blob: 34659d4085c79b8cafb4bf122af6b3dfcd497a33 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090018#include <linux/slab.h>
Frederic Weisbecker76e1d902010-04-05 15:35:57 +020019#include <linux/hash.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020020#include <linux/sysfs.h>
21#include <linux/dcache.h>
22#include <linux/percpu.h>
23#include <linux/ptrace.h>
24#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020025#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020026#include <linux/hardirq.h>
27#include <linux/rculist.h>
28#include <linux/uaccess.h>
29#include <linux/syscalls.h>
30#include <linux/anon_inodes.h>
31#include <linux/kernel_stat.h>
32#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080033#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020034#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020035
36#include <asm/irq_regs.h>
37
38/*
39 * Each CPU has a list of per CPU events:
40 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080041static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020042
43int perf_max_events __read_mostly = 1;
44static int perf_reserved_percpu __read_mostly;
45static int perf_overcommit __read_mostly = 1;
46
47static atomic_t nr_events __read_mostly;
48static atomic_t nr_mmap_events __read_mostly;
49static atomic_t nr_comm_events __read_mostly;
50static atomic_t nr_task_events __read_mostly;
51
52/*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59int sysctl_perf_event_paranoid __read_mostly = 1;
60
Ingo Molnarcdd6c482009-09-21 12:02:48 +020061int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63/*
64 * max perf event sample rate
65 */
66int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68static atomic64_t perf_event_id;
69
70/*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73static DEFINE_SPINLOCK(perf_resource_lock);
74
75/*
76 * Architecture provided APIs - weak aliases:
77 */
78extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79{
80 return NULL;
81}
82
83void __weak hw_perf_disable(void) { barrier(); }
84void __weak hw_perf_enable(void) { barrier(); }
85
Ingo Molnarcdd6c482009-09-21 12:02:48 +020086int __weak
87hw_perf_group_sched_in(struct perf_event *group_leader,
88 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +010089 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +020090{
91 return 0;
92}
93
94void __weak perf_event_print_debug(void) { }
95
96static DEFINE_PER_CPU(int, perf_disable_count);
97
Ingo Molnarcdd6c482009-09-21 12:02:48 +020098void perf_disable(void)
99{
Peter Zijlstra32975a42010-03-06 19:49:19 +0100100 if (!__get_cpu_var(perf_disable_count)++)
101 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200102}
103
104void perf_enable(void)
105{
Peter Zijlstra32975a42010-03-06 19:49:19 +0100106 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200107 hw_perf_enable();
108}
109
110static void get_ctx(struct perf_event_context *ctx)
111{
112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113}
114
115static void free_ctx(struct rcu_head *head)
116{
117 struct perf_event_context *ctx;
118
119 ctx = container_of(head, struct perf_event_context, rcu_head);
120 kfree(ctx);
121}
122
123static void put_ctx(struct perf_event_context *ctx)
124{
125 if (atomic_dec_and_test(&ctx->refcount)) {
126 if (ctx->parent_ctx)
127 put_ctx(ctx->parent_ctx);
128 if (ctx->task)
129 put_task_struct(ctx->task);
130 call_rcu(&ctx->rcu_head, free_ctx);
131 }
132}
133
134static void unclone_ctx(struct perf_event_context *ctx)
135{
136 if (ctx->parent_ctx) {
137 put_ctx(ctx->parent_ctx);
138 ctx->parent_ctx = NULL;
139 }
140}
141
142/*
143 * If we inherit events we want to return the parent event id
144 * to userspace.
145 */
146static u64 primary_event_id(struct perf_event *event)
147{
148 u64 id = event->id;
149
150 if (event->parent)
151 id = event->parent->id;
152
153 return id;
154}
155
156/*
157 * Get the perf_event_context for a task and lock it.
158 * This has to cope with with the fact that until it is locked,
159 * the context could get moved to another task.
160 */
161static struct perf_event_context *
162perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163{
164 struct perf_event_context *ctx;
165
166 rcu_read_lock();
167 retry:
168 ctx = rcu_dereference(task->perf_event_ctxp);
169 if (ctx) {
170 /*
171 * If this context is a clone of another, it might
172 * get swapped for another underneath us by
173 * perf_event_task_sched_out, though the
174 * rcu_read_lock() protects us from any context
175 * getting freed. Lock the context and check if it
176 * got swapped before we could get the lock, and retry
177 * if so. If we locked the right context, then it
178 * can't get swapped on us any more.
179 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100180 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200181 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100182 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200183 goto retry;
184 }
185
186 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100187 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200188 ctx = NULL;
189 }
190 }
191 rcu_read_unlock();
192 return ctx;
193}
194
195/*
196 * Get the context for a task and increment its pin_count so it
197 * can't get swapped to another task. This also increments its
198 * reference count so that the context can't get freed.
199 */
200static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201{
202 struct perf_event_context *ctx;
203 unsigned long flags;
204
205 ctx = perf_lock_task_context(task, &flags);
206 if (ctx) {
207 ++ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100208 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200209 }
210 return ctx;
211}
212
213static void perf_unpin_context(struct perf_event_context *ctx)
214{
215 unsigned long flags;
216
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100217 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200218 --ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100219 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200220 put_ctx(ctx);
221}
222
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100223static inline u64 perf_clock(void)
224{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100225 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100226}
227
228/*
229 * Update the record of the current time in a context.
230 */
231static void update_context_time(struct perf_event_context *ctx)
232{
233 u64 now = perf_clock();
234
235 ctx->time += now - ctx->timestamp;
236 ctx->timestamp = now;
237}
238
239/*
240 * Update the total_time_enabled and total_time_running fields for a event.
241 */
242static void update_event_times(struct perf_event *event)
243{
244 struct perf_event_context *ctx = event->ctx;
245 u64 run_end;
246
247 if (event->state < PERF_EVENT_STATE_INACTIVE ||
248 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
249 return;
250
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100251 if (ctx->is_active)
252 run_end = ctx->time;
253 else
254 run_end = event->tstamp_stopped;
255
256 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100257
258 if (event->state == PERF_EVENT_STATE_INACTIVE)
259 run_end = event->tstamp_stopped;
260 else
261 run_end = ctx->time;
262
263 event->total_time_running = run_end - event->tstamp_running;
264}
265
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100266static struct list_head *
267ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
268{
269 if (event->attr.pinned)
270 return &ctx->pinned_groups;
271 else
272 return &ctx->flexible_groups;
273}
274
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200275/*
276 * Add a event from the lists for its context.
277 * Must be called with ctx->mutex and ctx->lock held.
