| Ivan Djelic | 437aa56 | 2011-03-11 11:05:32 +0100 | [diff] [blame] | 1 | /* | 
|  | 2 | * Generic binary BCH encoding/decoding library | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or modify it | 
|  | 5 | * under the terms of the GNU General Public License version 2 as published by | 
|  | 6 | * the Free Software Foundation. | 
|  | 7 | * | 
|  | 8 | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 10 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 11 | * more details. | 
|  | 12 | * | 
|  | 13 | * You should have received a copy of the GNU General Public License along with | 
|  | 14 | * this program; if not, write to the Free Software Foundation, Inc., 51 | 
|  | 15 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | 16 | * | 
|  | 17 | * Copyright © 2011 Parrot S.A. | 
|  | 18 | * | 
|  | 19 | * Author: Ivan Djelic <ivan.djelic@parrot.com> | 
|  | 20 | * | 
|  | 21 | * Description: | 
|  | 22 | * | 
|  | 23 | * This library provides runtime configurable encoding/decoding of binary | 
|  | 24 | * Bose-Chaudhuri-Hocquenghem (BCH) codes. | 
|  | 25 | * | 
|  | 26 | * Call init_bch to get a pointer to a newly allocated bch_control structure for | 
|  | 27 | * the given m (Galois field order), t (error correction capability) and | 
|  | 28 | * (optional) primitive polynomial parameters. | 
|  | 29 | * | 
|  | 30 | * Call encode_bch to compute and store ecc parity bytes to a given buffer. | 
|  | 31 | * Call decode_bch to detect and locate errors in received data. | 
|  | 32 | * | 
|  | 33 | * On systems supporting hw BCH features, intermediate results may be provided | 
|  | 34 | * to decode_bch in order to skip certain steps. See decode_bch() documentation | 
|  | 35 | * for details. | 
|  | 36 | * | 
|  | 37 | * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of | 
|  | 38 | * parameters m and t; thus allowing extra compiler optimizations and providing | 
|  | 39 | * better (up to 2x) encoding performance. Using this option makes sense when | 
|  | 40 | * (m,t) are fixed and known in advance, e.g. when using BCH error correction | 
|  | 41 | * on a particular NAND flash device. | 
|  | 42 | * | 
|  | 43 | * Algorithmic details: | 
|  | 44 | * | 
|  | 45 | * Encoding is performed by processing 32 input bits in parallel, using 4 | 
|  | 46 | * remainder lookup tables. | 
|  | 47 | * | 
|  | 48 | * The final stage of decoding involves the following internal steps: | 
|  | 49 | * a. Syndrome computation | 
|  | 50 | * b. Error locator polynomial computation using Berlekamp-Massey algorithm | 
|  | 51 | * c. Error locator root finding (by far the most expensive step) | 
|  | 52 | * | 
|  | 53 | * In this implementation, step c is not performed using the usual Chien search. | 
|  | 54 | * Instead, an alternative approach described in [1] is used. It consists in | 
|  | 55 | * factoring the error locator polynomial using the Berlekamp Trace algorithm | 
|  | 56 | * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial | 
|  | 57 | * solving techniques [2] are used. The resulting algorithm, called BTZ, yields | 
|  | 58 | * much better performance than Chien search for usual (m,t) values (typically | 
|  | 59 | * m >= 13, t < 32, see [1]). | 
|  | 60 | * | 
|  | 61 | * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields | 
|  | 62 | * of characteristic 2, in: Western European Workshop on Research in Cryptology | 
|  | 63 | * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. | 
|  | 64 | * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over | 
|  | 65 | * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. | 
|  | 66 | */ | 
|  | 67 |  | 
|  | 68 | #include <linux/kernel.h> | 
|  | 69 | #include <linux/errno.h> | 
|  | 70 | #include <linux/init.h> | 
|  | 71 | #include <linux/module.h> | 
|  | 72 | #include <linux/slab.h> | 
|  | 73 | #include <linux/bitops.h> | 
|  | 74 | #include <asm/byteorder.h> | 
|  | 75 | #include <linux/bch.h> | 
|  | 76 |  | 
|  | 77 | #if defined(CONFIG_BCH_CONST_PARAMS) | 
|  | 78 | #define GF_M(_p)               (CONFIG_BCH_CONST_M) | 
|  | 79 | #define GF_T(_p)               (CONFIG_BCH_CONST_T) | 
|  | 80 | #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1) | 
|  | 81 | #else | 
|  | 82 | #define GF_M(_p)               ((_p)->m) | 
|  | 83 | #define GF_T(_p)               ((_p)->t) | 
|  | 84 | #define GF_N(_p)               ((_p)->n) | 
|  | 85 | #endif | 
|  | 86 |  | 
|  | 87 | #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) | 
|  | 88 | #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) | 
|  | 89 |  | 
|  | 90 | #ifndef dbg | 
|  | 91 | #define dbg(_fmt, args...)     do {} while (0) | 
|  | 92 | #endif | 
|  | 93 |  | 
|  | 94 | /* | 
|  | 95 | * represent a polynomial over GF(2^m) | 
|  | 96 | */ | 
|  | 97 | struct gf_poly { | 
|  | 98 | unsigned int deg;    /* polynomial degree */ | 
|  | 99 | unsigned int c[0];   /* polynomial terms */ | 
|  | 100 | }; | 
|  | 101 |  | 
|  | 102 | /* given its degree, compute a polynomial size in bytes */ | 
|  | 103 | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) | 
|  | 104 |  | 
|  | 105 | /* polynomial of degree 1 */ | 
|  | 106 | struct gf_poly_deg1 { | 
|  | 107 | struct gf_poly poly; | 
|  | 108 | unsigned int   c[2]; | 
|  | 109 | }; | 
|  | 110 |  | 
|  | 111 | /* | 
|  | 112 | * same as encode_bch(), but process input data one byte at a time | 
|  | 113 | */ | 
|  | 114 | static void encode_bch_unaligned(struct bch_control *bch, | 
|  | 115 | const unsigned char *data, unsigned int len, | 
|  | 116 | uint32_t *ecc) | 
|  | 117 | { | 
|  | 118 | int i; | 
|  | 119 | const uint32_t *p; | 
|  | 120 | const int l = BCH_ECC_WORDS(bch)-1; | 
|  | 121 |  | 
|  | 122 | while (len--) { | 
|  | 123 | p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); | 
|  | 124 |  | 
|  | 125 | for (i = 0; i < l; i++) | 
|  | 126 | ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); | 
|  | 127 |  | 
|  | 128 | ecc[l] = (ecc[l] << 8)^(*p); | 
|  | 129 | } | 
|  | 130 | } | 
|  | 131 |  | 
|  | 132 | /* | 
|  | 133 | * convert ecc bytes to aligned, zero-padded 32-bit ecc words | 
|  | 134 | */ | 
|  | 135 | static void load_ecc8(struct bch_control *bch, uint32_t *dst, | 
|  | 136 | const uint8_t *src) | 
|  | 137 | { | 
|  | 138 | uint8_t pad[4] = {0, 0, 0, 0}; | 
|  | 139 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | 
|  | 140 |  | 
|  | 141 | for (i = 0; i < nwords; i++, src += 4) | 
|  | 142 | dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; | 
|  | 143 |  | 
|  | 144 | memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); | 
