blob: ef8bc46dc14023f1dc47aec58f8962d9c8c8518e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
Andi Kleen312df5f2005-05-16 21:53:28 -070028#include <linux/acpi.h>
Andi Kleen8d916402005-05-31 14:39:26 -070029#ifdef CONFIG_ACPI
Andi Kleen312df5f2005-05-16 21:53:28 -070030#include <acpi/achware.h> /* for PM timer frequency */
Andi Kleen8d916402005-05-31 14:39:26 -070031#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
Andi Kleene8b91772006-02-26 04:18:49 +010051static char *time_init_gtod(void);
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053DEFINE_SPINLOCK(rtc_lock);
54DEFINE_SPINLOCK(i8253_lock);
55
Andi Kleen73dea472006-02-03 21:50:50 +010056int nohpet __initdata = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -070057static int notsc __initdata = 0;
58
59#undef HPET_HACK_ENABLE_DANGEROUS
60
61unsigned int cpu_khz; /* TSC clocks / usec, not used here */
62static unsigned long hpet_period; /* fsecs / HPET clock */
63unsigned long hpet_tick; /* HPET clocks / interrupt */
Chris McDermott33042a92006-02-11 17:55:50 -080064int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
Linus Torvalds1da177e2005-04-16 15:20:36 -070065unsigned long vxtime_hz = PIT_TICK_RATE;
66int report_lost_ticks; /* command line option */
67unsigned long long monotonic_base;
68
69struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
70
71volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
72unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
73struct timespec __xtime __section_xtime;
74struct timezone __sys_tz __section_sys_tz;
75
Linus Torvalds1da177e2005-04-16 15:20:36 -070076/*
77 * do_gettimeoffset() returns microseconds since last timer interrupt was
78 * triggered by hardware. A memory read of HPET is slower than a register read
79 * of TSC, but much more reliable. It's also synchronized to the timer
80 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
81 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
82 * This is not a problem, because jiffies hasn't updated either. They are bound
83 * together by xtime_lock.
84 */
85
86static inline unsigned int do_gettimeoffset_tsc(void)
87{
88 unsigned long t;
89 unsigned long x;
Andi Kleenc818a182006-01-11 22:45:24 +010090 t = get_cycles_sync();
Andi Kleen7351c0b2006-03-25 16:30:34 +010091 if (t < vxtime.last_tsc)
92 t = vxtime.last_tsc; /* hack */
Linus Torvalds1da177e2005-04-16 15:20:36 -070093 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
94 return x;
95}
96
97static inline unsigned int do_gettimeoffset_hpet(void)
98{
john stultza3a00752005-06-23 00:08:36 -070099 /* cap counter read to one tick to avoid inconsistencies */
100 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
101 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102}
103
104unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
105
106/*
107 * This version of gettimeofday() has microsecond resolution and better than
108 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
109 * MHz) HPET timer.
110 */
111
112void do_gettimeofday(struct timeval *tv)
113{
114 unsigned long seq, t;
115 unsigned int sec, usec;
116
117 do {
118 seq = read_seqbegin(&xtime_lock);
119
120 sec = xtime.tv_sec;
121 usec = xtime.tv_nsec / 1000;
122
123 /* i386 does some correction here to keep the clock
124 monotonous even when ntpd is fixing drift.
125 But they didn't work for me, there is a non monotonic
126 clock anyways with ntp.
127 I dropped all corrections now until a real solution can
128 be found. Note when you fix it here you need to do the same
129 in arch/x86_64/kernel/vsyscall.c and export all needed
130 variables in vmlinux.lds. -AK */
131
132 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
133 do_gettimeoffset();
134 usec += t;
135
136 } while (read_seqretry(&xtime_lock, seq));
137
138 tv->tv_sec = sec + usec / 1000000;
139 tv->tv_usec = usec % 1000000;
140}
141
142EXPORT_SYMBOL(do_gettimeofday);
143
144/*
145 * settimeofday() first undoes the correction that gettimeofday would do
146 * on the time, and then saves it. This is ugly, but has been like this for
147 * ages already.
148 */
149
150int do_settimeofday(struct timespec *tv)
151{
152 time_t wtm_sec, sec = tv->tv_sec;
153 long wtm_nsec, nsec = tv->tv_nsec;
154
155 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
156 return -EINVAL;
157
158 write_seqlock_irq(&xtime_lock);
159
160 nsec -= do_gettimeoffset() * 1000 +
161 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
162
163 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
164 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
165
166 set_normalized_timespec(&xtime, sec, nsec);
167 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
168
john stultzb149ee22005-09-06 15:17:46 -0700169 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170
171 write_sequnlock_irq(&xtime_lock);
172 clock_was_set();
173 return 0;
174}
175
176EXPORT_SYMBOL(do_settimeofday);
177
178unsigned long profile_pc(struct pt_regs *regs)
179{
180 unsigned long pc = instruction_pointer(regs);
181
Andi Kleen7351c0b2006-03-25 16:30:34 +0100182 /* Assume the lock function has either no stack frame or only a single
183 word. This checks if the address on the stack looks like a kernel
184 text address.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185 There is a small window for false hits, but in that case the tick
186 is just accounted to the spinlock function.
187 Better would be to write these functions in assembler again
188 and check exactly. */
189 if (in_lock_functions(pc)) {
190 char *v = *(char **)regs->rsp;
191 if ((v >= _stext && v <= _etext) ||
192 (v >= _sinittext && v <= _einittext) ||
193 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
194 return (unsigned long)v;
195 return ((unsigned long *)regs->rsp)[1];
196 }
197 return pc;
198}
199EXPORT_SYMBOL(profile_pc);
200
201/*
202 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
203 * ms after the second nowtime has started, because when nowtime is written
204 * into the registers of the CMOS clock, it will jump to the next second
205 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
206 * sheet for details.
