| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/kernel/timer.c | 
 | 3 |  * | 
 | 4 |  *  Kernel internal timers, kernel timekeeping, basic process system calls | 
 | 5 |  * | 
 | 6 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 | 7 |  * | 
 | 8 |  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better. | 
 | 9 |  * | 
 | 10 |  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
 | 11 |  *              "A Kernel Model for Precision Timekeeping" by Dave Mills | 
 | 12 |  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | 
 | 13 |  *              serialize accesses to xtime/lost_ticks). | 
 | 14 |  *                              Copyright (C) 1998  Andrea Arcangeli | 
 | 15 |  *  1999-03-10  Improved NTP compatibility by Ulrich Windl | 
 | 16 |  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love | 
 | 17 |  *  2000-10-05  Implemented scalable SMP per-CPU timer handling. | 
 | 18 |  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar | 
 | 19 |  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | 
 | 20 |  */ | 
 | 21 |  | 
 | 22 | #include <linux/kernel_stat.h> | 
 | 23 | #include <linux/module.h> | 
 | 24 | #include <linux/interrupt.h> | 
 | 25 | #include <linux/percpu.h> | 
 | 26 | #include <linux/init.h> | 
 | 27 | #include <linux/mm.h> | 
 | 28 | #include <linux/swap.h> | 
 | 29 | #include <linux/notifier.h> | 
 | 30 | #include <linux/thread_info.h> | 
 | 31 | #include <linux/time.h> | 
 | 32 | #include <linux/jiffies.h> | 
 | 33 | #include <linux/posix-timers.h> | 
 | 34 | #include <linux/cpu.h> | 
 | 35 | #include <linux/syscalls.h> | 
| Adrian Bunk | 97a41e2 | 2006-01-08 01:02:17 -0800 | [diff] [blame] | 36 | #include <linux/delay.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 37 |  | 
 | 38 | #include <asm/uaccess.h> | 
 | 39 | #include <asm/unistd.h> | 
 | 40 | #include <asm/div64.h> | 
 | 41 | #include <asm/timex.h> | 
 | 42 | #include <asm/io.h> | 
 | 43 |  | 
 | 44 | #ifdef CONFIG_TIME_INTERPOLATION | 
 | 45 | static void time_interpolator_update(long delta_nsec); | 
 | 46 | #else | 
 | 47 | #define time_interpolator_update(x) | 
 | 48 | #endif | 
 | 49 |  | 
| Thomas Gleixner | ecea8d1 | 2005-10-30 15:03:00 -0800 | [diff] [blame] | 50 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 
 | 51 |  | 
 | 52 | EXPORT_SYMBOL(jiffies_64); | 
 | 53 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 54 | /* | 
 | 55 |  * per-CPU timer vector definitions: | 
 | 56 |  */ | 
 | 57 |  | 
 | 58 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) | 
 | 59 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | 
 | 60 | #define TVN_SIZE (1 << TVN_BITS) | 
 | 61 | #define TVR_SIZE (1 << TVR_BITS) | 
 | 62 | #define TVN_MASK (TVN_SIZE - 1) | 
 | 63 | #define TVR_MASK (TVR_SIZE - 1) | 
 | 64 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 65 | struct timer_base_s { | 
 | 66 | 	spinlock_t lock; | 
 | 67 | 	struct timer_list *running_timer; | 
 | 68 | }; | 
 | 69 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 70 | typedef struct tvec_s { | 
 | 71 | 	struct list_head vec[TVN_SIZE]; | 
 | 72 | } tvec_t; | 
 | 73 |  | 
 | 74 | typedef struct tvec_root_s { | 
 | 75 | 	struct list_head vec[TVR_SIZE]; | 
 | 76 | } tvec_root_t; | 
 | 77 |  | 
 | 78 | struct tvec_t_base_s { | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 79 | 	struct timer_base_s t_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 80 | 	unsigned long timer_jiffies; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 81 | 	tvec_root_t tv1; | 
 | 82 | 	tvec_t tv2; | 
 | 83 | 	tvec_t tv3; | 
 | 84 | 	tvec_t tv4; | 
 | 85 | 	tvec_t tv5; | 
 | 86 | } ____cacheline_aligned_in_smp; | 
 | 87 |  | 
 | 88 | typedef struct tvec_t_base_s tvec_base_t; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 89 | static DEFINE_PER_CPU(tvec_base_t, tvec_bases); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 90 |  | 
 | 91 | static inline void set_running_timer(tvec_base_t *base, | 
 | 92 | 					struct timer_list *timer) | 
 | 93 | { | 
 | 94 | #ifdef CONFIG_SMP | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 95 | 	base->t_base.running_timer = timer; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 96 | #endif | 
 | 97 | } | 
 | 98 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 99 | static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) | 
 | 100 | { | 
 | 101 | 	unsigned long expires = timer->expires; | 
 | 102 | 	unsigned long idx = expires - base->timer_jiffies; | 
 | 103 | 	struct list_head *vec; | 
 | 104 |  | 
 | 105 | 	if (idx < TVR_SIZE) { | 
 | 106 | 		int i = expires & TVR_MASK; | 
 | 107 | 		vec = base->tv1.vec + i; | 
 | 108 | 	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | 
 | 109 | 		int i = (expires >> TVR_BITS) & TVN_MASK; | 
 | 110 | 		vec = base->tv2.vec + i; | 
 | 111 | 	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | 
 | 112 | 		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | 
 | 113 | 		vec = base->tv3.vec + i; | 
 | 114 | 	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | 
 | 115 | 		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | 
 | 116 | 		vec = base->tv4.vec + i; | 
 | 117 | 	} else if ((signed long) idx < 0) { | 
 | 118 | 		/* | 
 | 119 | 		 * Can happen if you add a timer with expires == jiffies, | 
 | 120 | 		 * or you set a timer to go off in the past | 
 | 121 | 		 */ | 
 | 122 | 		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | 
 | 123 | 	} else { | 
 | 124 | 		int i; | 
 | 125 | 		/* If the timeout is larger than 0xffffffff on 64-bit | 
 | 126 | 		 * architectures then we use the maximum timeout: | 
 | 127 | 		 */ | 
 | 128 | 		if (idx > 0xffffffffUL) { | 
 | 129 | 			idx = 0xffffffffUL; | 
 | 130 | 			expires = idx + base->timer_jiffies; | 
 | 131 | 		} | 
 | 132 | 		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | 
 | 133 | 		vec = base->tv5.vec + i; | 
 | 134 | 	} | 
 | 135 | 	/* | 
 | 136 | 	 * Timers are FIFO: | 
 | 137 | 	 */ | 
 | 138 | 	list_add_tail(&timer->entry, vec); | 
 | 139 | } | 
 | 140 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 141 | typedef struct timer_base_s timer_base_t; | 
 | 142 | /* | 
 | 143 |  * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases) | 
 | 144 |  * at compile time, and we need timer->base to lock the timer. | 
 | 145 |  */ | 
 | 146 | timer_base_t __init_timer_base | 
 | 147 | 	____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED }; | 
 | 148 | EXPORT_SYMBOL(__init_timer_base); | 
 | 149 |  | 
 | 150 | /*** | 
 | 151 |  * init_timer - initialize a timer. | 
 | 152 |  * @timer: the timer to be initialized | 
 | 153 |  * | 
 | 154 |  * init_timer() must be done to a timer prior calling *any* of the | 
 | 155 |  * other timer functions. | 
 | 156 |  */ | 
 | 157 | void fastcall init_timer(struct timer_list *timer) | 
 | 158 | { | 
 | 159 | 	timer->entry.next = NULL; | 
 | 160 | 	timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 161 | } | 
 | 162 | EXPORT_SYMBOL(init_timer); | 
 | 163 |  | 
 | 164 | static inline void detach_timer(struct timer_list *timer, | 
 | 165 | 					int clear_pending) | 
 | 166 | { | 
 | 167 | 	struct list_head *entry = &timer->entry; | 
 | 168 |  | 
 | 169 | 	__list_del(entry->prev, entry->next); | 
 | 170 | 	if (clear_pending) | 
 | 171 | 		entry->next = NULL; | 
 | 172 | 	entry->prev = LIST_POISON2; | 
 | 173 | } | 
 | 174 |  | 
 | 175 | /* | 
 | 176 |  * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock | 
 | 177 |  * means that all timers which are tied to this base via timer->base are | 
 | 178 |  * locked, and the base itself is locked too. | 
 | 179 |  * | 
 | 180 |  * So __run_timers/migrate_timers can safely modify all timers which could | 
 | 181 |  * be found on ->tvX lists. | 
 | 182 |  * | 
 | 183 |  * When the timer's base is locked, and the timer removed from list, it is | 
 | 184 |  * possible to set timer->base = NULL and drop the lock: the timer remains | 
 | 185 |  * locked. | 
 | 186 |  */ | 
 | 187 | static timer_base_t *lock_timer_base(struct timer_list *timer, | 
 | 188 | 					unsigned long *flags) | 
 | 189 | { | 
 | 190 | 	timer_base_t *base; | 
 | 191 |  | 
 | 192 | 	for (;;) { | 
 | 193 | 		base = timer->base; | 
 | 194 | 		if (likely(base != NULL)) { | 
 | 195 | 			spin_lock_irqsave(&base->lock, *flags); | 
 | 196 | 			if (likely(base == timer->base)) | 
