| Timur Tabi | dcd83aa | 2011-07-08 19:06:12 -0500 | [diff] [blame] | 1 | /* ePAPR hypervisor byte channel device driver | 
|  | 2 | * | 
|  | 3 | * Copyright 2009-2011 Freescale Semiconductor, Inc. | 
|  | 4 | * | 
|  | 5 | * Author: Timur Tabi <timur@freescale.com> | 
|  | 6 | * | 
|  | 7 | * This file is licensed under the terms of the GNU General Public License | 
|  | 8 | * version 2.  This program is licensed "as is" without any warranty of any | 
|  | 9 | * kind, whether express or implied. | 
|  | 10 | * | 
|  | 11 | * This driver support three distinct interfaces, all of which are related to | 
|  | 12 | * ePAPR hypervisor byte channels. | 
|  | 13 | * | 
|  | 14 | * 1) An early-console (udbg) driver.  This provides early console output | 
|  | 15 | * through a byte channel.  The byte channel handle must be specified in a | 
|  | 16 | * Kconfig option. | 
|  | 17 | * | 
|  | 18 | * 2) A normal console driver.  Output is sent to the byte channel designated | 
|  | 19 | * for stdout in the device tree.  The console driver is for handling kernel | 
|  | 20 | * printk calls. | 
|  | 21 | * | 
|  | 22 | * 3) A tty driver, which is used to handle user-space input and output.  The | 
|  | 23 | * byte channel used for the console is designated as the default tty. | 
|  | 24 | */ | 
|  | 25 |  | 
|  | 26 | #include <linux/module.h> | 
|  | 27 | #include <linux/init.h> | 
|  | 28 | #include <linux/slab.h> | 
|  | 29 | #include <linux/err.h> | 
|  | 30 | #include <linux/interrupt.h> | 
|  | 31 | #include <linux/fs.h> | 
|  | 32 | #include <linux/poll.h> | 
|  | 33 | #include <asm/epapr_hcalls.h> | 
|  | 34 | #include <linux/of.h> | 
|  | 35 | #include <linux/platform_device.h> | 
|  | 36 | #include <linux/cdev.h> | 
|  | 37 | #include <linux/console.h> | 
|  | 38 | #include <linux/tty.h> | 
|  | 39 | #include <linux/tty_flip.h> | 
|  | 40 | #include <linux/circ_buf.h> | 
|  | 41 | #include <asm/udbg.h> | 
|  | 42 |  | 
|  | 43 | /* The size of the transmit circular buffer.  This must be a power of two. */ | 
|  | 44 | #define BUF_SIZE	2048 | 
|  | 45 |  | 
|  | 46 | /* Per-byte channel private data */ | 
|  | 47 | struct ehv_bc_data { | 
|  | 48 | struct device *dev; | 
|  | 49 | struct tty_port port; | 
|  | 50 | uint32_t handle; | 
|  | 51 | unsigned int rx_irq; | 
|  | 52 | unsigned int tx_irq; | 
|  | 53 |  | 
|  | 54 | spinlock_t lock;	/* lock for transmit buffer */ | 
|  | 55 | unsigned char buf[BUF_SIZE];	/* transmit circular buffer */ | 
|  | 56 | unsigned int head;	/* circular buffer head */ | 
|  | 57 | unsigned int tail;	/* circular buffer tail */ | 
|  | 58 |  | 
|  | 59 | int tx_irq_enabled;	/* true == TX interrupt is enabled */ | 
|  | 60 | }; | 
|  | 61 |  | 
|  | 62 | /* Array of byte channel objects */ | 
|  | 63 | static struct ehv_bc_data *bcs; | 
|  | 64 |  | 
|  | 65 | /* Byte channel handle for stdout (and stdin), taken from device tree */ | 
|  | 66 | static unsigned int stdout_bc; | 
|  | 67 |  | 
|  | 68 | /* Virtual IRQ for the byte channel handle for stdin, taken from device tree */ | 
|  | 69 | static unsigned int stdout_irq; | 
|  | 70 |  | 
|  | 71 | /**************************** SUPPORT FUNCTIONS ****************************/ | 
|  | 72 |  | 
|  | 73 | /* | 
|  | 74 | * Enable the transmit interrupt | 
|  | 75 | * | 
|  | 76 | * Unlike a serial device, byte channels have no mechanism for disabling their | 
|  | 77 | * own receive or transmit interrupts.  To emulate that feature, we toggle | 
|  | 78 | * the IRQ in the kernel. | 
|  | 79 | * | 
|  | 80 | * We cannot just blindly call enable_irq() or disable_irq(), because these | 
|  | 81 | * calls are reference counted.  This means that we cannot call enable_irq() | 
|  | 82 | * if interrupts are already enabled.  This can happen in two situations: | 
|  | 83 | * | 
|  | 84 | * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write() | 
|  | 85 | * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue() | 
|  | 86 | * | 
|  | 87 | * To work around this, we keep a flag to tell us if the IRQ is enabled or not. | 
|  | 88 | */ | 
|  | 89 | static void enable_tx_interrupt(struct ehv_bc_data *bc) | 
|  | 90 | { | 
|  | 91 | if (!bc->tx_irq_enabled) { | 
|  | 92 | enable_irq(bc->tx_irq); | 
|  | 93 | bc->tx_irq_enabled = 1; | 
|  | 94 | } | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | static void disable_tx_interrupt(struct ehv_bc_data *bc) | 
|  | 98 | { | 
|  | 99 | if (bc->tx_irq_enabled) { | 
