116/* This is effectively protected by xtime_lock */
117static unsigned long ctc_last_interrupt;
118static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
119
120#define CTC_JIFFY_SCALE_SHIFT 40
121
122/* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
123static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
124
125/* Estimate number of microseconds that have elapsed since the last timer tick,
Simon Arlott0a354772007-05-14 08:25:48 +0900126 by scaling the delta that has occurred in the CTC register.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127
128 WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
129 the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
130 in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
131 probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
132 sleeping, though will be coarser.
133
134 FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
135 is running or if the freq or tick arguments of adjtimex are modified after
136 we have calibrated the scaling factor? This will result in either a jump at
137 the end of a tick period, or a wrap backwards at the start of the next one,
138 if the application is reading the time of day often enough. I think we
139 ought to do better than this. For this reason, usecs_per_jiffy is left
140 separated out in the calculation below. This allows some future hook into
141 the adjtime-related stuff in kernel/timer.c to remove this hazard.
142
143*/
144
145static unsigned long usecs_since_tick(void)
146{
147 unsigned long long current_ctc;
148 long ctc_ticks_since_interrupt;
149 unsigned long long ull_ctc_ticks_since_interrupt;
150 unsigned long result;
151
152 unsigned long long mul1_out;
153 unsigned long long mul1_out_high;
154 unsigned long long mul2_out_low, mul2_out_high;
155
156 /* Read CTC register */
157 asm ("getcon cr62, %0" : "=r" (current_ctc));
158 /* Note, the CTC counts down on each CPU clock, not up.
159 Note(2), use long type to get correct wraparound arithmetic when
160 the counter crosses zero. */
161 ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
162 ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
163
164 /* Inline assembly to do 32x32x32->64 multiplier */
165 asm volatile ("mulu.l %1, %2, %0" :
166 "=r" (mul1_out) :
167 "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
168
169 mul1_out_high = mul1_out >> 32;
170
171 asm volatile ("mulu.l %1, %2, %0" :
172 "=r" (mul2_out_low) :
173 "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
174
175#if 1
176 asm volatile ("mulu.l %1, %2, %0" :
177 "=r" (mul2_out_high) :
178 "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
179#endif
180
181 result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
182
183 return result;
184}
185
186void do_gettimeofday(struct timeval *tv)
187{
188 unsigned long flags;
189 unsigned long seq;
190 unsigned long usec, sec;
191
192 do {
193 seq = read_seqbegin_irqsave(&xtime_lock, flags);
194 usec = usecs_since_tick();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700195 sec = xtime.tv_sec;
196 usec += xtime.tv_nsec / 1000;
197 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
198
199 while (usec >= 1000000) {
200 usec -= 1000000;
201 sec++;
202 }
203
204 tv->tv_sec = sec;
205 tv->tv_usec = usec;
206}
207
208int do_settimeofday(struct timespec *tv)
209{
210 time_t wtm_sec, sec = tv->tv_sec;
211 long wtm_nsec, nsec = tv->tv_nsec;
212
213 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
214 return -EINVAL;
215
216 write_seqlock_irq(&xtime_lock);
217 /*
218 * This is revolting. We need to set "xtime" correctly. However, the
219 * value in this location is the value at the most recent update of
220 * wall time. Discover what correction gettimeofday() would have
221 * made, and then undo it!