|  | 145 | dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | /* | 
|  | 149 | * convert 32-bit ecc words to ecc bytes | 
|  | 150 | */ | 
|  | 151 | static void store_ecc8(struct bch_control *bch, uint8_t *dst, | 
|  | 152 | const uint32_t *src) | 
|  | 153 | { | 
|  | 154 | uint8_t pad[4]; | 
|  | 155 | unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | 
|  | 156 |  | 
|  | 157 | for (i = 0; i < nwords; i++) { | 
|  | 158 | *dst++ = (src[i] >> 24); | 
|  | 159 | *dst++ = (src[i] >> 16) & 0xff; | 
|  | 160 | *dst++ = (src[i] >>  8) & 0xff; | 
|  | 161 | *dst++ = (src[i] >>  0) & 0xff; | 
|  | 162 | } | 
|  | 163 | pad[0] = (src[nwords] >> 24); | 
|  | 164 | pad[1] = (src[nwords] >> 16) & 0xff; | 
|  | 165 | pad[2] = (src[nwords] >>  8) & 0xff; | 
|  | 166 | pad[3] = (src[nwords] >>  0) & 0xff; | 
|  | 167 | memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | /** | 
|  | 171 | * encode_bch - calculate BCH ecc parity of data | 
|  | 172 | * @bch:   BCH control structure | 
|  | 173 | * @data:  data to encode | 
|  | 174 | * @len:   data length in bytes | 
|  | 175 | * @ecc:   ecc parity data, must be initialized by caller | 
|  | 176 | * | 
|  | 177 | * The @ecc parity array is used both as input and output parameter, in order to | 
|  | 178 | * allow incremental computations. It should be of the size indicated by member | 
|  | 179 | * @ecc_bytes of @bch, and should be initialized to 0 before the first call. | 
|  | 180 | * | 
|  | 181 | * The exact number of computed ecc parity bits is given by member @ecc_bits of | 
|  | 182 | * @bch; it may be less than m*t for large values of t. | 
|  | 183 | */ | 
|  | 184 | void encode_bch(struct bch_control *bch, const uint8_t *data, | 
|  | 185 | unsigned int len, uint8_t *ecc) | 
|  | 186 | { | 
|  | 187 | const unsigned int l = BCH_ECC_WORDS(bch)-1; | 
|  | 188 | unsigned int i, mlen; | 
|  | 189 | unsigned long m; | 
|  | 190 | uint32_t w, r[l+1]; | 
|  | 191 | const uint32_t * const tab0 = bch->mod8_tab; | 
|  | 192 | const uint32_t * const tab1 = tab0 + 256*(l+1); | 
|  | 193 | const uint32_t * const tab2 = tab1 + 256*(l+1); | 
|  | 194 | const uint32_t * const tab3 = tab2 + 256*(l+1); | 
|  | 195 | const uint32_t *pdata, *p0, *p1, *p2, *p3; | 
|  | 196 |  | 
|  | 197 | if (ecc) { | 
|  | 198 | /* load ecc parity bytes into internal 32-bit buffer */ | 
|  | 199 | load_ecc8(bch, bch->ecc_buf, ecc); | 
|  | 200 | } else { | 
|  | 201 | memset(bch->ecc_buf, 0, sizeof(r)); | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | /* process first unaligned data bytes */ | 
|  | 205 | m = ((unsigned long)data) & 3; | 
|  | 206 | if (m) { | 
|  | 207 | mlen = (len < (4-m)) ? len : 4-m; | 
|  | 208 | encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); | 
|  | 209 | data += mlen; | 
|  | 210 | len  -= mlen; | 
|  | 211 | } | 
|  | 212 |  | 
|  | 213 | /* process 32-bit aligned data words */ | 
|  | 214 | pdata = (uint32_t *)data; | 
|  | 215 | mlen  = len/4; | 
|  | 216 | data += 4*mlen; | 
|  | 217 | len  -= 4*mlen; | 
|  | 218 | memcpy(r, bch->ecc_buf, sizeof(r)); | 
|  | 219 |  | 
|  | 220 | /* | 
|  | 221 | * split each 32-bit word into 4 polynomials of weight 8 as follows: | 
|  | 222 | * | 
|  | 223 | * 31 ...24  23 ...16  15 ... 8  7 ... 0 | 
|  | 224 | * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt | 
|  | 225 | *                               tttttttt  mod g = r0 (precomputed) | 
|  | 226 | *                     zzzzzzzz  00000000  mod g = r1 (precomputed) | 
|  | 227 | *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed) | 
|  | 228 | * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed) | 
|  | 229 | * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3 | 
|  | 230 | */ | 
|  | 231 | while (mlen--) { | 
|  | 232 | /* input data is read in big-endian format */ | 
|  | 233 | w = r[0]^cpu_to_be32(*pdata++); | 
|  | 234 | p0 = tab0 + (l+1)*((w >>  0) & 0xff); | 
|  | 235 | p1 = tab1 + (l+1)*((w >>  8) & 0xff); | 
|  | 236 | p2 = tab2 + (l+1)*((w >> 16) & 0xff); | 
|  | 237 | p3 = tab3 + (l+1)*((w >> 24) & 0xff); | 
|  | 238 |  | 
|  | 239 | for (i = 0; i < l; i++) | 
|  | 240 | r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; | 
|  | 241 |  | 
|  | 242 | r[l] = p0[l]^p1[l]^p2[l]^p3[l]; | 
|  | 243 | } | 
|  | 244 | memcpy(bch->ecc_buf, r, sizeof(r)); | 
|  | 245 |  | 
|  | 246 | /* process last unaligned bytes */ | 
|  | 247 | if (len) | 
|  | 248 | encode_bch_unaligned(bch, data, len, bch->ecc_buf); | 
|  | 249 |  | 
|  | 250 | /* store ecc parity bytes into original parity buffer */ | 
|  | 251 | if (ecc) | 
|  | 252 | store_ecc8(bch, ecc, bch->ecc_buf); | 
|  | 253 | } | 
|  | 254 | EXPORT_SYMBOL_GPL(encode_bch); | 
|  | 255 |  | 
|  | 256 | static inline int modulo(struct bch_control *bch, unsigned int v) | 
|  | 257 | { | 
|  | 258 | const unsigned int n = GF_N(bch); | 
|  | 259 | while (v >= n) { | 
|  | 260 | v -= n; | 
|  | 261 | v = (v & n) + (v >> GF_M(bch)); | 
|  | 262 | } | 
|  | 263 | return v; | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | /* | 
|  | 267 | * shorter and faster modulo function, only works when v < 2N. | 
|  | 268 | */ | 
|  | 269 | static inline int mod_s(struct bch_control *bch, unsigned int v) | 
|  | 270 | { | 
|  | 271 | const unsigned int n = GF_N(bch); | 
|  | 272 | return (v < n) ? v : v-n; | 
|  | 273 | } | 
|  | 274 |  | 
|  | 275 | static inline int deg(unsigned int poly) | 
|  | 276 | { | 
|  | 277 | /* polynomial degree is the most-significant bit index */ | 
|  | 278 | return fls(poly)-1; | 
|  | 279 | } | 
|  | 280 |  | 
|  | 281 | static inline int parity(unsigned int x) | 
|  | 282 | { | 
|  | 283 | /* | 
|  | 284 | * public domain code snippet, lifted from | 
|  | 285 | * http://www-graphics.stanford.edu/~seander/bithacks.html | 
|  | 286 | */ | 
|  | 287 | x ^= x >> 1; | 
|  | 288 | x ^= x >> 2; | 
|  | 289 | x = (x & 0x11111111U) * 0x11111111U; | 
|  | 290 | return (x >> 28) & 1; | 
|  | 291 | } | 
|  | 292 |  | 
|  | 293 | /* Galois field basic operations: multiply, divide, inverse, etc. */ | 
|  | 294 |  | 
|  | 295 | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, | 
|  | 296 | unsigned int b) | 
|  | 297 | { | 
|  | 298 | return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | 
|  | 299 | bch->a_log_tab[b])] : 0; | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) | 
|  | 303 | { | 
|  | 304 | return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, | 
|  | 308 | unsigned int b) | 
|  | 309 | { | 
|  | 310 | return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | 
|  | 311 | GF_N(bch)-bch->a_log_tab[b])] : 0; | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) | 