278 */
279static void
280list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281{
282 struct perf_event *group_leader = event->group_leader;
283
284 /*
285 * Depending on whether it is a standalone or sibling event,
286 * add it straight to the context's event list, or to the group
287 * leader's sibling list:
288 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100289 if (group_leader == event) {
290 struct list_head *list;
291
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100292 if (is_software_event(event))
293 event->group_flags |= PERF_GROUP_SOFTWARE;
294
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100295 list = ctx_group_list(event, ctx);
296 list_add_tail(&event->group_entry, list);
297 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100298 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
299 !is_software_event(event))
300 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
301
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200302 list_add_tail(&event->group_entry, &group_leader->sibling_list);
303 group_leader->nr_siblings++;
304 }
305
306 list_add_rcu(&event->event_entry, &ctx->event_list);
307 ctx->nr_events++;
308 if (event->attr.inherit_stat)
309 ctx->nr_stat++;
310}
311
312/*
313 * Remove a event from the lists for its context.
314 * Must be called with ctx->mutex and ctx->lock held.
315 */
316static void
317list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318{
319 struct perf_event *sibling, *tmp;
320
321 if (list_empty(&event->group_entry))
322 return;
323 ctx->nr_events--;
324 if (event->attr.inherit_stat)
325 ctx->nr_stat--;
326
327 list_del_init(&event->group_entry);
328 list_del_rcu(&event->event_entry);
329
330 if (event->group_leader != event)
331 event->group_leader->nr_siblings--;
332
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100333 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800334
335 /*
336 * If event was in error state, then keep it
337 * that way, otherwise bogus counts will be
338 * returned on read(). The only way to get out
339 * of error state is by explicit re-enabling
340 * of the event
341 */
342 if (event->state > PERF_EVENT_STATE_OFF)
343 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100344
Peter Zijlstra4fd38e42010-05-06 17:31:38 +0200345 if (event->state > PERF_EVENT_STATE_FREE)
346 return;
347
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200348 /*
349 * If this was a group event with sibling events then
350 * upgrade the siblings to singleton events by adding them
351 * to the context list directly:
352 */
353 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100354 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200355
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100356 list = ctx_group_list(event, ctx);
357 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200358 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100359
360 /* Inherit group flags from the previous leader */
361 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200362 }
363}
364
365static void
366event_sched_out(struct perf_event *event,
367 struct perf_cpu_context *cpuctx,
368 struct perf_event_context *ctx)
369{
370 if (event->state != PERF_EVENT_STATE_ACTIVE)
371 return;
372
373 event->state = PERF_EVENT_STATE_INACTIVE;
374 if (event->pending_disable) {
375 event->pending_disable = 0;
376 event->state = PERF_EVENT_STATE_OFF;
377 }
378 event->tstamp_stopped = ctx->time;
379 event->pmu->disable(event);
380 event->oncpu = -1;
381
382 if (!is_software_event(event))
383 cpuctx->active_oncpu--;
384 ctx->nr_active--;
385 if (event->attr.exclusive || !cpuctx->active_oncpu)
386 cpuctx->exclusive = 0;
387}
388
389static void
390group_sched_out(struct perf_event *group_event,
391 struct perf_cpu_context *cpuctx,
392 struct perf_event_context *ctx)
393{
394 struct perf_event *event;
395
396 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
397 return;
398
399 event_sched_out(group_event, cpuctx, ctx);
400
401 /*
402 * Schedule out siblings (if any):
403 */
404 list_for_each_entry(event, &group_event->sibling_list, group_entry)
405 event_sched_out(event, cpuctx, ctx);
406
407 if (group_event->attr.exclusive)
408 cpuctx->exclusive = 0;
409}
410
411/*
412 * Cross CPU call to remove a performance event
413 *
414 * We disable the event on the hardware level first. After that we
415 * remove it from the context list.
416 */
417static void __perf_event_remove_from_context(void *info)
418{
419 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
420 struct perf_event *event = info;
421 struct perf_event_context *ctx = event->ctx;
422
423 /*
424 * If this is a task context, we need to check whether it is
425 * the current task context of this cpu. If not it has been
426 * scheduled out before the smp call arrived.
427 */
428 if (ctx->task && cpuctx->task_ctx != ctx)
429 return;
430
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100431 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200432 /*
433 * Protect the list operation against NMI by disabling the
434 * events on a global level.
435 */
436 perf_disable();
437
438 event_sched_out(event, cpuctx, ctx);
439
440 list_del_event(event, ctx);
441
442 if (!ctx->task) {
443 /*
444 * Allow more per task events with respect to the
445 * reservation:
446 */
447 cpuctx->max_pertask =
448 min(perf_max_events - ctx->nr_events,
449 perf_max_events - perf_reserved_percpu);
450 }
451
452 perf_enable();
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100453 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200454}
455
456
457/*
458 * Remove the event from a task's (or a CPU's) list of events.
459 *
460 * Must be called with ctx->mutex held.
461 *
462 * CPU events are removed with a smp call. For task events we only
463 * call when the task is on a CPU.
464 *
465 * If event->ctx is a cloned context, callers must make sure that
466 * every task struct that event->ctx->task could possibly point to
467 * remains valid. This is OK when called from perf_release since
468 * that only calls us on the top-level context, which can't be a clone.
469 * When called from perf_event_exit_task, it's OK because the
470 * context has been detached from its task.
471 */
472static void perf_event_remove_from_context(struct perf_event *event)
473{
474 struct perf_event_context *ctx = event->ctx;
475 struct task_struct *task = ctx->task;
476
477 if (!task) {
478 /*
479 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200480 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200481 */
482 smp_call_function_single(event->cpu,
483 __perf_event_remove_from_context,
484 event, 1);
485 return;
486 }
487
488retry:
489 task_oncpu_function_call(task, __perf_event_remove_from_context,
490 event);
491
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100492 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200493 /*
494 * If the context is active we need to retry the smp call.
495 */
496 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100497 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200498 goto retry;
499 }
500
501 /*
502 * The lock prevents that this context is scheduled in so we
503 * can remove the event safely, if the call above did not
504 * succeed.
505 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100506 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200507 list_del_event(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100508 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200509}
510
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200511/*
512 * Update total_time_enabled and total_time_running for all events in a group.
513 */
514static void update_group_times(struct perf_event *leader)
515{
516 struct perf_event *event;
517
518 update_event_times(leader);
519 list_for_each_entry(event, &leader->sibling_list, group_entry)
520 update_event_times(event);
521}
522
523/*
524 * Cross CPU call to disable a performance event
525 */
526static void __perf_event_disable(void *info)
527{
528 struct perf_event *event = info;
529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
530 struct perf_event_context *ctx = event->ctx;
531
532 /*
533 * If this is a per-task event, need to check whether this
534 * event's task is the current task on this cpu.
