| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/mm/page_alloc.c | 
 | 3 |  * | 
 | 4 |  *  Manages the free list, the system allocates free pages here. | 
 | 5 |  *  Note that kmalloc() lives in slab.c | 
 | 6 |  * | 
 | 7 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 | 8 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 | 9 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 | 10 |  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
 | 11 |  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
 | 12 |  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
 | 13 |  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
 | 14 |  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
 | 15 |  */ | 
 | 16 |  | 
 | 17 | #include <linux/config.h> | 
 | 18 | #include <linux/stddef.h> | 
 | 19 | #include <linux/mm.h> | 
 | 20 | #include <linux/swap.h> | 
 | 21 | #include <linux/interrupt.h> | 
 | 22 | #include <linux/pagemap.h> | 
 | 23 | #include <linux/bootmem.h> | 
 | 24 | #include <linux/compiler.h> | 
 | 25 | #include <linux/module.h> | 
 | 26 | #include <linux/suspend.h> | 
 | 27 | #include <linux/pagevec.h> | 
 | 28 | #include <linux/blkdev.h> | 
 | 29 | #include <linux/slab.h> | 
 | 30 | #include <linux/notifier.h> | 
 | 31 | #include <linux/topology.h> | 
 | 32 | #include <linux/sysctl.h> | 
 | 33 | #include <linux/cpu.h> | 
 | 34 | #include <linux/cpuset.h> | 
 | 35 | #include <linux/nodemask.h> | 
 | 36 | #include <linux/vmalloc.h> | 
 | 37 |  | 
 | 38 | #include <asm/tlbflush.h> | 
 | 39 | #include "internal.h" | 
 | 40 |  | 
 | 41 | /* | 
 | 42 |  * MCD - HACK: Find somewhere to initialize this EARLY, or make this | 
 | 43 |  * initializer cleaner | 
 | 44 |  */ | 
 | 45 | nodemask_t node_online_map = { { [0] = 1UL } }; | 
 | 46 | nodemask_t node_possible_map = NODE_MASK_ALL; | 
 | 47 | struct pglist_data *pgdat_list; | 
 | 48 | unsigned long totalram_pages; | 
 | 49 | unsigned long totalhigh_pages; | 
 | 50 | long nr_swap_pages; | 
 | 51 |  | 
 | 52 | /* | 
 | 53 |  * results with 256, 32 in the lowmem_reserve sysctl: | 
 | 54 |  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
 | 55 |  *	1G machine -> (16M dma, 784M normal, 224M high) | 
 | 56 |  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
 | 57 |  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
 | 58 |  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | 
 | 59 |  */ | 
 | 60 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; | 
 | 61 |  | 
 | 62 | EXPORT_SYMBOL(totalram_pages); | 
 | 63 | EXPORT_SYMBOL(nr_swap_pages); | 
 | 64 |  | 
 | 65 | /* | 
 | 66 |  * Used by page_zone() to look up the address of the struct zone whose | 
 | 67 |  * id is encoded in the upper bits of page->flags | 
 | 68 |  */ | 
 | 69 | struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)]; | 
 | 70 | EXPORT_SYMBOL(zone_table); | 
 | 71 |  | 
 | 72 | static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; | 
 | 73 | int min_free_kbytes = 1024; | 
 | 74 |  | 
 | 75 | unsigned long __initdata nr_kernel_pages; | 
 | 76 | unsigned long __initdata nr_all_pages; | 
 | 77 |  | 
 | 78 | /* | 
 | 79 |  * Temporary debugging check for pages not lying within a given zone. | 
 | 80 |  */ | 
 | 81 | static int bad_range(struct zone *zone, struct page *page) | 
 | 82 | { | 
 | 83 | 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) | 
 | 84 | 		return 1; | 
 | 85 | 	if (page_to_pfn(page) < zone->zone_start_pfn) | 
 | 86 | 		return 1; | 
 | 87 | #ifdef CONFIG_HOLES_IN_ZONE | 
 | 88 | 	if (!pfn_valid(page_to_pfn(page))) | 
 | 89 | 		return 1; | 
 | 90 | #endif | 
 | 91 | 	if (zone != page_zone(page)) | 
 | 92 | 		return 1; | 
 | 93 | 	return 0; | 
 | 94 | } | 
 | 95 |  | 
 | 96 | static void bad_page(const char *function, struct page *page) | 
 | 97 | { | 
 | 98 | 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", | 
 | 99 | 		function, current->comm, page); | 
 | 100 | 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", | 
 | 101 | 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, | 
 | 102 | 		page->mapping, page_mapcount(page), page_count(page)); | 
 | 103 | 	printk(KERN_EMERG "Backtrace:\n"); | 
 | 104 | 	dump_stack(); | 
 | 105 | 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); | 
 | 106 | 	page->flags &= ~(1 << PG_private	| | 
 | 107 | 			1 << PG_locked	| | 
 | 108 | 			1 << PG_lru	| | 
 | 109 | 			1 << PG_active	| | 
 | 110 | 			1 << PG_dirty	| | 
 | 111 | 			1 << PG_swapcache | | 
 | 112 | 			1 << PG_writeback); | 
 | 113 | 	set_page_count(page, 0); | 
 | 114 | 	reset_page_mapcount(page); | 
 | 115 | 	page->mapping = NULL; | 
 | 116 | 	tainted |= TAINT_BAD_PAGE; | 
 | 117 | } | 
 | 118 |  | 
 | 119 | #ifndef CONFIG_HUGETLB_PAGE | 
 | 120 | #define prep_compound_page(page, order) do { } while (0) | 
 | 121 | #define destroy_compound_page(page, order) do { } while (0) | 
 | 122 | #else | 
 | 123 | /* | 
 | 124 |  * Higher-order pages are called "compound pages".  They are structured thusly: | 
 | 125 |  * | 
 | 126 |  * The first PAGE_SIZE page is called the "head page". | 
 | 127 |  * | 
 | 128 |  * The remaining PAGE_SIZE pages are called "tail pages". | 
 | 129 |  * | 
 | 130 |  * All pages have PG_compound set.  All pages have their ->private pointing at | 
 | 131 |  * the head page (even the head page has this). | 
 | 132 |  * | 
 | 133 |  * The first tail page's ->mapping, if non-zero, holds the address of the | 
 | 134 |  * compound page's put_page() function. | 
 | 135 |  * | 
 | 136 |  * The order of the allocation is stored in the first tail page's ->index | 
 | 137 |  * This is only for debug at present.  This usage means that zero-order pages | 
 | 138 |  * may not be compound. | 
 | 139 |  */ | 
 | 140 | static void prep_compound_page(struct page *page, unsigned long order) | 
 | 141 | { | 
 | 142 | 	int i; | 
 | 143 | 	int nr_pages = 1 << order; | 
 | 144 |  | 
 | 145 | 	page[1].mapping = NULL; | 
 | 146 | 	page[1].index = order; | 
 | 147 | 	for (i = 0; i < nr_pages; i++) { | 
 | 148 | 		struct page *p = page + i; | 
 | 149 |  | 
 | 150 | 		SetPageCompound(p); | 
 | 151 | 		p->private = (unsigned long)page; | 
 | 152 | 	} | 
 | 153 | } | 
 | 154 |  | 
 | 155 | static void destroy_compound_page(struct page *page, unsigned long order) | 
 | 156 | { | 
 | 157 | 	int i; | 
 | 158 | 	int nr_pages = 1 << order; | 
 | 159 |  | 
 | 160 | 	if (!PageCompound(page)) | 
 | 161 | 		return; | 
 | 162 |  | 
 | 163 | 	if (page[1].index != order) | 
 | 164 | 		bad_page(__FUNCTION__, page); | 
 | 165 |  | 
 | 166 | 	for (i = 0; i < nr_pages; i++) { | 
 | 167 | 		struct page *p = page + i; | 
 | 168 |  | 
 | 169 | 		if (!PageCompound(p)) | 
 | 170 | 			bad_page(__FUNCTION__, page); | 
 | 171 | 		if (p->private != (unsigned long)page) | 
 | 172 | 			bad_page(__FUNCTION__, page); | 
 | 173 | 		ClearPageCompound(p); | 
 | 174 | 	} | 
 | 175 | } | 
 | 176 | #endif		/* CONFIG_HUGETLB_PAGE */ | 
 | 177 |  | 
 | 178 | /* | 
 | 179 |  * function for dealing with page's order in buddy system. | 
 | 180 |  * zone->lock is already acquired when we use these. | 
 | 181 |  * So, we don't need atomic page->flags operations here. | 
 | 182 |  */ | 
 | 183 | static inline unsigned long page_order(struct page *page) { | 
 | 184 | 	return page->private; | 
 | 185 | } | 
 | 186 |  | 
 | 187 | static inline void set_page_order(struct page *page, int order) { | 
 | 188 | 	page->private = order; | 
 | 189 | 	__SetPagePrivate(page); | 
 | 190 | } | 
 | 191 |  | 
 | 192 | static inline void rmv_page_order(struct page *page) | 
 | 193 | { | 
 | 194 | 	__ClearPagePrivate(page); | 
 | 195 | 	page->private = 0; | 
 | 196 | } | 
 | 197 |  | 
 | 198 | /* | 
 | 199 |  * Locate the struct page for both the matching buddy in our | 
 | 200 |  * pair (buddy1) and the combined O(n+1) page they form (page). | 
 | 201 |  * | 
 | 202 |  * 1) Any buddy B1 will have an order O twin B2 which satisfies | 
 | 203 |  * the following equation: | 
 | 204 |  *     B2 = B1 ^ (1 << O) | 
 | 205 |  * For example, if the starting buddy (buddy2) is #8 its order | 
 | 206 |  * 1 buddy is #10: | 
 | 207 |  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | 
 | 208 |  * | 
 | 209 |  * 2) Any buddy B will have an order O+1 parent P which | 
 | 210 |  * satisfies the following equation: | 
 | 211 |  *     P = B & ~(1 << O) | 
 | 212 |  * | 
 | 213 |  * Assumption: *_mem_map is contigious at least up to MAX_ORDER | 
 | 214 |  */ | 
 | 215 | static inline struct page * | 
 | 216 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | 
 | 217 | { | 
 | 218 | 	unsigned long buddy_idx = page_idx ^ (1 << order); | 
 | 219 |  | 
 | 220 | 	return page + (buddy_idx - page_idx); | 
 | 221 | } | 
 | 222 |  | 
 | 223 | static inline unsigned long | 
 | 224 | __find_combined_index(unsigned long page_idx, unsigned int order) | 
 | 225 | { | 
 | 226 | 	return (page_idx & ~(1 << order)); | 
 | 227 | } | 
 | 228 |  | 
 | 229 | /* | 
 | 230 |  * This function checks whether a page is free && is the buddy | 
 | 231 |  * we can do coalesce a page and its buddy if | 
 | 232 |  * (a) the buddy is free && | 
 | 233 |  * (b) the buddy is on the buddy system && | 
 | 234 |  * (c) a page and its buddy have the same order. | 
 | 235 |  * for recording page's order, we use page->private and PG_private. | 
 | 236 |  * | 
 | 237 |  */ | 
 | 238 | static inline int page_is_buddy(struct page *page, int order) | 
 | 239 | { | 
 | 240 |        if (PagePrivate(page)           && | 
 | 241 |            (page_order(page) == order) && | 
 | 242 |            !PageReserved(page)         && | 
 | 243 |             page_count(page) == 0) | 
 | 244 |                return 1; | 
 | 245 |        return 0; | 
 | 246 | } | 
 | 247 |  | 
 | 248 | /* | 
 | 249 |  * Freeing function for a buddy system allocator. | 
 | 250 |  * | 
 | 251 |  * The concept of a buddy system is to maintain direct-mapped table | 
 | 252 |  * (containing bit values) for memory blocks of various "orders". | 
 | 253 |  * The bottom level table contains the map for the smallest allocatable | 
 | 254 |  * units of memory (here, pages), and each level above it describes | 
 | 255 |  * pairs of units from the levels below, hence, "buddies". | 
 | 256 |  * At a high level, all that happens here is marking the table entry | 