|  | 315 | { | 
|  | 316 | return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | static inline unsigned int a_pow(struct bch_control *bch, int i) | 
|  | 320 | { | 
|  | 321 | return bch->a_pow_tab[modulo(bch, i)]; | 
|  | 322 | } | 
|  | 323 |  | 
|  | 324 | static inline int a_log(struct bch_control *bch, unsigned int x) | 
|  | 325 | { | 
|  | 326 | return bch->a_log_tab[x]; | 
|  | 327 | } | 
|  | 328 |  | 
|  | 329 | static inline int a_ilog(struct bch_control *bch, unsigned int x) | 
|  | 330 | { | 
|  | 331 | return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); | 
|  | 332 | } | 
|  | 333 |  | 
|  | 334 | /* | 
|  | 335 | * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t | 
|  | 336 | */ | 
|  | 337 | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, | 
|  | 338 | unsigned int *syn) | 
|  | 339 | { | 
|  | 340 | int i, j, s; | 
|  | 341 | unsigned int m; | 
|  | 342 | uint32_t poly; | 
|  | 343 | const int t = GF_T(bch); | 
|  | 344 |  | 
|  | 345 | s = bch->ecc_bits; | 
|  | 346 |  | 
|  | 347 | /* make sure extra bits in last ecc word are cleared */ | 
|  | 348 | m = ((unsigned int)s) & 31; | 
|  | 349 | if (m) | 
|  | 350 | ecc[s/32] &= ~((1u << (32-m))-1); | 
|  | 351 | memset(syn, 0, 2*t*sizeof(*syn)); | 
|  | 352 |  | 
|  | 353 | /* compute v(a^j) for j=1 .. 2t-1 */ | 
|  | 354 | do { | 
|  | 355 | poly = *ecc++; | 
|  | 356 | s -= 32; | 
|  | 357 | while (poly) { | 
|  | 358 | i = deg(poly); | 
|  | 359 | for (j = 0; j < 2*t; j += 2) | 
|  | 360 | syn[j] ^= a_pow(bch, (j+1)*(i+s)); | 
|  | 361 |  | 
|  | 362 | poly ^= (1 << i); | 
|  | 363 | } | 
|  | 364 | } while (s > 0); | 
|  | 365 |  | 
|  | 366 | /* v(a^(2j)) = v(a^j)^2 */ | 
|  | 367 | for (j = 0; j < t; j++) | 
|  | 368 | syn[2*j+1] = gf_sqr(bch, syn[j]); | 
|  | 369 | } | 
|  | 370 |  | 
|  | 371 | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) | 
|  | 372 | { | 
|  | 373 | memcpy(dst, src, GF_POLY_SZ(src->deg)); | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | static int compute_error_locator_polynomial(struct bch_control *bch, | 
|  | 377 | const unsigned int *syn) | 
|  | 378 | { | 
|  | 379 | const unsigned int t = GF_T(bch); | 
|  | 380 | const unsigned int n = GF_N(bch); | 
|  | 381 | unsigned int i, j, tmp, l, pd = 1, d = syn[0]; | 
|  | 382 | struct gf_poly *elp = bch->elp; | 
|  | 383 | struct gf_poly *pelp = bch->poly_2t[0]; | 
|  | 384 | struct gf_poly *elp_copy = bch->poly_2t[1]; | 
|  | 385 | int k, pp = -1; | 
|  | 386 |  | 
|  | 387 | memset(pelp, 0, GF_POLY_SZ(2*t)); | 
|  | 388 | memset(elp, 0, GF_POLY_SZ(2*t)); | 
|  | 389 |  | 
|  | 390 | pelp->deg = 0; | 
|  | 391 | pelp->c[0] = 1; | 
|  | 392 | elp->deg = 0; | 
|  | 393 | elp->c[0] = 1; | 
|  | 394 |  | 
|  | 395 | /* use simplified binary Berlekamp-Massey algorithm */ | 
|  | 396 | for (i = 0; (i < t) && (elp->deg <= t); i++) { | 
|  | 397 | if (d) { | 
|  | 398 | k = 2*i-pp; | 
|  | 399 | gf_poly_copy(elp_copy, elp); | 
|  | 400 | /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ | 
|  | 401 | tmp = a_log(bch, d)+n-a_log(bch, pd); | 
|  | 402 | for (j = 0; j <= pelp->deg; j++) { | 
|  | 403 | if (pelp->c[j]) { | 
|  | 404 | l = a_log(bch, pelp->c[j]); | 
|  | 405 | elp->c[j+k] ^= a_pow(bch, tmp+l); | 
|  | 406 | } | 
|  | 407 | } | 
|  | 408 | /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ | 
|  | 409 | tmp = pelp->deg+k; | 
|  | 410 | if (tmp > elp->deg) { | 
|  | 411 | elp->deg = tmp; | 
|  | 412 | gf_poly_copy(pelp, elp_copy); | 
|  | 413 | pd = d; | 
|  | 414 | pp = 2*i; | 
|  | 415 | } | 
|  | 416 | } | 
|  | 417 | /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ | 
|  | 418 | if (i < t-1) { | 
|  | 419 | d = syn[2*i+2]; | 
|  | 420 | for (j = 1; j <= elp->deg; j++) | 
|  | 421 | d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); | 
|  | 422 | } | 
|  | 423 | } | 
|  | 424 | dbg("elp=%s\n", gf_poly_str(elp)); | 
|  | 425 | return (elp->deg > t) ? -1 : (int)elp->deg; | 
|  | 426 | } | 
|  | 427 |  | 
|  | 428 | /* | 
|  | 429 | * solve a m x m linear system in GF(2) with an expected number of solutions, | 
|  | 430 | * and return the number of found solutions | 
|  | 431 | */ | 
|  | 432 | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, | 
|  | 433 | unsigned int *sol, int nsol) | 
|  | 434 | { | 
|  | 435 | const int m = GF_M(bch); | 
|  | 436 | unsigned int tmp, mask; | 
|  | 437 | int rem, c, r, p, k, param[m]; | 
|  | 438 |  | 
|  | 439 | k = 0; | 
|  | 440 | mask = 1 << m; | 
|  | 441 |  | 
|  | 442 | /* Gaussian elimination */ | 
|  | 443 | for (c = 0; c < m; c++) { | 
|  | 444 | rem = 0; | 
|  | 445 | p = c-k; | 
|  | 446 | /* find suitable row for elimination */ | 
|  | 447 | for (r = p; r < m; r++) { | 
|  | 448 | if (rows[r] & mask) { | 
|  | 449 | if (r != p) { | 
|  | 450 | tmp = rows[r]; | 
|  | 451 | rows[r] = rows[p]; | 
|  | 452 | rows[p] = tmp; | 
|  | 453 | } | 
|  | 454 | rem = r+1; | 
|  | 455 | break; | 
|  | 456 | } | 
|  | 457 | } | 
|  | 458 | if (rem) { | 
|  | 459 | /* perform elimination on remaining rows */ | 
|  | 460 | tmp = rows[p]; | 
|  | 461 | for (r = rem; r < m; r++) { | 
|  | 462 | if (rows[r] & mask) | 
|  | 463 | rows[r] ^= tmp; | 
|  | 464 | } | 
|  | 465 | } else { | 
|  | 466 | /* elimination not needed, store defective row index */ | 
|  | 467 | param[k++] = c; | 
|  | 468 | } | 
|  | 469 | mask >>= 1; | 
|  | 470 | } | 
|  | 471 | /* rewrite system, inserting fake parameter rows */ | 
|  | 472 | if (k > 0) { | 
|  | 473 | p = k; | 
|  | 474 | for (r = m-1; r >= 0; r--) { | 
|  | 475 | if ((r > m-1-k) && rows[r]) | 
|  | 476 | /* system has no solution */ | 
|  | 477 | return 0; | 
|  | 478 |  | 
|  | 479 | rows[r] = (p && (r == param[p-1])) ? | 
|  | 480 | p--, 1u << (m-r) : rows[r-p]; | 
|  | 481 | } | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 | if (nsol != (1 << k)) | 
|  | 485 | /* unexpected number of solutions */ | 
|  | 486 | return 0; | 
|  | 487 |  | 
|  | 488 | for (p = 0; p < nsol; p++) { | 
|  | 489 | /* set parameters for p-th solution */ | 
|  | 490 | for (c = 0; c < k; c++) | 
|  | 491 | rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); | 
|  | 492 |  | 
|  | 493 | /* compute unique solution */ | 
|  | 494 | tmp = 0; | 
|  | 495 | for (r = m-1; r >= 0; r--) { | 
|  | 496 | mask = rows[r] & (tmp|1); | 
|  | 497 | tmp |= parity(mask) << (m-r); | 
|  | 498 | } | 
|  | 499 | sol[p] = tmp >> 1; | 
|  | 500 | } | 
|  | 501 | return nsol; | 
|  | 502 | } | 
|  | 503 |  | 
|  | 504 | /* | 
|  | 505 | * this function builds and solves a linear system for finding roots of a degree | 