222 */
Atsushi Nemoto8ef38602006-09-30 23:28:31 -0700223 nsec -= 1000 * usecs_since_tick();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224
225 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
226 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
227
228 set_normalized_timespec(&xtime, sec, nsec);
229 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
230
john stultzb149ee22005-09-06 15:17:46 -0700231 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700232 write_sequnlock_irq(&xtime_lock);
233 clock_was_set();
234
235 return 0;
236}
Al Viro943eae02005-10-29 07:32:07 +0100237EXPORT_SYMBOL(do_settimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238
239static int set_rtc_time(unsigned long nowtime)
240{
241 int retval = 0;
242 int real_seconds, real_minutes, cmos_minutes;
243
244 ctrl_outb(RCR2_RESET, RCR2); /* Reset pre-scaler & stop RTC */
245
246 cmos_minutes = ctrl_inb(RMINCNT);
247 BCD_TO_BIN(cmos_minutes);
248
249 /*
250 * since we're only adjusting minutes and seconds,
251 * don't interfere with hour overflow. This avoids
252 * messing with unknown time zones but requires your
253 * RTC not to be off by more than 15 minutes
254 */
255 real_seconds = nowtime % 60;
256 real_minutes = nowtime / 60;
257 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
258 real_minutes += 30; /* correct for half hour time zone */
259 real_minutes %= 60;
260
261 if (abs(real_minutes - cmos_minutes) < 30) {
262 BIN_TO_BCD(real_seconds);
263 BIN_TO_BCD(real_minutes);
264 ctrl_outb(real_seconds, RSECCNT);
265 ctrl_outb(real_minutes, RMINCNT);
266 } else {
267 printk(KERN_WARNING
268 "set_rtc_time: can't update from %d to %d\n",
269 cmos_minutes, real_minutes);
270 retval = -1;
271 }
272
273 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start RTC */
274
275 return retval;
276}
277
278/* last time the RTC clock got updated */
279static long last_rtc_update = 0;
280
281/*
282 * timer_interrupt() needs to keep up the real-time clock,
283 * as well as call the "do_timer()" routine every clocktick
284 */
Paul Mundta226d332007-05-14 09:10:01 +0900285static inline void do_timer_interrupt(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286{
287 unsigned long long current_ctc;
288 asm ("getcon cr62, %0" : "=r" (current_ctc));
289 ctc_last_interrupt = (unsigned long) current_ctc;
290
Atsushi Nemoto3171a032006-09-29 02:00:32 -0700291 do_timer(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700292#ifndef CONFIG_SMP
Paul Mundta226d332007-05-14 09:10:01 +0900293 update_process_times(user_mode(get_irq_regs()));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294#endif
Paul Mundta226d332007-05-14 09:10:01 +0900295 if (current->pid)
296 profile_tick(CPU_PROFILING);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297
298#ifdef CONFIG_HEARTBEAT
299 {
300 extern void heartbeat(void);
301
302 heartbeat();
303 }
304#endif
305
306 /*
307 * If we have an externally synchronized Linux clock, then update
308 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
309 * called as close as possible to 500 ms before the new second starts.
310 */
john stultzb149ee22005-09-06 15:17:46 -0700311 if (ntp_synced() &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312 xtime.tv_sec > last_rtc_update + 660 &&
313 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
314 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
315 if (set_rtc_time(xtime.tv_sec) == 0)
316 last_rtc_update = xtime.tv_sec;
317 else
318 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
319 }
320}
321
322/*
323 * This is the same as the above, except we _also_ save the current
324 * Time Stamp Counter value at the time of the timer interrupt, so that
325 * we later on can estimate the time of day more exactly.
326 */
Paul Mundta226d332007-05-14 09:10:01 +0900327static irqreturn_t timer_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328{