 | 257 |  * at the bottom level available, and propagating the changes upward | 
 | 258 |  * as necessary, plus some accounting needed to play nicely with other | 
 | 259 |  * parts of the VM system. | 
 | 260 |  * At each level, we keep a list of pages, which are heads of continuous | 
 | 261 |  * free pages of length of (1 << order) and marked with PG_Private.Page's | 
 | 262 |  * order is recorded in page->private field. | 
 | 263 |  * So when we are allocating or freeing one, we can derive the state of the | 
 | 264 |  * other.  That is, if we allocate a small block, and both were    | 
 | 265 |  * free, the remainder of the region must be split into blocks.    | 
 | 266 |  * If a block is freed, and its buddy is also free, then this | 
 | 267 |  * triggers coalescing into a block of larger size.             | 
 | 268 |  * | 
 | 269 |  * -- wli | 
 | 270 |  */ | 
 | 271 |  | 
 | 272 | static inline void __free_pages_bulk (struct page *page, | 
 | 273 | 		struct zone *zone, unsigned int order) | 
 | 274 | { | 
 | 275 | 	unsigned long page_idx; | 
 | 276 | 	int order_size = 1 << order; | 
 | 277 |  | 
 | 278 | 	if (unlikely(order)) | 
 | 279 | 		destroy_compound_page(page, order); | 
 | 280 |  | 
 | 281 | 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | 
 | 282 |  | 
 | 283 | 	BUG_ON(page_idx & (order_size - 1)); | 
 | 284 | 	BUG_ON(bad_range(zone, page)); | 
 | 285 |  | 
 | 286 | 	zone->free_pages += order_size; | 
 | 287 | 	while (order < MAX_ORDER-1) { | 
 | 288 | 		unsigned long combined_idx; | 
 | 289 | 		struct free_area *area; | 
 | 290 | 		struct page *buddy; | 
 | 291 |  | 
 | 292 | 		combined_idx = __find_combined_index(page_idx, order); | 
 | 293 | 		buddy = __page_find_buddy(page, page_idx, order); | 
 | 294 |  | 
 | 295 | 		if (bad_range(zone, buddy)) | 
 | 296 | 			break; | 
 | 297 | 		if (!page_is_buddy(buddy, order)) | 
 | 298 | 			break;		/* Move the buddy up one level. */ | 
 | 299 | 		list_del(&buddy->lru); | 
 | 300 | 		area = zone->free_area + order; | 
 | 301 | 		area->nr_free--; | 
 | 302 | 		rmv_page_order(buddy); | 
 | 303 | 		page = page + (combined_idx - page_idx); | 
 | 304 | 		page_idx = combined_idx; | 
 | 305 | 		order++; | 
 | 306 | 	} | 
 | 307 | 	set_page_order(page, order); | 
 | 308 | 	list_add(&page->lru, &zone->free_area[order].free_list); | 
 | 309 | 	zone->free_area[order].nr_free++; | 
 | 310 | } | 
 | 311 |  | 
 | 312 | static inline void free_pages_check(const char *function, struct page *page) | 
 | 313 | { | 
 | 314 | 	if (	page_mapcount(page) || | 
 | 315 | 		page->mapping != NULL || | 
 | 316 | 		page_count(page) != 0 || | 
 | 317 | 		(page->flags & ( | 
 | 318 | 			1 << PG_lru	| | 
 | 319 | 			1 << PG_private | | 
 | 320 | 			1 << PG_locked	| | 
 | 321 | 			1 << PG_active	| | 
 | 322 | 			1 << PG_reclaim	| | 
 | 323 | 			1 << PG_slab	| | 
 | 324 | 			1 << PG_swapcache | | 
 | 325 | 			1 << PG_writeback ))) | 
 | 326 | 		bad_page(function, page); | 
 | 327 | 	if (PageDirty(page)) | 
 | 328 | 		ClearPageDirty(page); | 
 | 329 | } | 
 | 330 |  | 
 | 331 | /* | 
 | 332 |  * Frees a list of pages.  | 
 | 333 |  * Assumes all pages on list are in same zone, and of same order. | 
 | 334 |  * count is the number of pages to free, or 0 for all on the list. | 
 | 335 |  * | 
 | 336 |  * If the zone was previously in an "all pages pinned" state then look to | 
 | 337 |  * see if this freeing clears that state. | 
 | 338 |  * | 
 | 339 |  * And clear the zone's pages_scanned counter, to hold off the "all pages are | 
 | 340 |  * pinned" detection logic. | 
 | 341 |  */ | 
 | 342 | static int | 
 | 343 | free_pages_bulk(struct zone *zone, int count, | 
 | 344 | 		struct list_head *list, unsigned int order) | 
 | 345 | { | 
 | 346 | 	unsigned long flags; | 
 | 347 | 	struct page *page = NULL; | 
 | 348 | 	int ret = 0; | 
 | 349 |  | 
 | 350 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 351 | 	zone->all_unreclaimable = 0; | 
 | 352 | 	zone->pages_scanned = 0; | 
 | 353 | 	while (!list_empty(list) && count--) { | 
 | 354 | 		page = list_entry(list->prev, struct page, lru); | 
 | 355 | 		/* have to delete it as __free_pages_bulk list manipulates */ | 
 | 356 | 		list_del(&page->lru); | 
 | 357 | 		__free_pages_bulk(page, zone, order); | 
 | 358 | 		ret++; | 
 | 359 | 	} | 
 | 360 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | 361 | 	return ret; | 
 | 362 | } | 
 | 363 |  | 
 | 364 | void __free_pages_ok(struct page *page, unsigned int order) | 
 | 365 | { | 
 | 366 | 	LIST_HEAD(list); | 
 | 367 | 	int i; | 
 | 368 |  | 
 | 369 | 	arch_free_page(page, order); | 
 | 370 |  | 
 | 371 | 	mod_page_state(pgfree, 1 << order); | 
 | 372 |  | 
 | 373 | #ifndef CONFIG_MMU | 
 | 374 | 	if (order > 0) | 
 | 375 | 		for (i = 1 ; i < (1 << order) ; ++i) | 
 | 376 | 			__put_page(page + i); | 
 | 377 | #endif | 
 | 378 |  | 
 | 379 | 	for (i = 0 ; i < (1 << order) ; ++i) | 
 | 380 | 		free_pages_check(__FUNCTION__, page + i); | 
 | 381 | 	list_add(&page->lru, &list); | 
 | 382 | 	kernel_map_pages(page, 1<<order, 0); | 
 | 383 | 	free_pages_bulk(page_zone(page), 1, &list, order); | 
 | 384 | } | 
 | 385 |  | 
 | 386 |  | 
 | 387 | /* | 
 | 388 |  * The order of subdivision here is critical for the IO subsystem. | 
 | 389 |  * Please do not alter this order without good reasons and regression | 
 | 390 |  * testing. Specifically, as large blocks of memory are subdivided, | 
 | 391 |  * the order in which smaller blocks are delivered depends on the order | 
 | 392 |  * they're subdivided in this function. This is the primary factor | 
 | 393 |  * influencing the order in which pages are delivered to the IO | 
 | 394 |  * subsystem according to empirical testing, and this is also justified | 
 | 395 |  * by considering the behavior of a buddy system containing a single | 
 | 396 |  * large block of memory acted on by a series of small allocations. | 
 | 397 |  * This behavior is a critical factor in sglist merging's success. | 
 | 398 |  * | 
 | 399 |  * -- wli | 
 | 400 |  */ | 
 | 401 | static inline struct page * | 
 | 402 | expand(struct zone *zone, struct page *page, | 
 | 403 |  	int low, int high, struct free_area *area) | 
 | 404 | { | 
 | 405 | 	unsigned long size = 1 << high; | 
 | 406 |  | 
 | 407 | 	while (high > low) { | 
 | 408 | 		area--; | 
 | 409 | 		high--; | 
 | 410 | 		size >>= 1; | 
 | 411 | 		BUG_ON(bad_range(zone, &page[size])); | 
 | 412 | 		list_add(&page[size].lru, &area->free_list); | 
 | 413 | 		area->nr_free++; | 
 | 414 | 		set_page_order(&page[size], high); | 
 | 415 | 	} | 
 | 416 | 	return page; | 
 | 417 | } | 
 | 418 |  | 
 | 419 | void set_page_refs(struct page *page, int order) | 
 | 420 | { | 
 | 421 | #ifdef CONFIG_MMU | 
 | 422 | 	set_page_count(page, 1); | 
 | 423 | #else | 
 | 424 | 	int i; | 
 | 425 |  | 
 | 426 | 	/* | 
 | 427 | 	 * We need to reference all the pages for this order, otherwise if | 
 | 428 | 	 * anyone accesses one of the pages with (get/put) it will be freed. | 
 | 429 | 	 * - eg: access_process_vm() | 
 | 430 | 	 */ | 
 | 431 | 	for (i = 0; i < (1 << order); i++) | 
 | 432 | 		set_page_count(page + i, 1); | 
 | 433 | #endif /* CONFIG_MMU */ | 
 | 434 | } | 
 | 435 |  | 
 | 436 | /* | 
 | 437 |  * This page is about to be returned from the page allocator | 
 | 438 |  */ | 
 | 439 | static void prep_new_page(struct page *page, int order) | 
 | 440 | { | 
 | 441 | 	if (page->mapping || page_mapcount(page) || | 
 | 442 | 	    (page->flags & ( | 
 | 443 | 			1 << PG_private	| | 
 | 444 | 			1 << PG_locked	| | 
 | 445 | 			1 << PG_lru	| | 
 | 446 | 			1 << PG_active	| | 
 | 447 | 			1 << PG_dirty	| | 
 | 448 | 			1 << PG_reclaim	| | 
 | 449 | 			1 << PG_swapcache | | 
 | 450 | 			1 << PG_writeback ))) | 
 | 451 | 		bad_page(__FUNCTION__, page); | 
 | 452 |  | 
 | 453 | 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | | 
 | 454 | 			1 << PG_referenced | 1 << PG_arch_1 | | 
 | 455 | 			1 << PG_checked | 1 << PG_mappedtodisk); | 
 | 456 | 	page->private = 0; | 
 | 457 | 	set_page_refs(page, order); | 
 | 458 | 	kernel_map_pages(page, 1 << order, 1); | 
 | 459 | } | 
 | 460 |  | 
 | 461 | /*  | 
 | 462 |  * Do the hard work of removing an element from the buddy allocator. | 
 | 463 |  * Call me with the zone->lock already held. | 
 | 464 |  */ | 
 | 465 | static struct page *__rmqueue(struct zone *zone, unsigned int order) | 
 | 466 | { | 
 | 467 | 	struct free_area * area; | 
 | 468 | 	unsigned int current_order; | 
 | 469 | 	struct page *page; | 
 | 470 |  | 
 | 471 | 	for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
 | 472 | 		area = zone->free_area + current_order; | 
 | 473 | 		if (list_empty(&area->free_list)) | 
 | 474 | 			continue; | 
 | 475 |  | 
 | 476 | 		page = list_entry(area->free_list.next, struct page, lru); | 
 | 477 | 		list_del(&page->lru); | 
 | 478 | 		rmv_page_order(page); | 
 | 479 | 		area->nr_free--; | 
 | 480 | 		zone->free_pages -= 1UL << order; | 
 | 481 | 		return expand(zone, page, order, current_order, area); | 
 | 482 | 	} | 
 | 483 |  | 
 | 484 | 	return NULL; | 
 | 485 | } | 
 | 486 |  | 
 | 487 | /*  | 
 | 488 |  * Obtain a specified number of elements from the buddy allocator, all under | 
 | 489 |  * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
 | 490 |  * Returns the number of new pages which were placed at *list. | 
 | 491 |  */ | 
 | 492 | static int rmqueue_bulk(struct zone *zone, unsigned int order,  | 
 | 493 | 			unsigned long count, struct list_head *list) | 
 | 494 | { | 
 | 495 | 	unsigned long flags; | 
 | 496 | 	int i; | 
 | 497 | 	int allocated = 0; | 
 | 498 | 	struct page *page; | 
 | 499 | 	 | 
 | 500 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 501 | 	for (i = 0; i < count; ++i) { | 
 | 502 | 		page = __rmqueue(zone, order); | 
 | 503 | 		if (page == NULL) | 
 | 504 | 			break; | 
 | 505 | 		allocated++; | 
 | 506 | 		list_add_tail(&page->lru, list); | 
 | 507 | 	} | 
 | 508 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | 509 | 	return allocated; | 
 | 510 | } | 
 | 511 |  | 
 | 512 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) | 
 | 513 | static void __drain_pages(unsigned int cpu) | 
 | 514 | { | 
 | 515 | 	struct zone *zone; | 
 | 516 | 	int i; | 
 | 517 |  | 
 | 518 | 	for_each_zone(zone) { | 
 | 519 | 		struct per_cpu_pageset *pset; | 