 | 197 | 				return base; | 
 | 198 | 			/* The timer has migrated to another CPU */ | 
 | 199 | 			spin_unlock_irqrestore(&base->lock, *flags); | 
 | 200 | 		} | 
 | 201 | 		cpu_relax(); | 
 | 202 | 	} | 
 | 203 | } | 
 | 204 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 205 | int __mod_timer(struct timer_list *timer, unsigned long expires) | 
 | 206 | { | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 207 | 	timer_base_t *base; | 
 | 208 | 	tvec_base_t *new_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 209 | 	unsigned long flags; | 
 | 210 | 	int ret = 0; | 
 | 211 |  | 
 | 212 | 	BUG_ON(!timer->function); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 213 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 214 | 	base = lock_timer_base(timer, &flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 215 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 216 | 	if (timer_pending(timer)) { | 
 | 217 | 		detach_timer(timer, 0); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 218 | 		ret = 1; | 
 | 219 | 	} | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 220 |  | 
 | 221 | 	new_base = &__get_cpu_var(tvec_bases); | 
 | 222 |  | 
 | 223 | 	if (base != &new_base->t_base) { | 
 | 224 | 		/* | 
 | 225 | 		 * We are trying to schedule the timer on the local CPU. | 
 | 226 | 		 * However we can't change timer's base while it is running, | 
 | 227 | 		 * otherwise del_timer_sync() can't detect that the timer's | 
 | 228 | 		 * handler yet has not finished. This also guarantees that | 
 | 229 | 		 * the timer is serialized wrt itself. | 
 | 230 | 		 */ | 
 | 231 | 		if (unlikely(base->running_timer == timer)) { | 
 | 232 | 			/* The timer remains on a former base */ | 
 | 233 | 			new_base = container_of(base, tvec_base_t, t_base); | 
 | 234 | 		} else { | 
 | 235 | 			/* See the comment in lock_timer_base() */ | 
 | 236 | 			timer->base = NULL; | 
 | 237 | 			spin_unlock(&base->lock); | 
 | 238 | 			spin_lock(&new_base->t_base.lock); | 
 | 239 | 			timer->base = &new_base->t_base; | 
 | 240 | 		} | 
 | 241 | 	} | 
 | 242 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 243 | 	timer->expires = expires; | 
 | 244 | 	internal_add_timer(new_base, timer); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 245 | 	spin_unlock_irqrestore(&new_base->t_base.lock, flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 246 |  | 
 | 247 | 	return ret; | 
 | 248 | } | 
 | 249 |  | 
 | 250 | EXPORT_SYMBOL(__mod_timer); | 
 | 251 |  | 
 | 252 | /*** | 
 | 253 |  * add_timer_on - start a timer on a particular CPU | 
 | 254 |  * @timer: the timer to be added | 
 | 255 |  * @cpu: the CPU to start it on | 
 | 256 |  * | 
 | 257 |  * This is not very scalable on SMP. Double adds are not possible. | 
 | 258 |  */ | 
 | 259 | void add_timer_on(struct timer_list *timer, int cpu) | 
 | 260 | { | 
 | 261 | 	tvec_base_t *base = &per_cpu(tvec_bases, cpu); | 
 | 262 |   	unsigned long flags; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 263 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 264 |   	BUG_ON(timer_pending(timer) || !timer->function); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 265 | 	spin_lock_irqsave(&base->t_base.lock, flags); | 
 | 266 | 	timer->base = &base->t_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 267 | 	internal_add_timer(base, timer); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 268 | 	spin_unlock_irqrestore(&base->t_base.lock, flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 269 | } | 
 | 270 |  | 
 | 271 |  | 
 | 272 | /*** | 
 | 273 |  * mod_timer - modify a timer's timeout | 
 | 274 |  * @timer: the timer to be modified | 
 | 275 |  * | 
 | 276 |  * mod_timer is a more efficient way to update the expire field of an | 
 | 277 |  * active timer (if the timer is inactive it will be activated) | 
 | 278 |  * | 
 | 279 |  * mod_timer(timer, expires) is equivalent to: | 
 | 280 |  * | 
 | 281 |  *     del_timer(timer); timer->expires = expires; add_timer(timer); | 
 | 282 |  * | 
 | 283 |  * Note that if there are multiple unserialized concurrent users of the | 
 | 284 |  * same timer, then mod_timer() is the only safe way to modify the timeout, | 
 | 285 |  * since add_timer() cannot modify an already running timer. | 
 | 286 |  * | 
 | 287 |  * The function returns whether it has modified a pending timer or not. | 
 | 288 |  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | 
 | 289 |  * active timer returns 1.) | 
 | 290 |  */ | 
 | 291 | int mod_timer(struct timer_list *timer, unsigned long expires) | 
 | 292 | { | 
 | 293 | 	BUG_ON(!timer->function); | 
 | 294 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 295 | 	/* | 
 | 296 | 	 * This is a common optimization triggered by the | 
 | 297 | 	 * networking code - if the timer is re-modified | 
 | 298 | 	 * to be the same thing then just return: | 
 | 299 | 	 */ | 
 | 300 | 	if (timer->expires == expires && timer_pending(timer)) | 
 | 301 | 		return 1; | 
 | 302 |  | 
 | 303 | 	return __mod_timer(timer, expires); | 
 | 304 | } | 
 | 305 |  | 
 | 306 | EXPORT_SYMBOL(mod_timer); | 
 | 307 |  | 
 | 308 | /*** | 
 | 309 |  * del_timer - deactive a timer. | 
 | 310 |  * @timer: the timer to be deactivated | 
 | 311 |  * | 
 | 312 |  * del_timer() deactivates a timer - this works on both active and inactive | 
 | 313 |  * timers. | 
 | 314 |  * | 
 | 315 |  * The function returns whether it has deactivated a pending timer or not. | 
 | 316 |  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | 
 | 317 |  * active timer returns 1.) | 
 | 318 |  */ | 
 | 319 | int del_timer(struct timer_list *timer) | 
 | 320 | { | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 321 | 	timer_base_t *base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 322 | 	unsigned long flags; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 323 | 	int ret = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 324 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 325 | 	if (timer_pending(timer)) { | 
 | 326 | 		base = lock_timer_base(timer, &flags); | 
 | 327 | 		if (timer_pending(timer)) { | 
 | 328 | 			detach_timer(timer, 1); | 
 | 329 | 			ret = 1; | 
 | 330 | 		} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 331 | 		spin_unlock_irqrestore(&base->lock, flags); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 332 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 333 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 334 | 	return ret; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 335 | } | 
 | 336 |  | 
 | 337 | EXPORT_SYMBOL(del_timer); | 
 | 338 |  | 
 | 339 | #ifdef CONFIG_SMP | 
| Oleg Nesterov | fd450b7 | 2005-06-23 00:08:59 -0700 | [diff] [blame] | 340 | /* | 
 | 341 |  * This function tries to deactivate a timer. Upon successful (ret >= 0) | 
 | 342 |  * exit the timer is not queued and the handler is not running on any CPU. | 
 | 343 |  * | 
 | 344 |  * It must not be called from interrupt contexts. | 
 | 345 |  */ | 
 | 346 | int try_to_del_timer_sync(struct timer_list *timer) | 
 | 347 | { | 
 | 348 | 	timer_base_t *base; | 
 | 349 | 	unsigned long flags; | 
 | 350 | 	int ret = -1; | 
 | 351 |  | 
 | 352 | 	base = lock_timer_base(timer, &flags); | 
 | 353 |  | 
 | 354 | 	if (base->running_timer == timer) | 
 | 355 | 		goto out; | 
 | 356 |  | 
 | 357 | 	ret = 0; | 
 | 358 | 	if (timer_pending(timer)) { | 
 | 359 | 		detach_timer(timer, 1); | 
 | 360 | 		ret = 1; | 
 | 361 | 	} | 
 | 362 | out: | 
 | 363 | 	spin_unlock_irqrestore(&base->lock, flags); | 
 | 364 |  | 
 | 365 | 	return ret; | 
 | 366 | } | 
 | 367 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 368 | /*** | 
 | 369 |  * del_timer_sync - deactivate a timer and wait for the handler to finish. | 
 | 370 |  * @timer: the timer to be deactivated | 
 | 371 |  * | 
 | 372 |  * This function only differs from del_timer() on SMP: besides deactivating | 
 | 373 |  * the timer it also makes sure the handler has finished executing on other | 
 | 374 |  * CPUs. | 
 | 375 |  * | 
 | 376 |  * Synchronization rules: callers must prevent restarting of the timer, | 
 | 377 |  * otherwise this function is meaningless. It must not be called from | 
 | 378 |  * interrupt contexts. The caller must not hold locks which would prevent | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 379 |  * completion of the timer's handler. The timer's handler must not call | 
 | 380 |  * add_timer_on(). Upon exit the timer is not queued and the handler is | 
 | 381 |  * not running on any CPU. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 382 |  * | 
 | 383 |  * The function returns whether it has deactivated a pending timer or not. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 384 |  */ | 
 | 385 | int del_timer_sync(struct timer_list *timer) | 
 | 386 | { | 
| Oleg Nesterov | fd450b7 | 2005-06-23 00:08:59 -0700 | [diff] [blame] | 387 | 	for (;;) { | 
 | 388 | 		int ret = try_to_del_timer_sync(timer); | 
 | 389 | 		if (ret >= 0) | 
 | 390 | 			return ret; | 
 | 391 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 392 | } | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 393 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 394 | EXPORT_SYMBOL(del_timer_sync); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 395 | #endif | 
 | 396 |  | 
 | 397 | static int cascade(tvec_base_t *base, tvec_t *tv, int index) | 
 | 398 | { | 
 | 399 | 	/* cascade all the timers from tv up one level */ | 
 | 400 | 	struct list_head *head, *curr; | 
 | 401 |  | 
 | 402 | 	head = tv->vec + index; | 
 | 403 | 	curr = head->next; | 
 | 404 | 	/* | 
 | 405 | 	 * We are removing _all_ timers from the list, so we don't  have to | 
 | 406 | 	 * detach them individually, just clear the list afterwards. | 
 | 407 | 	 */ | 
 | 408 | 	while (curr != head) { | 
 | 409 | 		struct timer_list *tmp; | 
 | 410 |  | 
 | 411 | 		tmp = list_entry(curr, struct timer_list, entry); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 412 | 		BUG_ON(tmp->base != &base->t_base); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 413 | 		curr = curr->next; | 
 | 414 | 		internal_add_timer(base, tmp); | 
 | 415 | 	} | 
 | 416 | 	INIT_LIST_HEAD(head); | 
 | 417 |  | 
 | 418 | 	return index; | 
 | 419 | } | 
 | 420 |  | 
 | 421 | /*** | 
 | 422 |  * __run_timers - run all expired timers (if any) on this CPU. | 
 | 423 |  * @base: the timer vector to be processed. | 
 | 424 |  * | 
 | 425 |  * This function cascades all vectors and executes all expired timer | 
 | 426 |  * vectors. | 
 | 427 |  */ | 
 | 428 | #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK | 
 | 429 |  | 
 | 430 | static inline void __run_timers(tvec_base_t *base) | 
 | 431 | { | 
 | 432 | 	struct timer_list *timer; | 
 | 433 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 434 | 	spin_lock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 435 | 	while (time_after_eq(jiffies, base->timer_jiffies)) { | 
 | 436 | 		struct list_head work_list = LIST_HEAD_INIT(work_list); | 
 | 437 | 		struct list_head *head = &work_list; | 
 | 438 |  		int index = base->timer_jiffies & TVR_MASK; | 
 | 439 |   | 
 | 440 | 		/* | 
 | 441 | 		 * Cascade timers: | 
 | 442 | 		 */ | 
 | 443 | 		if (!index && | 
 | 444 | 			(!cascade(base, &base->tv2, INDEX(0))) && | 
 | 445 | 				(!cascade(base, &base->tv3, INDEX(1))) && | 
 | 446 | 					!cascade(base, &base->tv4, INDEX(2))) | 
 | 447 | 			cascade(base, &base->tv5, INDEX(3)); | 
 | 448 | 		++base->timer_jiffies;  | 
 | 449 | 		list_splice_init(base->tv1.vec + index, &work_list); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 450 | 		while (!list_empty(head)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 451 | 			void (*fn)(unsigned long); | 
 | 452 | 			unsigned long data; | 
 | 453 |  | 
 | 454 | 			timer = list_entry(head->next,struct timer_list,entry); | 
 | 455 |  			fn = timer->function; | 
 | 456 |  			data = timer->data; | 
 | 457 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 458 | 			set_running_timer(base, timer); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 459 | 			detach_timer(timer, 1); | 
 | 460 | 			spin_unlock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 461 | 			{ | 
| Jesper Juhl | be5b4fb | 2005-06-23 00:09:09 -0700 | [diff] [blame] | 462 | 				int preempt_count = preempt_count(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 463 | 				fn(data); | 
 | 464 | 				if (preempt_count != preempt_count()) { | 
| Jesper Juhl | be5b4fb | 2005-06-23 00:09:09 -0700 | [diff] [blame] | 465 | 					printk(KERN_WARNING "huh, entered %p " | 
 | 466 | 					       "with preempt_count %08x, exited" | 
 | 467 | 					       " with %08x?\n", | 
 | 468 | 					       fn, preempt_count, | 
 | 469 | 					       preempt_count()); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 470 | 					BUG(); | 
 | 471 | 				} | 
 | 472 | 			} | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 473 | 			spin_lock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 474 | 		} | 
 | 475 | 	} | 
 | 476 | 	set_running_timer(base, NULL); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 477 | 	spin_unlock_irq(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 478 | } | 
 | 479 |  | 
 | 480 | #ifdef CONFIG_NO_IDLE_HZ | 
 | 481 | /* | 
 | 482 |  * Find out when the next timer event is due to happen. This | 
 | 483 |  * is used on S/390 to stop all activity when a cpus is idle. | 
 | 484 |  * This functions needs to be called disabled. | 
 | 485 |  */ | 
 | 486 | unsigned long next_timer_interrupt(void) | 
 | 487 | { | 
 | 488 | 	tvec_base_t *base; | 
 | 489 | 	struct list_head *list; | 
 | 490 | 	struct timer_list *nte; | 
 | 491 | 	unsigned long expires; | 
 | 492 | 	tvec_t *varray[4]; | 
 | 493 | 	int i, j; | 
 | 494 |  | 
 | 495 | 	base = &__get_cpu_var(tvec_bases); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 496 | 	spin_lock(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 497 | 	expires = base->timer_jiffies + (LONG_MAX >> 1); | 
 | 498 | 	list = 0; | 
 | 499 |  | 
 | 500 | 	/* Look for timer events in tv1. */ | 
 | 501 | 	j = base->timer_jiffies & TVR_MASK; | 
 | 502 | 	do { | 
 | 503 | 		list_for_each_entry(nte, base->tv1.vec + j, entry) { | 
 | 504 | 			expires = nte->expires; | 
 | 505 | 			if (j < (base->timer_jiffies & TVR_MASK)) | 
 | 506 | 				list = base->tv2.vec + (INDEX(0)); | 
 | 507 | 			goto found; | 
 | 508 | 		} | 
 | 509 | 		j = (j + 1) & TVR_MASK; | 
 | 510 | 	} while (j != (base->timer_jiffies & TVR_MASK)); | 
 | 511 |  | 
 | 512 | 	/* Check tv2-tv5. */ | 
 | 513 | 	varray[0] = &base->tv2; | 
 | 514 | 	varray[1] = &base->tv3; | 
 | 515 | 	varray[2] = &base->tv4; | 
 | 516 | 	varray[3] = &base->tv5; | 
 | 517 | 	for (i = 0; i < 4; i++) { | 
 | 518 | 		j = INDEX(i); | 
 | 519 | 		do { | 
 | 520 | 			if (list_empty(varray[i]->vec + j)) { | 
 | 521 | 				j = (j + 1) & TVN_MASK; | 
 | 522 | 				continue; | 
 | 523 | 			} | 
 | 524 | 			list_for_each_entry(nte, varray[i]->vec + j, entry) | 
 | 525 | 				if (time_before(nte->expires, expires)) | 
 | 526 | 					expires = nte->expires; | 
 | 527 | 			if (j < (INDEX(i)) && i < 3) | 
 | 528 | 				list = varray[i + 1]->vec + (INDEX(i + 1)); | 
 | 529 | 			goto found; | 
 | 530 | 		} while (j != (INDEX(i))); | 
 | 531 | 	} | 
 | 532 | found: | 
 | 533 | 	if (list) { | 
 | 534 | 		/* | 
 | 535 | 		 * The search wrapped. We need to look at the next list | 
 | 536 | 		 * from next tv element that would cascade into tv element | 
 | 537 | 		 * where we found the timer element. | 
 | 538 | 		 */ | 
 | 539 | 		list_for_each_entry(nte, list, entry) { | 
 | 540 | 			if (time_before(nte->expires, expires)) | 
 | 541 | 				expires = nte->expires; | 
 | 542 | 		} | 
 | 543 | 	} | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 544 | 	spin_unlock(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 545 | 	return expires; | 
 | 546 | } | 
 | 547 | #endif | 
 | 548 |  | 
 | 549 | /******************************************************************/ | 
 | 550 |  | 
 | 551 | /* | 
 | 552 |  * Timekeeping variables | 
 | 553 |  */ | 
 | 554 | unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */ | 
 | 555 | unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */ | 
 | 556 |  | 
 | 557 | /*  | 
 | 558 |  * The current time  | 
 | 559 |  * wall_to_monotonic is what we need to add to xtime (or xtime corrected  | 
 | 560 |  * for sub jiffie times) to get to monotonic time.  Monotonic is pegged | 
 | 561 |  * at zero at system boot time, so wall_to_monotonic will be negative, | 
 | 562 |  * however, we will ALWAYS keep the tv_nsec part positive so we can use | 