|  | 506 | * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). | 
|  | 507 | */ | 
|  | 508 | static int find_affine4_roots(struct bch_control *bch, unsigned int a, | 
|  | 509 | unsigned int b, unsigned int c, | 
|  | 510 | unsigned int *roots) | 
|  | 511 | { | 
|  | 512 | int i, j, k; | 
|  | 513 | const int m = GF_M(bch); | 
|  | 514 | unsigned int mask = 0xff, t, rows[16] = {0,}; | 
|  | 515 |  | 
|  | 516 | j = a_log(bch, b); | 
|  | 517 | k = a_log(bch, a); | 
|  | 518 | rows[0] = c; | 
|  | 519 |  | 
|  | 520 | /* buid linear system to solve X^4+aX^2+bX+c = 0 */ | 
|  | 521 | for (i = 0; i < m; i++) { | 
|  | 522 | rows[i+1] = bch->a_pow_tab[4*i]^ | 
|  | 523 | (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ | 
|  | 524 | (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); | 
|  | 525 | j++; | 
|  | 526 | k += 2; | 
|  | 527 | } | 
|  | 528 | /* | 
|  | 529 | * transpose 16x16 matrix before passing it to linear solver | 
|  | 530 | * warning: this code assumes m < 16 | 
|  | 531 | */ | 
|  | 532 | for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { | 
|  | 533 | for (k = 0; k < 16; k = (k+j+1) & ~j) { | 
|  | 534 | t = ((rows[k] >> j)^rows[k+j]) & mask; | 
|  | 535 | rows[k] ^= (t << j); | 
|  | 536 | rows[k+j] ^= t; | 
|  | 537 | } | 
|  | 538 | } | 
|  | 539 | return solve_linear_system(bch, rows, roots, 4); | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | /* | 
|  | 543 | * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) | 
|  | 544 | */ | 
|  | 545 | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | 546 | unsigned int *roots) | 
|  | 547 | { | 
|  | 548 | int n = 0; | 
|  | 549 |  | 
|  | 550 | if (poly->c[0]) | 
|  | 551 | /* poly[X] = bX+c with c!=0, root=c/b */ | 
|  | 552 | roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ | 
|  | 553 | bch->a_log_tab[poly->c[1]]); | 
|  | 554 | return n; | 
|  | 555 | } | 
|  | 556 |  | 
|  | 557 | /* | 
|  | 558 | * compute roots of a degree 2 polynomial over GF(2^m) | 
|  | 559 | */ | 
|  | 560 | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | 561 | unsigned int *roots) | 
|  | 562 | { | 
|  | 563 | int n = 0, i, l0, l1, l2; | 
|  | 564 | unsigned int u, v, r; | 
|  | 565 |  | 
|  | 566 | if (poly->c[0] && poly->c[1]) { | 
|  | 567 |  | 
|  | 568 | l0 = bch->a_log_tab[poly->c[0]]; | 
|  | 569 | l1 = bch->a_log_tab[poly->c[1]]; | 
|  | 570 | l2 = bch->a_log_tab[poly->c[2]]; | 
|  | 571 |  | 
|  | 572 | /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ | 
|  | 573 | u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); | 
|  | 574 | /* | 
|  | 575 | * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): | 
|  | 576 | * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = | 
|  | 577 | * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) | 
|  | 578 | * i.e. r and r+1 are roots iff Tr(u)=0 | 
|  | 579 | */ | 
|  | 580 | r = 0; | 
|  | 581 | v = u; | 
|  | 582 | while (v) { | 
|  | 583 | i = deg(v); | 
|  | 584 | r ^= bch->xi_tab[i]; | 
|  | 585 | v ^= (1 << i); | 
|  | 586 | } | 
|  | 587 | /* verify root */ | 
|  | 588 | if ((gf_sqr(bch, r)^r) == u) { | 
|  | 589 | /* reverse z=a/bX transformation and compute log(1/r) */ | 
|  | 590 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | 
|  | 591 | bch->a_log_tab[r]+l2); | 
|  | 592 | roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | 
|  | 593 | bch->a_log_tab[r^1]+l2); | 
|  | 594 | } | 
|  | 595 | } | 
|  | 596 | return n; | 
|  | 597 | } | 
|  | 598 |  | 
|  | 599 | /* | 
|  | 600 | * compute roots of a degree 3 polynomial over GF(2^m) | 
|  | 601 | */ | 
|  | 602 | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | 603 | unsigned int *roots) | 
|  | 604 | { | 
|  | 605 | int i, n = 0; | 
|  | 606 | unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; | 
|  | 607 |  | 
|  | 608 | if (poly->c[0]) { | 
|  | 609 | /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ | 
|  | 610 | e3 = poly->c[3]; | 
|  | 611 | c2 = gf_div(bch, poly->c[0], e3); | 
|  | 612 | b2 = gf_div(bch, poly->c[1], e3); | 
|  | 613 | a2 = gf_div(bch, poly->c[2], e3); | 
|  | 614 |  | 
|  | 615 | /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ | 
|  | 616 | c = gf_mul(bch, a2, c2);           /* c = a2c2      */ | 
|  | 617 | b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */ | 
|  | 618 | a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */ | 
|  | 619 |  | 
|  | 620 | /* find the 4 roots of this affine polynomial */ | 
|  | 621 | if (find_affine4_roots(bch, a, b, c, tmp) == 4) { | 
|  | 622 | /* remove a2 from final list of roots */ | 
|  | 623 | for (i = 0; i < 4; i++) { | 
|  | 624 | if (tmp[i] != a2) | 
|  | 625 | roots[n++] = a_ilog(bch, tmp[i]); | 
|  | 626 | } | 
|  | 627 | } | 
|  | 628 | } | 
|  | 629 | return n; | 
|  | 630 | } | 
|  | 631 |  | 
|  | 632 | /* | 
|  | 633 | * compute roots of a degree 4 polynomial over GF(2^m) | 
|  | 634 | */ | 
|  | 635 | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, | 
|  | 636 | unsigned int *roots) | 
|  | 637 | { | 
|  | 638 | int i, l, n = 0; | 
|  | 639 | unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; | 
|  | 640 |  | 
|  | 641 | if (poly->c[0] == 0) | 
|  | 642 | return 0; | 
|  | 643 |  | 
|  | 644 | /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ | 
|  | 645 | e4 = poly->c[4]; | 
|  | 646 | d = gf_div(bch, poly->c[0], e4); | 
|  | 647 | c = gf_div(bch, poly->c[1], e4); | 
|  | 648 | b = gf_div(bch, poly->c[2], e4); | 
|  | 649 | a = gf_div(bch, poly->c[3], e4); | 
|  | 650 |  | 
|  | 651 | /* use Y=1/X transformation to get an affine polynomial */ | 
|  | 652 | if (a) { | 
|  | 653 | /* first, eliminate cX by using z=X+e with ae^2+c=0 */ | 
|  | 654 | if (c) { | 
|  | 655 | /* compute e such that e^2 = c/a */ | 
|  | 656 | f = gf_div(bch, c, a); | 
|  | 657 | l = a_log(bch, f); | 
|  | 658 | l += (l & 1) ? GF_N(bch) : 0; | 
|  | 659 | e = a_pow(bch, l/2); | 
|  | 660 | /* | 
|  | 661 | * use transformation z=X+e: | 
|  | 662 | * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d | 
|  | 663 | * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d | 
|  | 664 | * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d | 
|  | 665 | * z^4 + az^3 +     b'z^2 + d' | 
|  | 666 | */ | 
|  | 667 | d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; | 
|  | 668 | b = gf_mul(bch, a, e)^b; | 
|  | 669 | } | 
|  | 670 | /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ | 
|  | 671 | if (d == 0) | 
|  | 672 | /* assume all roots have multiplicity 1 */ | 
|  | 673 | return 0; | 
|  | 674 |  | 
|  | 675 | c2 = gf_inv(bch, d); | 
|  | 676 | b2 = gf_div(bch, a, d); | 