535 */
536 if (ctx->task && cpuctx->task_ctx != ctx)
537 return;
538
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100539 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200540
541 /*
542 * If the event is on, turn it off.
543 * If it is in error state, leave it in error state.
544 */
545 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
546 update_context_time(ctx);
547 update_group_times(event);
548 if (event == event->group_leader)
549 group_sched_out(event, cpuctx, ctx);
550 else
551 event_sched_out(event, cpuctx, ctx);
552 event->state = PERF_EVENT_STATE_OFF;
553 }
554
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100555 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200556}
557
558/*
559 * Disable a event.
560 *
561 * If event->ctx is a cloned context, callers must make sure that
562 * every task struct that event->ctx->task could possibly point to
563 * remains valid. This condition is satisifed when called through
564 * perf_event_for_each_child or perf_event_for_each because they
565 * hold the top-level event's child_mutex, so any descendant that
566 * goes to exit will block in sync_child_event.
567 * When called from perf_pending_event it's OK because event->ctx
568 * is the current context on this CPU and preemption is disabled,
569 * hence we can't get into perf_event_task_sched_out for this context.
570 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100571void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200572{
573 struct perf_event_context *ctx = event->ctx;
574 struct task_struct *task = ctx->task;
575
576 if (!task) {
577 /*
578 * Disable the event on the cpu that it's on
579 */
580 smp_call_function_single(event->cpu, __perf_event_disable,
581 event, 1);
582 return;
583 }
584
585 retry:
586 task_oncpu_function_call(task, __perf_event_disable, event);
587
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100588 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200589 /*
590 * If the event is still active, we need to retry the cross-call.
591 */
592 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100593 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200594 goto retry;
595 }
596
597 /*
598 * Since we have the lock this context can't be scheduled
599 * in, so we can change the state safely.
600 */
601 if (event->state == PERF_EVENT_STATE_INACTIVE) {
602 update_group_times(event);
603 event->state = PERF_EVENT_STATE_OFF;
604 }
605
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100606 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200607}
608
609static int
610event_sched_in(struct perf_event *event,
611 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100612 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200613{
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
616
617 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100618 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200619 /*
620 * The new state must be visible before we turn it on in the hardware:
621 */
622 smp_wmb();
623
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
628 }
629
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
631
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
635
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
638
639 return 0;
640}
641
642static int
643group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100645 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200646{
647 struct perf_event *event, *partial_group;
648 int ret;
649
650 if (group_event->state == PERF_EVENT_STATE_OFF)
651 return 0;
652
Peter Zijlstra6e377382010-02-11 13:21:58 +0100653 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200654 if (ret)
655 return ret < 0 ? ret : 0;
656
Peter Zijlstra6e377382010-02-11 13:21:58 +0100657 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200658 return -EAGAIN;
659
660 /*
661 * Schedule in siblings as one group (if any):
662 */
663 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100664 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200665 partial_group = event;
666 goto group_error;
667 }
668 }
669
670 return 0;
671
672group_error:
673 /*
674 * Groups can be scheduled in as one unit only, so undo any
675 * partial group before returning:
676 */
677 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
678 if (event == partial_group)
679 break;
680 event_sched_out(event, cpuctx, ctx);
681 }
682 event_sched_out(group_event, cpuctx, ctx);
683
684 return -EAGAIN;
685}
686
687/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200688 * Work out whether we can put this event group on the CPU now.
689 */
690static int group_can_go_on(struct perf_event *event,
691 struct perf_cpu_context *cpuctx,
692 int can_add_hw)
693{
694 /*
695 * Groups consisting entirely of software events can always go on.
696 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100697 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200698 return 1;
699 /*
700 * If an exclusive group is already on, no other hardware
701 * events can go on.
702 */
703 if (cpuctx->exclusive)
704 return 0;
705 /*
706 * If this group is exclusive and there are already
707 * events on the CPU, it can't go on.
708 */
709 if (event->attr.exclusive && cpuctx->active_oncpu)
710 return 0;
711 /*
712 * Otherwise, try to add it if all previous groups were able
713 * to go on.
714 */
715 return can_add_hw;
716}
717
718static void add_event_to_ctx(struct perf_event *event,
719 struct perf_event_context *ctx)
720{
721 list_add_event(event, ctx);
722 event->tstamp_enabled = ctx->time;
723 event->tstamp_running = ctx->time;
724 event->tstamp_stopped = ctx->time;
725}
726
727/*
728 * Cross CPU call to install and enable a performance event
729 *
730 * Must be called with ctx->mutex held
731 */
732static void __perf_install_in_context(void *info)
733{
734 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
735 struct perf_event *event = info;
736 struct perf_event_context *ctx = event->ctx;
737 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200738 int err;
739
740 /*
741 * If this is a task context, we need to check whether it is
742 * the current task context of this cpu. If not it has been
743 * scheduled out before the smp call arrived.
744 * Or possibly this is the right context but it isn't
745 * on this cpu because it had no events.
746 */
747 if (ctx->task && cpuctx->task_ctx != ctx) {
748 if (cpuctx->task_ctx || ctx->task != current)
749 return;
750 cpuctx->task_ctx = ctx;
751 }
752
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100753 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200754 ctx->is_active = 1;
755 update_context_time(ctx);
756
757 /*
758 * Protect the list operation against NMI by disabling the
759 * events on a global level. NOP for non NMI based events.
760 */
761 perf_disable();
762
763 add_event_to_ctx(event, ctx);
764
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100765 if (event->cpu != -1 && event->cpu != smp_processor_id())
766 goto unlock;
767
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200768 /*
769 * Don't put the event on if it is disabled or if
770 * it is in a group and the group isn't on.
771 */
772 if (event->state != PERF_EVENT_STATE_INACTIVE ||
773 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
774 goto unlock;
775
776 /*
777 * An exclusive event can't go on if there are already active
778 * hardware events, and no hardware event can go on if there
779 * is already an exclusive event on.
780 */
781 if (!group_can_go_on(event, cpuctx, 1))
782 err = -EEXIST;
783 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100784 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200785
786 if (err) {
787 /*
788 * This event couldn't go on. If it is in a group
789 * then we have to pull the whole group off.
790 * If the event group is pinned then put it in error state.
791 */
792 if (leader != event)
793 group_sched_out(leader, cpuctx, ctx);
794 if (leader->attr.pinned) {
795 update_group_times(leader);
796 leader->state = PERF_EVENT_STATE_ERROR;
797 }
798 }
799
800 if (!err && !ctx->task && cpuctx->max_pertask)
801 cpuctx->max_pertask--;
802
803 unlock:
804 perf_enable();
805
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100806 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200807}
808
809/*
810 * Attach a performance event to a context
811 *
812 * First we add the event to the list with the hardware enable bit
813 * in event->hw_config cleared.