329 unsigned long timer_status;
330
331 /* Clear UNF bit */
332 timer_status = ctrl_inw(TMU0_TCR);
333 timer_status &= ~0x100;
334 ctrl_outw(timer_status, TMU0_TCR);
335
336 /*
337 * Here we are in the timer irq handler. We just have irqs locally
338 * disabled but we don't know if the timer_bh is running on the other
339 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
340 * the irq version of write_lock because as just said we have irq
341 * locally disabled. -arca
342 */
343 write_lock(&xtime_lock);
Paul Mundta226d332007-05-14 09:10:01 +0900344 do_timer_interrupt();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700345 write_unlock(&xtime_lock);
346
347 return IRQ_HANDLED;
348}
349
350static unsigned long get_rtc_time(void)
351{
352 unsigned int sec, min, hr, wk, day, mon, yr, yr100;
353
354 again:
355 do {
356 ctrl_outb(0, RCR1); /* Clear CF-bit */
357 sec = ctrl_inb(RSECCNT);
358 min = ctrl_inb(RMINCNT);
359 hr = ctrl_inb(RHRCNT);
360 wk = ctrl_inb(RWKCNT);
361 day = ctrl_inb(RDAYCNT);
362 mon = ctrl_inb(RMONCNT);
363 yr = ctrl_inw(RYRCNT);
364 yr100 = (yr >> 8);
365 yr &= 0xff;
366 } while ((ctrl_inb(RCR1) & RCR1_CF) != 0);
367
368 BCD_TO_BIN(yr100);
369 BCD_TO_BIN(yr);
370 BCD_TO_BIN(mon);
371 BCD_TO_BIN(day);
372 BCD_TO_BIN(hr);
373 BCD_TO_BIN(min);
374 BCD_TO_BIN(sec);
375
376 if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 ||
377 hr > 23 || min > 59 || sec > 59) {
378 printk(KERN_ERR
379 "SH RTC: invalid value, resetting to 1 Jan 2000\n");
380 ctrl_outb(RCR2_RESET, RCR2); /* Reset & Stop */
381 ctrl_outb(0, RSECCNT);
382 ctrl_outb(0, RMINCNT);
383 ctrl_outb(0, RHRCNT);
384 ctrl_outb(6, RWKCNT);
385 ctrl_outb(1, RDAYCNT);
386 ctrl_outb(1, RMONCNT);
387 ctrl_outw(0x2000, RYRCNT);
388 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start */
389 goto again;
390 }
391
392 return mktime(yr100 * 100 + yr, mon, day, hr, min, sec);
393}
394
395static __init unsigned int get_cpu_hz(void)
396{
397 unsigned int count;
398 unsigned long __dummy;
399 unsigned long ctc_val_init, ctc_val;
400
401 /*
402 ** Regardless the toolchain, force the compiler to use the
403 ** arbitrary register r3 as a clock tick counter.
Adrian Bunk2a10e0b2006-01-08 01:02:15 -0800404 ** NOTE: r3 must be in accordance with sh64_rtc_interrupt()
Linus Torvalds1da177e2005-04-16 15:20:36 -0700405 */
406 register unsigned long long __rtc_irq_flag __asm__ ("r3");
407
408 local_irq_enable();
409 do {} while (ctrl_inb(R64CNT) != 0);
410 ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */
411
412 /*
413 * r3 is arbitrary. CDC does not support "=z".
414 */
415 ctc_val_init = 0xffffffff;
416 ctc_val = ctc_val_init;
417
418 asm volatile("gettr tr0, %1\n\t"
419 "putcon %0, " __CTC "\n\t"
420 "and %2, r63, %2\n\t"
421 "pta $+4, tr0\n\t"
422 "beq/l %2, r63, tr0\n\t"
423 "ptabs %1, tr0\n\t"
424 "getcon " __CTC ", %0\n\t"
425 : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
426 : "0" (0));
427 local_irq_disable();
428 /*
429 * SH-3:
430 * CPU clock = 4 stages * loop
431 * tst rm,rm if id ex
432 * bt/s 1b if id ex
433 * add #1,rd if id ex
434 * (if) pipe line stole
435 * tst rm,rm if id ex
436 * ....
437 *
438 *
439 * SH-4:
440 * CPU clock = 6 stages * loop
441 * I don't know why.
442 * ....
443 *
444 * SH-5:
445 * Use CTC register to count. This approach returns the right value
446 * even if the I-cache is disabled (e.g. whilst debugging.)
447 *
448 */
449
450 count = ctc_val_init - ctc_val; /* CTC counts down */
451
452#if defined (CONFIG_SH_SIMULATOR)
453 /*
454 * Let's pretend we are a 5MHz SH-5 to avoid a too
455 * little timer interval. Also to keep delay
456 * calibration within a reasonable time.
457 */
458 return 5000000;
459#else
460 /*
461 * This really is count by the number of clock cycles
462 * by the ratio between a complete R64CNT
463 * wrap-around (128) and CUI interrupt being raised (64).