|  | 677 | a2 = gf_div(bch, b, d); | 
|  | 678 | } else { | 
|  | 679 | /* polynomial is already affine */ | 
|  | 680 | c2 = d; | 
|  | 681 | b2 = c; | 
|  | 682 | a2 = b; | 
|  | 683 | } | 
|  | 684 | /* find the 4 roots of this affine polynomial */ | 
|  | 685 | if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { | 
|  | 686 | for (i = 0; i < 4; i++) { | 
|  | 687 | /* post-process roots (reverse transformations) */ | 
|  | 688 | f = a ? gf_inv(bch, roots[i]) : roots[i]; | 
|  | 689 | roots[i] = a_ilog(bch, f^e); | 
|  | 690 | } | 
|  | 691 | n = 4; | 
|  | 692 | } | 
|  | 693 | return n; | 
|  | 694 | } | 
|  | 695 |  | 
|  | 696 | /* | 
|  | 697 | * build monic, log-based representation of a polynomial | 
|  | 698 | */ | 
|  | 699 | static void gf_poly_logrep(struct bch_control *bch, | 
|  | 700 | const struct gf_poly *a, int *rep) | 
|  | 701 | { | 
|  | 702 | int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); | 
|  | 703 |  | 
|  | 704 | /* represent 0 values with -1; warning, rep[d] is not set to 1 */ | 
|  | 705 | for (i = 0; i < d; i++) | 
|  | 706 | rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; | 
|  | 707 | } | 
|  | 708 |  | 
|  | 709 | /* | 
|  | 710 | * compute polynomial Euclidean division remainder in GF(2^m)[X] | 
|  | 711 | */ | 
|  | 712 | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, | 
|  | 713 | const struct gf_poly *b, int *rep) | 
|  | 714 | { | 
|  | 715 | int la, p, m; | 
|  | 716 | unsigned int i, j, *c = a->c; | 
|  | 717 | const unsigned int d = b->deg; | 
|  | 718 |  | 
|  | 719 | if (a->deg < d) | 
|  | 720 | return; | 
|  | 721 |  | 
|  | 722 | /* reuse or compute log representation of denominator */ | 
|  | 723 | if (!rep) { | 
|  | 724 | rep = bch->cache; | 
|  | 725 | gf_poly_logrep(bch, b, rep); | 
|  | 726 | } | 
|  | 727 |  | 
|  | 728 | for (j = a->deg; j >= d; j--) { | 
|  | 729 | if (c[j]) { | 
|  | 730 | la = a_log(bch, c[j]); | 
|  | 731 | p = j-d; | 
|  | 732 | for (i = 0; i < d; i++, p++) { | 
|  | 733 | m = rep[i]; | 
|  | 734 | if (m >= 0) | 
|  | 735 | c[p] ^= bch->a_pow_tab[mod_s(bch, | 
|  | 736 | m+la)]; | 
|  | 737 | } | 
|  | 738 | } | 
|  | 739 | } | 
|  | 740 | a->deg = d-1; | 
|  | 741 | while (!c[a->deg] && a->deg) | 
|  | 742 | a->deg--; | 
|  | 743 | } | 
|  | 744 |  | 
|  | 745 | /* | 
|  | 746 | * compute polynomial Euclidean division quotient in GF(2^m)[X] | 
|  | 747 | */ | 
|  | 748 | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, | 
|  | 749 | const struct gf_poly *b, struct gf_poly *q) | 
|  | 750 | { | 
|  | 751 | if (a->deg >= b->deg) { | 
|  | 752 | q->deg = a->deg-b->deg; | 
|  | 753 | /* compute a mod b (modifies a) */ | 
|  | 754 | gf_poly_mod(bch, a, b, NULL); | 
|  | 755 | /* quotient is stored in upper part of polynomial a */ | 
|  | 756 | memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); | 
|  | 757 | } else { | 
|  | 758 | q->deg = 0; | 
|  | 759 | q->c[0] = 0; | 
|  | 760 | } | 
|  | 761 | } | 
|  | 762 |  | 
|  | 763 | /* | 
|  | 764 | * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] | 
|  | 765 | */ | 
|  | 766 | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, | 
|  | 767 | struct gf_poly *b) | 
|  | 768 | { | 
|  | 769 | struct gf_poly *tmp; | 
|  | 770 |  | 
|  | 771 | dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); | 
|  | 772 |  | 
|  | 773 | if (a->deg < b->deg) { | 
|  | 774 | tmp = b; | 
|  | 775 | b = a; | 
|  | 776 | a = tmp; | 
|  | 777 | } | 
|  | 778 |  | 
|  | 779 | while (b->deg > 0) { | 
|  | 780 | gf_poly_mod(bch, a, b, NULL); | 
|  | 781 | tmp = b; | 
|  | 782 | b = a; | 
|  | 783 | a = tmp; | 
|  | 784 | } | 
|  | 785 |  | 
|  | 786 | dbg("%s\n", gf_poly_str(a)); | 
|  | 787 |  | 
|  | 788 | return a; | 
|  | 789 | } | 
|  | 790 |  | 
|  | 791 | /* | 
|  | 792 | * Given a polynomial f and an integer k, compute Tr(a^kX) mod f | 
|  | 793 | * This is used in Berlekamp Trace algorithm for splitting polynomials | 
|  | 794 | */ | 
|  | 795 | static void compute_trace_bk_mod(struct bch_control *bch, int k, | 
|  | 796 | const struct gf_poly *f, struct gf_poly *z, | 
|  | 797 | struct gf_poly *out) | 
|  | 798 | { | 
|  | 799 | const int m = GF_M(bch); | 
|  | 800 | int i, j; | 
|  | 801 |  | 
|  | 802 | /* z contains z^2j mod f */ | 
|  | 803 | z->deg = 1; | 
|  | 804 | z->c[0] = 0; | 
|  | 805 | z->c[1] = bch->a_pow_tab[k]; | 
|  | 806 |  | 
|  | 807 | out->deg = 0; | 
|  | 808 | memset(out, 0, GF_POLY_SZ(f->deg)); | 
|  | 809 |  | 
|  | 810 | /* compute f log representation only once */ | 
|  | 811 | gf_poly_logrep(bch, f, bch->cache); | 
|  | 812 |  | 
|  | 813 | for (i = 0; i < m; i++) { | 
|  | 814 | /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ | 
|  | 815 | for (j = z->deg; j >= 0; j--) { | 
|  | 816 | out->c[j] ^= z->c[j]; | 
|  | 817 | z->c[2*j] = gf_sqr(bch, z->c[j]); | 
|  | 818 | z->c[2*j+1] = 0; | 
|  | 819 | } | 
|  | 820 | if (z->deg > out->deg) | 
|  | 821 | out->deg = z->deg; | 
|  | 822 |  | 
|  | 823 | if (i < m-1) { | 
|  | 824 | z->deg *= 2; | 
|  | 825 | /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ | 
|  | 826 | gf_poly_mod(bch, z, f, bch->cache); | 
|  | 827 | } | 
|  | 828 | } | 
|  | 829 | while (!out->c[out->deg] && out->deg) | 
|  | 830 | out->deg--; | 
|  | 831 |  | 
|  | 832 | dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); | 
|  | 833 | } | 
|  | 834 |  | 
|  | 835 | /* | 
|  | 836 | * factor a polynomial using Berlekamp Trace algorithm (BTA) | 
|  | 837 | */ | 
|  | 838 | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, | 
|  | 839 | struct gf_poly **g, struct gf_poly **h) | 
|  | 840 | { | 
|  | 841 | struct gf_poly *f2 = bch->poly_2t[0]; | 
|  | 842 | struct gf_poly *q  = bch->poly_2t[1]; | 
|  | 843 | struct gf_poly *tk = bch->poly_2t[2]; | 
|  | 844 | struct gf_poly *z  = bch->poly_2t[3]; | 
|  | 845 | struct gf_poly *gcd; | 
|  | 846 |  | 
|  | 847 | dbg("factoring %s...\n", gf_poly_str(f)); | 
|  | 848 |  | 
|  | 849 | *g = f; | 
|  | 850 | *h = NULL; | 
|  | 851 |  | 
|  | 852 | /* tk = Tr(a^k.X) mod f */ | 
|  | 853 | compute_trace_bk_mod(bch, k, f, z, tk); | 
|  | 854 |  | 
|  | 855 | if (tk->deg > 0) { | 
|  | 856 | /* compute g = gcd(f, tk) (destructive operation) */ | 
|  | 857 | gf_poly_copy(f2, f); | 
|  | 858 | gcd = gf_poly_gcd(bch, f2, tk); | 
|  | 859 | if (gcd->deg < f->deg) { | 
|  | 860 | /* compute h=f/gcd(f,tk); this will modify f and q */ | 
|  | 861 | gf_poly_div(bch, f, gcd, q); | 
|  | 862 | /* store g and h in-place (clobbering f) */ | 
|  | 863 | *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; | 
|  | 864 | gf_poly_copy(*g, gcd); | 