814 *
815 * If the event is attached to a task which is on a CPU we use a smp
816 * call to enable it in the task context. The task might have been
817 * scheduled away, but we check this in the smp call again.
818 *
819 * Must be called with ctx->mutex held.
820 */
821static void
822perf_install_in_context(struct perf_event_context *ctx,
823 struct perf_event *event,
824 int cpu)
825{
826 struct task_struct *task = ctx->task;
827
828 if (!task) {
829 /*
830 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200831 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200832 */
833 smp_call_function_single(cpu, __perf_install_in_context,
834 event, 1);
835 return;
836 }
837
838retry:
839 task_oncpu_function_call(task, __perf_install_in_context,
840 event);
841
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100842 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200843 /*
844 * we need to retry the smp call.
845 */
846 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100847 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200848 goto retry;
849 }
850
851 /*
852 * The lock prevents that this context is scheduled in so we
853 * can add the event safely, if it the call above did not
854 * succeed.
855 */
856 if (list_empty(&event->group_entry))
857 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100858 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200859}
860
861/*
862 * Put a event into inactive state and update time fields.
863 * Enabling the leader of a group effectively enables all
864 * the group members that aren't explicitly disabled, so we
865 * have to update their ->tstamp_enabled also.
866 * Note: this works for group members as well as group leaders
867 * since the non-leader members' sibling_lists will be empty.
868 */
869static void __perf_event_mark_enabled(struct perf_event *event,
870 struct perf_event_context *ctx)
871{
872 struct perf_event *sub;
873
874 event->state = PERF_EVENT_STATE_INACTIVE;
875 event->tstamp_enabled = ctx->time - event->total_time_enabled;
876 list_for_each_entry(sub, &event->sibling_list, group_entry)
877 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
878 sub->tstamp_enabled =
879 ctx->time - sub->total_time_enabled;
880}
881
882/*
883 * Cross CPU call to enable a performance event
884 */
885static void __perf_event_enable(void *info)
886{
887 struct perf_event *event = info;
888 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
889 struct perf_event_context *ctx = event->ctx;
890 struct perf_event *leader = event->group_leader;
891 int err;
892
893 /*
894 * If this is a per-task event, need to check whether this
895 * event's task is the current task on this cpu.
896 */
897 if (ctx->task && cpuctx->task_ctx != ctx) {
898 if (cpuctx->task_ctx || ctx->task != current)
899 return;
900 cpuctx->task_ctx = ctx;
901 }
902
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100903 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200904 ctx->is_active = 1;
905 update_context_time(ctx);
906
907 if (event->state >= PERF_EVENT_STATE_INACTIVE)
908 goto unlock;
909 __perf_event_mark_enabled(event, ctx);
910
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100911 if (event->cpu != -1 && event->cpu != smp_processor_id())
912 goto unlock;
913
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200914 /*
915 * If the event is in a group and isn't the group leader,
916 * then don't put it on unless the group is on.
917 */
918 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919 goto unlock;
920
921 if (!group_can_go_on(event, cpuctx, 1)) {
922 err = -EEXIST;
923 } else {
924 perf_disable();
925 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100926 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200927 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100928 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200929 perf_enable();
930 }
931
932 if (err) {
933 /*
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
936 */
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
942 }
943 }
944
945 unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100946 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200947}
948
949/*
950 * Enable a event.
951 *
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
957 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100958void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200959{
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
962
963 if (!task) {
964 /*
965 * Enable the event on the cpu that it's on
966 */
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
970 }
971
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100972 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
975
976 /*
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
982 */
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
985
986 retry:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100987 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200988 task_oncpu_function_call(task, __perf_event_enable, event);
989
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100990 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200991
992 /*
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
995 */
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
998
999 /*
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1002 */
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1005
1006 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001007 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001008}
1009
1010static int perf_event_refresh(struct perf_event *event, int refresh)
1011{
1012 /*
1013 * not supported on inherited events
1014 */
1015 if (event->attr.inherit)
1016 return -EINVAL;
1017
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1020
1021 return 0;
1022}
1023
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001024enum event_type_t {
1025 EVENT_FLEXIBLE = 0x1,
1026 EVENT_PINNED = 0x2,
1027 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1028};
1029
1030static void ctx_sched_out(struct perf_event_context *ctx,
1031 struct perf_cpu_context *cpuctx,
1032 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001033{
1034 struct perf_event *event;
1035
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001036 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001037 ctx->is_active = 0;
1038 if (likely(!ctx->nr_events))
1039 goto out;
1040 update_context_time(ctx);
1041
1042 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001043 if (!ctx->nr_active)
1044 goto out_enable;
1045
1046 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001047 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1048 group_sched_out(event, cpuctx, ctx);
1049
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001050 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001051 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001052 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001053
1054 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001055 perf_enable();
1056 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001057 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001058}
1059
1060/*
1061 * Test whether two contexts are equivalent, i.e. whether they
1062 * have both been cloned from the same version of the same context
1063 * and they both have the same number of enabled events.
1064 * If the number of enabled events is the same, then the set
1065 * of enabled events should be the same, because these are both
1066 * inherited contexts, therefore we can't access individual events
1067 * in them directly with an fd; we can only enable/disable all
1068 * events via prctl, or enable/disable all events in a family
1069 * via ioctl, which will have the same effect on both contexts.
1070 */
1071static int context_equiv(struct perf_event_context *ctx1,
1072 struct perf_event_context *ctx2)
1073{
1074 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1075 && ctx1->parent_gen == ctx2->parent_gen
1076 && !ctx1->pin_count && !ctx2->pin_count;
1077}
1078
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001079static void __perf_event_sync_stat(struct perf_event *event,
1080 struct perf_event *next_event)
1081{
1082 u64 value;
1083
1084 if (!event->attr.inherit_stat)
1085 return;
1086
1087 /*
1088 * Update the event value, we cannot use perf_event_read()
1089 * because we're in the middle of a context switch and have IRQs
1090 * disabled, which upsets smp_call_function_single(), however
1091 * we know the event must be on the current CPU, therefore we
1092 * don't need to use it.
1093 */
1094 switch (event->state) {
1095 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001096 event->pmu->read(event);
1097 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001098
1099 case PERF_EVENT_STATE_INACTIVE:
1100 update_event_times(event);
1101 break;
1102
1103 default:
1104 break;
1105 }
1106
1107 /*
1108 * In order to keep per-task stats reliable we need to flip the event
1109 * values when we flip the contexts.