|  | 100 | disable_irq_nosync(bc->tx_irq); | 
|  | 101 | bc->tx_irq_enabled = 0; | 
|  | 102 | } | 
|  | 103 | } | 
|  | 104 |  | 
|  | 105 | /* | 
|  | 106 | * find the byte channel handle to use for the console | 
|  | 107 | * | 
|  | 108 | * The byte channel to be used for the console is specified via a "stdout" | 
|  | 109 | * property in the /chosen node. | 
|  | 110 | * | 
|  | 111 | * For compatible with legacy device trees, we also look for a "stdout" alias. | 
|  | 112 | */ | 
|  | 113 | static int find_console_handle(void) | 
|  | 114 | { | 
|  | 115 | struct device_node *np, *np2; | 
|  | 116 | const char *sprop = NULL; | 
|  | 117 | const uint32_t *iprop; | 
|  | 118 |  | 
|  | 119 | np = of_find_node_by_path("/chosen"); | 
|  | 120 | if (np) | 
|  | 121 | sprop = of_get_property(np, "stdout-path", NULL); | 
|  | 122 |  | 
|  | 123 | if (!np || !sprop) { | 
|  | 124 | of_node_put(np); | 
|  | 125 | np = of_find_node_by_name(NULL, "aliases"); | 
|  | 126 | if (np) | 
|  | 127 | sprop = of_get_property(np, "stdout", NULL); | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | if (!sprop) { | 
|  | 131 | of_node_put(np); | 
|  | 132 | return 0; | 
|  | 133 | } | 
|  | 134 |  | 
|  | 135 | /* We don't care what the aliased node is actually called.  We only | 
|  | 136 | * care if it's compatible with "epapr,hv-byte-channel", because that | 
|  | 137 | * indicates that it's a byte channel node.  We use a temporary | 
|  | 138 | * variable, 'np2', because we can't release 'np' until we're done with | 
|  | 139 | * 'sprop'. | 
|  | 140 | */ | 
|  | 141 | np2 = of_find_node_by_path(sprop); | 
|  | 142 | of_node_put(np); | 
|  | 143 | np = np2; | 
|  | 144 | if (!np) { | 
|  | 145 | pr_warning("ehv-bc: stdout node '%s' does not exist\n", sprop); | 
|  | 146 | return 0; | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | /* Is it a byte channel? */ | 
|  | 150 | if (!of_device_is_compatible(np, "epapr,hv-byte-channel")) { | 
|  | 151 | of_node_put(np); | 
|  | 152 | return 0; | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | stdout_irq = irq_of_parse_and_map(np, 0); | 
|  | 156 | if (stdout_irq == NO_IRQ) { | 
|  | 157 | pr_err("ehv-bc: no 'interrupts' property in %s node\n", sprop); | 
|  | 158 | of_node_put(np); | 
|  | 159 | return 0; | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | /* | 
|  | 163 | * The 'hv-handle' property contains the handle for this byte channel. | 
|  | 164 | */ | 
|  | 165 | iprop = of_get_property(np, "hv-handle", NULL); | 
|  | 166 | if (!iprop) { | 
|  | 167 | pr_err("ehv-bc: no 'hv-handle' property in %s node\n", | 
|  | 168 | np->name); | 
|  | 169 | of_node_put(np); | 
|  | 170 | return 0; | 
|  | 171 | } | 
|  | 172 | stdout_bc = be32_to_cpu(*iprop); | 
|  | 173 |  | 
|  | 174 | of_node_put(np); | 
|  | 175 | return 1; | 
|  | 176 | } | 
|  | 177 |  | 
|  | 178 | /*************************** EARLY CONSOLE DRIVER ***************************/ | 
|  | 179 |  | 
|  | 180 | #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC | 
|  | 181 |  | 
|  | 182 | /* | 
|  | 183 | * send a byte to a byte channel, wait if necessary | 
|  | 184 | * | 
|  | 185 | * This function sends a byte to a byte channel, and it waits and | 
|  | 186 | * retries if the byte channel is full.  It returns if the character | 
|  | 187 | * has been sent, or if some error has occurred. | 
|  | 188 | * | 
|  | 189 | */ | 
|  | 190 | static void byte_channel_spin_send(const char data) | 
|  | 191 | { | 
|  | 192 | int ret, count; | 
|  | 193 |  | 
|  | 194 | do { | 
|  | 195 | count = 1; | 
|  | 196 | ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, | 
|  | 197 | &count, &data); | 
|  | 198 | } while (ret == EV_EAGAIN); | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | /* | 
|  | 202 | * The udbg subsystem calls this function to display a single character. | 
|  | 203 | * We convert CR to a CR/LF. | 
|  | 204 | */ | 
|  | 205 | static void ehv_bc_udbg_putc(char c) | 
|  | 206 | { | 
|  | 207 | if (c == '\n') | 
|  | 208 | byte_channel_spin_send('\r'); | 
|  | 209 |  | 
|  | 210 | byte_channel_spin_send(c); | 
|  | 211 | } | 
|  | 212 |  | 
|  | 213 | /* | 
|  | 214 | * early console initialization | 
|  | 215 | * | 
|  | 216 | * PowerPC kernels support an early printk console, also known as udbg. | 
|  | 217 | * This function must be called via the ppc_md.init_early function pointer. | 