 | 563 |  * the usual normalization. | 
 | 564 |  */ | 
 | 565 | struct timespec xtime __attribute__ ((aligned (16))); | 
 | 566 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 
 | 567 |  | 
 | 568 | EXPORT_SYMBOL(xtime); | 
 | 569 |  | 
 | 570 | /* Don't completely fail for HZ > 500.  */ | 
 | 571 | int tickadj = 500/HZ ? : 1;		/* microsecs */ | 
 | 572 |  | 
 | 573 |  | 
 | 574 | /* | 
 | 575 |  * phase-lock loop variables | 
 | 576 |  */ | 
 | 577 | /* TIME_ERROR prevents overwriting the CMOS clock */ | 
 | 578 | int time_state = TIME_OK;		/* clock synchronization status	*/ | 
 | 579 | int time_status = STA_UNSYNC;		/* clock status bits		*/ | 
 | 580 | long time_offset;			/* time adjustment (us)		*/ | 
 | 581 | long time_constant = 2;			/* pll time constant		*/ | 
 | 582 | long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/ | 
 | 583 | long time_precision = 1;		/* clock precision (us)		*/ | 
 | 584 | long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/ | 
 | 585 | long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/ | 
 | 586 | static long time_phase;			/* phase offset (scaled us)	*/ | 
 | 587 | long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; | 
 | 588 | 					/* frequency offset (scaled ppm)*/ | 
 | 589 | static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/ | 
 | 590 | long time_reftime;			/* time at last adjustment (s)	*/ | 
 | 591 | long time_adjust; | 
 | 592 | long time_next_adjust; | 
 | 593 |  | 
 | 594 | /* | 
 | 595 |  * this routine handles the overflow of the microsecond field | 
 | 596 |  * | 
 | 597 |  * The tricky bits of code to handle the accurate clock support | 
 | 598 |  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. | 
 | 599 |  * They were originally developed for SUN and DEC kernels. | 
 | 600 |  * All the kudos should go to Dave for this stuff. | 
 | 601 |  * | 
 | 602 |  */ | 
 | 603 | static void second_overflow(void) | 
 | 604 | { | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 605 | 	long ltemp; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 606 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 607 | 	/* Bump the maxerror field */ | 
 | 608 | 	time_maxerror += time_tolerance >> SHIFT_USEC; | 
 | 609 | 	if (time_maxerror > NTP_PHASE_LIMIT) { | 
 | 610 | 		time_maxerror = NTP_PHASE_LIMIT; | 
 | 611 | 		time_status |= STA_UNSYNC; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 612 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 613 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 614 | 	/* | 
 | 615 | 	 * Leap second processing. If in leap-insert state at the end of the | 
 | 616 | 	 * day, the system clock is set back one second; if in leap-delete | 
 | 617 | 	 * state, the system clock is set ahead one second. The microtime() | 
 | 618 | 	 * routine or external clock driver will insure that reported time is | 
 | 619 | 	 * always monotonic. The ugly divides should be replaced. | 
 | 620 | 	 */ | 
 | 621 | 	switch (time_state) { | 
 | 622 | 	case TIME_OK: | 
 | 623 | 		if (time_status & STA_INS) | 
 | 624 | 			time_state = TIME_INS; | 
 | 625 | 		else if (time_status & STA_DEL) | 
 | 626 | 			time_state = TIME_DEL; | 
 | 627 | 		break; | 
 | 628 | 	case TIME_INS: | 
 | 629 | 		if (xtime.tv_sec % 86400 == 0) { | 
 | 630 | 			xtime.tv_sec--; | 
 | 631 | 			wall_to_monotonic.tv_sec++; | 
 | 632 | 			/* | 
 | 633 | 			 * The timer interpolator will make time change | 
 | 634 | 			 * gradually instead of an immediate jump by one second | 
 | 635 | 			 */ | 
 | 636 | 			time_interpolator_update(-NSEC_PER_SEC); | 
 | 637 | 			time_state = TIME_OOP; | 
 | 638 | 			clock_was_set(); | 
 | 639 | 			printk(KERN_NOTICE "Clock: inserting leap second " | 
 | 640 | 					"23:59:60 UTC\n"); | 
 | 641 | 		} | 
 | 642 | 		break; | 
 | 643 | 	case TIME_DEL: | 
 | 644 | 		if ((xtime.tv_sec + 1) % 86400 == 0) { | 
 | 645 | 			xtime.tv_sec++; | 
 | 646 | 			wall_to_monotonic.tv_sec--; | 
 | 647 | 			/* | 
 | 648 | 			 * Use of time interpolator for a gradual change of | 
 | 649 | 			 * time | 
 | 650 | 			 */ | 
 | 651 | 			time_interpolator_update(NSEC_PER_SEC); | 
 | 652 | 			time_state = TIME_WAIT; | 
 | 653 | 			clock_was_set(); | 
 | 654 | 			printk(KERN_NOTICE "Clock: deleting leap second " | 
 | 655 | 					"23:59:59 UTC\n"); | 
 | 656 | 		} | 
 | 657 | 		break; | 
 | 658 | 	case TIME_OOP: | 
 | 659 | 		time_state = TIME_WAIT; | 
 | 660 | 		break; | 
 | 661 | 	case TIME_WAIT: | 
 | 662 | 		if (!(time_status & (STA_INS | STA_DEL))) | 
 | 663 | 		time_state = TIME_OK; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 664 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 665 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 666 | 	/* | 
 | 667 | 	 * Compute the phase adjustment for the next second. In PLL mode, the | 
 | 668 | 	 * offset is reduced by a fixed factor times the time constant. In FLL | 
 | 669 | 	 * mode the offset is used directly. In either mode, the maximum phase | 
 | 670 | 	 * adjustment for each second is clamped so as to spread the adjustment | 
 | 671 | 	 * over not more than the number of seconds between updates. | 
 | 672 | 	 */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 673 | 	ltemp = time_offset; | 
 | 674 | 	if (!(time_status & STA_FLL)) | 
| john stultz | 1bb34a4 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 675 | 		ltemp = shift_right(ltemp, SHIFT_KG + time_constant); | 
 | 676 | 	ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
 | 677 | 	ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 678 | 	time_offset -= ltemp; | 
 | 679 | 	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 680 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 681 | 	/* | 
 | 682 | 	 * Compute the frequency estimate and additional phase adjustment due | 
 | 683 | 	 * to frequency error for the next second. When the PPS signal is | 
 | 684 | 	 * engaged, gnaw on the watchdog counter and update the frequency | 
 | 685 | 	 * computed by the pll and the PPS signal. | 
 | 686 | 	 */ | 
 | 687 | 	pps_valid++; | 
 | 688 | 	if (pps_valid == PPS_VALID) {	/* PPS signal lost */ | 
 | 689 | 		pps_jitter = MAXTIME; | 
 | 690 | 		pps_stabil = MAXFREQ; | 
 | 691 | 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | 
 | 692 | 				STA_PPSWANDER | STA_PPSERROR); | 
 | 693 | 	} | 
 | 694 | 	ltemp = time_freq + pps_freq; | 
 | 695 | 	time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 696 |  | 
 | 697 | #if HZ == 100 | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 698 | 	/* | 
 | 699 | 	 * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to | 
 | 700 | 	 * get 128.125; => only 0.125% error (p. 14) | 
 | 701 | 	 */ | 
 | 702 | 	time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 703 | #endif | 
| YOSHIFUJI Hideaki | 4b8f573 | 2005-10-29 18:15:42 -0700 | [diff] [blame] | 704 | #if HZ == 250 | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 705 | 	/* | 
 | 706 | 	 * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and | 
 | 707 | 	 * 0.78125% to get 255.85938; => only 0.05% error (p. 14) | 
 | 708 | 	 */ | 
 | 709 | 	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
| YOSHIFUJI Hideaki | 4b8f573 | 2005-10-29 18:15:42 -0700 | [diff] [blame] | 710 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 711 | #if HZ == 1000 | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 712 | 	/* | 
 | 713 | 	 * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and | 
 | 714 | 	 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) | 
 | 715 | 	 */ | 
 | 716 | 	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 717 | #endif | 
 | 718 | } | 
 | 719 |  | 
 | 720 | /* in the NTP reference this is called "hardclock()" */ | 
 | 721 | static void update_wall_time_one_tick(void) | 
 | 722 | { | 
 | 723 | 	long time_adjust_step, delta_nsec; | 
 | 724 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 725 | 	if ((time_adjust_step = time_adjust) != 0 ) { | 
 | 726 | 		/* | 
 | 727 | 		 * We are doing an adjtime thing.  Prepare time_adjust_step to | 
 | 728 | 		 * be within bounds.  Note that a positive time_adjust means we | 
 | 729 | 		 * want the clock to run faster. | 
 | 730 | 		 * | 
 | 731 | 		 * Limit the amount of the step to be in the range | 
 | 732 | 		 * -tickadj .. +tickadj | 
 | 733 | 		 */ | 