|  | 865 | gf_poly_copy(*h, q); | 
|  | 866 | } | 
|  | 867 | } | 
|  | 868 | } | 
|  | 869 |  | 
|  | 870 | /* | 
|  | 871 | * find roots of a polynomial, using BTZ algorithm; see the beginning of this | 
|  | 872 | * file for details | 
|  | 873 | */ | 
|  | 874 | static int find_poly_roots(struct bch_control *bch, unsigned int k, | 
|  | 875 | struct gf_poly *poly, unsigned int *roots) | 
|  | 876 | { | 
|  | 877 | int cnt; | 
|  | 878 | struct gf_poly *f1, *f2; | 
|  | 879 |  | 
|  | 880 | switch (poly->deg) { | 
|  | 881 | /* handle low degree polynomials with ad hoc techniques */ | 
|  | 882 | case 1: | 
|  | 883 | cnt = find_poly_deg1_roots(bch, poly, roots); | 
|  | 884 | break; | 
|  | 885 | case 2: | 
|  | 886 | cnt = find_poly_deg2_roots(bch, poly, roots); | 
|  | 887 | break; | 
|  | 888 | case 3: | 
|  | 889 | cnt = find_poly_deg3_roots(bch, poly, roots); | 
|  | 890 | break; | 
|  | 891 | case 4: | 
|  | 892 | cnt = find_poly_deg4_roots(bch, poly, roots); | 
|  | 893 | break; | 
|  | 894 | default: | 
|  | 895 | /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ | 
|  | 896 | cnt = 0; | 
|  | 897 | if (poly->deg && (k <= GF_M(bch))) { | 
|  | 898 | factor_polynomial(bch, k, poly, &f1, &f2); | 
|  | 899 | if (f1) | 
|  | 900 | cnt += find_poly_roots(bch, k+1, f1, roots); | 
|  | 901 | if (f2) | 
|  | 902 | cnt += find_poly_roots(bch, k+1, f2, roots+cnt); | 
|  | 903 | } | 
|  | 904 | break; | 
|  | 905 | } | 
|  | 906 | return cnt; | 
|  | 907 | } | 
|  | 908 |  | 
|  | 909 | #if defined(USE_CHIEN_SEARCH) | 
|  | 910 | /* | 
|  | 911 | * exhaustive root search (Chien) implementation - not used, included only for | 
|  | 912 | * reference/comparison tests | 
|  | 913 | */ | 
|  | 914 | static int chien_search(struct bch_control *bch, unsigned int len, | 
|  | 915 | struct gf_poly *p, unsigned int *roots) | 
|  | 916 | { | 
|  | 917 | int m; | 
|  | 918 | unsigned int i, j, syn, syn0, count = 0; | 
|  | 919 | const unsigned int k = 8*len+bch->ecc_bits; | 
|  | 920 |  | 
|  | 921 | /* use a log-based representation of polynomial */ | 
|  | 922 | gf_poly_logrep(bch, p, bch->cache); | 
|  | 923 | bch->cache[p->deg] = 0; | 
|  | 924 | syn0 = gf_div(bch, p->c[0], p->c[p->deg]); | 
|  | 925 |  | 
|  | 926 | for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { | 
|  | 927 | /* compute elp(a^i) */ | 
|  | 928 | for (j = 1, syn = syn0; j <= p->deg; j++) { | 
|  | 929 | m = bch->cache[j]; | 
|  | 930 | if (m >= 0) | 
|  | 931 | syn ^= a_pow(bch, m+j*i); | 
|  | 932 | } | 
|  | 933 | if (syn == 0) { | 
|  | 934 | roots[count++] = GF_N(bch)-i; | 
|  | 935 | if (count == p->deg) | 
|  | 936 | break; | 
|  | 937 | } | 
|  | 938 | } | 
|  | 939 | return (count == p->deg) ? count : 0; | 
|  | 940 | } | 
|  | 941 | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) | 
|  | 942 | #endif /* USE_CHIEN_SEARCH */ | 
|  | 943 |  | 
|  | 944 | /** | 
|  | 945 | * decode_bch - decode received codeword and find bit error locations | 
|  | 946 | * @bch:      BCH control structure | 
|  | 947 | * @data:     received data, ignored if @calc_ecc is provided | 
|  | 948 | * @len:      data length in bytes, must always be provided | 
|  | 949 | * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc | 
|  | 950 | * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data | 
|  | 951 | * @syn:      hw computed syndrome data (if NULL, syndrome is calculated) | 
|  | 952 | * @errloc:   output array of error locations | 
|  | 953 | * | 
|  | 954 | * Returns: | 
|  | 955 | *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if | 
|  | 956 | *  invalid parameters were provided | 
|  | 957 | * | 
|  | 958 | * Depending on the available hw BCH support and the need to compute @calc_ecc | 
|  | 959 | * separately (using encode_bch()), this function should be called with one of | 
|  | 960 | * the following parameter configurations - | 
|  | 961 | * | 
|  | 962 | * by providing @data and @recv_ecc only: | 
|  | 963 | *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) | 
|  | 964 | * | 
|  | 965 | * by providing @recv_ecc and @calc_ecc: | 
|  | 966 | *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) | 
|  | 967 | * | 
|  | 968 | * by providing ecc = recv_ecc XOR calc_ecc: | 
|  | 969 | *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) | 
|  | 970 | * | 
|  | 971 | * by providing syndrome results @syn: | 
|  | 972 | *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) | 
|  | 973 | * | 
|  | 974 | * Once decode_bch() has successfully returned with a positive value, error | 
|  | 975 | * locations returned in array @errloc should be interpreted as follows - | 
|  | 976 | * | 
|  | 977 | * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for | 
|  | 978 | * data correction) | 
|  | 979 | * | 
|  | 980 | * if (errloc[n] < 8*len), then n-th error is located in data and can be | 
|  | 981 | * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); | 
|  | 982 | * | 
|  | 983 | * Note that this function does not perform any data correction by itself, it | 
|  | 984 | * merely indicates error locations. | 
|  | 985 | */ | 
|  | 986 | int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, | 
|  | 987 | const uint8_t *recv_ecc, const uint8_t *calc_ecc, | 
|  | 988 | const unsigned int *syn, unsigned int *errloc) | 
|  | 989 | { | 
|  | 990 | const unsigned int ecc_words = BCH_ECC_WORDS(bch); | 
|  | 991 | unsigned int nbits; | 
|  | 992 | int i, err, nroots; | 
|  | 993 | uint32_t sum; | 
|  | 994 |  | 
|  | 995 | /* sanity check: make sure data length can be handled */ | 
|  | 996 | if (8*len > (bch->n-bch->ecc_bits)) | 
|  | 997 | return -EINVAL; | 
|  | 998 |  | 
|  | 999 | /* if caller does not provide syndromes, compute them */ | 
|  | 1000 | if (!syn) { | 
|  | 1001 | if (!calc_ecc) { | 
|  | 1002 | /* compute received data ecc into an internal buffer */ | 
|  | 1003 | if (!data || !recv_ecc) | 
|  | 1004 | return -EINVAL; | 
|  | 1005 | encode_bch(bch, data, len, NULL); | 
|  | 1006 | } else { | 
|  | 1007 | /* load provided calculated ecc */ | 
|  | 1008 | load_ecc8(bch, bch->ecc_buf, calc_ecc); | 
|  | 1009 | } | 
|  | 1010 | /* load received ecc or assume it was XORed in calc_ecc */ | 
|  | 1011 | if (recv_ecc) { | 
|  | 1012 | load_ecc8(bch, bch->ecc_buf2, recv_ecc); | 
|  | 1013 | /* XOR received and calculated ecc */ | 
|  | 1014 | for (i = 0, sum = 0; i < (int)ecc_words; i++) { | 
|  | 1015 | bch->ecc_buf[i] ^= bch->ecc_buf2[i]; | 
|  | 1016 | sum |= bch->ecc_buf[i]; | 
|  | 1017 | } | 
|  | 1018 | if (!sum) | 
|  | 1019 | /* no error found */ | 
|  | 1020 | return 0; | 
|  | 1021 | } | 