207 */
208
209static void set_rtc_mmss(unsigned long nowtime)
210{
211 int real_seconds, real_minutes, cmos_minutes;
212 unsigned char control, freq_select;
213
214/*
215 * IRQs are disabled when we're called from the timer interrupt,
216 * no need for spin_lock_irqsave()
217 */
218
219 spin_lock(&rtc_lock);
220
221/*
222 * Tell the clock it's being set and stop it.
223 */
224
225 control = CMOS_READ(RTC_CONTROL);
226 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
227
228 freq_select = CMOS_READ(RTC_FREQ_SELECT);
229 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
230
231 cmos_minutes = CMOS_READ(RTC_MINUTES);
232 BCD_TO_BIN(cmos_minutes);
233
234/*
235 * since we're only adjusting minutes and seconds, don't interfere with hour
236 * overflow. This avoids messing with unknown time zones but requires your RTC
237 * not to be off by more than 15 minutes. Since we're calling it only when
238 * our clock is externally synchronized using NTP, this shouldn't be a problem.
239 */
240
241 real_seconds = nowtime % 60;
242 real_minutes = nowtime / 60;
243 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
244 real_minutes += 30; /* correct for half hour time zone */
245 real_minutes %= 60;
246
Linus Torvalds1da177e2005-04-16 15:20:36 -0700247 if (abs(real_minutes - cmos_minutes) >= 30) {
248 printk(KERN_WARNING "time.c: can't update CMOS clock "
249 "from %d to %d\n", cmos_minutes, real_minutes);
Andi Kleen28456ed2006-03-25 16:30:37 +0100250 } else {
Andi Kleen0b913172006-01-11 22:45:33 +0100251 BIN_TO_BCD(real_seconds);
252 BIN_TO_BCD(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 CMOS_WRITE(real_seconds, RTC_SECONDS);
254 CMOS_WRITE(real_minutes, RTC_MINUTES);
255 }
256
257/*
258 * The following flags have to be released exactly in this order, otherwise the
259 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
260 * not reset the oscillator and will not update precisely 500 ms later. You
261 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
262 * believes data sheets anyway ... -- Markus Kuhn
263 */
264
265 CMOS_WRITE(control, RTC_CONTROL);
266 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
267
268 spin_unlock(&rtc_lock);
269}
270
271
272/* monotonic_clock(): returns # of nanoseconds passed since time_init()
273 * Note: This function is required to return accurate
274 * time even in the absence of multiple timer ticks.
275 */
276unsigned long long monotonic_clock(void)
277{
278 unsigned long seq;
279 u32 last_offset, this_offset, offset;
280 unsigned long long base;
281
282 if (vxtime.mode == VXTIME_HPET) {
283 do {
284 seq = read_seqbegin(&xtime_lock);
285
286 last_offset = vxtime.last;
287 base = monotonic_base;
john stultza3a00752005-06-23 00:08:36 -0700288 this_offset = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 } while (read_seqretry(&xtime_lock, seq));
290 offset = (this_offset - last_offset);
Andi Kleen7351c0b2006-03-25 16:30:34 +0100291 offset *= (NSEC_PER_SEC/HZ) / hpet_tick;
Andi Kleen0b913172006-01-11 22:45:33 +0100292 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 do {
294 seq = read_seqbegin(&xtime_lock);
295
296 last_offset = vxtime.last_tsc;
297 base = monotonic_base;
298 } while (read_seqretry(&xtime_lock, seq));
Andi Kleenc818a182006-01-11 22:45:24 +0100299 this_offset = get_cycles_sync();
Andi Kleen7351c0b2006-03-25 16:30:34 +0100300 offset = (this_offset - last_offset)*1000 / cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301 }
Andi Kleen7351c0b2006-03-25 16:30:34 +0100302 return base + offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700303}
304EXPORT_SYMBOL(monotonic_clock);
305
306static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
307{
Andi Kleen7351c0b2006-03-25 16:30:34 +0100308 static long lost_count;
309 static int warned;
310 if (report_lost_ticks) {
311 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
312 print_symbol("rip %s)\n", regs->rip);
313 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314
Andi Kleen7351c0b2006-03-25 16:30:34 +0100315 if (lost_count == 1000 && !warned) {
316 printk(KERN_WARNING "warning: many lost ticks.\n"
317 KERN_WARNING "Your time source seems to be instable or "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700318 "some driver is hogging interupts\n");
Andi Kleen7351c0b2006-03-25 16:30:34 +0100319 print_symbol("rip %s\n", regs->rip);
320 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
321 printk(KERN_WARNING "Falling back to HPET\n");
322 if (hpet_use_timer)
323 vxtime.last = hpet_readl(HPET_T0_CMP) -
324 hpet_tick;
325 else
326 vxtime.last = hpet_readl(HPET_COUNTER);
327 vxtime.mode = VXTIME_HPET;
328 do_gettimeoffset = do_gettimeoffset_hpet;
329 }
330 /* else should fall back to PIT, but code missing. */
331 warned = 1;
332 } else
333 lost_count++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334
335#ifdef CONFIG_CPU_FREQ
Andi Kleen7351c0b2006-03-25 16:30:34 +0100336 /* In some cases the CPU can change frequency without us noticing
337 Give cpufreq a change to catch up. */
338 if ((lost_count+1) % 25 == 0)
339 cpufreq_delayed_get();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340#endif
341}
342
Andi Kleen73dea472006-02-03 21:50:50 +0100343void main_timer_handler(struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700344{
345 static unsigned long rtc_update = 0;
346 unsigned long tsc;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100347 int delay = 0, offset = 0, lost = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700348
349/*
350 * Here we are in the timer irq handler. We have irqs locally disabled (so we
351 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
352 * on the other CPU, so we need a lock. We also need to lock the vsyscall
353 * variables, because both do_timer() and us change them -arca+vojtech
354 */
355
356 write_seqlock(&xtime_lock);
357
john stultza3a00752005-06-23 00:08:36 -0700358 if (vxtime.hpet_address)
359 offset = hpet_readl(HPET_COUNTER);
360
361 if (hpet_use_timer) {
362 /* if we're using the hpet timer functionality,
363 * we can more accurately know the counter value
364 * when the timer interrupt occured.