|  | 218 | * At this point, the device tree has been unflattened, so we can obtain the | 
|  | 219 | * byte channel handle for stdout. | 
|  | 220 | * | 
|  | 221 | * We only support displaying of characters (putc).  We do not support | 
|  | 222 | * keyboard input. | 
|  | 223 | */ | 
|  | 224 | void __init udbg_init_ehv_bc(void) | 
|  | 225 | { | 
|  | 226 | unsigned int rx_count, tx_count; | 
|  | 227 | unsigned int ret; | 
|  | 228 |  | 
| Timur Tabi | dcd83aa | 2011-07-08 19:06:12 -0500 | [diff] [blame] | 229 | /* Verify the byte channel handle */ | 
|  | 230 | ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE, | 
|  | 231 | &rx_count, &tx_count); | 
|  | 232 | if (ret) | 
|  | 233 | return; | 
|  | 234 |  | 
|  | 235 | udbg_putc = ehv_bc_udbg_putc; | 
|  | 236 | register_early_udbg_console(); | 
|  | 237 |  | 
|  | 238 | udbg_printf("ehv-bc: early console using byte channel handle %u\n", | 
|  | 239 | CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | #endif | 
|  | 243 |  | 
|  | 244 | /****************************** CONSOLE DRIVER ******************************/ | 
|  | 245 |  | 
|  | 246 | static struct tty_driver *ehv_bc_driver; | 
|  | 247 |  | 
|  | 248 | /* | 
|  | 249 | * Byte channel console sending worker function. | 
|  | 250 | * | 
|  | 251 | * For consoles, if the output buffer is full, we should just spin until it | 
|  | 252 | * clears. | 
|  | 253 | */ | 
|  | 254 | static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s, | 
|  | 255 | unsigned int count) | 
|  | 256 | { | 
|  | 257 | unsigned int len; | 
|  | 258 | int ret = 0; | 
|  | 259 |  | 
|  | 260 | while (count) { | 
|  | 261 | len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES); | 
|  | 262 | do { | 
|  | 263 | ret = ev_byte_channel_send(handle, &len, s); | 
|  | 264 | } while (ret == EV_EAGAIN); | 
|  | 265 | count -= len; | 
|  | 266 | s += len; | 
|  | 267 | } | 
|  | 268 |  | 
|  | 269 | return ret; | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | /* | 
|  | 273 | * write a string to the console | 
|  | 274 | * | 
|  | 275 | * This function gets called to write a string from the kernel, typically from | 
|  | 276 | * a printk().  This function spins until all data is written. | 
|  | 277 | * | 
|  | 278 | * We copy the data to a temporary buffer because we need to insert a \r in | 
|  | 279 | * front of every \n.  It's more efficient to copy the data to the buffer than | 
|  | 280 | * it is to make multiple hcalls for each character or each newline. | 
|  | 281 | */ | 
|  | 282 | static void ehv_bc_console_write(struct console *co, const char *s, | 
|  | 283 | unsigned int count) | 
|  | 284 | { | 
| Timur Tabi | dcd83aa | 2011-07-08 19:06:12 -0500 | [diff] [blame] | 285 | char s2[EV_BYTE_CHANNEL_MAX_BYTES]; | 
|  | 286 | unsigned int i, j = 0; | 
|  | 287 | char c; | 
|  | 288 |  | 
|  | 289 | for (i = 0; i < count; i++) { | 
|  | 290 | c = *s++; | 
|  | 291 |  | 
|  | 292 | if (c == '\n') | 
|  | 293 | s2[j++] = '\r'; | 
|  | 294 |  | 
|  | 295 | s2[j++] = c; | 
|  | 296 | if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) { | 
| Timur Tabi | fd01a7a | 2011-09-22 20:33:13 -0500 | [diff] [blame] | 297 | if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j)) | 
| Timur Tabi | dcd83aa | 2011-07-08 19:06:12 -0500 | [diff] [blame] | 298 | return; | 
|  | 299 | j = 0; | 
|  | 300 | } | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | if (j) | 
| Timur Tabi | fd01a7a | 2011-09-22 20:33:13 -0500 | [diff] [blame] | 304 | ehv_bc_console_byte_channel_send(stdout_bc, s2, j); | 
| Timur Tabi | dcd83aa | 2011-07-08 19:06:12 -0500 | [diff] [blame] | 305 | } | 
|  | 306 |  | 
|  | 307 | /* | 
|  | 308 | * When /dev/console is opened, the kernel iterates the console list looking | 
|  | 309 | * for one with ->device and then calls that method. On success, it expects | 
|  | 310 | * the passed-in int* to contain the minor number to use. | 
|  | 311 | */ | 
|  | 312 | static struct tty_driver *ehv_bc_console_device(struct console *co, int *index) | 
|  | 313 | { | 
|  | 314 | *index = co->index; | 
|  | 315 |  | 
|  | 316 | return ehv_bc_driver; | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | static struct console ehv_bc_console = { | 
|  | 320 | .name		= "ttyEHV", | 
|  | 321 | .write		= ehv_bc_console_write, | 
|  | 322 | .device		= ehv_bc_console_device, | 
|  | 323 | .flags		= CON_PRINTBUFFER | CON_ENABLED, | 
|  | 324 | }; | 
|  | 325 |  | 
|  | 326 | /* | 
|  | 327 | * Console initialization | 
|  | 328 | * | 
|  | 329 | * This is the first function that is called after the device tree is | 
|  | 330 | * available, so here is where we determine the byte channel handle and IRQ for | 
|  | 331 | * stdout/stdin, even though that information is used by the tty and character | 
|  | 332 | * drivers. | 
|  | 333 | */ | 
|  | 334 | static int __init ehv_bc_console_init(void) | 
|  | 335 | { | 
|  | 336 | if (!find_console_handle()) { | 
|  | 337 | pr_debug("ehv-bc: stdout is not a byte channel\n"); | 
|  | 338 | return -ENODEV; | 
|  | 339 | } | 
|  | 340 |  | 
|  | 341 | #ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC | 
|  | 342 | /* Print a friendly warning if the user chose the wrong byte channel | 
|  | 343 | * handle for udbg. | 
|  | 344 | */ | 
|  | 345 | if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE) | 
|  | 346 | pr_warning("ehv-bc: udbg handle %u is not the stdout handle\n", | 
|  | 347 | CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE); | 
|  | 348 | #endif | 
|  | 349 |  | 
| Timur Tabi | dcd83aa | 2011-07-08 19:06:12 -0500 | [diff] [blame] | 350 | /* add_preferred_console() must be called before register_console(), | 
|  | 351 | otherwise it won't work.  However, we don't want to enumerate all the | 
|  | 352 | byte channels here, either, since we only care about one. */ | 
|  | 353 |  | 
|  | 354 | add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL); | 
|  | 355 | register_console(&ehv_bc_console); | 
|  | 356 |  | 
|  | 357 | pr_info("ehv-bc: registered console driver for byte channel %u\n", | 
|  | 358 | stdout_bc); | 
|  | 359 |  | 
|  | 360 | return 0; | 
|  | 361 | } | 
|  | 362 | console_initcall(ehv_bc_console_init); | 
|  | 363 |  | 
|  | 364 | /******************************** TTY DRIVER ********************************/ | 
|  | 365 |  | 
|  | 366 | /* | 
|  | 367 | * byte channel receive interupt handler | 
|  | 368 | * | 
|  | 369 | * This ISR is called whenever data is available on a byte channel. | 
|  | 370 | */ | 
|  | 371 | static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data) | 
|  | 372 | { | 
|  | 373 | struct ehv_bc_data *bc = data; | 
|  | 374 | struct tty_struct *ttys = tty_port_tty_get(&bc->port); | 
|  | 375 | unsigned int rx_count, tx_count, len; | 
|  | 376 | int count; | 
|  | 377 | char buffer[EV_BYTE_CHANNEL_MAX_BYTES]; | 
|  | 378 | int ret; | 
|  | 379 |  | 
|  | 380 | /* ttys could be NULL during a hangup */ | 
|  | 381 | if (!ttys) | 
|  | 382 | return IRQ_HANDLED; | 
|  | 383 |  | 
|  | 384 | /* Find out how much data needs to be read, and then ask the TTY layer | 
|  | 385 | * if it can handle that much.  We want to ensure that every byte we | 
|  | 386 | * read from the byte channel will be accepted by the TTY layer. | 
|  | 387 | */ | 
|  | 388 | ev_byte_channel_poll(bc->handle, &rx_count, &tx_count); | 
|  | 389 | count = tty_buffer_request_room(ttys, rx_count); | 
|  | 390 |  | 
|  | 391 | /* 'count' is the maximum amount of data the TTY layer can accept at | 
|  | 392 | * this time.  However, during testing, I was never able to get 'count' | 
|  | 393 | * to be less than 'rx_count'.  I'm not sure whether I'm calling it | 
|  | 394 | * correctly. | 
|  | 395 | */ | 
|  | 396 |  | 
|  | 397 | while (count > 0) { | 
|  | 398 | len = min_t(unsigned int, count, sizeof(buffer)); | 
|  | 399 |  | 
|  | 400 | /* Read some data from the byte channel.  This function will | 
|  | 401 | * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes. | 
|  | 402 | */ | 
|  | 403 | ev_byte_channel_receive(bc->handle, &len, buffer); | 
|  | 404 |  | 
|  | 405 | /* 'len' is now the amount of data that's been received. 'len' | 
|  | 406 | * can't be zero, and most likely it's equal to one. | 
|  | 407 | */ | 
|  | 408 |  | 
|  | 409 | /* Pass the received data to the tty layer. */ | 
|  | 410 | ret = tty_insert_flip_string(ttys, buffer, len); | 
|  | 411 |  | 
|  | 412 | /* 'ret' is the number of bytes that the TTY layer accepted. | 
|  | 413 | * If it's not equal to 'len', then it means the buffer is | 
|  | 414 | * full, which should never happen.  If it does happen, we can | 
|  | 415 | * exit gracefully, but we drop the last 'len - ret' characters | 
|  | 416 | * that we read from the byte channel. | 
|  | 417 | */ | 
|  | 418 | if (ret != len) | 
|  | 419 | break; | 
|  | 420 |  | 
|  | 421 | count -= len; | 
|  | 422 | } | 
|  | 423 |  | 