464 */
465 return count*2;
466#endif
467}
468
Paul Mundta226d332007-05-14 09:10:01 +0900469static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470{
Paul Mundta226d332007-05-14 09:10:01 +0900471 struct pt_regs *regs = get_irq_regs();
472
Linus Torvalds1da177e2005-04-16 15:20:36 -0700473 ctrl_outb(0, RCR1); /* Disable Carry Interrupts */
474 regs->regs[3] = 1; /* Using r3 */
475
476 return IRQ_HANDLED;
477}
478
Thomas Gleixner948d12c2007-10-03 15:02:14 +0900479static struct irqaction irq0 = {
480 .handler = timer_interrupt,
481 .flags = IRQF_DISABLED,
482 .mask = CPU_MASK_NONE,
483 .name = "timer",
484};
485static struct irqaction irq1 = {
486 .handler = sh64_rtc_interrupt,
487 .flags = IRQF_DISABLED,
488 .mask = CPU_MASK_NONE,
489 .name = "rtc",
490};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491
492void __init time_init(void)
493{
494 unsigned int cpu_clock, master_clock, bus_clock, module_clock;
495 unsigned long interval;
496 unsigned long frqcr, ifc, pfc;
497 static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
498#define bfc_table ifc_table /* Same */
499#define pfc_table ifc_table /* Same */
500
501 tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
502 if (!tmu_base) {
503 panic("Unable to remap TMU\n");
504 }
505
506 rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
507 if (!rtc_base) {
508 panic("Unable to remap RTC\n");
509 }
510
511 cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
512 if (!cprc_base) {
513 panic("Unable to remap CPRC\n");
514 }
515
516 xtime.tv_sec = get_rtc_time();
517 xtime.tv_nsec = 0;
518
519 setup_irq(TIMER_IRQ, &irq0);
520 setup_irq(RTC_IRQ, &irq1);
521
522 /* Check how fast it is.. */
523 cpu_clock = get_cpu_hz();
524
525 /* Note careful order of operations to maintain reasonable precision and avoid overflow. */
526 scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
527
528 disable_irq(RTC_IRQ);
529
530 printk("CPU clock: %d.%02dMHz\n",
531 (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
532 {
533 unsigned short bfc;
534 frqcr = ctrl_inl(FRQCR);
535 ifc = ifc_table[(frqcr>> 6) & 0x0007];
536 bfc = bfc_table[(frqcr>> 3) & 0x0007];
537 pfc = pfc_table[(frqcr>> 12) & 0x0007];
538 master_clock = cpu_clock * ifc;
539 bus_clock = master_clock/bfc;
540 }
541
542 printk("Bus clock: %d.%02dMHz\n",
543 (bus_clock/1000000), (bus_clock % 1000000)/10000);
544 module_clock = master_clock/pfc;
545 printk("Module clock: %d.%02dMHz\n",
546 (module_clock/1000000), (module_clock % 1000000)/10000);
547 interval = (module_clock/(HZ*4));
548
549 printk("Interval = %ld\n", interval);
550
551 current_cpu_data.cpu_clock = cpu_clock;
552 current_cpu_data.master_clock = master_clock;
553 current_cpu_data.bus_clock = bus_clock;
554 current_cpu_data.module_clock = module_clock;
555
556 /* Start TMU0 */
557 ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
558 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
559 ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
560 ctrl_outl(interval, TMU0_TCOR);
561 ctrl_outl(interval, TMU0_TCNT);
562 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
563}
564
565void enter_deep_standby(void)
566{
567 /* Disable watchdog timer */
568 ctrl_outl(0xa5000000, WTCSR);
569 /* Configure deep standby on sleep */
570 ctrl_outl(0x03, STBCR);
571
572#ifdef CONFIG_SH_ALPHANUMERIC
573 {
574 extern void mach_alphanum(int position, unsigned char value);
575 extern void mach_alphanum_brightness(int setting);
576 char halted[] = "Halted. ";
577 int i;
578 mach_alphanum_brightness(6); /* dimmest setting above off */
579 for (i=0; i<8; i++) {
580 mach_alphanum(i, halted[i]);
581 }
582 asm __volatile__ ("synco");
583 }
584#endif
585
586 asm __volatile__ ("sleep");
587 asm __volatile__ ("synci");
588 asm __volatile__ ("nop");
589 asm __volatile__ ("nop");
590 asm __volatile__ ("nop");
591 asm __volatile__ ("nop");
592 panic("Unexpected wakeup!\n");
593}