1110 */
1111 value = atomic64_read(&next_event->count);
1112 value = atomic64_xchg(&event->count, value);
1113 atomic64_set(&next_event->count, value);
1114
1115 swap(event->total_time_enabled, next_event->total_time_enabled);
1116 swap(event->total_time_running, next_event->total_time_running);
1117
1118 /*
1119 * Since we swizzled the values, update the user visible data too.
1120 */
1121 perf_event_update_userpage(event);
1122 perf_event_update_userpage(next_event);
1123}
1124
1125#define list_next_entry(pos, member) \
1126 list_entry(pos->member.next, typeof(*pos), member)
1127
1128static void perf_event_sync_stat(struct perf_event_context *ctx,
1129 struct perf_event_context *next_ctx)
1130{
1131 struct perf_event *event, *next_event;
1132
1133 if (!ctx->nr_stat)
1134 return;
1135
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001136 update_context_time(ctx);
1137
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001138 event = list_first_entry(&ctx->event_list,
1139 struct perf_event, event_entry);
1140
1141 next_event = list_first_entry(&next_ctx->event_list,
1142 struct perf_event, event_entry);
1143
1144 while (&event->event_entry != &ctx->event_list &&
1145 &next_event->event_entry != &next_ctx->event_list) {
1146
1147 __perf_event_sync_stat(event, next_event);
1148
1149 event = list_next_entry(event, event_entry);
1150 next_event = list_next_entry(next_event, event_entry);
1151 }
1152}
1153
1154/*
1155 * Called from scheduler to remove the events of the current task,
1156 * with interrupts disabled.
1157 *
1158 * We stop each event and update the event value in event->count.
1159 *
1160 * This does not protect us against NMI, but disable()
1161 * sets the disabled bit in the control field of event _before_
1162 * accessing the event control register. If a NMI hits, then it will
1163 * not restart the event.
1164 */
1165void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001166 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001167{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001168 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001169 struct perf_event_context *ctx = task->perf_event_ctxp;
1170 struct perf_event_context *next_ctx;
1171 struct perf_event_context *parent;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001172 int do_switch = 1;
1173
Frederic Weisbeckere49a5bd2010-03-22 19:40:03 +01001174 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001175
1176 if (likely(!ctx || !cpuctx->task_ctx))
1177 return;
1178
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001179 rcu_read_lock();
1180 parent = rcu_dereference(ctx->parent_ctx);
1181 next_ctx = next->perf_event_ctxp;
1182 if (parent && next_ctx &&
1183 rcu_dereference(next_ctx->parent_ctx) == parent) {
1184 /*
1185 * Looks like the two contexts are clones, so we might be
1186 * able to optimize the context switch. We lock both
1187 * contexts and check that they are clones under the
1188 * lock (including re-checking that neither has been
1189 * uncloned in the meantime). It doesn't matter which
1190 * order we take the locks because no other cpu could
1191 * be trying to lock both of these tasks.
1192 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001193 raw_spin_lock(&ctx->lock);
1194 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001195 if (context_equiv(ctx, next_ctx)) {
1196 /*
1197 * XXX do we need a memory barrier of sorts
1198 * wrt to rcu_dereference() of perf_event_ctxp
1199 */
1200 task->perf_event_ctxp = next_ctx;
1201 next->perf_event_ctxp = ctx;
1202 ctx->task = next;
1203 next_ctx->task = task;
1204 do_switch = 0;
1205
1206 perf_event_sync_stat(ctx, next_ctx);
1207 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001208 raw_spin_unlock(&next_ctx->lock);
1209 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001210 }
1211 rcu_read_unlock();
1212
1213 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001214 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001215 cpuctx->task_ctx = NULL;
1216 }
1217}
1218
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001219static void task_ctx_sched_out(struct perf_event_context *ctx,
1220 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001221{
1222 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1223
1224 if (!cpuctx->task_ctx)
1225 return;
1226
1227 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1228 return;
1229
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001230 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001231 cpuctx->task_ctx = NULL;
1232}
1233
1234/*
1235 * Called with IRQs disabled
1236 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001237static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001238{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001239 task_ctx_sched_out(ctx, EVENT_ALL);
1240}
1241
1242/*
1243 * Called with IRQs disabled
1244 */
1245static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1246 enum event_type_t event_type)
1247{
1248 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001249}
1250
1251static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001252ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001253 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001254{
1255 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001256
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001257 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1258 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001259 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001260 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001261 continue;
1262
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001263 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001264 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001265
1266 /*
1267 * If this pinned group hasn't been scheduled,
1268 * put it in error state.
1269 */
1270 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1271 update_group_times(event);
1272 event->state = PERF_EVENT_STATE_ERROR;
1273 }
1274 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001275}
1276
1277static void
1278ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001279 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001280{
1281 struct perf_event *event;
1282 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001283
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001284 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1285 /* Ignore events in OFF or ERROR state */
1286 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001287 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001288 /*
1289 * Listen to the 'cpu' scheduling filter constraint
1290 * of events:
1291 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001292 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001293 continue;
1294
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001295 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001296 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001297 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001298 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001299}
1300
1301static void
1302ctx_sched_in(struct perf_event_context *ctx,
1303 struct perf_cpu_context *cpuctx,
1304 enum event_type_t event_type)
1305{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001306 raw_spin_lock(&ctx->lock);
1307 ctx->is_active = 1;
1308 if (likely(!ctx->nr_events))
1309 goto out;
1310
1311 ctx->timestamp = perf_clock();
1312
1313 perf_disable();
1314
1315 /*
1316 * First go through the list and put on any pinned groups
1317 * in order to give them the best chance of going on.
1318 */
1319 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001320 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001321
1322 /* Then walk through the lower prio flexible groups */
1323 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001324 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001325
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001326 perf_enable();
1327 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001328 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001329}
1330
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001331static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1332 enum event_type_t event_type)
1333{
1334 struct perf_event_context *ctx = &cpuctx->ctx;
1335
1336 ctx_sched_in(ctx, cpuctx, event_type);
1337}
1338
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001339static void task_ctx_sched_in(struct task_struct *task,
1340 enum event_type_t event_type)
1341{
1342 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1343 struct perf_event_context *ctx = task->perf_event_ctxp;
1344
1345 if (likely(!ctx))
1346 return;
1347 if (cpuctx->task_ctx == ctx)
1348 return;
1349 ctx_sched_in(ctx, cpuctx, event_type);
1350 cpuctx->task_ctx = ctx;
1351}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001352/*
1353 * Called from scheduler to add the events of the current task
1354 * with interrupts disabled.
1355 *
1356 * We restore the event value and then enable it.
1357 *
1358 * This does not protect us against NMI, but enable()
1359 * sets the enabled bit in the control field of event _before_
1360 * accessing the event control register. If a NMI hits, then it will
1361 * keep the event running.