 | 520 |  | 
 | 521 | 		pset = &zone->pageset[cpu]; | 
 | 522 | 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | 
 | 523 | 			struct per_cpu_pages *pcp; | 
 | 524 |  | 
 | 525 | 			pcp = &pset->pcp[i]; | 
 | 526 | 			pcp->count -= free_pages_bulk(zone, pcp->count, | 
 | 527 | 						&pcp->list, 0); | 
 | 528 | 		} | 
 | 529 | 	} | 
 | 530 | } | 
 | 531 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ | 
 | 532 |  | 
 | 533 | #ifdef CONFIG_PM | 
 | 534 |  | 
 | 535 | void mark_free_pages(struct zone *zone) | 
 | 536 | { | 
 | 537 | 	unsigned long zone_pfn, flags; | 
 | 538 | 	int order; | 
 | 539 | 	struct list_head *curr; | 
 | 540 |  | 
 | 541 | 	if (!zone->spanned_pages) | 
 | 542 | 		return; | 
 | 543 |  | 
 | 544 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 545 | 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | 
 | 546 | 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); | 
 | 547 |  | 
 | 548 | 	for (order = MAX_ORDER - 1; order >= 0; --order) | 
 | 549 | 		list_for_each(curr, &zone->free_area[order].free_list) { | 
 | 550 | 			unsigned long start_pfn, i; | 
 | 551 |  | 
 | 552 | 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); | 
 | 553 |  | 
 | 554 | 			for (i=0; i < (1<<order); i++) | 
 | 555 | 				SetPageNosaveFree(pfn_to_page(start_pfn+i)); | 
 | 556 | 	} | 
 | 557 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | 558 | } | 
 | 559 |  | 
 | 560 | /* | 
 | 561 |  * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
 | 562 |  */ | 
 | 563 | void drain_local_pages(void) | 
 | 564 | { | 
 | 565 | 	unsigned long flags; | 
 | 566 |  | 
 | 567 | 	local_irq_save(flags);	 | 
 | 568 | 	__drain_pages(smp_processor_id()); | 
 | 569 | 	local_irq_restore(flags);	 | 
 | 570 | } | 
 | 571 | #endif /* CONFIG_PM */ | 
 | 572 |  | 
 | 573 | static void zone_statistics(struct zonelist *zonelist, struct zone *z) | 
 | 574 | { | 
 | 575 | #ifdef CONFIG_NUMA | 
 | 576 | 	unsigned long flags; | 
 | 577 | 	int cpu; | 
 | 578 | 	pg_data_t *pg = z->zone_pgdat; | 
 | 579 | 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat; | 
 | 580 | 	struct per_cpu_pageset *p; | 
 | 581 |  | 
 | 582 | 	local_irq_save(flags); | 
 | 583 | 	cpu = smp_processor_id(); | 
 | 584 | 	p = &z->pageset[cpu]; | 
 | 585 | 	if (pg == orig) { | 
 | 586 | 		z->pageset[cpu].numa_hit++; | 
 | 587 | 	} else { | 
 | 588 | 		p->numa_miss++; | 
 | 589 | 		zonelist->zones[0]->pageset[cpu].numa_foreign++; | 
 | 590 | 	} | 
 | 591 | 	if (pg == NODE_DATA(numa_node_id())) | 
 | 592 | 		p->local_node++; | 
 | 593 | 	else | 
 | 594 | 		p->other_node++; | 
 | 595 | 	local_irq_restore(flags); | 
 | 596 | #endif | 
 | 597 | } | 
 | 598 |  | 
 | 599 | /* | 
 | 600 |  * Free a 0-order page | 
 | 601 |  */ | 
 | 602 | static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); | 
 | 603 | static void fastcall free_hot_cold_page(struct page *page, int cold) | 
 | 604 | { | 
 | 605 | 	struct zone *zone = page_zone(page); | 
 | 606 | 	struct per_cpu_pages *pcp; | 
 | 607 | 	unsigned long flags; | 
 | 608 |  | 
 | 609 | 	arch_free_page(page, 0); | 
 | 610 |  | 
 | 611 | 	kernel_map_pages(page, 1, 0); | 
 | 612 | 	inc_page_state(pgfree); | 
 | 613 | 	if (PageAnon(page)) | 
 | 614 | 		page->mapping = NULL; | 
 | 615 | 	free_pages_check(__FUNCTION__, page); | 
 | 616 | 	pcp = &zone->pageset[get_cpu()].pcp[cold]; | 
 | 617 | 	local_irq_save(flags); | 
 | 618 | 	if (pcp->count >= pcp->high) | 
 | 619 | 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | 
 | 620 | 	list_add(&page->lru, &pcp->list); | 
 | 621 | 	pcp->count++; | 
 | 622 | 	local_irq_restore(flags); | 
 | 623 | 	put_cpu(); | 
 | 624 | } | 
 | 625 |  | 
 | 626 | void fastcall free_hot_page(struct page *page) | 
 | 627 | { | 
 | 628 | 	free_hot_cold_page(page, 0); | 
 | 629 | } | 
 | 630 | 	 | 
 | 631 | void fastcall free_cold_page(struct page *page) | 
 | 632 | { | 
 | 633 | 	free_hot_cold_page(page, 1); | 
 | 634 | } | 
 | 635 |  | 
 | 636 | static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags) | 
 | 637 | { | 
 | 638 | 	int i; | 
 | 639 |  | 
 | 640 | 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); | 
 | 641 | 	for(i = 0; i < (1 << order); i++) | 
 | 642 | 		clear_highpage(page + i); | 
 | 643 | } | 
 | 644 |  | 
 | 645 | /* | 
 | 646 |  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But | 
 | 647 |  * we cheat by calling it from here, in the order > 0 path.  Saves a branch | 
 | 648 |  * or two. | 
 | 649 |  */ | 
 | 650 | static struct page * | 
 | 651 | buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags) | 
 | 652 | { | 
 | 653 | 	unsigned long flags; | 
 | 654 | 	struct page *page = NULL; | 
 | 655 | 	int cold = !!(gfp_flags & __GFP_COLD); | 
 | 656 |  | 
 | 657 | 	if (order == 0) { | 
 | 658 | 		struct per_cpu_pages *pcp; | 
 | 659 |  | 
 | 660 | 		pcp = &zone->pageset[get_cpu()].pcp[cold]; | 
 | 661 | 		local_irq_save(flags); | 
 | 662 | 		if (pcp->count <= pcp->low) | 
 | 663 | 			pcp->count += rmqueue_bulk(zone, 0, | 
 | 664 | 						pcp->batch, &pcp->list); | 
 | 665 | 		if (pcp->count) { | 
 | 666 | 			page = list_entry(pcp->list.next, struct page, lru); | 
 | 667 | 			list_del(&page->lru); | 
 | 668 | 			pcp->count--; | 
 | 669 | 		} | 
 | 670 | 		local_irq_restore(flags); | 
 | 671 | 		put_cpu(); | 
 | 672 | 	} | 
 | 673 |  | 
 | 674 | 	if (page == NULL) { | 
 | 675 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 676 | 		page = __rmqueue(zone, order); | 
 | 677 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 678 | 	} | 
 | 679 |  | 
 | 680 | 	if (page != NULL) { | 
 | 681 | 		BUG_ON(bad_range(zone, page)); | 
 | 682 | 		mod_page_state_zone(zone, pgalloc, 1 << order); | 
 | 683 | 		prep_new_page(page, order); | 
 | 684 |  | 
 | 685 | 		if (gfp_flags & __GFP_ZERO) | 
 | 686 | 			prep_zero_page(page, order, gfp_flags); | 
 | 687 |  | 
 | 688 | 		if (order && (gfp_flags & __GFP_COMP)) | 
 | 689 | 			prep_compound_page(page, order); | 
 | 690 | 	} | 
 | 691 | 	return page; | 
 | 692 | } | 
 | 693 |  | 
 | 694 | /* | 
 | 695 |  * Return 1 if free pages are above 'mark'. This takes into account the order | 
 | 696 |  * of the allocation. | 
 | 697 |  */ | 
 | 698 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | 
 | 699 | 		      int classzone_idx, int can_try_harder, int gfp_high) | 
 | 700 | { | 
 | 701 | 	/* free_pages my go negative - that's OK */ | 
 | 702 | 	long min = mark, free_pages = z->free_pages - (1 << order) + 1; | 
 | 703 | 	int o; | 
 | 704 |  | 
 | 705 | 	if (gfp_high) | 
 | 706 | 		min -= min / 2; | 
 | 707 | 	if (can_try_harder) | 
 | 708 | 		min -= min / 4; | 
 | 709 |  | 
 | 710 | 	if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | 
 | 711 | 		return 0; | 
 | 712 | 	for (o = 0; o < order; o++) { | 
 | 713 | 		/* At the next order, this order's pages become unavailable */ | 
 | 714 | 		free_pages -= z->free_area[o].nr_free << o; | 
 | 715 |  | 
 | 716 | 		/* Require fewer higher order pages to be free */ | 
 | 717 | 		min >>= 1; | 
 | 718 |  | 
 | 719 | 		if (free_pages <= min) | 
 | 720 | 			return 0; | 
 | 721 | 	} | 
 | 722 | 	return 1; | 
 | 723 | } | 
 | 724 |  | 
 | 725 | /* | 
 | 726 |  * This is the 'heart' of the zoned buddy allocator. | 
 | 727 |  */ | 
 | 728 | struct page * fastcall | 
 | 729 | __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order, | 
 | 730 | 		struct zonelist *zonelist) | 
 | 731 | { | 
 | 732 | 	const int wait = gfp_mask & __GFP_WAIT; | 
 | 733 | 	struct zone **zones, *z; | 
 | 734 | 	struct page *page; | 
 | 735 | 	struct reclaim_state reclaim_state; | 
 | 736 | 	struct task_struct *p = current; | 
 | 737 | 	int i; | 
 | 738 | 	int classzone_idx; | 
 | 739 | 	int do_retry; | 
 | 740 | 	int can_try_harder; | 
 | 741 | 	int did_some_progress; | 
 | 742 |  | 
 | 743 | 	might_sleep_if(wait); | 
 | 744 |  | 
 | 745 | 	/* | 
 | 746 | 	 * The caller may dip into page reserves a bit more if the caller | 
 | 747 | 	 * cannot run direct reclaim, or is the caller has realtime scheduling | 
 | 748 | 	 * policy | 
 | 749 | 	 */ | 
 | 750 | 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; | 
 | 751 |  | 
 | 752 | 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */ | 
 | 753 |  | 
 | 754 | 	if (unlikely(zones[0] == NULL)) { | 
 | 755 | 		/* Should this ever happen?? */ | 
 | 756 | 		return NULL; | 
 | 757 | 	} | 
 | 758 |  | 
 | 759 | 	classzone_idx = zone_idx(zones[0]); | 
 | 760 |  | 
 | 761 |  restart: | 
 | 762 | 	/* Go through the zonelist once, looking for a zone with enough free */ | 
 | 763 | 	for (i = 0; (z = zones[i]) != NULL; i++) { | 
 | 764 |  | 
 | 765 | 		if (!zone_watermark_ok(z, order, z->pages_low, | 
 | 766 | 				       classzone_idx, 0, 0)) | 
 | 767 | 			continue; | 
 | 768 |  | 
 | 769 | 		if (!cpuset_zone_allowed(z)) | 
 | 770 | 			continue; | 
 | 771 |  | 
 | 772 | 		page = buffered_rmqueue(z, order, gfp_mask); | 
 | 773 | 		if (page) | 
 | 774 | 			goto got_pg; | 
 | 775 | 	} | 
 | 776 |  | 
 | 777 | 	for (i = 0; (z = zones[i]) != NULL; i++) | 
 | 778 | 		wakeup_kswapd(z, order); | 
 | 779 |  | 
 | 780 | 	/* | 
 | 781 | 	 * Go through the zonelist again. Let __GFP_HIGH and allocations | 
 | 782 | 	 * coming from realtime tasks to go deeper into reserves | 
 | 783 | 	 * | 
 | 784 | 	 * This is the last chance, in general, before the goto nopage. | 
 | 785 | 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | 
 | 786 | 	 */ | 
 | 787 | 	for (i = 0; (z = zones[i]) != NULL; i++) { | 
 | 788 | 		if (!zone_watermark_ok(z, order, z->pages_min, | 
 | 789 | 				       classzone_idx, can_try_harder, | 
 | 790 | 				       gfp_mask & __GFP_HIGH)) | 
 | 791 | 			continue; | 
 | 792 |  | 
 | 793 | 		if (wait && !cpuset_zone_allowed(z)) | 
 | 794 | 			continue; | 
 | 795 |  | 
 | 796 | 		page = buffered_rmqueue(z, order, gfp_mask); | 
 | 797 | 		if (page) | 
 | 798 | 			goto got_pg; | 
 | 799 | 	} | 
 | 800 |  | 
 | 801 | 	/* This allocation should allow future memory freeing. */ | 
 | 802 | 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) && !in_interrupt()) { | 
 | 803 | 		/* go through the zonelist yet again, ignoring mins */ | 
 | 804 | 		for (i = 0; (z = zones[i]) != NULL; i++) { | 
 | 805 | 			if (!cpuset_zone_allowed(z)) | 
 | 806 | 				continue; | 
 | 807 | 			page = buffered_rmqueue(z, order, gfp_mask); | 
 | 808 | 			if (page) | 
 | 809 | 				goto got_pg; | 
 | 810 | 		} | 
 | 811 | 		goto nopage; | 
 | 812 | 	} | 
 | 813 |  | 
 | 814 | 	/* Atomic allocations - we can't balance anything */ | 
 | 815 | 	if (!wait) | 
 | 816 | 		goto nopage; | 
 | 817 |  | 
 | 818 | rebalance: | 
 | 819 | 	cond_resched(); | 
 | 820 |  | 
 | 821 | 	/* We now go into synchronous reclaim */ | 
 | 822 | 	p->flags |= PF_MEMALLOC; | 
 | 823 | 	reclaim_state.reclaimed_slab = 0; | 
 | 824 | 	p->reclaim_state = &reclaim_state; | 
 | 825 |  | 
 | 826 | 	did_some_progress = try_to_free_pages(zones, gfp_mask, order); | 
 | 827 |  | 
 | 828 | 	p->reclaim_state = NULL; | 
 | 829 | 	p->flags &= ~PF_MEMALLOC; | 
 | 830 |  | 
 | 831 | 	cond_resched(); | 
 | 832 |  | 
 | 833 | 	if (likely(did_some_progress)) { | 
 | 834 | 		/* | 
 | 835 | 		 * Go through the zonelist yet one more time, keep | 
 | 836 | 		 * very high watermark here, this is only to catch | 
 | 837 | 		 * a parallel oom killing, we must fail if we're still | 
 | 838 | 		 * under heavy pressure. | 
 | 839 | 		 */ | 
 | 840 | 		for (i = 0; (z = zones[i]) != NULL; i++) { | 
 | 841 | 			if (!zone_watermark_ok(z, order, z->pages_min, | 
 | 842 | 					       classzone_idx, can_try_harder, | 
 | 843 | 					       gfp_mask & __GFP_HIGH)) | 
 | 844 | 				continue; | 
 | 845 |  | 
 | 846 | 			if (!cpuset_zone_allowed(z)) | 
 | 847 | 				continue; | 
 | 848 |  | 
 | 849 | 			page = buffered_rmqueue(z, order, gfp_mask); | 
 | 850 | 			if (page) | 
 | 851 | 				goto got_pg; | 
 | 852 | 		} | 
 | 853 | 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | 
 | 854 | 		/* | 
 | 855 | 		 * Go through the zonelist yet one more time, keep | 
 | 856 | 		 * very high watermark here, this is only to catch | 
 | 857 | 		 * a parallel oom killing, we must fail if we're still | 
 | 858 | 		 * under heavy pressure. | 
 | 859 | 		 */ | 
 | 860 | 		for (i = 0; (z = zones[i]) != NULL; i++) { | 
 | 861 | 			if (!zone_watermark_ok(z, order, z->pages_high, | 
 | 862 | 					       classzone_idx, 0, 0)) | 
 | 863 | 				continue; | 
 | 864 |  | 
 | 865 | 			if (!cpuset_zone_allowed(z)) | 
 | 866 | 				continue; | 
 | 867 |  | 
 | 868 | 			page = buffered_rmqueue(z, order, gfp_mask); | 
 | 869 | 			if (page) | 
 | 870 | 				goto got_pg; | 
 | 871 | 		} | 
 | 872 |  | 
 | 873 | 		out_of_memory(gfp_mask); | 
 | 874 | 		goto restart; | 
 | 875 | 	} | 
 | 876 |  | 
 | 877 | 	/* | 
 | 878 | 	 * Don't let big-order allocations loop unless the caller explicitly | 
 | 879 | 	 * requests that.  Wait for some write requests to complete then retry. | 
 | 880 | 	 * | 
 | 881 | 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order | 
 | 882 | 	 * <= 3, but that may not be true in other implementations. | 
 | 883 | 	 */ | 
 | 884 | 	do_retry = 0; | 
 | 885 | 	if (!(gfp_mask & __GFP_NORETRY)) { | 
 | 886 | 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) | 
 | 887 | 			do_retry = 1; | 
 | 888 | 		if (gfp_mask & __GFP_NOFAIL) | 
 | 889 | 			do_retry = 1; | 
 | 890 | 	} | 
 | 891 | 	if (do_retry) { | 
 | 892 | 		blk_congestion_wait(WRITE, HZ/50); | 
 | 893 | 		goto rebalance; | 
 | 894 | 	} | 
 | 895 |  | 
 | 896 | nopage: | 
 | 897 | 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | 
 | 898 | 		printk(KERN_WARNING "%s: page allocation failure." | 
 | 899 | 			" order:%d, mode:0x%x\n", | 
 | 900 | 			p->comm, order, gfp_mask); | 
 | 901 | 		dump_stack(); | 
 | 902 | 	} | 
 | 903 | 	return NULL; | 
 | 904 | got_pg: | 
 | 905 | 	zone_statistics(zonelist, z); | 
 | 906 | 	return page; | 
 | 907 | } | 
 | 908 |  | 
 | 909 | EXPORT_SYMBOL(__alloc_pages); | 
 | 910 |  | 
 | 911 | /* | 
 | 912 |  * Common helper functions. | 
 | 913 |  */ | 
 | 914 | fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order) | 
 | 915 | { | 
 | 916 | 	struct page * page; | 
 | 917 | 	page = alloc_pages(gfp_mask, order); | 
 | 918 | 	if (!page) | 
 | 919 | 		return 0; | 
 | 920 | 	return (unsigned long) page_address(page); | 
 | 921 | } | 
 | 922 |  | 
 | 923 | EXPORT_SYMBOL(__get_free_pages); | 
 | 924 |  | 
 | 925 | fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask) | 
 | 926 | { | 
 | 927 | 	struct page * page; | 
 | 928 |  | 
 | 929 | 	/* | 
 | 930 | 	 * get_zeroed_page() returns a 32-bit address, which cannot represent | 
 | 931 | 	 * a highmem page | 
 | 932 | 	 */ | 
 | 933 | 	BUG_ON(gfp_mask & __GFP_HIGHMEM); | 
 | 934 |  | 
 | 935 | 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | 
 | 936 | 	if (page) | 
 | 937 | 		return (unsigned long) page_address(page); | 
 | 938 | 	return 0; | 
 | 939 | } | 
 | 940 |  | 
 | 941 | EXPORT_SYMBOL(get_zeroed_page); | 
 | 942 |  | 
 | 943 | void __pagevec_free(struct pagevec *pvec) | 
 | 944 | { | 
 | 945 | 	int i = pagevec_count(pvec); | 
 | 946 |  | 
 | 947 | 	while (--i >= 0) | 
 | 948 | 		free_hot_cold_page(pvec->pages[i], pvec->cold); | 
 | 949 | } | 
 | 950 |  | 
 | 951 | fastcall void __free_pages(struct page *page, unsigned int order) | 
 | 952 | { | 
 | 953 | 	if (!PageReserved(page) && put_page_testzero(page)) { | 
 | 954 | 		if (order == 0) | 
 | 955 | 			free_hot_page(page); | 
 | 956 | 		else | 
 | 957 | 			__free_pages_ok(page, order); | 
 | 958 | 	} | 
 | 959 | } | 
 | 960 |  | 
 | 961 | EXPORT_SYMBOL(__free_pages); | 
 | 962 |  | 
 | 963 | fastcall void free_pages(unsigned long addr, unsigned int order) | 
 | 964 | { | 
 | 965 | 	if (addr != 0) { | 
 | 966 | 		BUG_ON(!virt_addr_valid((void *)addr)); | 
 | 967 | 		__free_pages(virt_to_page((void *)addr), order); | 
 | 968 | 	} | 
 | 969 | } | 
 | 970 |  | 
 | 971 | EXPORT_SYMBOL(free_pages); | 
 | 972 |  | 
 | 973 | /* | 
 | 974 |  * Total amount of free (allocatable) RAM: | 
 | 975 |  */ | 
 | 976 | unsigned int nr_free_pages(void) | 
 | 977 | { | 
 | 978 | 	unsigned int sum = 0; | 
 | 979 | 	struct zone *zone; | 
 | 980 |  | 
 | 981 | 	for_each_zone(zone) | 
 | 982 | 		sum += zone->free_pages; | 
 | 983 |  | 
 | 984 | 	return sum; | 
 | 985 | } | 
 | 986 |  | 
 | 987 | EXPORT_SYMBOL(nr_free_pages); | 
 | 988 |  | 
 | 989 | #ifdef CONFIG_NUMA | 
 | 990 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) | 
 | 991 | { | 
 | 992 | 	unsigned int i, sum = 0; | 
 | 993 |  | 
 | 994 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 995 | 		sum += pgdat->node_zones[i].free_pages; | 
 | 996 |  | 
 | 997 | 	return sum; | 
 | 998 | } | 
 | 999 | #endif | 
 | 1000 |  | 
 | 1001 | static unsigned int nr_free_zone_pages(int offset) | 
 | 1002 | { | 
 | 1003 | 	pg_data_t *pgdat; | 
 | 1004 | 	unsigned int sum = 0; | 
 | 1005 |  | 
 | 1006 | 	for_each_pgdat(pgdat) { | 
 | 1007 | 		struct zonelist *zonelist = pgdat->node_zonelists + offset; | 
 | 1008 | 		struct zone **zonep = zonelist->zones; | 
 | 1009 | 		struct zone *zone; | 
 | 1010 |  | 
 | 1011 | 		for (zone = *zonep++; zone; zone = *zonep++) { | 
 | 1012 | 			unsigned long size = zone->present_pages; | 
 | 1013 | 			unsigned long high = zone->pages_high; | 
 | 1014 | 			if (size > high) | 
 | 1015 | 				sum += size - high; | 
 | 1016 | 		} | 
 | 1017 | 	} | 
 | 1018 |  | 
 | 1019 | 	return sum; | 
 | 1020 | } | 
 | 1021 |  | 
 | 1022 | /* | 
 | 1023 |  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | 
 | 1024 |  */ | 
 | 1025 | unsigned int nr_free_buffer_pages(void) | 
 | 1026 | { | 
 | 1027 | 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); | 
 | 1028 | } | 
 | 1029 |  | 
 | 1030 | /* | 
 | 1031 |  * Amount of free RAM allocatable within all zones | 
 | 1032 |  */ | 
 | 1033 | unsigned int nr_free_pagecache_pages(void) | 
 | 1034 | { | 
 | 1035 | 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); | 
 | 1036 | } | 
 | 1037 |  | 
 | 1038 | #ifdef CONFIG_HIGHMEM | 
 | 1039 | unsigned int nr_free_highpages (void) | 
 | 1040 | { | 
 | 1041 | 	pg_data_t *pgdat; | 
 | 1042 | 	unsigned int pages = 0; | 
 | 1043 |  | 
 | 1044 | 	for_each_pgdat(pgdat) | 
 | 1045 | 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; | 
 | 1046 |  | 
 | 1047 | 	return pages; | 
 | 1048 | } | 
 | 1049 | #endif | 
 | 1050 |  | 
 | 1051 | #ifdef CONFIG_NUMA | 
 | 1052 | static void show_node(struct zone *zone) | 
 | 1053 | { | 
 | 1054 | 	printk("Node %d ", zone->zone_pgdat->node_id); | 
 | 1055 | } | 
 | 1056 | #else | 
 | 1057 | #define show_node(zone)	do { } while (0) | 
 | 1058 | #endif | 
 | 1059 |  | 
 | 1060 | /* | 
 | 1061 |  * Accumulate the page_state information across all CPUs. | 
 | 1062 |  * The result is unavoidably approximate - it can change | 
 | 1063 |  * during and after execution of this function. | 
 | 1064 |  */ | 
 | 1065 | static DEFINE_PER_CPU(struct page_state, page_states) = {0}; | 
 | 1066 |  | 
 | 1067 | atomic_t nr_pagecache = ATOMIC_INIT(0); | 
 | 1068 | EXPORT_SYMBOL(nr_pagecache); | 
 | 1069 | #ifdef CONFIG_SMP | 
 | 1070 | DEFINE_PER_CPU(long, nr_pagecache_local) = 0; | 
 | 1071 | #endif | 
 | 1072 |  | 
 | 1073 | void __get_page_state(struct page_state *ret, int nr) | 
 | 1074 | { | 
 | 1075 | 	int cpu = 0; | 
 | 1076 |  | 
 | 1077 | 	memset(ret, 0, sizeof(*ret)); | 
 | 1078 |  | 
 | 1079 | 	cpu = first_cpu(cpu_online_map); | 
 | 1080 | 	while (cpu < NR_CPUS) { | 
 | 1081 | 		unsigned long *in, *out, off; | 
 | 1082 |  | 
 | 1083 | 		in = (unsigned long *)&per_cpu(page_states, cpu); | 
 | 1084 |  | 
 | 1085 | 		cpu = next_cpu(cpu, cpu_online_map); | 
 | 1086 |  | 
 | 1087 | 		if (cpu < NR_CPUS) | 
 | 1088 | 			prefetch(&per_cpu(page_states, cpu)); | 
 | 1089 |  | 
 | 1090 | 		out = (unsigned long *)ret; | 
 | 1091 | 		for (off = 0; off < nr; off++) | 
 | 1092 | 			*out++ += *in++; | 
 | 1093 | 	} | 
 | 1094 | } | 
 | 1095 |  | 
 | 1096 | void get_page_state(struct page_state *ret) | 
 | 1097 | { | 
 | 1098 | 	int nr; | 
 | 1099 |  | 
 | 1100 | 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); | 
 | 1101 | 	nr /= sizeof(unsigned long); | 
 | 1102 |  | 
 | 1103 | 	__get_page_state(ret, nr + 1); | 
 | 1104 | } | 
 | 1105 |  | 
 | 1106 | void get_full_page_state(struct page_state *ret) | 
 | 1107 | { | 
 | 1108 | 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long)); | 
 | 1109 | } | 
 | 1110 |  | 
 | 1111 | unsigned long __read_page_state(unsigned offset) | 
 | 1112 | { | 
 | 1113 | 	unsigned long ret = 0; | 
 | 1114 | 	int cpu; | 
 | 1115 |  | 
 | 1116 | 	for_each_online_cpu(cpu) { | 
 | 1117 | 		unsigned long in; | 
 | 1118 |  | 