 | 734 | 		time_adjust_step = min(time_adjust_step, (long)tickadj); | 
 | 735 | 		time_adjust_step = max(time_adjust_step, (long)-tickadj); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 736 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 737 | 		/* Reduce by this step the amount of time left  */ | 
 | 738 | 		time_adjust -= time_adjust_step; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 739 | 	} | 
 | 740 | 	delta_nsec = tick_nsec + time_adjust_step * 1000; | 
 | 741 | 	/* | 
 | 742 | 	 * Advance the phase, once it gets to one microsecond, then | 
 | 743 | 	 * advance the tick more. | 
 | 744 | 	 */ | 
 | 745 | 	time_phase += time_adj; | 
| john stultz | 1bb34a4 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 746 | 	if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) { | 
 | 747 | 		long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 748 | 		time_phase -= ltemp << (SHIFT_SCALE - 10); | 
 | 749 | 		delta_nsec += ltemp; | 
 | 750 | 	} | 
 | 751 | 	xtime.tv_nsec += delta_nsec; | 
 | 752 | 	time_interpolator_update(delta_nsec); | 
 | 753 |  | 
 | 754 | 	/* Changes by adjtime() do not take effect till next tick. */ | 
 | 755 | 	if (time_next_adjust != 0) { | 
 | 756 | 		time_adjust = time_next_adjust; | 
 | 757 | 		time_next_adjust = 0; | 
 | 758 | 	} | 
 | 759 | } | 
 | 760 |  | 
 | 761 | /* | 
 | 762 |  * Using a loop looks inefficient, but "ticks" is | 
 | 763 |  * usually just one (we shouldn't be losing ticks, | 
 | 764 |  * we're doing this this way mainly for interrupt | 
 | 765 |  * latency reasons, not because we think we'll | 
 | 766 |  * have lots of lost timer ticks | 
 | 767 |  */ | 
 | 768 | static void update_wall_time(unsigned long ticks) | 
 | 769 | { | 
 | 770 | 	do { | 
 | 771 | 		ticks--; | 
 | 772 | 		update_wall_time_one_tick(); | 
 | 773 | 		if (xtime.tv_nsec >= 1000000000) { | 
 | 774 | 			xtime.tv_nsec -= 1000000000; | 
 | 775 | 			xtime.tv_sec++; | 
 | 776 | 			second_overflow(); | 
 | 777 | 		} | 
 | 778 | 	} while (ticks); | 
 | 779 | } | 
 | 780 |  | 
 | 781 | /* | 
 | 782 |  * Called from the timer interrupt handler to charge one tick to the current  | 
 | 783 |  * process.  user_tick is 1 if the tick is user time, 0 for system. | 
 | 784 |  */ | 
 | 785 | void update_process_times(int user_tick) | 
 | 786 | { | 
 | 787 | 	struct task_struct *p = current; | 
 | 788 | 	int cpu = smp_processor_id(); | 
 | 789 |  | 
 | 790 | 	/* Note: this timer irq context must be accounted for as well. */ | 
 | 791 | 	if (user_tick) | 
 | 792 | 		account_user_time(p, jiffies_to_cputime(1)); | 
 | 793 | 	else | 
 | 794 | 		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); | 
 | 795 | 	run_local_timers(); | 
 | 796 | 	if (rcu_pending(cpu)) | 
 | 797 | 		rcu_check_callbacks(cpu, user_tick); | 
 | 798 | 	scheduler_tick(); | 
 | 799 |  	run_posix_cpu_timers(p); | 
 | 800 | } | 
 | 801 |  | 
 | 802 | /* | 
 | 803 |  * Nr of active tasks - counted in fixed-point numbers | 
 | 804 |  */ | 
 | 805 | static unsigned long count_active_tasks(void) | 
 | 806 | { | 
 | 807 | 	return (nr_running() + nr_uninterruptible()) * FIXED_1; | 
 | 808 | } | 
 | 809 |  | 
 | 810 | /* | 
 | 811 |  * Hmm.. Changed this, as the GNU make sources (load.c) seems to | 
 | 812 |  * imply that avenrun[] is the standard name for this kind of thing. | 
 | 813 |  * Nothing else seems to be standardized: the fractional size etc | 
 | 814 |  * all seem to differ on different machines. | 
 | 815 |  * | 
 | 816 |  * Requires xtime_lock to access. | 
 | 817 |  */ | 
 | 818 | unsigned long avenrun[3]; | 
 | 819 |  | 
 | 820 | EXPORT_SYMBOL(avenrun); | 
 | 821 |  | 
 | 822 | /* | 
 | 823 |  * calc_load - given tick count, update the avenrun load estimates. | 
 | 824 |  * This is called while holding a write_lock on xtime_lock. | 
 | 825 |  */ | 
 | 826 | static inline void calc_load(unsigned long ticks) | 
 | 827 | { | 
 | 828 | 	unsigned long active_tasks; /* fixed-point */ | 
 | 829 | 	static int count = LOAD_FREQ; | 
 | 830 |  | 
 | 831 | 	count -= ticks; | 
 | 832 | 	if (count < 0) { | 
 | 833 | 		count += LOAD_FREQ; | 
 | 834 | 		active_tasks = count_active_tasks(); | 
 | 835 | 		CALC_LOAD(avenrun[0], EXP_1, active_tasks); | 
 | 836 | 		CALC_LOAD(avenrun[1], EXP_5, active_tasks); | 
 | 837 | 		CALC_LOAD(avenrun[2], EXP_15, active_tasks); | 
 | 838 | 	} | 
 | 839 | } | 
 | 840 |  | 
 | 841 | /* jiffies at the most recent update of wall time */ | 
 | 842 | unsigned long wall_jiffies = INITIAL_JIFFIES; | 
 | 843 |  | 
 | 844 | /* | 
 | 845 |  * This read-write spinlock protects us from races in SMP while | 
 | 846 |  * playing with xtime and avenrun. | 
 | 847 |  */ | 
 | 848 | #ifndef ARCH_HAVE_XTIME_LOCK | 
 | 849 | seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; | 
 | 850 |  | 
 | 851 | EXPORT_SYMBOL(xtime_lock); | 
 | 852 | #endif | 
 | 853 |  | 
 | 854 | /* | 
 | 855 |  * This function runs timers and the timer-tq in bottom half context. | 
 | 856 |  */ | 
 | 857 | static void run_timer_softirq(struct softirq_action *h) | 
 | 858 | { | 
 | 859 | 	tvec_base_t *base = &__get_cpu_var(tvec_bases); | 
 | 860 |  | 
| Thomas Gleixner | c0a3132 | 2006-01-09 20:52:32 -0800 | [diff] [blame] | 861 |  	hrtimer_run_queues(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 862 | 	if (time_after_eq(jiffies, base->timer_jiffies)) | 
 | 863 | 		__run_timers(base); | 
 | 864 | } | 
 | 865 |  | 
 | 866 | /* | 
 | 867 |  * Called by the local, per-CPU timer interrupt on SMP. | 
 | 868 |  */ | 
 | 869 | void run_local_timers(void) | 
 | 870 | { | 
 | 871 | 	raise_softirq(TIMER_SOFTIRQ); | 
 | 872 | } | 
 | 873 |  | 
 | 874 | /* | 
 | 875 |  * Called by the timer interrupt. xtime_lock must already be taken | 
 | 876 |  * by the timer IRQ! | 
 | 877 |  */ | 
 | 878 | static inline void update_times(void) | 
 | 879 | { | 
 | 880 | 	unsigned long ticks; | 
 | 881 |  | 
 | 882 | 	ticks = jiffies - wall_jiffies; | 
 | 883 | 	if (ticks) { | 
 | 884 | 		wall_jiffies += ticks; | 
 | 885 | 		update_wall_time(ticks); | 
 | 886 | 	} | 
 | 887 | 	calc_load(ticks); | 
 | 888 | } | 
 | 889 |    | 
 | 890 | /* | 
 | 891 |  * The 64-bit jiffies value is not atomic - you MUST NOT read it | 
 | 892 |  * without sampling the sequence number in xtime_lock. | 
 | 893 |  * jiffies is defined in the linker script... | 
 | 894 |  */ | 
 | 895 |  | 
 | 896 | void do_timer(struct pt_regs *regs) | 
 | 897 | { | 
 | 898 | 	jiffies_64++; | 
 | 899 | 	update_times(); | 
| Ingo Molnar | 8446f1d | 2005-09-06 15:16:27 -0700 | [diff] [blame] | 900 | 	softlockup_tick(regs); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 901 | } | 
 | 902 |  | 
 | 903 | #ifdef __ARCH_WANT_SYS_ALARM | 
 | 904 |  | 
 | 905 | /* | 
 | 906 |  * For backwards compatibility?  This can be done in libc so Alpha | 
 | 907 |  * and all newer ports shouldn't need it. | 
 | 908 |  */ | 
 | 909 | asmlinkage unsigned long sys_alarm(unsigned int seconds) | 
 | 910 | { | 
 | 911 | 	struct itimerval it_new, it_old; | 
 | 912 | 	unsigned int oldalarm; | 
 | 913 |  | 
 | 914 | 	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; | 
 | 915 | 	it_new.it_value.tv_sec = seconds; | 
 | 916 | 	it_new.it_value.tv_usec = 0; | 
 | 917 | 	do_setitimer(ITIMER_REAL, &it_new, &it_old); | 
 | 918 | 	oldalarm = it_old.it_value.tv_sec; | 
 | 919 | 	/* ehhh.. We can't return 0 if we have an alarm pending.. */ | 
 | 920 | 	/* And we'd better return too much than too little anyway */ | 
 | 921 | 	if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000) | 
 | 922 | 		oldalarm++; | 
 | 923 | 	return oldalarm; | 
 | 924 | } | 
 | 925 |  | 
 | 926 | #endif | 
 | 927 |  | 
 | 928 | #ifndef __alpha__ | 
 | 929 |  | 
 | 930 | /* | 
 | 931 |  * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this | 
 | 932 |  * should be moved into arch/i386 instead? | 
 | 933 |  */ | 
 | 934 |  | 
 | 935 | /** | 
 | 936 |  * sys_getpid - return the thread group id of the current process | 
 | 937 |  * | 
 | 938 |  * Note, despite the name, this returns the tgid not the pid.  The tgid and | 
 | 939 |  * the pid are identical unless CLONE_THREAD was specified on clone() in | 
 | 940 |  * which case the tgid is the same in all threads of the same group. | 
 | 941 |  * | 
 | 942 |  * This is SMP safe as current->tgid does not change. | 
 | 943 |  */ | 
 | 944 | asmlinkage long sys_getpid(void) | 
 | 945 | { | 