|  | 1022 | compute_syndromes(bch, bch->ecc_buf, bch->syn); | 
|  | 1023 | syn = bch->syn; | 
|  | 1024 | } | 
|  | 1025 |  | 
|  | 1026 | err = compute_error_locator_polynomial(bch, syn); | 
|  | 1027 | if (err > 0) { | 
|  | 1028 | nroots = find_poly_roots(bch, 1, bch->elp, errloc); | 
|  | 1029 | if (err != nroots) | 
|  | 1030 | err = -1; | 
|  | 1031 | } | 
|  | 1032 | if (err > 0) { | 
|  | 1033 | /* post-process raw error locations for easier correction */ | 
|  | 1034 | nbits = (len*8)+bch->ecc_bits; | 
|  | 1035 | for (i = 0; i < err; i++) { | 
|  | 1036 | if (errloc[i] >= nbits) { | 
|  | 1037 | err = -1; | 
|  | 1038 | break; | 
|  | 1039 | } | 
|  | 1040 | errloc[i] = nbits-1-errloc[i]; | 
|  | 1041 | errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); | 
|  | 1042 | } | 
|  | 1043 | } | 
|  | 1044 | return (err >= 0) ? err : -EBADMSG; | 
|  | 1045 | } | 
|  | 1046 | EXPORT_SYMBOL_GPL(decode_bch); | 
|  | 1047 |  | 
|  | 1048 | /* | 
|  | 1049 | * generate Galois field lookup tables | 
|  | 1050 | */ | 
|  | 1051 | static int build_gf_tables(struct bch_control *bch, unsigned int poly) | 
|  | 1052 | { | 
|  | 1053 | unsigned int i, x = 1; | 
|  | 1054 | const unsigned int k = 1 << deg(poly); | 
|  | 1055 |  | 
|  | 1056 | /* primitive polynomial must be of degree m */ | 
|  | 1057 | if (k != (1u << GF_M(bch))) | 
|  | 1058 | return -1; | 
|  | 1059 |  | 
|  | 1060 | for (i = 0; i < GF_N(bch); i++) { | 
|  | 1061 | bch->a_pow_tab[i] = x; | 
|  | 1062 | bch->a_log_tab[x] = i; | 
|  | 1063 | if (i && (x == 1)) | 
|  | 1064 | /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ | 
|  | 1065 | return -1; | 
|  | 1066 | x <<= 1; | 
|  | 1067 | if (x & k) | 
|  | 1068 | x ^= poly; | 
|  | 1069 | } | 
|  | 1070 | bch->a_pow_tab[GF_N(bch)] = 1; | 
|  | 1071 | bch->a_log_tab[0] = 0; | 
|  | 1072 |  | 
|  | 1073 | return 0; | 
|  | 1074 | } | 
|  | 1075 |  | 
|  | 1076 | /* | 
|  | 1077 | * compute generator polynomial remainder tables for fast encoding | 
|  | 1078 | */ | 
|  | 1079 | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) | 
|  | 1080 | { | 
|  | 1081 | int i, j, b, d; | 
|  | 1082 | uint32_t data, hi, lo, *tab; | 
|  | 1083 | const int l = BCH_ECC_WORDS(bch); | 
|  | 1084 | const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); | 
|  | 1085 | const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); | 
|  | 1086 |  | 
|  | 1087 | memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); | 
|  | 1088 |  | 
|  | 1089 | for (i = 0; i < 256; i++) { | 
|  | 1090 | /* p(X)=i is a small polynomial of weight <= 8 */ | 
|  | 1091 | for (b = 0; b < 4; b++) { | 
|  | 1092 | /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ | 
|  | 1093 | tab = bch->mod8_tab + (b*256+i)*l; | 
|  | 1094 | data = i << (8*b); | 
|  | 1095 | while (data) { | 
|  | 1096 | d = deg(data); | 
|  | 1097 | /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ | 
|  | 1098 | data ^= g[0] >> (31-d); | 
|  | 1099 | for (j = 0; j < ecclen; j++) { | 
|  | 1100 | hi = (d < 31) ? g[j] << (d+1) : 0; | 
|  | 1101 | lo = (j+1 < plen) ? | 
|  | 1102 | g[j+1] >> (31-d) : 0; | 
|  | 1103 | tab[j] ^= hi|lo; | 
|  | 1104 | } | 
|  | 1105 | } | 
|  | 1106 | } | 
|  | 1107 | } | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | /* | 
|  | 1111 | * build a base for factoring degree 2 polynomials | 
|  | 1112 | */ | 
|  | 1113 | static int build_deg2_base(struct bch_control *bch) | 
|  | 1114 | { | 
|  | 1115 | const int m = GF_M(bch); | 
|  | 1116 | int i, j, r; | 
|  | 1117 | unsigned int sum, x, y, remaining, ak = 0, xi[m]; | 
|  | 1118 |  | 
|  | 1119 | /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ | 
|  | 1120 | for (i = 0; i < m; i++) { | 
|  | 1121 | for (j = 0, sum = 0; j < m; j++) | 
|  | 1122 | sum ^= a_pow(bch, i*(1 << j)); | 
|  | 1123 |  | 
|  | 1124 | if (sum) { | 
|  | 1125 | ak = bch->a_pow_tab[i]; | 
|  | 1126 | break; | 
|  | 1127 | } | 
|  | 1128 | } | 
|  | 1129 | /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ | 
|  | 1130 | remaining = m; | 
|  | 1131 | memset(xi, 0, sizeof(xi)); | 
|  | 1132 |  | 
|  | 1133 | for (x = 0; (x <= GF_N(bch)) && remaining; x++) { | 
|  | 1134 | y = gf_sqr(bch, x)^x; | 
|  | 1135 | for (i = 0; i < 2; i++) { | 
|  | 1136 | r = a_log(bch, y); | 
|  | 1137 | if (y && (r < m) && !xi[r]) { | 
|  | 1138 | bch->xi_tab[r] = x; | 
|  | 1139 | xi[r] = 1; | 
|  | 1140 | remaining--; | 
|  | 1141 | dbg("x%d = %x\n", r, x); | 
|  | 1142 | break; | 
|  | 1143 | } | 
|  | 1144 | y ^= ak; | 
|  | 1145 | } | 
|  | 1146 | } | 
|  | 1147 | /* should not happen but check anyway */ | 
|  | 1148 | return remaining ? -1 : 0; | 
|  | 1149 | } | 
|  | 1150 |  | 
|  | 1151 | static void *bch_alloc(size_t size, int *err) | 
|  | 1152 | { | 
|  | 1153 | void *ptr; | 
|  | 1154 |  | 
|  | 1155 | ptr = kmalloc(size, GFP_KERNEL); | 
|  | 1156 | if (ptr == NULL) | 
|  | 1157 | *err = 1; | 
|  | 1158 | return ptr; | 
|  | 1159 | } | 
|  | 1160 |  | 
|  | 1161 | /* | 
|  | 1162 | * compute generator polynomial for given (m,t) parameters. | 
|  | 1163 | */ | 
|  | 1164 | static uint32_t *compute_generator_polynomial(struct bch_control *bch) | 
|  | 1165 | { | 
|  | 1166 | const unsigned int m = GF_M(bch); | 
|  | 1167 | const unsigned int t = GF_T(bch); | 
|  | 1168 | int n, err = 0; | 
|  | 1169 | unsigned int i, j, nbits, r, word, *roots; | 
|  | 1170 | struct gf_poly *g; | 
|  | 1171 | uint32_t *genpoly; | 
|  | 1172 |  | 
|  | 1173 | g = bch_alloc(GF_POLY_SZ(m*t), &err); | 
|  | 1174 | roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); | 
|  | 1175 | genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); | 
|  | 1176 |  | 
|  | 1177 | if (err) { | 
|  | 1178 | kfree(genpoly); | 
|  | 1179 | genpoly = NULL; | 
|  | 1180 | goto finish; | 
|  | 1181 | } | 
|  | 1182 |  | 
|  | 1183 | /* enumerate all roots of g(X) */ | 
|  | 1184 | memset(roots , 0, (bch->n+1)*sizeof(*roots)); | 
|  | 1185 | for (i = 0; i < t; i++) { | 
|  | 1186 | for (j = 0, r = 2*i+1; j < m; j++) { | 
|  | 1187 | roots[r] = 1; | 
|  | 1188 | r = mod_s(bch, 2*r); | 
|  | 1189 | } | 
|  | 1190 | } | 
|  | 1191 | /* build generator polynomial g(X) */ | 
|  | 1192 | g->deg = 0; | 
|  | 1193 | g->c[0] = 1; | 
|  | 1194 | for (i = 0; i < GF_N(bch); i++) { | 
|  | 1195 | if (roots[i]) { | 
|  | 1196 | /* multiply g(X) by (X+root) */ | 
|  | 1197 | r = bch->a_pow_tab[i]; | 
|  | 1198 | g->c[g->deg+1] = 1; | 
|  | 1199 | for (j = g->deg; j > 0; j--) | 
|  | 1200 | g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; | 
|  | 1201 |  | 
|  | 1202 | g->c[0] = gf_mul(bch, g->c[0], r); | 
|  | 1203 | g->deg++; | 