365 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
367 delay = hpet_readl(HPET_COUNTER) - offset;
Andi Kleen9ede6b02006-03-25 16:29:31 +0100368 } else if (!pmtmr_ioport) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 spin_lock(&i8253_lock);
370 outb_p(0x00, 0x43);
371 delay = inb_p(0x40);
372 delay |= inb(0x40) << 8;
373 spin_unlock(&i8253_lock);
374 delay = LATCH - 1 - delay;
375 }
376
Andi Kleenc818a182006-01-11 22:45:24 +0100377 tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378
379 if (vxtime.mode == VXTIME_HPET) {
380 if (offset - vxtime.last > hpet_tick) {
381 lost = (offset - vxtime.last) / hpet_tick - 1;
382 }
383
384 monotonic_base +=
385 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
386
387 vxtime.last = offset;
Andi Kleen312df5f2005-05-16 21:53:28 -0700388#ifdef CONFIG_X86_PM_TIMER
389 } else if (vxtime.mode == VXTIME_PMTMR) {
390 lost = pmtimer_mark_offset();
391#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392 } else {
393 offset = (((tsc - vxtime.last_tsc) *
394 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
395
396 if (offset < 0)
397 offset = 0;
398
399 if (offset > (USEC_PER_SEC / HZ)) {
400 lost = offset / (USEC_PER_SEC / HZ);
401 offset %= (USEC_PER_SEC / HZ);
402 }
403
404 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
405
406 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
407
408 if ((((tsc - vxtime.last_tsc) *
409 vxtime.tsc_quot) >> 32) < offset)
410 vxtime.last_tsc = tsc -
411 (((long) offset << 32) / vxtime.tsc_quot) - 1;
412 }
413
414 if (lost > 0) {
415 handle_lost_ticks(lost, regs);
416 jiffies += lost;
417 }
418
419/*
420 * Do the timer stuff.
421 */
422
423 do_timer(regs);
424#ifndef CONFIG_SMP
425 update_process_times(user_mode(regs));
426#endif
427
428/*
429 * In the SMP case we use the local APIC timer interrupt to do the profiling,
430 * except when we simulate SMP mode on a uniprocessor system, in that case we
431 * have to call the local interrupt handler.
432 */
433
434#ifndef CONFIG_X86_LOCAL_APIC
435 profile_tick(CPU_PROFILING, regs);
436#else
437 if (!using_apic_timer)
438 smp_local_timer_interrupt(regs);
439#endif
440
441/*
442 * If we have an externally synchronized Linux clock, then update CMOS clock
443 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
444 * closest to exactly 500 ms before the next second. If the update fails, we
445 * don't care, as it'll be updated on the next turn, and the problem (time way
446 * off) isn't likely to go away much sooner anyway.
447 */
448
john stultzb149ee22005-09-06 15:17:46 -0700449 if (ntp_synced() && xtime.tv_sec > rtc_update &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
451 set_rtc_mmss(xtime.tv_sec);
452 rtc_update = xtime.tv_sec + 660;
453 }
454
455 write_sequnlock(&xtime_lock);
Andi Kleen73dea472006-02-03 21:50:50 +0100456}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457
Andi Kleen73dea472006-02-03 21:50:50 +0100458static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
459{
460 if (apic_runs_main_timer > 1)
461 return IRQ_HANDLED;
462 main_timer_handler(regs);
Venkatesh Pallipadid25bf7e2006-01-11 22:44:24 +0100463#ifdef CONFIG_X86_LOCAL_APIC
464 if (using_apic_timer)
465 smp_send_timer_broadcast_ipi();
466#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 return IRQ_HANDLED;
468}
469
Ravikiran G Thirumalai68ed0042006-03-22 00:07:38 -0800470static unsigned int cyc2ns_scale __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700471#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
472
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800473static inline void set_cyc2ns_scale(unsigned long cpu_khz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474{
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800475 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476}
477
478static inline unsigned long long cycles_2_ns(unsigned long long cyc)
479{
480 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
481}
482
483unsigned long long sched_clock(void)
484{
485 unsigned long a = 0;
486
487#if 0
488 /* Don't do a HPET read here. Using TSC always is much faster
489 and HPET may not be mapped yet when the scheduler first runs.