 | 946 | 	return current->tgid; | 
 | 947 | } | 
 | 948 |  | 
 | 949 | /* | 
 | 950 |  * Accessing ->group_leader->real_parent is not SMP-safe, it could | 
 | 951 |  * change from under us. However, rather than getting any lock | 
 | 952 |  * we can use an optimistic algorithm: get the parent | 
 | 953 |  * pid, and go back and check that the parent is still | 
 | 954 |  * the same. If it has changed (which is extremely unlikely | 
 | 955 |  * indeed), we just try again.. | 
 | 956 |  * | 
 | 957 |  * NOTE! This depends on the fact that even if we _do_ | 
 | 958 |  * get an old value of "parent", we can happily dereference | 
 | 959 |  * the pointer (it was and remains a dereferencable kernel pointer | 
 | 960 |  * no matter what): we just can't necessarily trust the result | 
 | 961 |  * until we know that the parent pointer is valid. | 
 | 962 |  * | 
 | 963 |  * NOTE2: ->group_leader never changes from under us. | 
 | 964 |  */ | 
 | 965 | asmlinkage long sys_getppid(void) | 
 | 966 | { | 
 | 967 | 	int pid; | 
 | 968 | 	struct task_struct *me = current; | 
 | 969 | 	struct task_struct *parent; | 
 | 970 |  | 
 | 971 | 	parent = me->group_leader->real_parent; | 
 | 972 | 	for (;;) { | 
 | 973 | 		pid = parent->tgid; | 
| David Meybohm | 4c5640c | 2005-08-22 13:11:08 -0700 | [diff] [blame] | 974 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 975 | { | 
 | 976 | 		struct task_struct *old = parent; | 
 | 977 |  | 
 | 978 | 		/* | 
 | 979 | 		 * Make sure we read the pid before re-reading the | 
 | 980 | 		 * parent pointer: | 
 | 981 | 		 */ | 
| akpm@osdl.org | d59dd46 | 2005-05-01 08:58:47 -0700 | [diff] [blame] | 982 | 		smp_rmb(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 983 | 		parent = me->group_leader->real_parent; | 
 | 984 | 		if (old != parent) | 
 | 985 | 			continue; | 
 | 986 | } | 
 | 987 | #endif | 
 | 988 | 		break; | 
 | 989 | 	} | 
 | 990 | 	return pid; | 
 | 991 | } | 
 | 992 |  | 
 | 993 | asmlinkage long sys_getuid(void) | 
 | 994 | { | 
 | 995 | 	/* Only we change this so SMP safe */ | 
 | 996 | 	return current->uid; | 
 | 997 | } | 
 | 998 |  | 
 | 999 | asmlinkage long sys_geteuid(void) | 
 | 1000 | { | 
 | 1001 | 	/* Only we change this so SMP safe */ | 
 | 1002 | 	return current->euid; | 
 | 1003 | } | 
 | 1004 |  | 
 | 1005 | asmlinkage long sys_getgid(void) | 
 | 1006 | { | 
 | 1007 | 	/* Only we change this so SMP safe */ | 
 | 1008 | 	return current->gid; | 
 | 1009 | } | 
 | 1010 |  | 
 | 1011 | asmlinkage long sys_getegid(void) | 
 | 1012 | { | 
 | 1013 | 	/* Only we change this so SMP safe */ | 
 | 1014 | 	return  current->egid; | 
 | 1015 | } | 
 | 1016 |  | 
 | 1017 | #endif | 
 | 1018 |  | 
 | 1019 | static void process_timeout(unsigned long __data) | 
 | 1020 | { | 
 | 1021 | 	wake_up_process((task_t *)__data); | 
 | 1022 | } | 
 | 1023 |  | 
 | 1024 | /** | 
 | 1025 |  * schedule_timeout - sleep until timeout | 
 | 1026 |  * @timeout: timeout value in jiffies | 
 | 1027 |  * | 
 | 1028 |  * Make the current task sleep until @timeout jiffies have | 
 | 1029 |  * elapsed. The routine will return immediately unless | 
 | 1030 |  * the current task state has been set (see set_current_state()). | 
 | 1031 |  * | 
 | 1032 |  * You can set the task state as follows - | 
 | 1033 |  * | 
 | 1034 |  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | 
 | 1035 |  * pass before the routine returns. The routine will return 0 | 
 | 1036 |  * | 
 | 1037 |  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
 | 1038 |  * delivered to the current task. In this case the remaining time | 
 | 1039 |  * in jiffies will be returned, or 0 if the timer expired in time | 
 | 1040 |  * | 
 | 1041 |  * The current task state is guaranteed to be TASK_RUNNING when this | 
 | 1042 |  * routine returns. | 
 | 1043 |  * | 
 | 1044 |  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | 
 | 1045 |  * the CPU away without a bound on the timeout. In this case the return | 
 | 1046 |  * value will be %MAX_SCHEDULE_TIMEOUT. | 
 | 1047 |  * | 
 | 1048 |  * In all cases the return value is guaranteed to be non-negative. | 
 | 1049 |  */ | 
 | 1050 | fastcall signed long __sched schedule_timeout(signed long timeout) | 
 | 1051 | { | 
 | 1052 | 	struct timer_list timer; | 
 | 1053 | 	unsigned long expire; | 
 | 1054 |  | 
 | 1055 | 	switch (timeout) | 
 | 1056 | 	{ | 
 | 1057 | 	case MAX_SCHEDULE_TIMEOUT: | 
 | 1058 | 		/* | 
 | 1059 | 		 * These two special cases are useful to be comfortable | 
 | 1060 | 		 * in the caller. Nothing more. We could take | 
 | 1061 | 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value | 
 | 1062 | 		 * but I' d like to return a valid offset (>=0) to allow | 
 | 1063 | 		 * the caller to do everything it want with the retval. | 
 | 1064 | 		 */ | 
 | 1065 | 		schedule(); | 
 | 1066 | 		goto out; | 
 | 1067 | 	default: | 
 | 1068 | 		/* | 
 | 1069 | 		 * Another bit of PARANOID. Note that the retval will be | 
 | 1070 | 		 * 0 since no piece of kernel is supposed to do a check | 
 | 1071 | 		 * for a negative retval of schedule_timeout() (since it | 
 | 1072 | 		 * should never happens anyway). You just have the printk() | 
 | 1073 | 		 * that will tell you if something is gone wrong and where. | 
 | 1074 | 		 */ | 
 | 1075 | 		if (timeout < 0) | 
 | 1076 | 		{ | 
 | 1077 | 			printk(KERN_ERR "schedule_timeout: wrong timeout " | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1078 | 				"value %lx from %p\n", timeout, | 
 | 1079 | 				__builtin_return_address(0)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1080 | 			current->state = TASK_RUNNING; | 
 | 1081 | 			goto out; | 
 | 1082 | 		} | 
 | 1083 | 	} | 
 | 1084 |  | 
 | 1085 | 	expire = timeout + jiffies; | 
 | 1086 |  | 
| Oleg Nesterov | a8db2db | 2005-10-30 15:01:38 -0800 | [diff] [blame] | 1087 | 	setup_timer(&timer, process_timeout, (unsigned long)current); | 
 | 1088 | 	__mod_timer(&timer, expire); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1089 | 	schedule(); | 
 | 1090 | 	del_singleshot_timer_sync(&timer); | 
 | 1091 |  | 
 | 1092 | 	timeout = expire - jiffies; | 
 | 1093 |  | 
 | 1094 |  out: | 
 | 1095 | 	return timeout < 0 ? 0 : timeout; | 
 | 1096 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1097 | EXPORT_SYMBOL(schedule_timeout); | 
 | 1098 |  | 
| Andrew Morton | 8a1c175 | 2005-09-13 01:25:15 -0700 | [diff] [blame] | 1099 | /* | 
 | 1100 |  * We can use __set_current_state() here because schedule_timeout() calls | 
 | 1101 |  * schedule() unconditionally. | 
 | 1102 |  */ | 
| Nishanth Aravamudan | 64ed93a | 2005-09-10 00:27:21 -0700 | [diff] [blame] | 1103 | signed long __sched schedule_timeout_interruptible(signed long timeout) | 
 | 1104 | { | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1105 | 	__set_current_state(TASK_INTERRUPTIBLE); | 
 | 1106 | 	return schedule_timeout(timeout); | 
| Nishanth Aravamudan | 64ed93a | 2005-09-10 00:27:21 -0700 | [diff] [blame] | 1107 | } | 
 | 1108 | EXPORT_SYMBOL(schedule_timeout_interruptible); | 
 | 1109 |  | 
 | 1110 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) | 
 | 1111 | { | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1112 | 	__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 1113 | 	return schedule_timeout(timeout); | 
| Nishanth Aravamudan | 64ed93a | 2005-09-10 00:27:21 -0700 | [diff] [blame] | 1114 | } | 
 | 1115 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | 
 | 1116 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1117 | /* Thread ID - the internal kernel "pid" */ | 
 | 1118 | asmlinkage long sys_gettid(void) | 
 | 1119 | { | 
 | 1120 | 	return current->pid; | 
 | 1121 | } | 
 | 1122 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1123 | /* | 
 | 1124 |  * sys_sysinfo - fill in sysinfo struct | 
 | 1125 |  */  | 
 | 1126 | asmlinkage long sys_sysinfo(struct sysinfo __user *info) | 
 | 1127 | { | 
 | 1128 | 	struct sysinfo val; | 
 | 1129 | 	unsigned long mem_total, sav_total; | 
 | 1130 | 	unsigned int mem_unit, bitcount; | 
 | 1131 | 	unsigned long seq; | 
 | 1132 |  | 
 | 1133 | 	memset((char *)&val, 0, sizeof(struct sysinfo)); | 
 | 1134 |  | 
 | 1135 | 	do { | 
 | 1136 | 		struct timespec tp; | 
 | 1137 | 		seq = read_seqbegin(&xtime_lock); | 
 | 1138 |  | 
 | 1139 | 		/* | 
 | 1140 | 		 * This is annoying.  The below is the same thing | 