|  | 1204 | } | 
|  | 1205 | } | 
|  | 1206 | /* store left-justified binary representation of g(X) */ | 
|  | 1207 | n = g->deg+1; | 
|  | 1208 | i = 0; | 
|  | 1209 |  | 
|  | 1210 | while (n > 0) { | 
|  | 1211 | nbits = (n > 32) ? 32 : n; | 
|  | 1212 | for (j = 0, word = 0; j < nbits; j++) { | 
|  | 1213 | if (g->c[n-1-j]) | 
|  | 1214 | word |= 1u << (31-j); | 
|  | 1215 | } | 
|  | 1216 | genpoly[i++] = word; | 
|  | 1217 | n -= nbits; | 
|  | 1218 | } | 
|  | 1219 | bch->ecc_bits = g->deg; | 
|  | 1220 |  | 
|  | 1221 | finish: | 
|  | 1222 | kfree(g); | 
|  | 1223 | kfree(roots); | 
|  | 1224 |  | 
|  | 1225 | return genpoly; | 
|  | 1226 | } | 
|  | 1227 |  | 
|  | 1228 | /** | 
|  | 1229 | * init_bch - initialize a BCH encoder/decoder | 
|  | 1230 | * @m:          Galois field order, should be in the range 5-15 | 
|  | 1231 | * @t:          maximum error correction capability, in bits | 
|  | 1232 | * @prim_poly:  user-provided primitive polynomial (or 0 to use default) | 
|  | 1233 | * | 
|  | 1234 | * Returns: | 
|  | 1235 | *  a newly allocated BCH control structure if successful, NULL otherwise | 
|  | 1236 | * | 
|  | 1237 | * This initialization can take some time, as lookup tables are built for fast | 
|  | 1238 | * encoding/decoding; make sure not to call this function from a time critical | 
|  | 1239 | * path. Usually, init_bch() should be called on module/driver init and | 
|  | 1240 | * free_bch() should be called to release memory on exit. | 
|  | 1241 | * | 
|  | 1242 | * You may provide your own primitive polynomial of degree @m in argument | 
|  | 1243 | * @prim_poly, or let init_bch() use its default polynomial. | 
|  | 1244 | * | 
|  | 1245 | * Once init_bch() has successfully returned a pointer to a newly allocated | 
|  | 1246 | * BCH control structure, ecc length in bytes is given by member @ecc_bytes of | 
|  | 1247 | * the structure. | 
|  | 1248 | */ | 
|  | 1249 | struct bch_control *init_bch(int m, int t, unsigned int prim_poly) | 
|  | 1250 | { | 
|  | 1251 | int err = 0; | 
|  | 1252 | unsigned int i, words; | 
|  | 1253 | uint32_t *genpoly; | 
|  | 1254 | struct bch_control *bch = NULL; | 
|  | 1255 |  | 
|  | 1256 | const int min_m = 5; | 
|  | 1257 | const int max_m = 15; | 
|  | 1258 |  | 
|  | 1259 | /* default primitive polynomials */ | 
|  | 1260 | static const unsigned int prim_poly_tab[] = { | 
|  | 1261 | 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, | 
|  | 1262 | 0x402b, 0x8003, | 
|  | 1263 | }; | 
|  | 1264 |  | 
|  | 1265 | #if defined(CONFIG_BCH_CONST_PARAMS) | 
|  | 1266 | if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { | 
|  | 1267 | printk(KERN_ERR "bch encoder/decoder was configured to support " | 
|  | 1268 | "parameters m=%d, t=%d only!\n", | 
|  | 1269 | CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); | 
|  | 1270 | goto fail; | 
|  | 1271 | } | 
|  | 1272 | #endif | 
|  | 1273 | if ((m < min_m) || (m > max_m)) | 
|  | 1274 | /* | 
|  | 1275 | * values of m greater than 15 are not currently supported; | 
|  | 1276 | * supporting m > 15 would require changing table base type | 
|  | 1277 | * (uint16_t) and a small patch in matrix transposition | 
|  | 1278 | */ | 
|  | 1279 | goto fail; | 
|  | 1280 |  | 
|  | 1281 | /* sanity checks */ | 
|  | 1282 | if ((t < 1) || (m*t >= ((1 << m)-1))) | 
|  | 1283 | /* invalid t value */ | 
|  | 1284 | goto fail; | 
|  | 1285 |  | 
|  | 1286 | /* select a primitive polynomial for generating GF(2^m) */ | 
|  | 1287 | if (prim_poly == 0) | 
|  | 1288 | prim_poly = prim_poly_tab[m-min_m]; | 
|  | 1289 |  | 
|  | 1290 | bch = kzalloc(sizeof(*bch), GFP_KERNEL); | 
|  | 1291 | if (bch == NULL) | 
|  | 1292 | goto fail; | 
|  | 1293 |  | 
|  | 1294 | bch->m = m; | 
|  | 1295 | bch->t = t; | 
|  | 1296 | bch->n = (1 << m)-1; | 
|  | 1297 | words  = DIV_ROUND_UP(m*t, 32); | 
|  | 1298 | bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); | 
|  | 1299 | bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); | 
|  | 1300 | bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); | 
|  | 1301 | bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); | 
|  | 1302 | bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err); | 
|  | 1303 | bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); | 
|  | 1304 | bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err); | 
|  | 1305 | bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err); | 
|  | 1306 | bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err); | 
|  | 1307 | bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); | 
|  | 1308 |  | 
|  | 1309 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | 
|  | 1310 | bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); | 
|  | 1311 |  | 
|  | 1312 | if (err) | 
|  | 1313 | goto fail; | 
|  | 1314 |  | 
|  | 1315 | err = build_gf_tables(bch, prim_poly); | 
|  | 1316 | if (err) | 
|  | 1317 | goto fail; | 
|  | 1318 |  | 
|  | 1319 | /* use generator polynomial for computing encoding tables */ | 
|  | 1320 | genpoly = compute_generator_polynomial(bch); | 
|  | 1321 | if (genpoly == NULL) | 
|  | 1322 | goto fail; | 
|  | 1323 |  | 
|  | 1324 | build_mod8_tables(bch, genpoly); | 
|  | 1325 | kfree(genpoly); | 
|  | 1326 |  | 
|  | 1327 | err = build_deg2_base(bch); | 
|  | 1328 | if (err) | 
|  | 1329 | goto fail; | 
|  | 1330 |  | 
|  | 1331 | return bch; | 
|  | 1332 |  | 
|  | 1333 | fail: | 
|  | 1334 | free_bch(bch); | 
|  | 1335 | return NULL; | 
|  | 1336 | } | 
|  | 1337 | EXPORT_SYMBOL_GPL(init_bch); | 
|  | 1338 |  | 
|  | 1339 | /** | 
|  | 1340 | *  free_bch - free the BCH control structure | 
|  | 1341 | *  @bch:    BCH control structure to release | 
|  | 1342 | */ | 
|  | 1343 | void free_bch(struct bch_control *bch) | 
|  | 1344 | { | 
|  | 1345 | unsigned int i; | 
|  | 1346 |  | 
|  | 1347 | if (bch) { | 
|  | 1348 | kfree(bch->a_pow_tab); | 
|  | 1349 | kfree(bch->a_log_tab); | 
|  | 1350 | kfree(bch->mod8_tab); | 
|  | 1351 | kfree(bch->ecc_buf); | 
|  | 1352 | kfree(bch->ecc_buf2); | 
|  | 1353 | kfree(bch->xi_tab); | 
|  | 1354 | kfree(bch->syn); | 
|  | 1355 | kfree(bch->cache); | 
|  | 1356 | kfree(bch->elp); | 
|  | 1357 |  | 
|  | 1358 | for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | 
|  | 1359 | kfree(bch->poly_2t[i]); | 
|  | 1360 |  | 
|  | 1361 | kfree(bch); | 
|  | 1362 | } | 
|  | 1363 | } | 
|  | 1364 | EXPORT_SYMBOL_GPL(free_bch); | 
|  | 1365 |  | 
|  | 1366 | MODULE_LICENSE("GPL"); | 
|  | 1367 | MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); | 
|  | 1368 | MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |