blob: 65004881de5f7450764ef05c642a9a553eba62cd [file] [log] [blame]
Jack Steiner952cf6d2008-03-28 14:12:13 -05001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
Jack Steiner9f5314f2008-05-28 09:51:18 -05008 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
Jack Steiner952cf6d2008-03-28 14:12:13 -05009 */
10
11#ifndef __ASM_X86_UV_HUB_H__
12#define __ASM_X86_UV_HUB_H__
13
14#include <linux/numa.h>
15#include <linux/percpu.h>
16#include <asm/types.h>
17#include <asm/percpu.h>
18
19
20/*
21 * Addressing Terminology
22 *
Jack Steiner9f5314f2008-05-28 09:51:18 -050023 * M - The low M bits of a physical address represent the offset
24 * into the blade local memory. RAM memory on a blade is physically
25 * contiguous (although various IO spaces may punch holes in
26 * it)..
Jack Steiner952cf6d2008-03-28 14:12:13 -050027 *
Jack Steiner9f5314f2008-05-28 09:51:18 -050028 * N - Number of bits in the node portion of a socket physical
29 * address.
30 *
31 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
32 * routers always have low bit of 1, C/MBricks have low bit
33 * equal to 0. Most addressing macros that target UV hub chips
34 * right shift the NASID by 1 to exclude the always-zero bit.
35 * NASIDs contain up to 15 bits.
36 *
37 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
38 * of nasids.
39 *
40 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
41 * of the nasid for socket usage.
42 *
43 *
44 * NumaLink Global Physical Address Format:
45 * +--------------------------------+---------------------+
46 * |00..000| GNODE | NodeOffset |
47 * +--------------------------------+---------------------+
48 * |<-------53 - M bits --->|<--------M bits ----->
49 *
50 * M - number of node offset bits (35 .. 40)
Jack Steiner952cf6d2008-03-28 14:12:13 -050051 *
52 *
53 * Memory/UV-HUB Processor Socket Address Format:
Jack Steiner9f5314f2008-05-28 09:51:18 -050054 * +----------------+---------------+---------------------+
55 * |00..000000000000| PNODE | NodeOffset |
56 * +----------------+---------------+---------------------+
57 * <--- N bits --->|<--------M bits ----->
Jack Steiner952cf6d2008-03-28 14:12:13 -050058 *
Jack Steiner9f5314f2008-05-28 09:51:18 -050059 * M - number of node offset bits (35 .. 40)
60 * N - number of PNODE bits (0 .. 10)
Jack Steiner952cf6d2008-03-28 14:12:13 -050061 *
62 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
63 * The actual values are configuration dependent and are set at
Jack Steiner9f5314f2008-05-28 09:51:18 -050064 * boot time. M & N values are set by the hardware/BIOS at boot.
65 *
Jack Steiner952cf6d2008-03-28 14:12:13 -050066 *
67 * APICID format
68 * NOTE!!!!!! This is the current format of the APICID. However, code
69 * should assume that this will change in the future. Use functions
70 * in this file for all APICID bit manipulations and conversion.
71 *
72 * 1111110000000000
73 * 5432109876543210
Jack Steiner9f5314f2008-05-28 09:51:18 -050074 * pppppppppplc0cch
Jack Steiner952cf6d2008-03-28 14:12:13 -050075 * sssssssssss
76 *
Jack Steiner9f5314f2008-05-28 09:51:18 -050077 * p = pnode bits
Jack Steiner952cf6d2008-03-28 14:12:13 -050078 * l = socket number on board
79 * c = core
80 * h = hyperthread
Jack Steiner9f5314f2008-05-28 09:51:18 -050081 * s = bits that are in the SOCKET_ID CSR
Jack Steiner952cf6d2008-03-28 14:12:13 -050082 *
83 * Note: Processor only supports 12 bits in the APICID register. The ACPI
84 * tables hold all 16 bits. Software needs to be aware of this.