|  | 424 | /* Tell the tty layer that we're done. */ | 
|  | 425 | tty_flip_buffer_push(ttys); | 
|  | 426 |  | 
|  | 427 | tty_kref_put(ttys); | 
|  | 428 |  | 
|  | 429 | return IRQ_HANDLED; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | /* | 
|  | 433 | * dequeue the transmit buffer to the hypervisor | 
|  | 434 | * | 
|  | 435 | * This function, which can be called in interrupt context, dequeues as much | 
|  | 436 | * data as possible from the transmit buffer to the byte channel. | 
|  | 437 | */ | 
|  | 438 | static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc) | 
|  | 439 | { | 
|  | 440 | unsigned int count; | 
|  | 441 | unsigned int len, ret; | 
|  | 442 | unsigned long flags; | 
|  | 443 |  | 
|  | 444 | do { | 
|  | 445 | spin_lock_irqsave(&bc->lock, flags); | 
|  | 446 | len = min_t(unsigned int, | 
|  | 447 | CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE), | 
|  | 448 | EV_BYTE_CHANNEL_MAX_BYTES); | 
|  | 449 |  | 
|  | 450 | ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail); | 
|  | 451 |  | 
|  | 452 | /* 'len' is valid only if the return code is 0 or EV_EAGAIN */ | 
|  | 453 | if (!ret || (ret == EV_EAGAIN)) | 
|  | 454 | bc->tail = (bc->tail + len) & (BUF_SIZE - 1); | 
|  | 455 |  | 
|  | 456 | count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE); | 
|  | 457 | spin_unlock_irqrestore(&bc->lock, flags); | 
|  | 458 | } while (count && !ret); | 
|  | 459 |  | 
|  | 460 | spin_lock_irqsave(&bc->lock, flags); | 
|  | 461 | if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE)) | 
|  | 462 | /* | 
|  | 463 | * If we haven't emptied the buffer, then enable the TX IRQ. | 
|  | 464 | * We'll get an interrupt when there's more room in the | 
|  | 465 | * hypervisor's output buffer. | 
|  | 466 | */ | 
|  | 467 | enable_tx_interrupt(bc); | 
|  | 468 | else | 
|  | 469 | disable_tx_interrupt(bc); | 
|  | 470 | spin_unlock_irqrestore(&bc->lock, flags); | 
|  | 471 | } | 
|  | 472 |  | 
|  | 473 | /* | 
|  | 474 | * byte channel transmit interupt handler | 
|  | 475 | * | 
|  | 476 | * This ISR is called whenever space becomes available for transmitting | 
|  | 477 | * characters on a byte channel. | 
|  | 478 | */ | 
|  | 479 | static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data) | 
|  | 480 | { | 
|  | 481 | struct ehv_bc_data *bc = data; | 
|  | 482 | struct tty_struct *ttys = tty_port_tty_get(&bc->port); | 
|  | 483 |  | 
|  | 484 | ehv_bc_tx_dequeue(bc); | 
|  | 485 | if (ttys) { | 
|  | 486 | tty_wakeup(ttys); | 
|  | 487 | tty_kref_put(ttys); | 
|  | 488 | } | 
|  | 489 |  | 
|  | 490 | return IRQ_HANDLED; | 
|  | 491 | } | 
|  | 492 |  | 
|  | 493 | /* | 
|  | 494 | * This function is called when the tty layer has data for us send.  We store | 
|  | 495 | * the data first in a circular buffer, and then dequeue as much of that data | 
|  | 496 | * as possible. | 
|  | 497 | * | 
|  | 498 | * We don't need to worry about whether there is enough room in the buffer for | 
|  | 499 | * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty | 
|  | 500 | * layer how much data it can safely send to us.  We guarantee that | 
|  | 501 | * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us | 
|  | 502 | * too much data. | 
|  | 503 | */ | 
|  | 504 | static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s, | 
|  | 505 | int count) | 
|  | 506 | { | 
|  | 507 | struct ehv_bc_data *bc = ttys->driver_data; | 
|  | 508 | unsigned long flags; | 
|  | 509 | unsigned int len; | 
|  | 510 | unsigned int written = 0; | 
|  | 511 |  | 
|  | 512 | while (1) { | 
|  | 513 | spin_lock_irqsave(&bc->lock, flags); | 
|  | 514 | len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE); | 
|  | 515 | if (count < len) | 
|  | 516 | len = count; | 
|  | 517 | if (len) { | 
|  | 518 | memcpy(bc->buf + bc->head, s, len); | 
|  | 519 | bc->head = (bc->head + len) & (BUF_SIZE - 1); | 
|  | 520 | } | 
|  | 521 | spin_unlock_irqrestore(&bc->lock, flags); | 
|  | 522 | if (!len) | 
|  | 523 | break; | 
|  | 524 |  | 
|  | 525 | s += len; | 
|  | 526 | count -= len; | 
|  | 527 | written += len; | 
|  | 528 | } | 
|  | 529 |  | 
|  | 530 | ehv_bc_tx_dequeue(bc); | 
|  | 531 |  | 
|  | 532 | return written; | 
|  | 533 | } | 
|  | 534 |  | 
|  | 535 | /* | 
|  | 536 | * This function can be called multiple times for a given tty_struct, which is | 
|  | 537 | * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead. | 
|  | 538 | * | 
|  | 539 | * The tty layer will still call this function even if the device was not | 
|  | 540 | * registered (i.e. tty_register_device() was not called).  This happens | 
|  | 541 | * because tty_register_device() is optional and some legacy drivers don't | 
|  | 542 | * use it.  So we need to check for that. | 
|  | 543 | */ | 
|  | 544 | static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp) | 
|  | 545 | { | 
|  | 546 | struct ehv_bc_data *bc = &bcs[ttys->index]; | 
|  | 547 |  | 
|  | 548 | if (!bc->dev) | 
|  | 549 | return -ENODEV; | 
|  | 550 |  | 
|  | 551 | return tty_port_open(&bc->port, ttys, filp); | 
|  | 552 | } | 
|  | 553 |  | 
|  | 554 | /* | 
|  | 555 | * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will | 
|  | 556 | * still call this function to close the tty device.  So we can't assume that | 
|  | 557 | * the tty port has been initialized. | 
|  | 558 | */ | 
|  | 559 | static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp) | 
|  | 560 | { | 
|  | 561 | struct ehv_bc_data *bc = &bcs[ttys->index]; | 
|  | 562 |  | 
|  | 563 | if (bc->dev) | 
|  | 564 | tty_port_close(&bc->port, ttys, filp); | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | /* | 
|  | 568 | * Return the amount of space in the output buffer | 
|  | 569 | * | 
|  | 570 | * This is actually a contract between the driver and the tty layer outlining | 
|  | 571 | * how much write room the driver can guarantee will be sent OR BUFFERED.  This | 
|  | 572 | * driver MUST honor the return value. | 
|  | 573 | */ | 
|  | 574 | static int ehv_bc_tty_write_room(struct tty_struct *ttys) | 
|  | 575 | { | 
|  | 576 | struct ehv_bc_data *bc = ttys->driver_data; | 
|  | 577 | unsigned long flags; | 
|  | 578 | int count; | 
|  | 579 |  | 
|  | 580 | spin_lock_irqsave(&bc->lock, flags); | 
|  | 581 | count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE); | 
|  | 582 | spin_unlock_irqrestore(&bc->lock, flags); | 
|  | 583 |  | 
|  | 584 | return count; | 
|  | 585 | } | 
|  | 586 |  | 
|  | 587 | /* | 
|  | 588 | * Stop sending data to the tty layer | 
|  | 589 | * | 
|  | 590 | * This function is called when the tty layer's input buffers are getting full, | 
|  | 591 | * so the driver should stop sending it data.  The easiest way to do this is to | 
|  | 592 | * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being | 
|  | 593 | * called. | 
|  | 594 | * | 
|  | 595 | * The hypervisor will continue to queue up any incoming data.  If there is any | 
|  | 596 | * data in the queue when the RX interrupt is enabled, we'll immediately get an | 
|  | 597 | * RX interrupt. | 
|  | 598 | */ | 
|  | 599 | static void ehv_bc_tty_throttle(struct tty_struct *ttys) | 
|  | 600 | { | 
|  | 601 | struct ehv_bc_data *bc = ttys->driver_data; | 
|  | 602 |  | 
|  | 603 | disable_irq(bc->rx_irq); | 
|  | 604 | } | 
|  | 605 |  | 
|  | 606 | /* | 
|  | 607 | * Resume sending data to the tty layer | 
|  | 608 | * | 
|  | 609 | * This function is called after previously calling ehv_bc_tty_throttle().  The | 
|  | 610 | * tty layer's input buffers now have more room, so the driver can resume | 
|  | 611 | * sending it data. | 
|  | 612 | */ | 
|  | 613 | static void ehv_bc_tty_unthrottle(struct tty_struct *ttys) | 
|  | 614 | { | 
|  | 615 | struct ehv_bc_data *bc = ttys->driver_data; | 
|  | 616 |  | 
|  | 617 | /* If there is any data in the queue when the RX interrupt is enabled, | 
|  | 618 | * we'll immediately get an RX interrupt. | 
|  | 619 | */ | 
|  | 620 | enable_irq(bc->rx_irq); | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | static void ehv_bc_tty_hangup(struct tty_struct *ttys) | 
|  | 624 | { | 
|  | 625 | struct ehv_bc_data *bc = ttys->driver_data; | 
|  | 626 |  | 
|  | 627 | ehv_bc_tx_dequeue(bc); | 
|  | 628 | tty_port_hangup(&bc->port); | 
|  | 629 | } | 
|  | 630 |  | 
|  | 631 | /* | 
|  | 632 | * TTY driver operations | 
|  | 633 | * | 
|  | 634 | * If we could ask the hypervisor how much data is still in the TX buffer, or | 
|  | 635 | * at least how big the TX buffers are, then we could implement the | 
|  | 636 | * .wait_until_sent and .chars_in_buffer functions. | 
|  | 637 | */ | 
|  | 638 | static const struct tty_operations ehv_bc_ops = { | 
|  | 639 | .open		= ehv_bc_tty_open, | 
|  | 640 | .close		= ehv_bc_tty_close, | 
|  | 641 | .write		= ehv_bc_tty_write, | 
|  | 642 | .write_room	= ehv_bc_tty_write_room, | 
|  | 643 | .throttle	= ehv_bc_tty_throttle, | 