490 Disadvantage is a small drift between CPUs in some configurations,
491 but that should be tolerable. */
492 if (__vxtime.mode == VXTIME_HPET)
493 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
494#endif
495
496 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
497 which means it is not completely exact and may not be monotonous between
498 CPUs. But the errors should be too small to matter for scheduling
499 purposes. */
500
501 rdtscll(a);
502 return cycles_2_ns(a);
503}
504
Andi Kleenbdf2b1c2006-01-11 22:46:39 +0100505static unsigned long get_cmos_time(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506{
Matt Mackall641f71f2006-03-28 01:56:01 -0800507 unsigned int year, mon, day, hour, min, sec;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508 unsigned long flags;
Andi Kleen6954bee2006-03-25 16:30:31 +0100509 unsigned extyear = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511 spin_lock_irqsave(&rtc_lock, flags);
512
Matt Mackall641f71f2006-03-28 01:56:01 -0800513 do {
514 sec = CMOS_READ(RTC_SECONDS);
515 min = CMOS_READ(RTC_MINUTES);
516 hour = CMOS_READ(RTC_HOURS);
517 day = CMOS_READ(RTC_DAY_OF_MONTH);
518 mon = CMOS_READ(RTC_MONTH);
519 year = CMOS_READ(RTC_YEAR);
Andi Kleen6954bee2006-03-25 16:30:31 +0100520#ifdef CONFIG_ACPI
Matt Mackall641f71f2006-03-28 01:56:01 -0800521 if (acpi_fadt.revision >= FADT2_REVISION_ID &&
522 acpi_fadt.century)
523 extyear = CMOS_READ(acpi_fadt.century);
Andi Kleen6954bee2006-03-25 16:30:31 +0100524#endif
Matt Mackall641f71f2006-03-28 01:56:01 -0800525 } while (sec != CMOS_READ(RTC_SECONDS));
Andi Kleen6954bee2006-03-25 16:30:31 +0100526
Linus Torvalds1da177e2005-04-16 15:20:36 -0700527 spin_unlock_irqrestore(&rtc_lock, flags);
528
Andi Kleen0b913172006-01-11 22:45:33 +0100529 /*
530 * We know that x86-64 always uses BCD format, no need to check the
531 * config register.
Andi Kleen7351c0b2006-03-25 16:30:34 +0100532 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533
Andi Kleen0b913172006-01-11 22:45:33 +0100534 BCD_TO_BIN(sec);
535 BCD_TO_BIN(min);
536 BCD_TO_BIN(hour);
537 BCD_TO_BIN(day);
538 BCD_TO_BIN(mon);
539 BCD_TO_BIN(year);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540
Andi Kleen6954bee2006-03-25 16:30:31 +0100541 if (extyear) {
542 BCD_TO_BIN(extyear);
543 year += extyear;
544 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
545 } else {
546 /*
547 * x86-64 systems only exists since 2002.
548 * This will work up to Dec 31, 2100
549 */
550 year += 2000;
551 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700552
553 return mktime(year, mon, day, hour, min, sec);
554}
555
556#ifdef CONFIG_CPU_FREQ
557
558/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
559 changes.
560
561 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
562 not that important because current Opteron setups do not support
563 scaling on SMP anyroads.
564
565 Should fix up last_tsc too. Currently gettimeofday in the
566 first tick after the change will be slightly wrong. */
567
568#include <linux/workqueue.h>
569
570static unsigned int cpufreq_delayed_issched = 0;
571static unsigned int cpufreq_init = 0;
572static struct work_struct cpufreq_delayed_get_work;
573
574static void handle_cpufreq_delayed_get(void *v)
575{
576 unsigned int cpu;
577 for_each_online_cpu(cpu) {
578 cpufreq_get(cpu);
579 }
580 cpufreq_delayed_issched = 0;
581}
582
583/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
584 * to verify the CPU frequency the timing core thinks the CPU is running
585 * at is still correct.
586 */
587static void cpufreq_delayed_get(void)
588{
589 static int warned;
590 if (cpufreq_init && !cpufreq_delayed_issched) {
591 cpufreq_delayed_issched = 1;
592 if (!warned) {
593 warned = 1;
Andi Kleen7351c0b2006-03-25 16:30:34 +0100594 printk(KERN_DEBUG
595 "Losing some ticks... checking if CPU frequency changed.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700596 }
597 schedule_work(&cpufreq_delayed_get_work);
598 }
599}
600
601static unsigned int ref_freq = 0;
602static unsigned long loops_per_jiffy_ref = 0;
603
604static unsigned long cpu_khz_ref = 0;
605
606static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
607 void *data)
608{
609 struct cpufreq_freqs *freq = data;
610 unsigned long *lpj, dummy;
611
Andi Kleenc29601e2005-04-16 15:25:05 -0700612 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
613 return 0;
614
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615 lpj = &dummy;
616 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
617#ifdef CONFIG_SMP
Andi Kleen7351c0b2006-03-25 16:30:34 +0100618 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619#else
Andi Kleen7351c0b2006-03-25 16:30:34 +0100620 lpj = &boot_cpu_data.loops_per_jiffy;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621#endif
622
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623 if (!ref_freq) {
624 ref_freq = freq->old;
625 loops_per_jiffy_ref = *lpj;
626 cpu_khz_ref = cpu_khz;
627 }
628 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
629 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
630 (val == CPUFREQ_RESUMECHANGE)) {
631 *lpj =
632 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
633
634 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
635 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
636 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
637 }
638
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800639 set_cyc2ns_scale(cpu_khz_ref);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640
641 return 0;
642}
643
644static struct notifier_block time_cpufreq_notifier_block = {
645 .notifier_call = time_cpufreq_notifier
646};
647
648static int __init cpufreq_tsc(void)
649{
650 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
651 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
652 CPUFREQ_TRANSITION_NOTIFIER))
653 cpufreq_init = 1;
654 return 0;
655}
656
657core_initcall(cpufreq_tsc);
658
659#endif
660
661/*
662 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
663 * it to the HPET timer of known frequency.