85 *
86 * Unless otherwise specified, all references to APICID refer to
87 * the FULL value contained in ACPI tables, not the subset in the
88 * processor APICID register.
89 */
90
91
92/*
93 * Maximum number of bricks in all partitions and in all coherency domains.
94 * This is the total number of bricks accessible in the numalink fabric. It
95 * includes all C & M bricks. Routers are NOT included.
96 *
97 * This value is also the value of the maximum number of non-router NASIDs
98 * in the numalink fabric.
99 *
Jack Steiner9f5314f2008-05-28 09:51:18 -0500100 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
Jack Steiner952cf6d2008-03-28 14:12:13 -0500101 */
102#define UV_MAX_NUMALINK_BLADES 16384
103
104/*
105 * Maximum number of C/Mbricks within a software SSI (hardware may support
106 * more).
107 */
108#define UV_MAX_SSI_BLADES 256
109
110/*
111 * The largest possible NASID of a C or M brick (+ 2)
112 */
113#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
114
115/*
116 * The following defines attributes of the HUB chip. These attributes are
117 * frequently referenced and are kept in the per-cpu data areas of each cpu.
118 * They are kept together in a struct to minimize cache misses.
119 */
120struct uv_hub_info_s {
121 unsigned long global_mmr_base;
Jack Steiner9f5314f2008-05-28 09:51:18 -0500122 unsigned long gpa_mask;
123 unsigned long gnode_upper;
124 unsigned long lowmem_remap_top;
125 unsigned long lowmem_remap_base;
126 unsigned short pnode;
127 unsigned short pnode_mask;
Jack Steiner952cf6d2008-03-28 14:12:13 -0500128 unsigned short coherency_domain_number;
129 unsigned short numa_blade_id;
130 unsigned char blade_processor_id;
131 unsigned char m_val;
132 unsigned char n_val;
133};
134DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
135#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
136#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
137
138/*
139 * Local & Global MMR space macros.
140 * Note: macros are intended to be used ONLY by inline functions
141 * in this file - not by other kernel code.
Jack Steiner9f5314f2008-05-28 09:51:18 -0500142 * n - NASID (full 15-bit global nasid)
143 * g - GNODE (full 15-bit global nasid, right shifted 1)
144 * p - PNODE (local part of nsids, right shifted 1)
Jack Steiner952cf6d2008-03-28 14:12:13 -0500145 */
Jack Steiner9f5314f2008-05-28 09:51:18 -0500146#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
147#define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
Jack Steiner952cf6d2008-03-28 14:12:13 -0500148
149#define UV_LOCAL_MMR_BASE 0xf4000000UL
150#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
151#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
152
Jack Steiner9f5314f2008-05-28 09:51:18 -0500153#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
154#define UV_GLOBAL_MMR64_PNODE_SHIFT 26
Jack Steiner952cf6d2008-03-28 14:12:13 -0500155
Jack Steiner9f5314f2008-05-28 09:51:18 -0500156#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
Jack Steiner952cf6d2008-03-28 14:12:13 -0500157
Jack Steiner9f5314f2008-05-28 09:51:18 -0500158#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
159 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
Jack Steiner952cf6d2008-03-28 14:12:13 -0500160
Jack Steiner9f5314f2008-05-28 09:51:18 -0500161#define UV_APIC_PNODE_SHIFT 6
Jack Steiner952cf6d2008-03-28 14:12:13 -0500162
163/*
Jack Steiner9f5314f2008-05-28 09:51:18 -0500164 * Macros for converting between kernel virtual addresses, socket local physical
165 * addresses, and UV global physical addresses.
166 * Note: use the standard __pa() & __va() macros for converting
167 * between socket virtual and socket physical addresses.