 | 1141 | 		 * posix_get_clock_monotonic() does, but it wants to | 
 | 1142 | 		 * take the lock which we want to cover the loads stuff | 
 | 1143 | 		 * too. | 
 | 1144 | 		 */ | 
 | 1145 |  | 
 | 1146 | 		getnstimeofday(&tp); | 
 | 1147 | 		tp.tv_sec += wall_to_monotonic.tv_sec; | 
 | 1148 | 		tp.tv_nsec += wall_to_monotonic.tv_nsec; | 
 | 1149 | 		if (tp.tv_nsec - NSEC_PER_SEC >= 0) { | 
 | 1150 | 			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; | 
 | 1151 | 			tp.tv_sec++; | 
 | 1152 | 		} | 
 | 1153 | 		val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | 
 | 1154 |  | 
 | 1155 | 		val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); | 
 | 1156 | 		val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); | 
 | 1157 | 		val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); | 
 | 1158 |  | 
 | 1159 | 		val.procs = nr_threads; | 
 | 1160 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 | 1161 |  | 
 | 1162 | 	si_meminfo(&val); | 
 | 1163 | 	si_swapinfo(&val); | 
 | 1164 |  | 
 | 1165 | 	/* | 
 | 1166 | 	 * If the sum of all the available memory (i.e. ram + swap) | 
 | 1167 | 	 * is less than can be stored in a 32 bit unsigned long then | 
 | 1168 | 	 * we can be binary compatible with 2.2.x kernels.  If not, | 
 | 1169 | 	 * well, in that case 2.2.x was broken anyways... | 
 | 1170 | 	 * | 
 | 1171 | 	 *  -Erik Andersen <andersee@debian.org> | 
 | 1172 | 	 */ | 
 | 1173 |  | 
 | 1174 | 	mem_total = val.totalram + val.totalswap; | 
 | 1175 | 	if (mem_total < val.totalram || mem_total < val.totalswap) | 
 | 1176 | 		goto out; | 
 | 1177 | 	bitcount = 0; | 
 | 1178 | 	mem_unit = val.mem_unit; | 
 | 1179 | 	while (mem_unit > 1) { | 
 | 1180 | 		bitcount++; | 
 | 1181 | 		mem_unit >>= 1; | 
 | 1182 | 		sav_total = mem_total; | 
 | 1183 | 		mem_total <<= 1; | 
 | 1184 | 		if (mem_total < sav_total) | 
 | 1185 | 			goto out; | 
 | 1186 | 	} | 
 | 1187 |  | 
 | 1188 | 	/* | 
 | 1189 | 	 * If mem_total did not overflow, multiply all memory values by | 
 | 1190 | 	 * val.mem_unit and set it to 1.  This leaves things compatible | 
 | 1191 | 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x | 
 | 1192 | 	 * kernels... | 
 | 1193 | 	 */ | 
 | 1194 |  | 
 | 1195 | 	val.mem_unit = 1; | 
 | 1196 | 	val.totalram <<= bitcount; | 
 | 1197 | 	val.freeram <<= bitcount; | 
 | 1198 | 	val.sharedram <<= bitcount; | 
 | 1199 | 	val.bufferram <<= bitcount; | 
 | 1200 | 	val.totalswap <<= bitcount; | 
 | 1201 | 	val.freeswap <<= bitcount; | 
 | 1202 | 	val.totalhigh <<= bitcount; | 
 | 1203 | 	val.freehigh <<= bitcount; | 
 | 1204 |  | 
 | 1205 |  out: | 
 | 1206 | 	if (copy_to_user(info, &val, sizeof(struct sysinfo))) | 
 | 1207 | 		return -EFAULT; | 
 | 1208 |  | 
 | 1209 | 	return 0; | 
 | 1210 | } | 
 | 1211 |  | 
 | 1212 | static void __devinit init_timers_cpu(int cpu) | 
 | 1213 | { | 
 | 1214 | 	int j; | 
 | 1215 | 	tvec_base_t *base; | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1216 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1217 | 	base = &per_cpu(tvec_bases, cpu); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1218 | 	spin_lock_init(&base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1219 | 	for (j = 0; j < TVN_SIZE; j++) { | 
 | 1220 | 		INIT_LIST_HEAD(base->tv5.vec + j); | 
 | 1221 | 		INIT_LIST_HEAD(base->tv4.vec + j); | 
 | 1222 | 		INIT_LIST_HEAD(base->tv3.vec + j); | 
 | 1223 | 		INIT_LIST_HEAD(base->tv2.vec + j); | 
 | 1224 | 	} | 
 | 1225 | 	for (j = 0; j < TVR_SIZE; j++) | 
 | 1226 | 		INIT_LIST_HEAD(base->tv1.vec + j); | 
 | 1227 |  | 
 | 1228 | 	base->timer_jiffies = jiffies; | 
 | 1229 | } | 
 | 1230 |  | 
 | 1231 | #ifdef CONFIG_HOTPLUG_CPU | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1232 | static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1233 | { | 
 | 1234 | 	struct timer_list *timer; | 
 | 1235 |  | 
 | 1236 | 	while (!list_empty(head)) { | 
 | 1237 | 		timer = list_entry(head->next, struct timer_list, entry); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1238 | 		detach_timer(timer, 0); | 
 | 1239 | 		timer->base = &new_base->t_base; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1240 | 		internal_add_timer(new_base, timer); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1241 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1242 | } | 
 | 1243 |  | 
 | 1244 | static void __devinit migrate_timers(int cpu) | 
 | 1245 | { | 
 | 1246 | 	tvec_base_t *old_base; | 
 | 1247 | 	tvec_base_t *new_base; | 
 | 1248 | 	int i; | 
 | 1249 |  | 
 | 1250 | 	BUG_ON(cpu_online(cpu)); | 
 | 1251 | 	old_base = &per_cpu(tvec_bases, cpu); | 
 | 1252 | 	new_base = &get_cpu_var(tvec_bases); | 
 | 1253 |  | 
 | 1254 | 	local_irq_disable(); | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1255 | 	spin_lock(&new_base->t_base.lock); | 
 | 1256 | 	spin_lock(&old_base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1257 |  | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1258 | 	if (old_base->t_base.running_timer) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1259 | 		BUG(); | 
 | 1260 | 	for (i = 0; i < TVR_SIZE; i++) | 
| Oleg Nesterov | 55c888d | 2005-06-23 00:08:56 -0700 | [diff] [blame] | 1261 | 		migrate_timer_list(new_base, old_base->tv1.vec + i); | 
 | 1262 | 	for (i = 0; i < TVN_SIZE; i++) { | 
 | 1263 | 		migrate_timer_list(new_base, old_base->tv2.vec + i); | 
 | 1264 | 		migrate_timer_list(new_base, old_base->tv3.vec + i); | 
 | 1265 | 		migrate_timer_list(new_base, old_base->tv4.vec + i); | 
 | 1266 | 		migrate_timer_list(new_base, old_base->tv5.vec + i); | 
 | 1267 | 	} | 
 | 1268 |  | 
 | 1269 | 	spin_unlock(&old_base->t_base.lock); | 
 | 1270 | 	spin_unlock(&new_base->t_base.lock); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1271 | 	local_irq_enable(); | 
 | 1272 | 	put_cpu_var(tvec_bases); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1273 | } | 
 | 1274 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 | 1275 |  | 
 | 1276 | static int __devinit timer_cpu_notify(struct notifier_block *self,  | 
 | 1277 | 				unsigned long action, void *hcpu) | 
 | 1278 | { | 
 | 1279 | 	long cpu = (long)hcpu; | 
 | 1280 | 	switch(action) { | 
 | 1281 | 	case CPU_UP_PREPARE: | 
 | 1282 | 		init_timers_cpu(cpu); | 
 | 1283 | 		break; | 
 | 1284 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 1285 | 	case CPU_DEAD: | 
 | 1286 | 		migrate_timers(cpu); | 
 | 1287 | 		break; | 
 | 1288 | #endif | 
 | 1289 | 	default: | 
 | 1290 | 		break; | 
 | 1291 | 	} | 
 | 1292 | 	return NOTIFY_OK; | 
 | 1293 | } | 
 | 1294 |  | 
 | 1295 | static struct notifier_block __devinitdata timers_nb = { | 
 | 1296 | 	.notifier_call	= timer_cpu_notify, | 
 | 1297 | }; | 
 | 1298 |  | 
 | 1299 |  | 
 | 1300 | void __init init_timers(void) | 
 | 1301 | { | 
 | 1302 | 	timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, | 
 | 1303 | 				(void *)(long)smp_processor_id()); | 
 | 1304 | 	register_cpu_notifier(&timers_nb); | 
 | 1305 | 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); | 
 | 1306 | } | 
 | 1307 |  | 
 | 1308 | #ifdef CONFIG_TIME_INTERPOLATION | 
 | 1309 |  | 
 | 1310 | struct time_interpolator *time_interpolator; | 
 | 1311 | static struct time_interpolator *time_interpolator_list; | 
 | 1312 | static DEFINE_SPINLOCK(time_interpolator_lock); | 
 | 1313 |  | 
 | 1314 | static inline u64 time_interpolator_get_cycles(unsigned int src) | 
 | 1315 | { | 
 | 1316 | 	unsigned long (*x)(void); | 
 | 1317 |  | 
 | 1318 | 	switch (src) | 
 | 1319 | 	{ | 
 | 1320 | 		case TIME_SOURCE_FUNCTION: | 
 | 1321 | 			x = time_interpolator->addr; | 
 | 1322 | 			return x(); | 
 | 1323 |  | 
 | 1324 | 		case TIME_SOURCE_MMIO64	: | 
 | 1325 | 			return readq((void __iomem *) time_interpolator->addr); | 
 | 1326 |  | 
 | 1327 | 		case TIME_SOURCE_MMIO32	: | 
 | 1328 | 			return readl((void __iomem *) time_interpolator->addr); | 
 | 1329 |  | 
 | 1330 | 		default: return get_cycles(); | 
 | 1331 | 	} | 
 | 1332 | } | 
 | 1333 |  | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1334 | static inline u64 time_interpolator_get_counter(int writelock) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1335 | { | 
 | 1336 | 	unsigned int src = time_interpolator->source; | 
 | 1337 |  | 
 | 1338 | 	if (time_interpolator->jitter) | 
 | 1339 | 	{ | 
 | 1340 | 		u64 lcycle; | 