|  | 644 | .unthrottle	= ehv_bc_tty_unthrottle, | 
|  | 645 | .hangup		= ehv_bc_tty_hangup, | 
|  | 646 | }; | 
|  | 647 |  | 
|  | 648 | /* | 
|  | 649 | * initialize the TTY port | 
|  | 650 | * | 
|  | 651 | * This function will only be called once, no matter how many times | 
|  | 652 | * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also | 
|  | 653 | * why we initialize tty_struct-related variables here. | 
|  | 654 | */ | 
|  | 655 | static int ehv_bc_tty_port_activate(struct tty_port *port, | 
|  | 656 | struct tty_struct *ttys) | 
|  | 657 | { | 
|  | 658 | struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); | 
|  | 659 | int ret; | 
|  | 660 |  | 
|  | 661 | ttys->driver_data = bc; | 
|  | 662 |  | 
|  | 663 | ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc); | 
|  | 664 | if (ret < 0) { | 
|  | 665 | dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n", | 
|  | 666 | bc->rx_irq, ret); | 
|  | 667 | return ret; | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | /* request_irq also enables the IRQ */ | 
|  | 671 | bc->tx_irq_enabled = 1; | 
|  | 672 |  | 
|  | 673 | ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc); | 
|  | 674 | if (ret < 0) { | 
|  | 675 | dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n", | 
|  | 676 | bc->tx_irq, ret); | 
|  | 677 | free_irq(bc->rx_irq, bc); | 
|  | 678 | return ret; | 
|  | 679 | } | 
|  | 680 |  | 
|  | 681 | /* The TX IRQ is enabled only when we can't write all the data to the | 
|  | 682 | * byte channel at once, so by default it's disabled. | 
|  | 683 | */ | 
|  | 684 | disable_tx_interrupt(bc); | 
|  | 685 |  | 
|  | 686 | return 0; | 
|  | 687 | } | 
|  | 688 |  | 
|  | 689 | static void ehv_bc_tty_port_shutdown(struct tty_port *port) | 
|  | 690 | { | 
|  | 691 | struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port); | 
|  | 692 |  | 
|  | 693 | free_irq(bc->tx_irq, bc); | 
|  | 694 | free_irq(bc->rx_irq, bc); | 
|  | 695 | } | 
|  | 696 |  | 
|  | 697 | static const struct tty_port_operations ehv_bc_tty_port_ops = { | 
|  | 698 | .activate = ehv_bc_tty_port_activate, | 
|  | 699 | .shutdown = ehv_bc_tty_port_shutdown, | 
|  | 700 | }; | 
|  | 701 |  | 
|  | 702 | static int __devinit ehv_bc_tty_probe(struct platform_device *pdev) | 
|  | 703 | { | 
|  | 704 | struct device_node *np = pdev->dev.of_node; | 
|  | 705 | struct ehv_bc_data *bc; | 
|  | 706 | const uint32_t *iprop; | 
|  | 707 | unsigned int handle; | 
|  | 708 | int ret; | 
|  | 709 | static unsigned int index = 1; | 
|  | 710 | unsigned int i; | 
|  | 711 |  | 
|  | 712 | iprop = of_get_property(np, "hv-handle", NULL); | 
|  | 713 | if (!iprop) { | 
|  | 714 | dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n", | 
|  | 715 | np->name); | 
|  | 716 | return -ENODEV; | 
|  | 717 | } | 
|  | 718 |  | 
|  | 719 | /* We already told the console layer that the index for the console | 
|  | 720 | * device is zero, so we need to make sure that we use that index when | 
|  | 721 | * we probe the console byte channel node. | 
|  | 722 | */ | 
|  | 723 | handle = be32_to_cpu(*iprop); | 
|  | 724 | i = (handle == stdout_bc) ? 0 : index++; | 
|  | 725 | bc = &bcs[i]; | 
|  | 726 |  | 
|  | 727 | bc->handle = handle; | 
|  | 728 | bc->head = 0; | 
|  | 729 | bc->tail = 0; | 
|  | 730 | spin_lock_init(&bc->lock); | 
|  | 731 |  | 
|  | 732 | bc->rx_irq = irq_of_parse_and_map(np, 0); | 
|  | 733 | bc->tx_irq = irq_of_parse_and_map(np, 1); | 
|  | 734 | if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) { | 
|  | 735 | dev_err(&pdev->dev, "no 'interrupts' property in %s node\n", | 
|  | 736 | np->name); | 
|  | 737 | ret = -ENODEV; | 
|  | 738 | goto error; | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | bc->dev = tty_register_device(ehv_bc_driver, i, &pdev->dev); | 
|  | 742 | if (IS_ERR(bc->dev)) { | 
|  | 743 | ret = PTR_ERR(bc->dev); | 
|  | 744 | dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret); | 
|  | 745 | goto error; | 
|  | 746 | } | 
|  | 747 |  | 
|  | 748 | tty_port_init(&bc->port); | 
|  | 749 | bc->port.ops = &ehv_bc_tty_port_ops; | 
|  | 750 |  | 
|  | 751 | dev_set_drvdata(&pdev->dev, bc); | 
|  | 752 |  | 
|  | 753 | dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n", | 
|  | 754 | ehv_bc_driver->name, i, bc->handle); | 
|  | 755 |  | 
|  | 756 | return 0; | 
|  | 757 |  | 
|  | 758 | error: | 
|  | 759 | irq_dispose_mapping(bc->tx_irq); | 