Jack Steiner952cf6d2008-03-28 14:12:13 -0500168 */
Jack Steiner9f5314f2008-05-28 09:51:18 -0500169
170/* socket phys RAM --> UV global physical address */
171static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
Jack Steiner952cf6d2008-03-28 14:12:13 -0500172{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500173 if (paddr < uv_hub_info->lowmem_remap_top)
174 paddr += uv_hub_info->lowmem_remap_base;
175 return paddr | uv_hub_info->gnode_upper;
176}
177
178
179/* socket virtual --> UV global physical address */
180static inline unsigned long uv_gpa(void *v)
181{
182 return __pa(v) | uv_hub_info->gnode_upper;
183}
184
185/* socket virtual --> UV global physical address */
186static inline void *uv_vgpa(void *v)
187{
188 return (void *)uv_gpa(v);
189}
190
191/* UV global physical address --> socket virtual */
192static inline void *uv_va(unsigned long gpa)
193{
194 return __va(gpa & uv_hub_info->gpa_mask);
195}
196
197/* pnode, offset --> socket virtual */
198static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
199{
200 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
201}
202
203
204/*
205 * Extract a PNODE from an APICID (full apicid, not processor subset)
206 */
207static inline int uv_apicid_to_pnode(int apicid)
208{
209 return (apicid >> UV_APIC_PNODE_SHIFT);
Jack Steiner952cf6d2008-03-28 14:12:13 -0500210}
211
212/*
213 * Access global MMRs using the low memory MMR32 space. This region supports
214 * faster MMR access but not all MMRs are accessible in this space.
215 */
Jack Steiner9f5314f2008-05-28 09:51:18 -0500216static inline unsigned long *uv_global_mmr32_address(int pnode,
Jack Steiner952cf6d2008-03-28 14:12:13 -0500217 unsigned long offset)
218{
219 return __va(UV_GLOBAL_MMR32_BASE |
Jack Steiner9f5314f2008-05-28 09:51:18 -0500220 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
Jack Steiner952cf6d2008-03-28 14:12:13 -0500221}
222
Jack Steiner9f5314f2008-05-28 09:51:18 -0500223static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
Jack Steiner952cf6d2008-03-28 14:12:13 -0500224 unsigned long val)
225{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500226 *uv_global_mmr32_address(pnode, offset) = val;
Jack Steiner952cf6d2008-03-28 14:12:13 -0500227}
228
Jack Steiner9f5314f2008-05-28 09:51:18 -0500229static inline unsigned long uv_read_global_mmr32(int pnode,
Jack Steiner952cf6d2008-03-28 14:12:13 -0500230 unsigned long offset)
231{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500232 return *uv_global_mmr32_address(pnode, offset);
Jack Steiner952cf6d2008-03-28 14:12:13 -0500233}
234
235/*
236 * Access Global MMR space using the MMR space located at the top of physical
237 * memory.
238 */
Jack Steiner9f5314f2008-05-28 09:51:18 -0500239static inline unsigned long *uv_global_mmr64_address(int pnode,
Jack Steiner952cf6d2008-03-28 14:12:13 -0500240 unsigned long offset)
241{
242 return __va(UV_GLOBAL_MMR64_BASE |
Jack Steiner9f5314f2008-05-28 09:51:18 -0500243 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
Jack Steiner952cf6d2008-03-28 14:12:13 -0500244}
245
Jack Steiner9f5314f2008-05-28 09:51:18 -0500246static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
Jack Steiner952cf6d2008-03-28 14:12:13 -0500247 unsigned long val)
248{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500249 *uv_global_mmr64_address(pnode, offset) = val;
Jack Steiner952cf6d2008-03-28 14:12:13 -0500250}
251
Jack Steiner9f5314f2008-05-28 09:51:18 -0500252static inline unsigned long uv_read_global_mmr64(int pnode,
Jack Steiner952cf6d2008-03-28 14:12:13 -0500253 unsigned long offset)
254{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500255 return *uv_global_mmr64_address(pnode, offset);
Jack Steiner952cf6d2008-03-28 14:12:13 -0500256}
257
258/*
Jack Steiner9f5314f2008-05-28 09:51:18 -0500259 * Access hub local MMRs. Faster than using global space but only local MMRs
Jack Steiner952cf6d2008-03-28 14:12:13 -0500260 * are accessible.