1362 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001363void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001364{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001365 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1366 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001367
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001368 if (likely(!ctx))
1369 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001370
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001371 if (cpuctx->task_ctx == ctx)
1372 return;
1373
eranian@google.com9b33fa62010-03-10 22:26:05 -08001374 perf_disable();
1375
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001376 /*
1377 * We want to keep the following priority order:
1378 * cpu pinned (that don't need to move), task pinned,
1379 * cpu flexible, task flexible.
1380 */
1381 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1382
1383 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1384 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1385 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1386
1387 cpuctx->task_ctx = ctx;
eranian@google.com9b33fa62010-03-10 22:26:05 -08001388
1389 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001390}
1391
1392#define MAX_INTERRUPTS (~0ULL)
1393
1394static void perf_log_throttle(struct perf_event *event, int enable);
1395
Peter Zijlstraabd50712010-01-26 18:50:16 +01001396static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1397{
1398 u64 frequency = event->attr.sample_freq;
1399 u64 sec = NSEC_PER_SEC;
1400 u64 divisor, dividend;
1401
1402 int count_fls, nsec_fls, frequency_fls, sec_fls;
1403
1404 count_fls = fls64(count);
1405 nsec_fls = fls64(nsec);
1406 frequency_fls = fls64(frequency);
1407 sec_fls = 30;
1408
1409 /*
1410 * We got @count in @nsec, with a target of sample_freq HZ
1411 * the target period becomes:
1412 *
1413 * @count * 10^9
1414 * period = -------------------
1415 * @nsec * sample_freq
1416 *
1417 */
1418
1419 /*
1420 * Reduce accuracy by one bit such that @a and @b converge
1421 * to a similar magnitude.
1422 */
1423#define REDUCE_FLS(a, b) \
1424do { \
1425 if (a##_fls > b##_fls) { \
1426 a >>= 1; \
1427 a##_fls--; \
1428 } else { \
1429 b >>= 1; \
1430 b##_fls--; \
1431 } \
1432} while (0)
1433
1434 /*
1435 * Reduce accuracy until either term fits in a u64, then proceed with
1436 * the other, so that finally we can do a u64/u64 division.
1437 */
1438 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1439 REDUCE_FLS(nsec, frequency);
1440 REDUCE_FLS(sec, count);
1441 }
1442
1443 if (count_fls + sec_fls > 64) {
1444 divisor = nsec * frequency;
1445
1446 while (count_fls + sec_fls > 64) {
1447 REDUCE_FLS(count, sec);
1448 divisor >>= 1;
1449 }
1450
1451 dividend = count * sec;
1452 } else {
1453 dividend = count * sec;
1454
1455 while (nsec_fls + frequency_fls > 64) {
1456 REDUCE_FLS(nsec, frequency);
1457 dividend >>= 1;
1458 }
1459
1460 divisor = nsec * frequency;
1461 }
1462
1463 return div64_u64(dividend, divisor);
1464}
1465
Stephane Eraniand76a0812010-02-08 17:06:01 +02001466static void perf_event_stop(struct perf_event *event)
1467{
1468 if (!event->pmu->stop)
1469 return event->pmu->disable(event);
1470
1471 return event->pmu->stop(event);
1472}
1473
1474static int perf_event_start(struct perf_event *event)
1475{
1476 if (!event->pmu->start)
1477 return event->pmu->enable(event);
1478
1479 return event->pmu->start(event);
1480}
1481
Peter Zijlstraabd50712010-01-26 18:50:16 +01001482static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001483{
1484 struct hw_perf_event *hwc = &event->hw;
1485 u64 period, sample_period;
1486 s64 delta;
1487
Peter Zijlstraabd50712010-01-26 18:50:16 +01001488 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001489
1490 delta = (s64)(period - hwc->sample_period);
1491 delta = (delta + 7) / 8; /* low pass filter */
1492
1493 sample_period = hwc->sample_period + delta;
1494
1495 if (!sample_period)
1496 sample_period = 1;
1497
1498 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001499
1500 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1501 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001502 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001503 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001504 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001505 perf_enable();
1506 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001507}
1508
1509static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1510{
1511 struct perf_event *event;
1512 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001513 u64 interrupts, now;
1514 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001515
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001516 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001517 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001518 if (event->state != PERF_EVENT_STATE_ACTIVE)
1519 continue;
1520
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001521 if (event->cpu != -1 && event->cpu != smp_processor_id())
1522 continue;
1523
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001524 hwc = &event->hw;
1525
1526 interrupts = hwc->interrupts;
1527 hwc->interrupts = 0;
1528
1529 /*
1530 * unthrottle events on the tick
1531 */
1532 if (interrupts == MAX_INTERRUPTS) {
1533 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001534 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001535 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001536 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001537 }
1538
1539 if (!event->attr.freq || !event->attr.sample_freq)
1540 continue;
1541
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001542 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001543 event->pmu->read(event);
1544 now = atomic64_read(&event->count);
1545 delta = now - hwc->freq_count_stamp;
1546 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001547
Peter Zijlstraabd50712010-01-26 18:50:16 +01001548 if (delta > 0)
1549 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001550 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001551 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001552 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001553}
1554
1555/*
1556 * Round-robin a context's events:
1557 */
1558static void rotate_ctx(struct perf_event_context *ctx)
1559{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001560 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001561
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001562 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001563 list_rotate_left(&ctx->flexible_groups);
1564
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001565 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001566}
1567
Peter Zijlstra49f47432009-12-27 11:51:52 +01001568void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001569{
1570 struct perf_cpu_context *cpuctx;
1571 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001572 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001573
1574 if (!atomic_read(&nr_events))
1575 return;
1576
Peter Zijlstra49f47432009-12-27 11:51:52 +01001577 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001578 if (cpuctx->ctx.nr_events &&
1579 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1580 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001581
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001582 ctx = curr->perf_event_ctxp;
1583 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1584 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001585
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001586 perf_ctx_adjust_freq(&cpuctx->ctx);
1587 if (ctx)
1588 perf_ctx_adjust_freq(ctx);
1589
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001590 if (!rotate)
1591 return;
1592
1593 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001594 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001595 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001596 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001597
1598 rotate_ctx(&cpuctx->ctx);
1599 if (ctx)
1600 rotate_ctx(ctx);
1601
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001602 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001603 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001604 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001605 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001606}
1607
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001608static int event_enable_on_exec(struct perf_event *event,
1609 struct perf_event_context *ctx)
1610{
1611 if (!event->attr.enable_on_exec)
1612 return 0;
1613
1614 event->attr.enable_on_exec = 0;
1615 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1616 return 0;
1617
1618 __perf_event_mark_enabled(event, ctx);
1619
1620 return 1;
1621}
1622
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001623/*
1624 * Enable all of a task's events that have been marked enable-on-exec.