664 */
665
666#define TICK_COUNT 100000000
667
668static unsigned int __init hpet_calibrate_tsc(void)
669{
670 int tsc_start, hpet_start;
671 int tsc_now, hpet_now;
672 unsigned long flags;
673
674 local_irq_save(flags);
675 local_irq_disable();
676
677 hpet_start = hpet_readl(HPET_COUNTER);
678 rdtscl(tsc_start);
679
680 do {
681 local_irq_disable();
682 hpet_now = hpet_readl(HPET_COUNTER);
Andi Kleenc818a182006-01-11 22:45:24 +0100683 tsc_now = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684 local_irq_restore(flags);
685 } while ((tsc_now - tsc_start) < TICK_COUNT &&
686 (hpet_now - hpet_start) < TICK_COUNT);
687
688 return (tsc_now - tsc_start) * 1000000000L
689 / ((hpet_now - hpet_start) * hpet_period / 1000);
690}
691
692
693/*
694 * pit_calibrate_tsc() uses the speaker output (channel 2) of
695 * the PIT. This is better than using the timer interrupt output,
696 * because we can read the value of the speaker with just one inb(),
697 * where we need three i/o operations for the interrupt channel.
698 * We count how many ticks the TSC does in 50 ms.
699 */
700
701static unsigned int __init pit_calibrate_tsc(void)
702{
703 unsigned long start, end;
704 unsigned long flags;
705
706 spin_lock_irqsave(&i8253_lock, flags);
707
708 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
709
710 outb(0xb0, 0x43);
711 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
712 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
Andi Kleenc818a182006-01-11 22:45:24 +0100713 start = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700714 while ((inb(0x61) & 0x20) == 0);
Andi Kleenc818a182006-01-11 22:45:24 +0100715 end = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716
717 spin_unlock_irqrestore(&i8253_lock, flags);
718
719 return (end - start) / 50;
720}
721
722#ifdef CONFIG_HPET
723static __init int late_hpet_init(void)
724{
725 struct hpet_data hd;
726 unsigned int ntimer;
727
728 if (!vxtime.hpet_address)
Andi Kleen0b913172006-01-11 22:45:33 +0100729 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730
731 memset(&hd, 0, sizeof (hd));
732
733 ntimer = hpet_readl(HPET_ID);
734 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
735 ntimer++;
736
737 /*
738 * Register with driver.
739 * Timer0 and Timer1 is used by platform.
740 */
741 hd.hd_phys_address = vxtime.hpet_address;
Al Virodd42b152006-02-01 07:30:33 -0500742 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743 hd.hd_nirqs = ntimer;
744 hd.hd_flags = HPET_DATA_PLATFORM;
745 hpet_reserve_timer(&hd, 0);
746#ifdef CONFIG_HPET_EMULATE_RTC
747 hpet_reserve_timer(&hd, 1);
748#endif
749 hd.hd_irq[0] = HPET_LEGACY_8254;
750 hd.hd_irq[1] = HPET_LEGACY_RTC;
751 if (ntimer > 2) {
752 struct hpet *hpet;
753 struct hpet_timer *timer;
754 int i;
755
756 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
Andi Kleen7351c0b2006-03-25 16:30:34 +0100757 timer = &hpet->hpet_timers[2];
758 for (i = 2; i < ntimer; timer++, i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700759 hd.hd_irq[i] = (timer->hpet_config &
760 Tn_INT_ROUTE_CNF_MASK) >>
761 Tn_INT_ROUTE_CNF_SHIFT;
762
763 }
764
765 hpet_alloc(&hd);
766 return 0;
767}
768fs_initcall(late_hpet_init);
769#endif
770
771static int hpet_timer_stop_set_go(unsigned long tick)
772{
773 unsigned int cfg;
774
775/*
776 * Stop the timers and reset the main counter.
777 */
778
779 cfg = hpet_readl(HPET_CFG);
780 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
781 hpet_writel(cfg, HPET_CFG);
782 hpet_writel(0, HPET_COUNTER);
783 hpet_writel(0, HPET_COUNTER + 4);
784
785/*
786 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
787 * and period also hpet_tick.
788 */
john stultza3a00752005-06-23 00:08:36 -0700789 if (hpet_use_timer) {
790 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791 HPET_TN_32BIT, HPET_T0_CFG);
john stultza3a00752005-06-23 00:08:36 -0700792 hpet_writel(hpet_tick, HPET_T0_CMP);
793 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
794 cfg |= HPET_CFG_LEGACY;
795 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796/*
797 * Go!
798 */
799
john stultza3a00752005-06-23 00:08:36 -0700800 cfg |= HPET_CFG_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801 hpet_writel(cfg, HPET_CFG);
802
803 return 0;
804}
805
806static int hpet_init(void)
807{
808 unsigned int id;
809
810 if (!vxtime.hpet_address)
811 return -1;
812 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
813 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
814
815/*
816 * Read the period, compute tick and quotient.
817 */
818
819 id = hpet_readl(HPET_ID);
820
john stultza3a00752005-06-23 00:08:36 -0700821 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700822 return -1;
823
824 hpet_period = hpet_readl(HPET_PERIOD);
825 if (hpet_period < 100000 || hpet_period > 100000000)
826 return -1;
827
828 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
829 hpet_period;
830
john stultza3a00752005-06-23 00:08:36 -0700831 hpet_use_timer = (id & HPET_ID_LEGSUP);
832
Linus Torvalds1da177e2005-04-16 15:20:36 -0700833 return hpet_timer_stop_set_go(hpet_tick);
834}
835
836static int hpet_reenable(void)
837{
838 return hpet_timer_stop_set_go(hpet_tick);
839}
840
Andi Kleen73dea472006-02-03 21:50:50 +0100841#define PIT_MODE 0x43
842#define PIT_CH0 0x40
843
844static void __init __pit_init(int val, u8 mode)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700845{
846 unsigned long flags;
847
848 spin_lock_irqsave(&i8253_lock, flags);
Andi Kleen73dea472006-02-03 21:50:50 +0100849 outb_p(mode, PIT_MODE);
850 outb_p(val & 0xff, PIT_CH0); /* LSB */
851 outb_p(val >> 8, PIT_CH0); /* MSB */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700852 spin_unlock_irqrestore(&i8253_lock, flags);
853}
854
Andi Kleen73dea472006-02-03 21:50:50 +0100855void __init pit_init(void)
856{
857 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
858}
859
860void __init pit_stop_interrupt(void)
861{
862 __pit_init(0, 0x30); /* mode 0 */
863}
864
865void __init stop_timer_interrupt(void)
866{
867 char *name;
868 if (vxtime.hpet_address) {
869 name = "HPET";
870 hpet_timer_stop_set_go(0);
871 } else {
872 name = "PIT";
873 pit_stop_interrupt();
874 }
875 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
876}
877
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878int __init time_setup(char *str)
879{
880 report_lost_ticks = 1;
881 return 1;
882}
883
884static struct irqaction irq0 = {
885 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
886};
887
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888void __init time_init(void)
889{
890 char *timename;
Andi Kleene8b91772006-02-26 04:18:49 +0100891 char *gtod;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700892
893#ifdef HPET_HACK_ENABLE_DANGEROUS
894 if (!vxtime.hpet_address) {
895 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
896 "manually!\n");
897 outl(0x800038a0, 0xcf8);
898 outl(0xff000001, 0xcfc);
899 outl(0x800038a0, 0xcf8);
900 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
901 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
902 "at %#lx.\n", vxtime.hpet_address);
903 }
904#endif
905 if (nohpet)
906 vxtime.hpet_address = 0;
907
908 xtime.tv_sec = get_cmos_time();
909 xtime.tv_nsec = 0;
910
911 set_normalized_timespec(&wall_to_monotonic,
912 -xtime.tv_sec, -xtime.tv_nsec);
913
john stultza3a00752005-06-23 00:08:36 -0700914 if (!hpet_init())
Andi Kleen7351c0b2006-03-25 16:30:34 +0100915 vxtime_hz = (1000000000000000L + hpet_period / 2) / hpet_period;
Andi Kleen68e18892005-12-12 22:17:07 -0800916 else
917 vxtime.hpet_address = 0;
john stultza3a00752005-06-23 00:08:36 -0700918
919 if (hpet_use_timer) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700920 cpu_khz = hpet_calibrate_tsc();
921 timename = "HPET";
Andi Kleen312df5f2005-05-16 21:53:28 -0700922#ifdef CONFIG_X86_PM_TIMER
john stultzfd495472005-12-12 22:17:13 -0800923 } else if (pmtmr_ioport && !vxtime.hpet_address) {
Andi Kleen312df5f2005-05-16 21:53:28 -0700924 vxtime_hz = PM_TIMER_FREQUENCY;
925 timename = "PM";
926 pit_init();
927 cpu_khz = pit_calibrate_tsc();
928#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 } else {
930 pit_init();
931 cpu_khz = pit_calibrate_tsc();
932 timename = "PIT";
933 }
934
Andi Kleene8b91772006-02-26 04:18:49 +0100935 vxtime.mode = VXTIME_TSC;
936 gtod = time_init_gtod();
937
938 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
939 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, gtod);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
941 cpu_khz / 1000, cpu_khz % 1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700942 vxtime.quot = (1000000L << 32) / vxtime_hz;
943 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
Andi Kleenc818a182006-01-11 22:45:24 +0100944 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945 setup_irq(0, &irq0);
946
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800947 set_cyc2ns_scale(cpu_khz);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948}
949
Andi Kleena8ab26f2005-04-16 15:25:19 -0700950/*
Andi Kleen312df5f2005-05-16 21:53:28 -0700951 * Make an educated guess if the TSC is trustworthy and synchronized
952 * over all CPUs.
953 */
Shaohua Li396bd502006-02-03 21:51:20 +0100954__cpuinit int unsynchronized_tsc(void)
Andi Kleen312df5f2005-05-16 21:53:28 -0700955{
956#ifdef CONFIG_SMP
957 if (oem_force_hpet_timer())
958 return 1;
959 /* Intel systems are normally all synchronized. Exceptions
960 are handled in the OEM check above. */
961 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
962 return 0;
Andi Kleen312df5f2005-05-16 21:53:28 -0700963#endif
964 /* Assume multi socket systems are not synchronized */
Andi Kleen737c5c32006-01-11 22:45:15 +0100965 return num_present_cpus() > 1;
Andi Kleen312df5f2005-05-16 21:53:28 -0700966}
967
968/*
Andi Kleene8b91772006-02-26 04:18:49 +0100969 * Decide what mode gettimeofday should use.
Andi Kleena8ab26f2005-04-16 15:25:19 -0700970 */
Andi Kleene8b91772006-02-26 04:18:49 +0100971__init static char *time_init_gtod(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972{
973 char *timetype;
974
Andi Kleen312df5f2005-05-16 21:53:28 -0700975 if (unsynchronized_tsc())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976 notsc = 1;
977 if (vxtime.hpet_address && notsc) {
john stultza3a00752005-06-23 00:08:36 -0700978 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
Chris McDermott33042a92006-02-11 17:55:50 -0800979 if (hpet_use_timer)
980 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
981 else
982 vxtime.last = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983 vxtime.mode = VXTIME_HPET;
984 do_gettimeoffset = do_gettimeoffset_hpet;
Andi Kleen312df5f2005-05-16 21:53:28 -0700985#ifdef CONFIG_X86_PM_TIMER
986 /* Using PM for gettimeofday is quite slow, but we have no other
987 choice because the TSC is too unreliable on some systems. */
988 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
989 timetype = "PM";
990 do_gettimeoffset = do_gettimeoffset_pm;
991 vxtime.mode = VXTIME_PMTMR;
992 sysctl_vsyscall = 0;
993 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
994#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700995 } else {
john stultza3a00752005-06-23 00:08:36 -0700996 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997 vxtime.mode = VXTIME_TSC;
998 }
Andi Kleene8b91772006-02-26 04:18:49 +0100999 return timetype;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000}
1001
1002__setup("report_lost_ticks", time_setup);
1003
1004static long clock_cmos_diff;
1005static unsigned long sleep_start;
1006
Andi Kleen0b913172006-01-11 22:45:33 +01001007/*
1008 * sysfs support for the timer.
1009 */
1010
Pavel Machek0b9c33a2005-04-16 15:25:31 -07001011static int timer_suspend(struct sys_device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012{
1013 /*
1014 * Estimate time zone so that set_time can update the clock
1015 */
1016 long cmos_time = get_cmos_time();
1017
1018 clock_cmos_diff = -cmos_time;
1019 clock_cmos_diff += get_seconds();
1020 sleep_start = cmos_time;
1021 return 0;
1022}
1023
1024static int timer_resume(struct sys_device *dev)
1025{
1026 unsigned long flags;
1027 unsigned long sec;
1028 unsigned long ctime = get_cmos_time();
1029 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1030
1031 if (vxtime.hpet_address)
1032 hpet_reenable();
1033 else
1034 i8254_timer_resume();
1035
1036 sec = ctime + clock_cmos_diff;
1037 write_seqlock_irqsave(&xtime_lock,flags);
1038 xtime.tv_sec = sec;
1039 xtime.tv_nsec = 0;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001040 if (vxtime.mode == VXTIME_HPET) {
1041 if (hpet_use_timer)
1042 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1043 else
1044 vxtime.last = hpet_readl(HPET_COUNTER);
1045#ifdef CONFIG_X86_PM_TIMER
1046 } else if (vxtime.mode == VXTIME_PMTMR) {
1047 pmtimer_resume();
1048#endif
1049 } else
1050 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001051 write_sequnlock_irqrestore(&xtime_lock,flags);
1052 jiffies += sleep_length;
1053 wall_jiffies += sleep_length;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001054 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
Ingo Molnar8446f1d2005-09-06 15:16:27 -07001055 touch_softlockup_watchdog();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056 return 0;
1057}
1058
1059static struct sysdev_class timer_sysclass = {
1060 .resume = timer_resume,
1061 .suspend = timer_suspend,
1062 set_kset_name("timer"),
1063};
1064
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065/* XXX this driverfs stuff should probably go elsewhere later -john */
1066static struct sys_device device_timer = {
1067 .id = 0,
1068 .cls = &timer_sysclass,
1069};
1070
1071static int time_init_device(void)
1072{
1073 int error = sysdev_class_register(&timer_sysclass);
1074 if (!error)
1075 error = sysdev_register(&device_timer);
1076 return error;
1077}
1078
1079device_initcall(time_init_device);
1080
1081#ifdef CONFIG_HPET_EMULATE_RTC
1082/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1083 * is enabled, we support RTC interrupt functionality in software.
1084 * RTC has 3 kinds of interrupts:
1085 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1086 * is updated
1087 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1088 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1089 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1090 * (1) and (2) above are implemented using polling at a frequency of
1091 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1092 * overhead. (DEFAULT_RTC_INT_FREQ)
1093 * For (3), we use interrupts at 64Hz or user specified periodic
1094 * frequency, whichever is higher.
1095 */
1096#include <linux/rtc.h>
1097
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098#define DEFAULT_RTC_INT_FREQ 64
1099#define RTC_NUM_INTS 1
1100
1101static unsigned long UIE_on;
1102static unsigned long prev_update_sec;
1103
1104static unsigned long AIE_on;
1105static struct rtc_time alarm_time;
1106
1107static unsigned long PIE_on;
1108static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1109static unsigned long PIE_count;
1110
1111static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001112static unsigned int hpet_t1_cmp; /* cached comparator register */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001113
1114int is_hpet_enabled(void)
1115{
1116 return vxtime.hpet_address != 0;
1117}
1118
1119/*
1120 * Timer 1 for RTC, we do not use periodic interrupt feature,
1121 * even if HPET supports periodic interrupts on Timer 1.
1122 * The reason being, to set up a periodic interrupt in HPET, we need to
1123 * stop the main counter. And if we do that everytime someone diables/enables
1124 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1125 * So, for the time being, simulate the periodic interrupt in software.
1126 *
1127 * hpet_rtc_timer_init() is called for the first time and during subsequent
1128 * interuppts reinit happens through hpet_rtc_timer_reinit().