261 */
262static inline unsigned long *uv_local_mmr_address(unsigned long offset)
263{
264 return __va(UV_LOCAL_MMR_BASE | offset);
265}
266
267static inline unsigned long uv_read_local_mmr(unsigned long offset)
268{
269 return *uv_local_mmr_address(offset);
270}
271
272static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
273{
274 *uv_local_mmr_address(offset) = val;
275}
276
Jack Steiner8400def2008-03-28 14:12:14 -0500277/*
Jack Steiner9f5314f2008-05-28 09:51:18 -0500278 * Structures and definitions for converting between cpu, node, pnode, and blade
Jack Steiner8400def2008-03-28 14:12:14 -0500279 * numbers.
280 */
281struct uv_blade_info {
Jack Steiner9f5314f2008-05-28 09:51:18 -0500282 unsigned short nr_possible_cpus;
Jack Steiner8400def2008-03-28 14:12:14 -0500283 unsigned short nr_online_cpus;
Jack Steiner9f5314f2008-05-28 09:51:18 -0500284 unsigned short pnode;
Jack Steiner8400def2008-03-28 14:12:14 -0500285};
Jack Steiner9f5314f2008-05-28 09:51:18 -0500286extern struct uv_blade_info *uv_blade_info;
Jack Steiner8400def2008-03-28 14:12:14 -0500287extern short *uv_node_to_blade;
288extern short *uv_cpu_to_blade;
289extern short uv_possible_blades;
290
291/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
292static inline int uv_blade_processor_id(void)
293{
294 return uv_hub_info->blade_processor_id;
295}
296
297/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
298static inline int uv_numa_blade_id(void)
299{
300 return uv_hub_info->numa_blade_id;
301}
302
303/* Convert a cpu number to the the UV blade number */
304static inline int uv_cpu_to_blade_id(int cpu)
305{
306 return uv_cpu_to_blade[cpu];
307}
308
309/* Convert linux node number to the UV blade number */
310static inline int uv_node_to_blade_id(int nid)
311{
312 return uv_node_to_blade[nid];
313}
314
Jack Steiner9f5314f2008-05-28 09:51:18 -0500315/* Convert a blade id to the PNODE of the blade */
316static inline int uv_blade_to_pnode(int bid)
Jack Steiner8400def2008-03-28 14:12:14 -0500317{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500318 return uv_blade_info[bid].pnode;
Jack Steiner8400def2008-03-28 14:12:14 -0500319}
320
321/* Determine the number of possible cpus on a blade */
322static inline int uv_blade_nr_possible_cpus(int bid)
323{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500324 return uv_blade_info[bid].nr_possible_cpus;
Jack Steiner8400def2008-03-28 14:12:14 -0500325}
326
327/* Determine the number of online cpus on a blade */
328static inline int uv_blade_nr_online_cpus(int bid)
329{
330 return uv_blade_info[bid].nr_online_cpus;
331}
332
Jack Steiner9f5314f2008-05-28 09:51:18 -0500333/* Convert a cpu id to the PNODE of the blade containing the cpu */
334static inline int uv_cpu_to_pnode(int cpu)
Jack Steiner8400def2008-03-28 14:12:14 -0500335{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500336 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
Jack Steiner8400def2008-03-28 14:12:14 -0500337}
338
Jack Steiner9f5314f2008-05-28 09:51:18 -0500339/* Convert a linux node number to the PNODE of the blade */
340static inline int uv_node_to_pnode(int nid)
Jack Steiner8400def2008-03-28 14:12:14 -0500341{
Jack Steiner9f5314f2008-05-28 09:51:18 -0500342 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
Jack Steiner8400def2008-03-28 14:12:14 -0500343}
344
345/* Maximum possible number of blades */
346static inline int uv_num_possible_blades(void)
347{
348 return uv_possible_blades;
349}
350
Jack Steiner952cf6d2008-03-28 14:12:13 -0500351#endif /* __ASM_X86_UV_HUB__ */
352