|  | 760 | irq_dispose_mapping(bc->rx_irq); | 
|  | 761 |  | 
|  | 762 | memset(bc, 0, sizeof(struct ehv_bc_data)); | 
|  | 763 | return ret; | 
|  | 764 | } | 
|  | 765 |  | 
|  | 766 | static int ehv_bc_tty_remove(struct platform_device *pdev) | 
|  | 767 | { | 
|  | 768 | struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev); | 
|  | 769 |  | 
|  | 770 | tty_unregister_device(ehv_bc_driver, bc - bcs); | 
|  | 771 |  | 
|  | 772 | irq_dispose_mapping(bc->tx_irq); | 
|  | 773 | irq_dispose_mapping(bc->rx_irq); | 
|  | 774 |  | 
|  | 775 | return 0; | 
|  | 776 | } | 
|  | 777 |  | 
|  | 778 | static const struct of_device_id ehv_bc_tty_of_ids[] = { | 
|  | 779 | { .compatible = "epapr,hv-byte-channel" }, | 
|  | 780 | {} | 
|  | 781 | }; | 
|  | 782 |  | 
|  | 783 | static struct platform_driver ehv_bc_tty_driver = { | 
|  | 784 | .driver = { | 
|  | 785 | .owner = THIS_MODULE, | 
|  | 786 | .name = "ehv-bc", | 
|  | 787 | .of_match_table = ehv_bc_tty_of_ids, | 
|  | 788 | }, | 
|  | 789 | .probe		= ehv_bc_tty_probe, | 
|  | 790 | .remove		= ehv_bc_tty_remove, | 
|  | 791 | }; | 
|  | 792 |  | 
|  | 793 | /** | 
|  | 794 | * ehv_bc_init - ePAPR hypervisor byte channel driver initialization | 
|  | 795 | * | 
|  | 796 | * This function is called when this module is loaded. | 
|  | 797 | */ | 
|  | 798 | static int __init ehv_bc_init(void) | 
|  | 799 | { | 
|  | 800 | struct device_node *np; | 
|  | 801 | unsigned int count = 0; /* Number of elements in bcs[] */ | 
|  | 802 | int ret; | 
|  | 803 |  | 
|  | 804 | pr_info("ePAPR hypervisor byte channel driver\n"); | 
|  | 805 |  | 
|  | 806 | /* Count the number of byte channels */ | 
|  | 807 | for_each_compatible_node(np, NULL, "epapr,hv-byte-channel") | 
|  | 808 | count++; | 
|  | 809 |  | 
|  | 810 | if (!count) | 
|  | 811 | return -ENODEV; | 
|  | 812 |  | 
|  | 813 | /* The array index of an element in bcs[] is the same as the tty index | 
|  | 814 | * for that element.  If you know the address of an element in the | 
|  | 815 | * array, then you can use pointer math (e.g. "bc - bcs") to get its | 
|  | 816 | * tty index. | 
|  | 817 | */ | 
|  | 818 | bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL); | 
|  | 819 | if (!bcs) | 
|  | 820 | return -ENOMEM; | 
|  | 821 |  | 
|  | 822 | ehv_bc_driver = alloc_tty_driver(count); | 
|  | 823 | if (!ehv_bc_driver) { | 
|  | 824 | ret = -ENOMEM; | 
|  | 825 | goto error; | 
|  | 826 | } | 
|  | 827 |  | 
|  | 828 | ehv_bc_driver->owner = THIS_MODULE; | 
|  | 829 | ehv_bc_driver->driver_name = "ehv-bc"; | 
|  | 830 | ehv_bc_driver->name = ehv_bc_console.name; | 
|  | 831 | ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE; | 
|  | 832 | ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE; | 
|  | 833 | ehv_bc_driver->init_termios = tty_std_termios; | 
|  | 834 | ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV; | 
|  | 835 | tty_set_operations(ehv_bc_driver, &ehv_bc_ops); | 
|  | 836 |  | 
|  | 837 | ret = tty_register_driver(ehv_bc_driver); | 
|  | 838 | if (ret) { | 
|  | 839 | pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret); | 
|  | 840 | goto error; | 
|  | 841 | } | 
|  | 842 |  | 
|  | 843 | ret = platform_driver_register(&ehv_bc_tty_driver); | 
|  | 844 | if (ret) { | 
|  | 845 | pr_err("ehv-bc: could not register platform driver (ret=%i)\n", | 
|  | 846 | ret); | 
|  | 847 | goto error; | 
|  | 848 | } | 
|  | 849 |  | 
|  | 850 | return 0; | 
|  | 851 |  | 
|  | 852 | error: | 
|  | 853 | if (ehv_bc_driver) { | 
|  | 854 | tty_unregister_driver(ehv_bc_driver); | 
|  | 855 | put_tty_driver(ehv_bc_driver); | 
|  | 856 | } | 
|  | 857 |  | 
|  | 858 | kfree(bcs); | 
|  | 859 |  | 
|  | 860 | return ret; | 
|  | 861 | } | 
|  | 862 |  | 
|  | 863 |  | 
|  | 864 | /** | 
|  | 865 | * ehv_bc_exit - ePAPR hypervisor byte channel driver termination | 
|  | 866 | * | 
|  | 867 | * This function is called when this driver is unloaded. | 
|  | 868 | */ | 
|  | 869 | static void __exit ehv_bc_exit(void) | 
|  | 870 | { | 
|  | 871 | tty_unregister_driver(ehv_bc_driver); | 
|  | 872 | put_tty_driver(ehv_bc_driver); | 
|  | 873 | kfree(bcs); | 
|  | 874 | } | 
|  | 875 |  | 
|  | 876 | module_init(ehv_bc_init); | 
|  | 877 | module_exit(ehv_bc_exit); | 
|  | 878 |  | 
|  | 879 | MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); | 
|  | 880 | MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver"); | 
|  | 881 | MODULE_LICENSE("GPL v2"); |