1625 * This expects task == current.
1626 */
1627static void perf_event_enable_on_exec(struct task_struct *task)
1628{
1629 struct perf_event_context *ctx;
1630 struct perf_event *event;
1631 unsigned long flags;
1632 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001633 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001634
1635 local_irq_save(flags);
1636 ctx = task->perf_event_ctxp;
1637 if (!ctx || !ctx->nr_events)
1638 goto out;
1639
1640 __perf_event_task_sched_out(ctx);
1641
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001642 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001643
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001644 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1645 ret = event_enable_on_exec(event, ctx);
1646 if (ret)
1647 enabled = 1;
1648 }
1649
1650 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1651 ret = event_enable_on_exec(event, ctx);
1652 if (ret)
1653 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001654 }
1655
1656 /*
1657 * Unclone this context if we enabled any event.
1658 */
1659 if (enabled)
1660 unclone_ctx(ctx);
1661
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001662 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001663
Peter Zijlstra49f47432009-12-27 11:51:52 +01001664 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001665 out:
1666 local_irq_restore(flags);
1667}
1668
1669/*
1670 * Cross CPU call to read the hardware event
1671 */
1672static void __perf_event_read(void *info)
1673{
1674 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1675 struct perf_event *event = info;
1676 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001677
1678 /*
1679 * If this is a task context, we need to check whether it is
1680 * the current task context of this cpu. If not it has been
1681 * scheduled out before the smp call arrived. In that case
1682 * event->count would have been updated to a recent sample
1683 * when the event was scheduled out.
1684 */
1685 if (ctx->task && cpuctx->task_ctx != ctx)
1686 return;
1687
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001688 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001689 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001690 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001691 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001692
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001693 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001694}
1695
1696static u64 perf_event_read(struct perf_event *event)
1697{
1698 /*
1699 * If event is enabled and currently active on a CPU, update the
1700 * value in the event structure:
1701 */
1702 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1703 smp_call_function_single(event->oncpu,
1704 __perf_event_read, event, 1);
1705 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001706 struct perf_event_context *ctx = event->ctx;
1707 unsigned long flags;
1708
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001709 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001710 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001711 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001712 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001713 }
1714
1715 return atomic64_read(&event->count);
1716}
1717
1718/*
1719 * Initialize the perf_event context in a task_struct:
1720 */
1721static void
1722__perf_event_init_context(struct perf_event_context *ctx,
1723 struct task_struct *task)
1724{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001725 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001726 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001727 INIT_LIST_HEAD(&ctx->pinned_groups);
1728 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001729 INIT_LIST_HEAD(&ctx->event_list);
1730 atomic_set(&ctx->refcount, 1);
1731 ctx->task = task;
1732}
1733
1734static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1735{
1736 struct perf_event_context *ctx;
1737 struct perf_cpu_context *cpuctx;
1738 struct task_struct *task;
1739 unsigned long flags;
1740 int err;
1741
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001742 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001743 /* Must be root to operate on a CPU event: */
1744 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1745 return ERR_PTR(-EACCES);
1746
Paul Mackerras0f624e72009-12-15 19:40:32 +11001747 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001748 return ERR_PTR(-EINVAL);
1749
1750 /*
1751 * We could be clever and allow to attach a event to an
1752 * offline CPU and activate it when the CPU comes up, but
1753 * that's for later.
1754 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001755 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001756 return ERR_PTR(-ENODEV);
1757
1758 cpuctx = &per_cpu(perf_cpu_context, cpu);
1759 ctx = &cpuctx->ctx;
1760 get_ctx(ctx);
1761
1762 return ctx;
1763 }
1764
1765 rcu_read_lock();
1766 if (!pid)
1767 task = current;
1768 else
1769 task = find_task_by_vpid(pid);
1770 if (task)
1771 get_task_struct(task);
1772 rcu_read_unlock();
1773
1774 if (!task)
1775 return ERR_PTR(-ESRCH);
1776
1777 /*
1778 * Can't attach events to a dying task.
1779 */
1780 err = -ESRCH;
1781 if (task->flags & PF_EXITING)
1782 goto errout;
1783
1784 /* Reuse ptrace permission checks for now. */
1785 err = -EACCES;
1786 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1787 goto errout;
1788
1789 retry:
1790 ctx = perf_lock_task_context(task, &flags);
1791 if (ctx) {
1792 unclone_ctx(ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001793 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001794 }
1795
1796 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001797 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001798 err = -ENOMEM;
1799 if (!ctx)
1800 goto errout;
1801 __perf_event_init_context(ctx, task);
1802 get_ctx(ctx);
1803 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1804 /*
1805 * We raced with some other task; use
1806 * the context they set.
1807 */
1808 kfree(ctx);
1809 goto retry;
1810 }
1811 get_task_struct(task);
1812 }
1813
1814 put_task_struct(task);
1815 return ctx;
1816
1817 errout:
1818 put_task_struct(task);
1819 return ERR_PTR(err);
1820}
1821
Li Zefan6fb29152009-10-15 11:21:42 +08001822static void perf_event_free_filter(struct perf_event *event);
1823
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001824static void free_event_rcu(struct rcu_head *head)
1825{
1826 struct perf_event *event;
1827
1828 event = container_of(head, struct perf_event, rcu_head);
1829 if (event->ns)
1830 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001831 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001832 kfree(event);
1833}
1834
1835static void perf_pending_sync(struct perf_event *event);
1836
1837static void free_event(struct perf_event *event)
1838{
1839 perf_pending_sync(event);
1840
1841 if (!event->parent) {
1842 atomic_dec(&nr_events);
1843 if (event->attr.mmap)
1844 atomic_dec(&nr_mmap_events);
1845 if (event->attr.comm)
1846 atomic_dec(&nr_comm_events);
1847 if (event->attr.task)
1848 atomic_dec(&nr_task_events);
1849 }
1850
1851 if (event->output) {
1852 fput(event->output->filp);
1853 event->output = NULL;
1854 }
1855
1856 if (event->destroy)
1857 event->destroy(event);
1858
1859 put_ctx(event->ctx);
1860 call_rcu(&event->rcu_head, free_event_rcu);
1861}
1862
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001863int perf_event_release_kernel(struct perf_event *event)
1864{
1865 struct perf_event_context *ctx = event->ctx;
1866
Peter Zijlstra4fd38e42010-05-06 17:31:38 +02001867 event->state = PERF_EVENT_STATE_FREE;
1868
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001869 WARN_ON_ONCE(ctx->parent_ctx);
Peter Zijlstraa0507c82010-05-06 15:42:53 +02001870 /*
1871 * There are two ways this annotation is useful:
1872 *
1873 * 1) there is a lock recursion from perf_event_exit_task
1874 * see the comment there.