 | 1119 | 		in = (unsigned long)&per_cpu(page_states, cpu) + offset; | 
 | 1120 | 		ret += *((unsigned long *)in); | 
 | 1121 | 	} | 
 | 1122 | 	return ret; | 
 | 1123 | } | 
 | 1124 |  | 
 | 1125 | void __mod_page_state(unsigned offset, unsigned long delta) | 
 | 1126 | { | 
 | 1127 | 	unsigned long flags; | 
 | 1128 | 	void* ptr; | 
 | 1129 |  | 
 | 1130 | 	local_irq_save(flags); | 
 | 1131 | 	ptr = &__get_cpu_var(page_states); | 
 | 1132 | 	*(unsigned long*)(ptr + offset) += delta; | 
 | 1133 | 	local_irq_restore(flags); | 
 | 1134 | } | 
 | 1135 |  | 
 | 1136 | EXPORT_SYMBOL(__mod_page_state); | 
 | 1137 |  | 
 | 1138 | void __get_zone_counts(unsigned long *active, unsigned long *inactive, | 
 | 1139 | 			unsigned long *free, struct pglist_data *pgdat) | 
 | 1140 | { | 
 | 1141 | 	struct zone *zones = pgdat->node_zones; | 
 | 1142 | 	int i; | 
 | 1143 |  | 
 | 1144 | 	*active = 0; | 
 | 1145 | 	*inactive = 0; | 
 | 1146 | 	*free = 0; | 
 | 1147 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 1148 | 		*active += zones[i].nr_active; | 
 | 1149 | 		*inactive += zones[i].nr_inactive; | 
 | 1150 | 		*free += zones[i].free_pages; | 
 | 1151 | 	} | 
 | 1152 | } | 
 | 1153 |  | 
 | 1154 | void get_zone_counts(unsigned long *active, | 
 | 1155 | 		unsigned long *inactive, unsigned long *free) | 
 | 1156 | { | 
 | 1157 | 	struct pglist_data *pgdat; | 
 | 1158 |  | 
 | 1159 | 	*active = 0; | 
 | 1160 | 	*inactive = 0; | 
 | 1161 | 	*free = 0; | 
 | 1162 | 	for_each_pgdat(pgdat) { | 
 | 1163 | 		unsigned long l, m, n; | 
 | 1164 | 		__get_zone_counts(&l, &m, &n, pgdat); | 
 | 1165 | 		*active += l; | 
 | 1166 | 		*inactive += m; | 
 | 1167 | 		*free += n; | 
 | 1168 | 	} | 
 | 1169 | } | 
 | 1170 |  | 
 | 1171 | void si_meminfo(struct sysinfo *val) | 
 | 1172 | { | 
 | 1173 | 	val->totalram = totalram_pages; | 
 | 1174 | 	val->sharedram = 0; | 
 | 1175 | 	val->freeram = nr_free_pages(); | 
 | 1176 | 	val->bufferram = nr_blockdev_pages(); | 
 | 1177 | #ifdef CONFIG_HIGHMEM | 
 | 1178 | 	val->totalhigh = totalhigh_pages; | 
 | 1179 | 	val->freehigh = nr_free_highpages(); | 
 | 1180 | #else | 
 | 1181 | 	val->totalhigh = 0; | 
 | 1182 | 	val->freehigh = 0; | 
 | 1183 | #endif | 
 | 1184 | 	val->mem_unit = PAGE_SIZE; | 
 | 1185 | } | 
 | 1186 |  | 
 | 1187 | EXPORT_SYMBOL(si_meminfo); | 
 | 1188 |  | 
 | 1189 | #ifdef CONFIG_NUMA | 
 | 1190 | void si_meminfo_node(struct sysinfo *val, int nid) | 
 | 1191 | { | 
 | 1192 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 | 1193 |  | 
 | 1194 | 	val->totalram = pgdat->node_present_pages; | 
 | 1195 | 	val->freeram = nr_free_pages_pgdat(pgdat); | 
 | 1196 | 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | 
 | 1197 | 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; | 
 | 1198 | 	val->mem_unit = PAGE_SIZE; | 
 | 1199 | } | 
 | 1200 | #endif | 
 | 1201 |  | 
 | 1202 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 | 1203 |  | 
 | 1204 | /* | 
 | 1205 |  * Show free area list (used inside shift_scroll-lock stuff) | 
 | 1206 |  * We also calculate the percentage fragmentation. We do this by counting the | 
 | 1207 |  * memory on each free list with the exception of the first item on the list. | 
 | 1208 |  */ | 
 | 1209 | void show_free_areas(void) | 
 | 1210 | { | 
 | 1211 | 	struct page_state ps; | 
 | 1212 | 	int cpu, temperature; | 
 | 1213 | 	unsigned long active; | 
 | 1214 | 	unsigned long inactive; | 
 | 1215 | 	unsigned long free; | 
 | 1216 | 	struct zone *zone; | 
 | 1217 |  | 
 | 1218 | 	for_each_zone(zone) { | 
 | 1219 | 		show_node(zone); | 
 | 1220 | 		printk("%s per-cpu:", zone->name); | 
 | 1221 |  | 
 | 1222 | 		if (!zone->present_pages) { | 
 | 1223 | 			printk(" empty\n"); | 
 | 1224 | 			continue; | 
 | 1225 | 		} else | 
 | 1226 | 			printk("\n"); | 
 | 1227 |  | 
 | 1228 | 		for (cpu = 0; cpu < NR_CPUS; ++cpu) { | 
 | 1229 | 			struct per_cpu_pageset *pageset; | 
 | 1230 |  | 
 | 1231 | 			if (!cpu_possible(cpu)) | 
 | 1232 | 				continue; | 
 | 1233 |  | 
 | 1234 | 			pageset = zone->pageset + cpu; | 
 | 1235 |  | 
 | 1236 | 			for (temperature = 0; temperature < 2; temperature++) | 
 | 1237 | 				printk("cpu %d %s: low %d, high %d, batch %d\n", | 
 | 1238 | 					cpu, | 
 | 1239 | 					temperature ? "cold" : "hot", | 
 | 1240 | 					pageset->pcp[temperature].low, | 
 | 1241 | 					pageset->pcp[temperature].high, | 
 | 1242 | 					pageset->pcp[temperature].batch); | 
 | 1243 | 		} | 
 | 1244 | 	} | 
 | 1245 |  | 
 | 1246 | 	get_page_state(&ps); | 
 | 1247 | 	get_zone_counts(&active, &inactive, &free); | 
 | 1248 |  | 
 | 1249 | 	printk("\nFree pages: %11ukB (%ukB HighMem)\n", | 
 | 1250 | 		K(nr_free_pages()), | 
 | 1251 | 		K(nr_free_highpages())); | 
 | 1252 |  | 
 | 1253 | 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " | 
 | 1254 | 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", | 
 | 1255 | 		active, | 
 | 1256 | 		inactive, | 
 | 1257 | 		ps.nr_dirty, | 
 | 1258 | 		ps.nr_writeback, | 
 | 1259 | 		ps.nr_unstable, | 
 | 1260 | 		nr_free_pages(), | 
 | 1261 | 		ps.nr_slab, | 
 | 1262 | 		ps.nr_mapped, | 
 | 1263 | 		ps.nr_page_table_pages); | 
 | 1264 |  | 
 | 1265 | 	for_each_zone(zone) { | 
 | 1266 | 		int i; | 
 | 1267 |  | 
 | 1268 | 		show_node(zone); | 
 | 1269 | 		printk("%s" | 
 | 1270 | 			" free:%lukB" | 
 | 1271 | 			" min:%lukB" | 
 | 1272 | 			" low:%lukB" | 
 | 1273 | 			" high:%lukB" | 
 | 1274 | 			" active:%lukB" | 
 | 1275 | 			" inactive:%lukB" | 
 | 1276 | 			" present:%lukB" | 
 | 1277 | 			" pages_scanned:%lu" | 
 | 1278 | 			" all_unreclaimable? %s" | 
 | 1279 | 			"\n", | 
 | 1280 | 			zone->name, | 
 | 1281 | 			K(zone->free_pages), | 
 | 1282 | 			K(zone->pages_min), | 
 | 1283 | 			K(zone->pages_low), | 
 | 1284 | 			K(zone->pages_high), | 
 | 1285 | 			K(zone->nr_active), | 
 | 1286 | 			K(zone->nr_inactive), | 
 | 1287 | 			K(zone->present_pages), | 
 | 1288 | 			zone->pages_scanned, | 
 | 1289 | 			(zone->all_unreclaimable ? "yes" : "no") | 
 | 1290 | 			); | 
 | 1291 | 		printk("lowmem_reserve[]:"); | 
 | 1292 | 		for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 1293 | 			printk(" %lu", zone->lowmem_reserve[i]); | 
 | 1294 | 		printk("\n"); | 
 | 1295 | 	} | 
 | 1296 |  | 
 | 1297 | 	for_each_zone(zone) { | 
 | 1298 |  		unsigned long nr, flags, order, total = 0; | 
 | 1299 |  | 
 | 1300 | 		show_node(zone); | 
 | 1301 | 		printk("%s: ", zone->name); | 
 | 1302 | 		if (!zone->present_pages) { | 
 | 1303 | 			printk("empty\n"); | 
 | 1304 | 			continue; | 
 | 1305 | 		} | 
 | 1306 |  | 
 | 1307 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 1308 | 		for (order = 0; order < MAX_ORDER; order++) { | 
 | 1309 | 			nr = zone->free_area[order].nr_free; | 
 | 1310 | 			total += nr << order; | 
 | 1311 | 			printk("%lu*%lukB ", nr, K(1UL) << order); | 
 | 1312 | 		} | 
 | 1313 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 1314 | 		printk("= %lukB\n", K(total)); | 
 | 1315 | 	} | 
 | 1316 |  | 
 | 1317 | 	show_swap_cache_info(); | 
 | 1318 | } | 
 | 1319 |  | 
 | 1320 | /* | 
 | 1321 |  * Builds allocation fallback zone lists. | 
 | 1322 |  */ | 
 | 1323 | static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) | 
 | 1324 | { | 
 | 1325 | 	switch (k) { | 
 | 1326 | 		struct zone *zone; | 
 | 1327 | 	default: | 
 | 1328 | 		BUG(); | 
 | 1329 | 	case ZONE_HIGHMEM: | 
 | 1330 | 		zone = pgdat->node_zones + ZONE_HIGHMEM; | 
 | 1331 | 		if (zone->present_pages) { | 
 | 1332 | #ifndef CONFIG_HIGHMEM | 
 | 1333 | 			BUG(); | 
 | 1334 | #endif | 
 | 1335 | 			zonelist->zones[j++] = zone; | 
 | 1336 | 		} | 
 | 1337 | 	case ZONE_NORMAL: | 
 | 1338 | 		zone = pgdat->node_zones + ZONE_NORMAL; | 
 | 1339 | 		if (zone->present_pages) | 
 | 1340 | 			zonelist->zones[j++] = zone; | 
 | 1341 | 	case ZONE_DMA: | 
 | 1342 | 		zone = pgdat->node_zones + ZONE_DMA; | 
 | 1343 | 		if (zone->present_pages) | 
 | 1344 | 			zonelist->zones[j++] = zone; | 
 | 1345 | 	} | 
 | 1346 |  | 
 | 1347 | 	return j; | 
 | 1348 | } | 
 | 1349 |  | 
 | 1350 | #ifdef CONFIG_NUMA | 
 | 1351 | #define MAX_NODE_LOAD (num_online_nodes()) | 
 | 1352 | static int __initdata node_load[MAX_NUMNODES]; | 
 | 1353 | /** | 
 | 1354 |  * find_next_best_node - find the next node that should appear in a given | 
 | 1355 |  *    node's fallback list | 
 | 1356 |  * @node: node whose fallback list we're appending | 
 | 1357 |  * @used_node_mask: nodemask_t of already used nodes | 
 | 1358 |  * | 
 | 1359 |  * We use a number of factors to determine which is the next node that should | 
 | 1360 |  * appear on a given node's fallback list.  The node should not have appeared | 
 | 1361 |  * already in @node's fallback list, and it should be the next closest node | 
 | 1362 |  * according to the distance array (which contains arbitrary distance values | 
 | 1363 |  * from each node to each node in the system), and should also prefer nodes | 
 | 1364 |  * with no CPUs, since presumably they'll have very little allocation pressure | 
 | 1365 |  * on them otherwise. | 
 | 1366 |  * It returns -1 if no node is found. | 
 | 1367 |  */ | 
 | 1368 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) | 
 | 1369 | { | 
 | 1370 | 	int i, n, val; | 
 | 1371 | 	int min_val = INT_MAX; | 
 | 1372 | 	int best_node = -1; | 
 | 1373 |  | 
 | 1374 | 	for_each_online_node(i) { | 
 | 1375 | 		cpumask_t tmp; | 
 | 1376 |  | 
 | 1377 | 		/* Start from local node */ | 
 | 1378 | 		n = (node+i) % num_online_nodes(); | 
 | 1379 |  | 
 | 1380 | 		/* Don't want a node to appear more than once */ | 
 | 1381 | 		if (node_isset(n, *used_node_mask)) | 
 | 1382 | 			continue; | 
 | 1383 |  | 
 | 1384 | 		/* Use the local node if we haven't already */ | 
 | 1385 | 		if (!node_isset(node, *used_node_mask)) { | 
 | 1386 | 			best_node = node; | 
 | 1387 | 			break; | 
 | 1388 | 		} | 
 | 1389 |  | 
 | 1390 | 		/* Use the distance array to find the distance */ | 
 | 1391 | 		val = node_distance(node, n); | 
 | 1392 |  | 
 | 1393 | 		/* Give preference to headless and unused nodes */ | 
 | 1394 | 		tmp = node_to_cpumask(n); | 
 | 1395 | 		if (!cpus_empty(tmp)) | 
 | 1396 | 			val += PENALTY_FOR_NODE_WITH_CPUS; | 
 | 1397 |  | 
 | 1398 | 		/* Slight preference for less loaded node */ | 
 | 1399 | 		val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 
 | 1400 | 		val += node_load[n]; | 