1129 */
1130int hpet_rtc_timer_init(void)
1131{
1132 unsigned int cfg, cnt;
1133 unsigned long flags;
1134
1135 if (!is_hpet_enabled())
1136 return 0;
1137 /*
1138 * Set the counter 1 and enable the interrupts.
1139 */
1140 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1141 hpet_rtc_int_freq = PIE_freq;
1142 else
1143 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1144
1145 local_irq_save(flags);
1146 cnt = hpet_readl(HPET_COUNTER);
1147 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1148 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001149 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150 local_irq_restore(flags);
1151
1152 cfg = hpet_readl(HPET_T1_CFG);
Clemens Ladisch5f819942005-10-30 15:03:36 -08001153 cfg &= ~HPET_TN_PERIODIC;
1154 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001155 hpet_writel(cfg, HPET_T1_CFG);
1156
1157 return 1;
1158}
1159
1160static void hpet_rtc_timer_reinit(void)
1161{
1162 unsigned int cfg, cnt;
1163
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001164 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1165 cfg = hpet_readl(HPET_T1_CFG);
1166 cfg &= ~HPET_TN_ENABLE;
1167 hpet_writel(cfg, HPET_T1_CFG);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168 return;
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001169 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001170
1171 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1172 hpet_rtc_int_freq = PIE_freq;
1173 else
1174 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1175
1176 /* It is more accurate to use the comparator value than current count.*/
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001177 cnt = hpet_t1_cmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1179 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001180 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001181}
1182
1183/*
1184 * The functions below are called from rtc driver.
1185 * Return 0 if HPET is not being used.
1186 * Otherwise do the necessary changes and return 1.
1187 */
1188int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1189{
1190 if (!is_hpet_enabled())
1191 return 0;
1192
1193 if (bit_mask & RTC_UIE)
1194 UIE_on = 0;
1195 if (bit_mask & RTC_PIE)
1196 PIE_on = 0;
1197 if (bit_mask & RTC_AIE)
1198 AIE_on = 0;
1199
1200 return 1;
1201}
1202
1203int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1204{
1205 int timer_init_reqd = 0;
1206
1207 if (!is_hpet_enabled())
1208 return 0;
1209
1210 if (!(PIE_on | AIE_on | UIE_on))
1211 timer_init_reqd = 1;
1212
1213 if (bit_mask & RTC_UIE) {
1214 UIE_on = 1;
1215 }
1216 if (bit_mask & RTC_PIE) {
1217 PIE_on = 1;
1218 PIE_count = 0;
1219 }
1220 if (bit_mask & RTC_AIE) {
1221 AIE_on = 1;
1222 }
1223
1224 if (timer_init_reqd)
1225 hpet_rtc_timer_init();
1226
1227 return 1;
1228}
1229
1230int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1231{
1232 if (!is_hpet_enabled())
1233 return 0;
1234
1235 alarm_time.tm_hour = hrs;
1236 alarm_time.tm_min = min;
1237 alarm_time.tm_sec = sec;
1238
1239 return 1;
1240}
1241
1242int hpet_set_periodic_freq(unsigned long freq)
1243{
1244 if (!is_hpet_enabled())
1245 return 0;
1246
1247 PIE_freq = freq;
1248 PIE_count = 0;
1249
1250 return 1;
1251}
1252
1253int hpet_rtc_dropped_irq(void)
1254{
1255 if (!is_hpet_enabled())
1256 return 0;
1257
1258 return 1;
1259}
1260
1261irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1262{
1263 struct rtc_time curr_time;
1264 unsigned long rtc_int_flag = 0;
1265 int call_rtc_interrupt = 0;
1266
1267 hpet_rtc_timer_reinit();
1268
1269 if (UIE_on | AIE_on) {
1270 rtc_get_rtc_time(&curr_time);
1271 }
1272 if (UIE_on) {
1273 if (curr_time.tm_sec != prev_update_sec) {
1274 /* Set update int info, call real rtc int routine */
1275 call_rtc_interrupt = 1;
1276 rtc_int_flag = RTC_UF;
1277 prev_update_sec = curr_time.tm_sec;
1278 }
1279 }
1280 if (PIE_on) {
1281 PIE_count++;
1282 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1283 /* Set periodic int info, call real rtc int routine */
1284 call_rtc_interrupt = 1;
1285 rtc_int_flag |= RTC_PF;
1286 PIE_count = 0;
1287 }
1288 }
1289 if (AIE_on) {
1290 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1291 (curr_time.tm_min == alarm_time.tm_min) &&
1292 (curr_time.tm_hour == alarm_time.tm_hour)) {
1293 /* Set alarm int info, call real rtc int routine */
1294 call_rtc_interrupt = 1;
1295 rtc_int_flag |= RTC_AF;
1296 }
1297 }
1298 if (call_rtc_interrupt) {
1299 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1300 rtc_interrupt(rtc_int_flag, dev_id, regs);
1301 }
1302 return IRQ_HANDLED;
1303}
1304#endif
1305
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306static int __init nohpet_setup(char *s)
1307{
1308 nohpet = 1;
OGAWA Hirofumi9b410462006-03-31 02:30:33 -08001309 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310}
1311
1312__setup("nohpet", nohpet_setup);
1313
Andi Kleen7fd67842006-02-16 23:42:07 +01001314int __init notsc_setup(char *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001315{
1316 notsc = 1;
OGAWA Hirofumi9b410462006-03-31 02:30:33 -08001317 return 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318}
1319
1320__setup("notsc", notsc_setup);