 | 1341 | 		u64 now; | 
 | 1342 |  | 
 | 1343 | 		do { | 
 | 1344 | 			lcycle = time_interpolator->last_cycle; | 
 | 1345 | 			now = time_interpolator_get_cycles(src); | 
 | 1346 | 			if (lcycle && time_after(lcycle, now)) | 
 | 1347 | 				return lcycle; | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1348 |  | 
 | 1349 | 			/* When holding the xtime write lock, there's no need | 
 | 1350 | 			 * to add the overhead of the cmpxchg.  Readers are | 
 | 1351 | 			 * force to retry until the write lock is released. | 
 | 1352 | 			 */ | 
 | 1353 | 			if (writelock) { | 
 | 1354 | 				time_interpolator->last_cycle = now; | 
 | 1355 | 				return now; | 
 | 1356 | 			} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1357 | 			/* Keep track of the last timer value returned. The use of cmpxchg here | 
 | 1358 | 			 * will cause contention in an SMP environment. | 
 | 1359 | 			 */ | 
 | 1360 | 		} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); | 
 | 1361 | 		return now; | 
 | 1362 | 	} | 
 | 1363 | 	else | 
 | 1364 | 		return time_interpolator_get_cycles(src); | 
 | 1365 | } | 
 | 1366 |  | 
 | 1367 | void time_interpolator_reset(void) | 
 | 1368 | { | 
 | 1369 | 	time_interpolator->offset = 0; | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1370 | 	time_interpolator->last_counter = time_interpolator_get_counter(1); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1371 | } | 
 | 1372 |  | 
 | 1373 | #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) | 
 | 1374 |  | 
 | 1375 | unsigned long time_interpolator_get_offset(void) | 
 | 1376 | { | 
 | 1377 | 	/* If we do not have a time interpolator set up then just return zero */ | 
 | 1378 | 	if (!time_interpolator) | 
 | 1379 | 		return 0; | 
 | 1380 |  | 
 | 1381 | 	return time_interpolator->offset + | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1382 | 		GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1383 | } | 
 | 1384 |  | 
 | 1385 | #define INTERPOLATOR_ADJUST 65536 | 
 | 1386 | #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST | 
 | 1387 |  | 
 | 1388 | static void time_interpolator_update(long delta_nsec) | 
 | 1389 | { | 
 | 1390 | 	u64 counter; | 
 | 1391 | 	unsigned long offset; | 
 | 1392 |  | 
 | 1393 | 	/* If there is no time interpolator set up then do nothing */ | 
 | 1394 | 	if (!time_interpolator) | 
 | 1395 | 		return; | 
 | 1396 |  | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1397 | 	/* | 
 | 1398 | 	 * The interpolator compensates for late ticks by accumulating the late | 
 | 1399 | 	 * time in time_interpolator->offset. A tick earlier than expected will | 
 | 1400 | 	 * lead to a reset of the offset and a corresponding jump of the clock | 
 | 1401 | 	 * forward. Again this only works if the interpolator clock is running | 
 | 1402 | 	 * slightly slower than the regular clock and the tuning logic insures | 
 | 1403 | 	 * that. | 
 | 1404 | 	 */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1405 |  | 
| Alex Williamson | 486d46a | 2005-09-06 15:17:04 -0700 | [diff] [blame] | 1406 | 	counter = time_interpolator_get_counter(1); | 
| Andrew Morton | a5a0d52 | 2005-10-30 15:01:42 -0800 | [diff] [blame] | 1407 | 	offset = time_interpolator->offset + | 
 | 1408 | 			GET_TI_NSECS(counter, time_interpolator); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1409 |  | 
 | 1410 | 	if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) | 
 | 1411 | 		time_interpolator->offset = offset - delta_nsec; | 
 | 1412 | 	else { | 
 | 1413 | 		time_interpolator->skips++; | 
 | 1414 | 		time_interpolator->ns_skipped += delta_nsec - offset; | 
 | 1415 | 		time_interpolator->offset = 0; | 
 | 1416 | 	} | 
 | 1417 | 	time_interpolator->last_counter = counter; | 
 | 1418 |  | 
 | 1419 | 	/* Tuning logic for time interpolator invoked every minute or so. | 
 | 1420 | 	 * Decrease interpolator clock speed if no skips occurred and an offset is carried. | 
 | 1421 | 	 * Increase interpolator clock speed if we skip too much time. | 
 | 1422 | 	 */ | 
 | 1423 | 	if (jiffies % INTERPOLATOR_ADJUST == 0) | 
 | 1424 | 	{ | 
 | 1425 | 		if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC) | 
 | 1426 | 			time_interpolator->nsec_per_cyc--; | 
 | 1427 | 		if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) | 
 | 1428 | 			time_interpolator->nsec_per_cyc++; | 
 | 1429 | 		time_interpolator->skips = 0; | 
 | 1430 | 		time_interpolator->ns_skipped = 0; | 
 | 1431 | 	} | 
 | 1432 | } | 
 | 1433 |  | 
 | 1434 | static inline int | 
 | 1435 | is_better_time_interpolator(struct time_interpolator *new) | 
 | 1436 | { | 
 | 1437 | 	if (!time_interpolator) | 
 | 1438 | 		return 1; | 
 | 1439 | 	return new->frequency > 2*time_interpolator->frequency || | 
 | 1440 | 	    (unsigned long)new->drift < (unsigned long)time_interpolator->drift; | 
 | 1441 | } | 
 | 1442 |  | 
 | 1443 | void | 
 | 1444 | register_time_interpolator(struct time_interpolator *ti) | 
 | 1445 | { | 
 | 1446 | 	unsigned long flags; | 
 | 1447 |  | 
 | 1448 | 	/* Sanity check */ | 
 | 1449 | 	if (ti->frequency == 0 || ti->mask == 0) | 
 | 1450 | 		BUG(); | 
 | 1451 |  | 
 | 1452 | 	ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; | 
 | 1453 | 	spin_lock(&time_interpolator_lock); | 
 | 1454 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 | 1455 | 	if (is_better_time_interpolator(ti)) { | 
 | 1456 | 		time_interpolator = ti; | 
 | 1457 | 		time_interpolator_reset(); | 
 | 1458 | 	} | 
 | 1459 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 | 1460 |  | 
 | 1461 | 	ti->next = time_interpolator_list; | 
 | 1462 | 	time_interpolator_list = ti; | 
 | 1463 | 	spin_unlock(&time_interpolator_lock); | 
 | 1464 | } | 
 | 1465 |  | 
 | 1466 | void | 
 | 1467 | unregister_time_interpolator(struct time_interpolator *ti) | 
 | 1468 | { | 
 | 1469 | 	struct time_interpolator *curr, **prev; | 
 | 1470 | 	unsigned long flags; | 
 | 1471 |  | 
 | 1472 | 	spin_lock(&time_interpolator_lock); | 
 | 1473 | 	prev = &time_interpolator_list; | 
 | 1474 | 	for (curr = *prev; curr; curr = curr->next) { | 
 | 1475 | 		if (curr == ti) { | 
 | 1476 | 			*prev = curr->next; | 
 | 1477 | 			break; | 
 | 1478 | 		} | 
 | 1479 | 		prev = &curr->next; | 
 | 1480 | 	} | 
 | 1481 |  | 
 | 1482 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 | 1483 | 	if (ti == time_interpolator) { | 
 | 1484 | 		/* we lost the best time-interpolator: */ | 
 | 1485 | 		time_interpolator = NULL; | 
 | 1486 | 		/* find the next-best interpolator */ | 
 | 1487 | 		for (curr = time_interpolator_list; curr; curr = curr->next) | 
 | 1488 | 			if (is_better_time_interpolator(curr)) | 
 | 1489 | 				time_interpolator = curr; | 
 | 1490 | 		time_interpolator_reset(); | 
 | 1491 | 	} | 
 | 1492 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 | 1493 | 	spin_unlock(&time_interpolator_lock); | 
 | 1494 | } | 
 | 1495 | #endif /* CONFIG_TIME_INTERPOLATION */ | 
 | 1496 |  | 
 | 1497 | /** | 
 | 1498 |  * msleep - sleep safely even with waitqueue interruptions | 
 | 1499 |  * @msecs: Time in milliseconds to sleep for | 
 | 1500 |  */ | 
 | 1501 | void msleep(unsigned int msecs) | 
 | 1502 | { | 
 | 1503 | 	unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
 | 1504 |  | 
| Nishanth Aravamudan | 75bcc8c | 2005-09-10 00:27:24 -0700 | [diff] [blame] | 1505 | 	while (timeout) | 
 | 1506 | 		timeout = schedule_timeout_uninterruptible(timeout); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1507 | } | 
 | 1508 |  | 
 | 1509 | EXPORT_SYMBOL(msleep); | 
 | 1510 |  | 
 | 1511 | /** | 
| Domen Puncer | 96ec3ef | 2005-06-25 14:58:43 -0700 | [diff] [blame] | 1512 |  * msleep_interruptible - sleep waiting for signals | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1513 |  * @msecs: Time in milliseconds to sleep for | 
 | 1514 |  */ | 
 | 1515 | unsigned long msleep_interruptible(unsigned int msecs) | 
 | 1516 | { | 
 | 1517 | 	unsigned long timeout = msecs_to_jiffies(msecs) + 1; | 
 | 1518 |  | 
| Nishanth Aravamudan | 75bcc8c | 2005-09-10 00:27:24 -0700 | [diff] [blame] | 1519 | 	while (timeout && !signal_pending(current)) | 
 | 1520 | 		timeout = schedule_timeout_interruptible(timeout); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1521 | 	return jiffies_to_msecs(timeout); | 
 | 1522 | } | 
 | 1523 |  | 
 | 1524 | EXPORT_SYMBOL(msleep_interruptible); |