 | 1401 |  | 
 | 1402 | 		if (val < min_val) { | 
 | 1403 | 			min_val = val; | 
 | 1404 | 			best_node = n; | 
 | 1405 | 		} | 
 | 1406 | 	} | 
 | 1407 |  | 
 | 1408 | 	if (best_node >= 0) | 
 | 1409 | 		node_set(best_node, *used_node_mask); | 
 | 1410 |  | 
 | 1411 | 	return best_node; | 
 | 1412 | } | 
 | 1413 |  | 
 | 1414 | static void __init build_zonelists(pg_data_t *pgdat) | 
 | 1415 | { | 
 | 1416 | 	int i, j, k, node, local_node; | 
 | 1417 | 	int prev_node, load; | 
 | 1418 | 	struct zonelist *zonelist; | 
 | 1419 | 	nodemask_t used_mask; | 
 | 1420 |  | 
 | 1421 | 	/* initialize zonelists */ | 
 | 1422 | 	for (i = 0; i < GFP_ZONETYPES; i++) { | 
 | 1423 | 		zonelist = pgdat->node_zonelists + i; | 
 | 1424 | 		zonelist->zones[0] = NULL; | 
 | 1425 | 	} | 
 | 1426 |  | 
 | 1427 | 	/* NUMA-aware ordering of nodes */ | 
 | 1428 | 	local_node = pgdat->node_id; | 
 | 1429 | 	load = num_online_nodes(); | 
 | 1430 | 	prev_node = local_node; | 
 | 1431 | 	nodes_clear(used_mask); | 
 | 1432 | 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
 | 1433 | 		/* | 
 | 1434 | 		 * We don't want to pressure a particular node. | 
 | 1435 | 		 * So adding penalty to the first node in same | 
 | 1436 | 		 * distance group to make it round-robin. | 
 | 1437 | 		 */ | 
 | 1438 | 		if (node_distance(local_node, node) != | 
 | 1439 | 				node_distance(local_node, prev_node)) | 
 | 1440 | 			node_load[node] += load; | 
 | 1441 | 		prev_node = node; | 
 | 1442 | 		load--; | 
 | 1443 | 		for (i = 0; i < GFP_ZONETYPES; i++) { | 
 | 1444 | 			zonelist = pgdat->node_zonelists + i; | 
 | 1445 | 			for (j = 0; zonelist->zones[j] != NULL; j++); | 
 | 1446 |  | 
 | 1447 | 			k = ZONE_NORMAL; | 
 | 1448 | 			if (i & __GFP_HIGHMEM) | 
 | 1449 | 				k = ZONE_HIGHMEM; | 
 | 1450 | 			if (i & __GFP_DMA) | 
 | 1451 | 				k = ZONE_DMA; | 
 | 1452 |  | 
 | 1453 | 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
 | 1454 | 			zonelist->zones[j] = NULL; | 
 | 1455 | 		} | 
 | 1456 | 	} | 
 | 1457 | } | 
 | 1458 |  | 
 | 1459 | #else	/* CONFIG_NUMA */ | 
 | 1460 |  | 
 | 1461 | static void __init build_zonelists(pg_data_t *pgdat) | 
 | 1462 | { | 
 | 1463 | 	int i, j, k, node, local_node; | 
 | 1464 |  | 
 | 1465 | 	local_node = pgdat->node_id; | 
 | 1466 | 	for (i = 0; i < GFP_ZONETYPES; i++) { | 
 | 1467 | 		struct zonelist *zonelist; | 
 | 1468 |  | 
 | 1469 | 		zonelist = pgdat->node_zonelists + i; | 
 | 1470 |  | 
 | 1471 | 		j = 0; | 
 | 1472 | 		k = ZONE_NORMAL; | 
 | 1473 | 		if (i & __GFP_HIGHMEM) | 
 | 1474 | 			k = ZONE_HIGHMEM; | 
 | 1475 | 		if (i & __GFP_DMA) | 
 | 1476 | 			k = ZONE_DMA; | 
 | 1477 |  | 
 | 1478 |  		j = build_zonelists_node(pgdat, zonelist, j, k); | 
 | 1479 |  		/* | 
 | 1480 |  		 * Now we build the zonelist so that it contains the zones | 
 | 1481 |  		 * of all the other nodes. | 
 | 1482 |  		 * We don't want to pressure a particular node, so when | 
 | 1483 |  		 * building the zones for node N, we make sure that the | 
 | 1484 |  		 * zones coming right after the local ones are those from | 
 | 1485 |  		 * node N+1 (modulo N) | 
 | 1486 |  		 */ | 
 | 1487 | 		for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
 | 1488 | 			if (!node_online(node)) | 
 | 1489 | 				continue; | 
 | 1490 | 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
 | 1491 | 		} | 
 | 1492 | 		for (node = 0; node < local_node; node++) { | 
 | 1493 | 			if (!node_online(node)) | 
 | 1494 | 				continue; | 
 | 1495 | 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | 
 | 1496 | 		} | 
 | 1497 |  | 
 | 1498 | 		zonelist->zones[j] = NULL; | 
 | 1499 | 	} | 
 | 1500 | } | 
 | 1501 |  | 
 | 1502 | #endif	/* CONFIG_NUMA */ | 
 | 1503 |  | 
 | 1504 | void __init build_all_zonelists(void) | 
 | 1505 | { | 
 | 1506 | 	int i; | 
 | 1507 |  | 
 | 1508 | 	for_each_online_node(i) | 
 | 1509 | 		build_zonelists(NODE_DATA(i)); | 
 | 1510 | 	printk("Built %i zonelists\n", num_online_nodes()); | 
 | 1511 | 	cpuset_init_current_mems_allowed(); | 
 | 1512 | } | 
 | 1513 |  | 
 | 1514 | /* | 
 | 1515 |  * Helper functions to size the waitqueue hash table. | 
 | 1516 |  * Essentially these want to choose hash table sizes sufficiently | 
 | 1517 |  * large so that collisions trying to wait on pages are rare. | 
 | 1518 |  * But in fact, the number of active page waitqueues on typical | 
 | 1519 |  * systems is ridiculously low, less than 200. So this is even | 
 | 1520 |  * conservative, even though it seems large. | 
 | 1521 |  * | 
 | 1522 |  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | 
 | 1523 |  * waitqueues, i.e. the size of the waitq table given the number of pages. | 
 | 1524 |  */ | 
 | 1525 | #define PAGES_PER_WAITQUEUE	256 | 
 | 1526 |  | 
 | 1527 | static inline unsigned long wait_table_size(unsigned long pages) | 
 | 1528 | { | 
 | 1529 | 	unsigned long size = 1; | 
 | 1530 |  | 
 | 1531 | 	pages /= PAGES_PER_WAITQUEUE; | 
 | 1532 |  | 
 | 1533 | 	while (size < pages) | 
 | 1534 | 		size <<= 1; | 
 | 1535 |  | 
 | 1536 | 	/* | 
 | 1537 | 	 * Once we have dozens or even hundreds of threads sleeping | 
 | 1538 | 	 * on IO we've got bigger problems than wait queue collision. | 
 | 1539 | 	 * Limit the size of the wait table to a reasonable size. | 
 | 1540 | 	 */ | 
 | 1541 | 	size = min(size, 4096UL); | 
 | 1542 |  | 
 | 1543 | 	return max(size, 4UL); | 
 | 1544 | } | 
 | 1545 |  | 
 | 1546 | /* | 
 | 1547 |  * This is an integer logarithm so that shifts can be used later | 
 | 1548 |  * to extract the more random high bits from the multiplicative | 
 | 1549 |  * hash function before the remainder is taken. | 
 | 1550 |  */ | 
 | 1551 | static inline unsigned long wait_table_bits(unsigned long size) | 
 | 1552 | { | 
 | 1553 | 	return ffz(~size); | 
 | 1554 | } | 
 | 1555 |  | 
 | 1556 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | 
 | 1557 |  | 
 | 1558 | static void __init calculate_zone_totalpages(struct pglist_data *pgdat, | 
 | 1559 | 		unsigned long *zones_size, unsigned long *zholes_size) | 
 | 1560 | { | 
 | 1561 | 	unsigned long realtotalpages, totalpages = 0; | 
 | 1562 | 	int i; | 
 | 1563 |  | 
 | 1564 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 1565 | 		totalpages += zones_size[i]; | 
 | 1566 | 	pgdat->node_spanned_pages = totalpages; | 
 | 1567 |  | 
 | 1568 | 	realtotalpages = totalpages; | 
 | 1569 | 	if (zholes_size) | 
 | 1570 | 		for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 1571 | 			realtotalpages -= zholes_size[i]; | 
 | 1572 | 	pgdat->node_present_pages = realtotalpages; | 
 | 1573 | 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | 
 | 1574 | } | 
 | 1575 |  | 
 | 1576 |  | 
 | 1577 | /* | 
 | 1578 |  * Initially all pages are reserved - free ones are freed | 
 | 1579 |  * up by free_all_bootmem() once the early boot process is | 
 | 1580 |  * done. Non-atomic initialization, single-pass. | 
 | 1581 |  */ | 
 | 1582 | void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 
 | 1583 | 		unsigned long start_pfn) | 
 | 1584 | { | 
 | 1585 | 	struct page *start = pfn_to_page(start_pfn); | 
 | 1586 | 	struct page *page; | 
 | 1587 |  | 
 | 1588 | 	for (page = start; page < (start + size); page++) { | 
 | 1589 | 		set_page_zone(page, NODEZONE(nid, zone)); | 
 | 1590 | 		set_page_count(page, 0); | 
 | 1591 | 		reset_page_mapcount(page); | 
 | 1592 | 		SetPageReserved(page); | 
 | 1593 | 		INIT_LIST_HEAD(&page->lru); | 
 | 1594 | #ifdef WANT_PAGE_VIRTUAL | 
 | 1595 | 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
 | 1596 | 		if (!is_highmem_idx(zone)) | 
 | 1597 | 			set_page_address(page, __va(start_pfn << PAGE_SHIFT)); | 
 | 1598 | #endif | 
 | 1599 | 		start_pfn++; | 
 | 1600 | 	} | 
 | 1601 | } | 
 | 1602 |  | 
 | 1603 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, | 
 | 1604 | 				unsigned long size) | 
 | 1605 | { | 
 | 1606 | 	int order; | 
 | 1607 | 	for (order = 0; order < MAX_ORDER ; order++) { | 
 | 1608 | 		INIT_LIST_HEAD(&zone->free_area[order].free_list); | 
 | 1609 | 		zone->free_area[order].nr_free = 0; | 
 | 1610 | 	} | 
 | 1611 | } | 
 | 1612 |  | 
 | 1613 | #ifndef __HAVE_ARCH_MEMMAP_INIT | 
 | 1614 | #define memmap_init(size, nid, zone, start_pfn) \ | 
 | 1615 | 	memmap_init_zone((size), (nid), (zone), (start_pfn)) | 
 | 1616 | #endif | 
 | 1617 |  | 
 | 1618 | /* | 
 | 1619 |  * Set up the zone data structures: | 
 | 1620 |  *   - mark all pages reserved | 
 | 1621 |  *   - mark all memory queues empty | 
 | 1622 |  *   - clear the memory bitmaps | 
 | 1623 |  */ | 
 | 1624 | static void __init free_area_init_core(struct pglist_data *pgdat, | 
 | 1625 | 		unsigned long *zones_size, unsigned long *zholes_size) | 
 | 1626 | { | 
 | 1627 | 	unsigned long i, j; | 
 | 1628 | 	const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1); | 
 | 1629 | 	int cpu, nid = pgdat->node_id; | 
 | 1630 | 	unsigned long zone_start_pfn = pgdat->node_start_pfn; | 
 | 1631 |  | 
 | 1632 | 	pgdat->nr_zones = 0; | 
 | 1633 | 	init_waitqueue_head(&pgdat->kswapd_wait); | 
 | 1634 | 	pgdat->kswapd_max_order = 0; | 
 | 1635 | 	 | 
 | 1636 | 	for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 1637 | 		struct zone *zone = pgdat->node_zones + j; | 
 | 1638 | 		unsigned long size, realsize; | 
 | 1639 | 		unsigned long batch; | 
 | 1640 |  | 
 | 1641 | 		zone_table[NODEZONE(nid, j)] = zone; | 
 | 1642 | 		realsize = size = zones_size[j]; | 
 | 1643 | 		if (zholes_size) | 
 | 1644 | 			realsize -= zholes_size[j]; | 
 | 1645 |  | 
 | 1646 | 		if (j == ZONE_DMA || j == ZONE_NORMAL) | 
 | 1647 | 			nr_kernel_pages += realsize; | 
 | 1648 | 		nr_all_pages += realsize; | 
 | 1649 |  | 
 | 1650 | 		zone->spanned_pages = size; | 
 | 1651 | 		zone->present_pages = realsize; | 
 | 1652 | 		zone->name = zone_names[j]; | 
 | 1653 | 		spin_lock_init(&zone->lock); | 
 | 1654 | 		spin_lock_init(&zone->lru_lock); | 
 | 1655 | 		zone->zone_pgdat = pgdat; | 
 | 1656 | 		zone->free_pages = 0; | 
 | 1657 |  | 
 | 1658 | 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY; | 
 | 1659 |  | 
 | 1660 | 		/* | 
 | 1661 | 		 * The per-cpu-pages pools are set to around 1000th of the | 
 | 1662 | 		 * size of the zone.  But no more than 1/4 of a meg - there's | 
 | 1663 | 		 * no point in going beyond the size of L2 cache. | 
 | 1664 | 		 * | 
 | 1665 | 		 * OK, so we don't know how big the cache is.  So guess. | 
 | 1666 | 		 */ | 
 | 1667 | 		batch = zone->present_pages / 1024; | 
 | 1668 | 		if (batch * PAGE_SIZE > 256 * 1024) | 
 | 1669 | 			batch = (256 * 1024) / PAGE_SIZE; | 
 | 1670 | 		batch /= 4;		/* We effectively *= 4 below */ | 
 | 1671 | 		if (batch < 1) | 
 | 1672 | 			batch = 1; | 
 | 1673 |  | 
 | 1674 | 		for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
 | 1675 | 			struct per_cpu_pages *pcp; | 
 | 1676 |  | 
 | 1677 | 			pcp = &zone->pageset[cpu].pcp[0];	/* hot */ | 
 | 1678 | 			pcp->count = 0; | 
 | 1679 | 			pcp->low = 2 * batch; | 
 | 1680 | 			pcp->high = 6 * batch; | 
 | 1681 | 			pcp->batch = 1 * batch; | 
 | 1682 | 			INIT_LIST_HEAD(&pcp->list); | 
 | 1683 |  | 
 | 1684 | 			pcp = &zone->pageset[cpu].pcp[1];	/* cold */ | 
 | 1685 | 			pcp->count = 0; | 
 | 1686 | 			pcp->low = 0; | 
 | 1687 | 			pcp->high = 2 * batch; | 
 | 1688 | 			pcp->batch = 1 * batch; | 
 | 1689 | 			INIT_LIST_HEAD(&pcp->list); | 
 | 1690 | 		} | 
 | 1691 | 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n", | 
 | 1692 | 				zone_names[j], realsize, batch); | 
 | 1693 | 		INIT_LIST_HEAD(&zone->active_list); | 
 | 1694 | 		INIT_LIST_HEAD(&zone->inactive_list); | 
 | 1695 | 		zone->nr_scan_active = 0; | 
 | 1696 | 		zone->nr_scan_inactive = 0; | 
 | 1697 | 		zone->nr_active = 0; | 
 | 1698 | 		zone->nr_inactive = 0; | 
 | 1699 | 		if (!size) | 
 | 1700 | 			continue; | 
 | 1701 |  | 
 | 1702 | 		/* | 
 | 1703 | 		 * The per-page waitqueue mechanism uses hashed waitqueues | 
 | 1704 | 		 * per zone. | 
 | 1705 | 		 */ | 
 | 1706 | 		zone->wait_table_size = wait_table_size(size); | 
 | 1707 | 		zone->wait_table_bits = | 
 | 1708 | 			wait_table_bits(zone->wait_table_size); | 
 | 1709 | 		zone->wait_table = (wait_queue_head_t *) | 
 | 1710 | 			alloc_bootmem_node(pgdat, zone->wait_table_size | 
 | 1711 | 						* sizeof(wait_queue_head_t)); | 
 | 1712 |  | 
 | 1713 | 		for(i = 0; i < zone->wait_table_size; ++i) | 
 | 1714 | 			init_waitqueue_head(zone->wait_table + i); | 
 | 1715 |  | 
 | 1716 | 		pgdat->nr_zones = j+1; | 
 | 1717 |  | 
 | 1718 | 		zone->zone_mem_map = pfn_to_page(zone_start_pfn); | 
 | 1719 | 		zone->zone_start_pfn = zone_start_pfn; | 
 | 1720 |  | 
 | 1721 | 		if ((zone_start_pfn) & (zone_required_alignment-1)) | 
 | 1722 | 			printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n"); | 
 | 1723 |  | 
 | 1724 | 		memmap_init(size, nid, j, zone_start_pfn); | 
 | 1725 |  | 
 | 1726 | 		zone_start_pfn += size; | 
 | 1727 |  | 
 | 1728 | 		zone_init_free_lists(pgdat, zone, zone->spanned_pages); | 
 | 1729 | 	} | 
 | 1730 | } | 
 | 1731 |  | 
 | 1732 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | 
 | 1733 | { | 
 | 1734 | 	unsigned long size; | 
 | 1735 |  | 
 | 1736 | 	/* Skip empty nodes */ | 
 | 1737 | 	if (!pgdat->node_spanned_pages) | 
 | 1738 | 		return; | 
 | 1739 |  | 
 | 1740 | 	/* ia64 gets its own node_mem_map, before this, without bootmem */ | 
 | 1741 | 	if (!pgdat->node_mem_map) { | 
 | 1742 | 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); | 
 | 1743 | 		pgdat->node_mem_map = alloc_bootmem_node(pgdat, size); | 
 | 1744 | 	} | 
 | 1745 | #ifndef CONFIG_DISCONTIGMEM | 
 | 1746 | 	/* | 
 | 1747 | 	 * With no DISCONTIG, the global mem_map is just set as node 0's | 
 | 1748 | 	 */ | 
 | 1749 | 	if (pgdat == NODE_DATA(0)) | 
 | 1750 | 		mem_map = NODE_DATA(0)->node_mem_map; | 
 | 1751 | #endif | 
 | 1752 | } | 
 | 1753 |  | 
 | 1754 | void __init free_area_init_node(int nid, struct pglist_data *pgdat, | 
 | 1755 | 		unsigned long *zones_size, unsigned long node_start_pfn, | 
 | 1756 | 		unsigned long *zholes_size) | 
 | 1757 | { | 
 | 1758 | 	pgdat->node_id = nid; | 
 | 1759 | 	pgdat->node_start_pfn = node_start_pfn; | 
 | 1760 | 	calculate_zone_totalpages(pgdat, zones_size, zholes_size); | 
 | 1761 |  | 
 | 1762 | 	alloc_node_mem_map(pgdat); | 
 | 1763 |  | 
 | 1764 | 	free_area_init_core(pgdat, zones_size, zholes_size); | 
 | 1765 | } | 
 | 1766 |  | 
 | 1767 | #ifndef CONFIG_DISCONTIGMEM | 
 | 1768 | static bootmem_data_t contig_bootmem_data; | 
 | 1769 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | 
 | 1770 |  | 
 | 1771 | EXPORT_SYMBOL(contig_page_data); | 
 | 1772 |  | 
 | 1773 | void __init free_area_init(unsigned long *zones_size) | 
 | 1774 | { | 
 | 1775 | 	free_area_init_node(0, &contig_page_data, zones_size, | 
 | 1776 | 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 
 | 1777 | } | 
 | 1778 | #endif | 
 | 1779 |  | 
 | 1780 | #ifdef CONFIG_PROC_FS | 
 | 1781 |  | 
 | 1782 | #include <linux/seq_file.h> | 
 | 1783 |  | 
 | 1784 | static void *frag_start(struct seq_file *m, loff_t *pos) | 
 | 1785 | { | 
 | 1786 | 	pg_data_t *pgdat; | 
 | 1787 | 	loff_t node = *pos; | 
 | 1788 |  | 
 | 1789 | 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) | 
 | 1790 | 		--node; | 
 | 1791 |  | 
 | 1792 | 	return pgdat; | 
 | 1793 | } | 
 | 1794 |  | 
 | 1795 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | 
 | 1796 | { | 
 | 1797 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 | 1798 |  | 
 | 1799 | 	(*pos)++; | 
 | 1800 | 	return pgdat->pgdat_next; | 
 | 1801 | } | 
 | 1802 |  | 
 | 1803 | static void frag_stop(struct seq_file *m, void *arg) | 
 | 1804 | { | 
 | 1805 | } | 
 | 1806 |  | 
 | 1807 | /*  | 
 | 1808 |  * This walks the free areas for each zone. | 
 | 1809 |  */ | 
 | 1810 | static int frag_show(struct seq_file *m, void *arg) | 
 | 1811 | { | 
 | 1812 | 	pg_data_t *pgdat = (pg_data_t *)arg; | 
 | 1813 | 	struct zone *zone; | 
 | 1814 | 	struct zone *node_zones = pgdat->node_zones; | 
 | 1815 | 	unsigned long flags; | 
 | 1816 | 	int order; | 
 | 1817 |  | 
 | 1818 | 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | 
 | 1819 | 		if (!zone->present_pages) | 
 | 1820 | 			continue; | 
 | 1821 |  | 
 | 1822 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 1823 | 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | 
 | 1824 | 		for (order = 0; order < MAX_ORDER; ++order) | 
 | 1825 | 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | 
 | 1826 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 1827 | 		seq_putc(m, '\n'); | 
 | 1828 | 	} | 
 | 1829 | 	return 0; | 
 | 1830 | } | 
 | 1831 |  | 
 | 1832 | struct seq_operations fragmentation_op = { | 
 | 1833 | 	.start	= frag_start, | 
 | 1834 | 	.next	= frag_next, | 
 | 1835 | 	.stop	= frag_stop, | 
 | 1836 | 	.show	= frag_show, | 
 | 1837 | }; | 
 | 1838 |  | 
 | 1839 | static char *vmstat_text[] = { | 
 | 1840 | 	"nr_dirty", | 
 | 1841 | 	"nr_writeback", | 
 | 1842 | 	"nr_unstable", | 
 | 1843 | 	"nr_page_table_pages", | 
 | 1844 | 	"nr_mapped", | 
 | 1845 | 	"nr_slab", | 
 | 1846 |  | 
 | 1847 | 	"pgpgin", | 
 | 1848 | 	"pgpgout", | 
 | 1849 | 	"pswpin", | 
 | 1850 | 	"pswpout", | 
 | 1851 | 	"pgalloc_high", | 
 | 1852 |  | 
 | 1853 | 	"pgalloc_normal", | 
 | 1854 | 	"pgalloc_dma", | 
 | 1855 | 	"pgfree", | 
 | 1856 | 	"pgactivate", | 
 | 1857 | 	"pgdeactivate", | 
 | 1858 |  | 
 | 1859 | 	"pgfault", | 
 | 1860 | 	"pgmajfault", | 
 | 1861 | 	"pgrefill_high", | 
 | 1862 | 	"pgrefill_normal", | 
 | 1863 | 	"pgrefill_dma", | 
 | 1864 |  | 
 | 1865 | 	"pgsteal_high", | 
 | 1866 | 	"pgsteal_normal", | 
 | 1867 | 	"pgsteal_dma", | 
 | 1868 | 	"pgscan_kswapd_high", | 
 | 1869 | 	"pgscan_kswapd_normal", | 
 | 1870 |  | 
 | 1871 | 	"pgscan_kswapd_dma", | 
 | 1872 | 	"pgscan_direct_high", | 
 | 1873 | 	"pgscan_direct_normal", | 
 | 1874 | 	"pgscan_direct_dma", | 
 | 1875 | 	"pginodesteal", | 
 | 1876 |  | 
 | 1877 | 	"slabs_scanned", | 
 | 1878 | 	"kswapd_steal", | 
 | 1879 | 	"kswapd_inodesteal", | 
 | 1880 | 	"pageoutrun", | 
 | 1881 | 	"allocstall", | 
 | 1882 |  | 
 | 1883 | 	"pgrotated", | 
 | 1884 | }; | 
 | 1885 |  | 
 | 1886 | static void *vmstat_start(struct seq_file *m, loff_t *pos) | 
 | 1887 | { | 
 | 1888 | 	struct page_state *ps; | 
 | 1889 |  | 
 | 1890 | 	if (*pos >= ARRAY_SIZE(vmstat_text)) | 
 | 1891 | 		return NULL; | 
 | 1892 |  | 
 | 1893 | 	ps = kmalloc(sizeof(*ps), GFP_KERNEL); | 
 | 1894 | 	m->private = ps; | 
 | 1895 | 	if (!ps) | 
 | 1896 | 		return ERR_PTR(-ENOMEM); | 
 | 1897 | 	get_full_page_state(ps); | 
 | 1898 | 	ps->pgpgin /= 2;		/* sectors -> kbytes */ | 
 | 1899 | 	ps->pgpgout /= 2; | 
 | 1900 | 	return (unsigned long *)ps + *pos; | 
 | 1901 | } | 
 | 1902 |  | 
 | 1903 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | 
 | 1904 | { | 
 | 1905 | 	(*pos)++; | 
 | 1906 | 	if (*pos >= ARRAY_SIZE(vmstat_text)) | 
 | 1907 | 		return NULL; | 
 | 1908 | 	return (unsigned long *)m->private + *pos; | 
 | 1909 | } | 
 | 1910 |  | 
 | 1911 | static int vmstat_show(struct seq_file *m, void *arg) | 
 | 1912 | { | 
 | 1913 | 	unsigned long *l = arg; | 
 | 1914 | 	unsigned long off = l - (unsigned long *)m->private; | 
 | 1915 |  | 
 | 1916 | 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l); | 
 | 1917 | 	return 0; | 
 | 1918 | } | 
 | 1919 |  | 
 | 1920 | static void vmstat_stop(struct seq_file *m, void *arg) | 
 | 1921 | { | 
 | 1922 | 	kfree(m->private); | 
 | 1923 | 	m->private = NULL; | 
 | 1924 | } | 
 | 1925 |  | 
 | 1926 | struct seq_operations vmstat_op = { | 
 | 1927 | 	.start	= vmstat_start, | 
 | 1928 | 	.next	= vmstat_next, | 
 | 1929 | 	.stop	= vmstat_stop, | 
 | 1930 | 	.show	= vmstat_show, | 
 | 1931 | }; | 
 | 1932 |  | 
 | 1933 | #endif /* CONFIG_PROC_FS */ | 
 | 1934 |  | 
 | 1935 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 1936 | static int page_alloc_cpu_notify(struct notifier_block *self, | 
 | 1937 | 				 unsigned long action, void *hcpu) | 
 | 1938 | { | 
 | 1939 | 	int cpu = (unsigned long)hcpu; | 
 | 1940 | 	long *count; | 
 | 1941 | 	unsigned long *src, *dest; | 
 | 1942 |  | 
 | 1943 | 	if (action == CPU_DEAD) { | 
 | 1944 | 		int i; | 
 | 1945 |  | 
 | 1946 | 		/* Drain local pagecache count. */ | 
 | 1947 | 		count = &per_cpu(nr_pagecache_local, cpu); | 
 | 1948 | 		atomic_add(*count, &nr_pagecache); | 
 | 1949 | 		*count = 0; | 
 | 1950 | 		local_irq_disable(); | 
 | 1951 | 		__drain_pages(cpu); | 
 | 1952 |  | 
 | 1953 | 		/* Add dead cpu's page_states to our own. */ | 
 | 1954 | 		dest = (unsigned long *)&__get_cpu_var(page_states); | 
 | 1955 | 		src = (unsigned long *)&per_cpu(page_states, cpu); | 
 | 1956 |  | 
 | 1957 | 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); | 
 | 1958 | 				i++) { | 
 | 1959 | 			dest[i] += src[i]; | 
 | 1960 | 			src[i] = 0; | 
 | 1961 | 		} | 
 | 1962 |  | 
 | 1963 | 		local_irq_enable(); | 
 | 1964 | 	} | 
 | 1965 | 	return NOTIFY_OK; | 
 | 1966 | } | 
 | 1967 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 | 1968 |  | 
 | 1969 | void __init page_alloc_init(void) | 
 | 1970 | { | 
 | 1971 | 	hotcpu_notifier(page_alloc_cpu_notify, 0); | 
 | 1972 | } | 
 | 1973 |  | 
 | 1974 | /* | 
 | 1975 |  * setup_per_zone_lowmem_reserve - called whenever | 
 | 1976 |  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone | 
 | 1977 |  *	has a correct pages reserved value, so an adequate number of | 
 | 1978 |  *	pages are left in the zone after a successful __alloc_pages(). | 
 | 1979 |  */ | 
 | 1980 | static void setup_per_zone_lowmem_reserve(void) | 
 | 1981 | { | 
 | 1982 | 	struct pglist_data *pgdat; | 
 | 1983 | 	int j, idx; | 
 | 1984 |  | 
 | 1985 | 	for_each_pgdat(pgdat) { | 
 | 1986 | 		for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 1987 | 			struct zone *zone = pgdat->node_zones + j; | 
 | 1988 | 			unsigned long present_pages = zone->present_pages; | 
 | 1989 |  | 
 | 1990 | 			zone->lowmem_reserve[j] = 0; | 
 | 1991 |  | 
 | 1992 | 			for (idx = j-1; idx >= 0; idx--) { | 
 | 1993 | 				struct zone *lower_zone; | 
 | 1994 |  | 
 | 1995 | 				if (sysctl_lowmem_reserve_ratio[idx] < 1) | 
 | 1996 | 					sysctl_lowmem_reserve_ratio[idx] = 1; | 
 | 1997 |  | 
 | 1998 | 				lower_zone = pgdat->node_zones + idx; | 
 | 1999 | 				lower_zone->lowmem_reserve[j] = present_pages / | 
 | 2000 | 					sysctl_lowmem_reserve_ratio[idx]; | 
 | 2001 | 				present_pages += lower_zone->present_pages; | 
 | 2002 | 			} | 
 | 2003 | 		} | 
 | 2004 | 	} | 
 | 2005 | } | 
 | 2006 |  | 
 | 2007 | /* | 
 | 2008 |  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures  | 
 | 2009 |  *	that the pages_{min,low,high} values for each zone are set correctly  | 
 | 2010 |  *	with respect to min_free_kbytes. | 
 | 2011 |  */ | 
 | 2012 | static void setup_per_zone_pages_min(void) | 
 | 2013 | { | 
 | 2014 | 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
 | 2015 | 	unsigned long lowmem_pages = 0; | 
 | 2016 | 	struct zone *zone; | 
 | 2017 | 	unsigned long flags; | 
 | 2018 |  | 
 | 2019 | 	/* Calculate total number of !ZONE_HIGHMEM pages */ | 
 | 2020 | 	for_each_zone(zone) { | 
 | 2021 | 		if (!is_highmem(zone)) | 
 | 2022 | 			lowmem_pages += zone->present_pages; | 
 | 2023 | 	} | 
 | 2024 |  | 
 | 2025 | 	for_each_zone(zone) { | 
 | 2026 | 		spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 2027 | 		if (is_highmem(zone)) { | 
 | 2028 | 			/* | 
 | 2029 | 			 * Often, highmem doesn't need to reserve any pages. | 
 | 2030 | 			 * But the pages_min/low/high values are also used for | 
 | 2031 | 			 * batching up page reclaim activity so we need a | 
 | 2032 | 			 * decent value here. | 
 | 2033 | 			 */ | 
 | 2034 | 			int min_pages; | 
 | 2035 |  | 
 | 2036 | 			min_pages = zone->present_pages / 1024; | 
 | 2037 | 			if (min_pages < SWAP_CLUSTER_MAX) | 
 | 2038 | 				min_pages = SWAP_CLUSTER_MAX; | 
 | 2039 | 			if (min_pages > 128) | 
 | 2040 | 				min_pages = 128; | 
 | 2041 | 			zone->pages_min = min_pages; | 
 | 2042 | 		} else { | 
 | 2043 | 			/* if it's a lowmem zone, reserve a number of pages  | 
 | 2044 | 			 * proportionate to the zone's size. | 
 | 2045 | 			 */ | 
 | 2046 | 			zone->pages_min = (pages_min * zone->present_pages) /  | 
 | 2047 | 			                   lowmem_pages; | 
 | 2048 | 		} | 
 | 2049 |  | 
 | 2050 | 		/* | 
 | 2051 | 		 * When interpreting these watermarks, just keep in mind that: | 
 | 2052 | 		 * zone->pages_min == (zone->pages_min * 4) / 4; | 
 | 2053 | 		 */ | 
 | 2054 | 		zone->pages_low   = (zone->pages_min * 5) / 4; | 
 | 2055 | 		zone->pages_high  = (zone->pages_min * 6) / 4; | 
 | 2056 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 2057 | 	} | 
 | 2058 | } | 
 | 2059 |  | 
 | 2060 | /* | 
 | 2061 |  * Initialise min_free_kbytes. | 
 | 2062 |  * | 
 | 2063 |  * For small machines we want it small (128k min).  For large machines | 
 | 2064 |  * we want it large (64MB max).  But it is not linear, because network | 
 | 2065 |  * bandwidth does not increase linearly with machine size.  We use | 
 | 2066 |  * | 
 | 2067 |  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
 | 2068 |  *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
 | 2069 |  * | 
 | 2070 |  * which yields | 
 | 2071 |  * | 
 | 2072 |  * 16MB:	512k | 
 | 2073 |  * 32MB:	724k | 
 | 2074 |  * 64MB:	1024k | 
 | 2075 |  * 128MB:	1448k | 
 | 2076 |  * 256MB:	2048k | 
 | 2077 |  * 512MB:	2896k | 
 | 2078 |  * 1024MB:	4096k | 
 | 2079 |  * 2048MB:	5792k | 
 | 2080 |  * 4096MB:	8192k | 
 | 2081 |  * 8192MB:	11584k | 
 | 2082 |  * 16384MB:	16384k | 
 | 2083 |  */ | 
 | 2084 | static int __init init_per_zone_pages_min(void) | 
 | 2085 | { | 
 | 2086 | 	unsigned long lowmem_kbytes; | 
 | 2087 |  | 
 | 2088 | 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
 | 2089 |  | 
 | 2090 | 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
 | 2091 | 	if (min_free_kbytes < 128) | 
 | 2092 | 		min_free_kbytes = 128; | 
 | 2093 | 	if (min_free_kbytes > 65536) | 
 | 2094 | 		min_free_kbytes = 65536; | 
 | 2095 | 	setup_per_zone_pages_min(); | 
 | 2096 | 	setup_per_zone_lowmem_reserve(); | 
 | 2097 | 	return 0; | 
 | 2098 | } | 
 | 2099 | module_init(init_per_zone_pages_min) | 
 | 2100 |  | 
 | 2101 | /* | 
 | 2102 |  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so  | 
 | 2103 |  *	that we can call two helper functions whenever min_free_kbytes | 
 | 2104 |  *	changes. | 
 | 2105 |  */ | 
 | 2106 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write,  | 
 | 2107 | 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2108 | { | 
 | 2109 | 	proc_dointvec(table, write, file, buffer, length, ppos); | 
 | 2110 | 	setup_per_zone_pages_min(); | 
 | 2111 | 	return 0; | 
 | 2112 | } | 
 | 2113 |  | 
 | 2114 | /* | 
 | 2115 |  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
 | 2116 |  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
 | 2117 |  *	whenever sysctl_lowmem_reserve_ratio changes. | 
 | 2118 |  * | 
 | 2119 |  * The reserve ratio obviously has absolutely no relation with the | 
 | 2120 |  * pages_min watermarks. The lowmem reserve ratio can only make sense | 
 | 2121 |  * if in function of the boot time zone sizes. | 
 | 2122 |  */ | 
 | 2123 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | 
 | 2124 | 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2125 | { | 
 | 2126 | 	proc_dointvec_minmax(table, write, file, buffer, length, ppos); | 
 | 2127 | 	setup_per_zone_lowmem_reserve(); | 
 | 2128 | 	return 0; | 
 | 2129 | } | 
 | 2130 |  | 
 | 2131 | __initdata int hashdist = HASHDIST_DEFAULT; | 
 | 2132 |  | 
 | 2133 | #ifdef CONFIG_NUMA | 
 | 2134 | static int __init set_hashdist(char *str) | 
 | 2135 | { | 
 | 2136 | 	if (!str) | 
 | 2137 | 		return 0; | 
 | 2138 | 	hashdist = simple_strtoul(str, &str, 0); | 
 | 2139 | 	return 1; | 
 | 2140 | } | 
 | 2141 | __setup("hashdist=", set_hashdist); | 
 | 2142 | #endif | 
 | 2143 |  | 
 | 2144 | /* | 
 | 2145 |  * allocate a large system hash table from bootmem | 
 | 2146 |  * - it is assumed that the hash table must contain an exact power-of-2 | 
 | 2147 |  *   quantity of entries | 
 | 2148 |  * - limit is the number of hash buckets, not the total allocation size | 
 | 2149 |  */ | 
 | 2150 | void *__init alloc_large_system_hash(const char *tablename, | 
 | 2151 | 				     unsigned long bucketsize, | 
 | 2152 | 				     unsigned long numentries, | 
 | 2153 | 				     int scale, | 
 | 2154 | 				     int flags, | 
 | 2155 | 				     unsigned int *_hash_shift, | 
 | 2156 | 				     unsigned int *_hash_mask, | 
 | 2157 | 				     unsigned long limit) | 
 | 2158 | { | 
 | 2159 | 	unsigned long long max = limit; | 
 | 2160 | 	unsigned long log2qty, size; | 
 | 2161 | 	void *table = NULL; | 
 | 2162 |  | 
 | 2163 | 	/* allow the kernel cmdline to have a say */ | 
 | 2164 | 	if (!numentries) { | 
 | 2165 | 		/* round applicable memory size up to nearest megabyte */ | 
 | 2166 | 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; | 
 | 2167 | 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | 
 | 2168 | 		numentries >>= 20 - PAGE_SHIFT; | 
 | 2169 | 		numentries <<= 20 - PAGE_SHIFT; | 
 | 2170 |  | 
 | 2171 | 		/* limit to 1 bucket per 2^scale bytes of low memory */ | 
 | 2172 | 		if (scale > PAGE_SHIFT) | 
 | 2173 | 			numentries >>= (scale - PAGE_SHIFT); | 
 | 2174 | 		else | 
 | 2175 | 			numentries <<= (PAGE_SHIFT - scale); | 
 | 2176 | 	} | 
 | 2177 | 	/* rounded up to nearest power of 2 in size */ | 
 | 2178 | 	numentries = 1UL << (long_log2(numentries) + 1); | 
 | 2179 |  | 
 | 2180 | 	/* limit allocation size to 1/16 total memory by default */ | 
 | 2181 | 	if (max == 0) { | 
 | 2182 | 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
 | 2183 | 		do_div(max, bucketsize); | 
 | 2184 | 	} | 
 | 2185 |  | 
 | 2186 | 	if (numentries > max) | 
 | 2187 | 		numentries = max; | 
 | 2188 |  | 
 | 2189 | 	log2qty = long_log2(numentries); | 
 | 2190 |  | 
 | 2191 | 	do { | 
 | 2192 | 		size = bucketsize << log2qty; | 
 | 2193 | 		if (flags & HASH_EARLY) | 
 | 2194 | 			table = alloc_bootmem(size); | 
 | 2195 | 		else if (hashdist) | 
 | 2196 | 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | 
 | 2197 | 		else { | 
 | 2198 | 			unsigned long order; | 
 | 2199 | 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) | 
 | 2200 | 				; | 
 | 2201 | 			table = (void*) __get_free_pages(GFP_ATOMIC, order); | 
 | 2202 | 		} | 
 | 2203 | 	} while (!table && size > PAGE_SIZE && --log2qty); | 
 | 2204 |  | 
 | 2205 | 	if (!table) | 
 | 2206 | 		panic("Failed to allocate %s hash table\n", tablename); | 
 | 2207 |  | 
 | 2208 | 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n", | 
 | 2209 | 	       tablename, | 
 | 2210 | 	       (1U << log2qty), | 
 | 2211 | 	       long_log2(size) - PAGE_SHIFT, | 
 | 2212 | 	       size); | 
 | 2213 |  | 
 | 2214 | 	if (_hash_shift) | 
 | 2215 | 		*_hash_shift = log2qty; | 
 | 2216 | 	if (_hash_mask) | 
 | 2217 | 		*_hash_mask = (1 << log2qty) - 1; | 
 | 2218 |  | 
 | 2219 | 	return table; | 
 | 2220 | } |