1875 *
1876 * 2) there is a lock-inversion with mmap_sem through
1877 * perf_event_read_group(), which takes faults while
1878 * holding ctx->mutex, however this is called after
1879 * the last filedesc died, so there is no possibility
1880 * to trigger the AB-BA case.
1881 */
1882 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001883 perf_event_remove_from_context(event);
1884 mutex_unlock(&ctx->mutex);
1885
1886 mutex_lock(&event->owner->perf_event_mutex);
1887 list_del_init(&event->owner_entry);
1888 mutex_unlock(&event->owner->perf_event_mutex);
1889 put_task_struct(event->owner);
1890
1891 free_event(event);
1892
1893 return 0;
1894}
1895EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1896
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001897/*
1898 * Called when the last reference to the file is gone.
1899 */
1900static int perf_release(struct inode *inode, struct file *file)
1901{
1902 struct perf_event *event = file->private_data;
1903
1904 file->private_data = NULL;
1905
1906 return perf_event_release_kernel(event);
1907}
1908
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001909static int perf_event_read_size(struct perf_event *event)
1910{
1911 int entry = sizeof(u64); /* value */
1912 int size = 0;
1913 int nr = 1;
1914
1915 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1916 size += sizeof(u64);
1917
1918 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1919 size += sizeof(u64);
1920
1921 if (event->attr.read_format & PERF_FORMAT_ID)
1922 entry += sizeof(u64);
1923
1924 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1925 nr += event->group_leader->nr_siblings;
1926 size += sizeof(u64);
1927 }
1928
1929 size += entry * nr;
1930
1931 return size;
1932}
1933
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001934u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001935{
1936 struct perf_event *child;
1937 u64 total = 0;
1938
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001939 *enabled = 0;
1940 *running = 0;
1941
Peter Zijlstra6f105812009-11-20 22:19:56 +01001942 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001943 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001944 *enabled += event->total_time_enabled +
1945 atomic64_read(&event->child_total_time_enabled);
1946 *running += event->total_time_running +
1947 atomic64_read(&event->child_total_time_running);
1948
1949 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001951 *enabled += child->total_time_enabled;
1952 *running += child->total_time_running;
1953 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001954 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001955
1956 return total;
1957}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001958EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001959
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001960static int perf_event_read_group(struct perf_event *event,
1961 u64 read_format, char __user *buf)
1962{
1963 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001964 int n = 0, size = 0, ret = -EFAULT;
1965 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001966 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001967 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001968
Peter Zijlstra6f105812009-11-20 22:19:56 +01001969 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001970 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001971
1972 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001973 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1974 values[n++] = enabled;
1975 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1976 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001977 values[n++] = count;
1978 if (read_format & PERF_FORMAT_ID)
1979 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001980
1981 size = n * sizeof(u64);
1982
1983 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001984 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001985
Peter Zijlstra6f105812009-11-20 22:19:56 +01001986 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001987
1988 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001989 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001990
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001991 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001992 if (read_format & PERF_FORMAT_ID)
1993 values[n++] = primary_event_id(sub);
1994
1995 size = n * sizeof(u64);
1996
Stephane Eranian184d3da2009-11-23 21:40:49 -08001997 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001998 ret = -EFAULT;
1999 goto unlock;
2000 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01002001
2002 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002003 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01002004unlock:
2005 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002006
Peter Zijlstraabf48682009-11-20 22:19:49 +01002007 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002008}
2009
2010static int perf_event_read_one(struct perf_event *event,
2011 u64 read_format, char __user *buf)
2012{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002013 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002014 u64 values[4];
2015 int n = 0;
2016
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002017 values[n++] = perf_event_read_value(event, &enabled, &running);
2018 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2019 values[n++] = enabled;
2020 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2021 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002022 if (read_format & PERF_FORMAT_ID)
2023 values[n++] = primary_event_id(event);
2024
2025 if (copy_to_user(buf, values, n * sizeof(u64)))
2026 return -EFAULT;
2027
2028 return n * sizeof(u64);
2029}
2030
2031/*
2032 * Read the performance event - simple non blocking version for now
2033 */
2034static ssize_t
2035perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2036{
2037 u64 read_format = event->attr.read_format;
2038 int ret;
2039
2040 /*
2041 * Return end-of-file for a read on a event that is in
2042 * error state (i.e. because it was pinned but it couldn't be
2043 * scheduled on to the CPU at some point).
2044 */
2045 if (event->state == PERF_EVENT_STATE_ERROR)
2046 return 0;
2047
2048 if (count < perf_event_read_size(event))
2049 return -ENOSPC;
2050
2051 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002052 if (read_format & PERF_FORMAT_GROUP)
2053 ret = perf_event_read_group(event, read_format, buf);
2054 else
2055 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002056
2057 return ret;
2058}
2059
2060static ssize_t
2061perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2062{
2063 struct perf_event *event = file->private_data;
2064
2065 return perf_read_hw(event, buf, count);
2066}
2067
2068static unsigned int perf_poll(struct file *file, poll_table *wait)
2069{
2070 struct perf_event *event = file->private_data;
2071 struct perf_mmap_data *data;
2072 unsigned int events = POLL_HUP;
2073
2074 rcu_read_lock();
2075 data = rcu_dereference(event->data);
2076 if (data)
2077 events = atomic_xchg(&data->poll, 0);
2078 rcu_read_unlock();
2079
2080 poll_wait(file, &event->waitq, wait);
2081
2082 return events;
2083}
2084
2085static void perf_event_reset(struct perf_event *event)
2086{
2087 (void)perf_event_read(event);
2088 atomic64_set(&event->count, 0);
2089 perf_event_update_userpage(event);
2090}
2091
2092/*
2093 * Holding the top-level event's child_mutex means that any
2094 * descendant process that has inherited this event will block
2095 * in sync_child_event if it goes to exit, thus satisfying the
2096 * task existence requirements of perf_event_enable/disable.
2097 */
2098static void perf_event_for_each_child(struct perf_event *event,
2099 void (*func)(struct perf_event *))
2100{
2101 struct perf_event *child;
2102
2103 WARN_ON_ONCE(event->ctx->parent_ctx);
2104 mutex_lock(&event->child_mutex);
2105 func(event);
2106 list_for_each_entry(child, &event->child_list, child_list)
2107 func(child);
2108 mutex_unlock(&event->child_mutex);
2109}
2110
2111static void perf_event_for_each(struct perf_event *event,
2112 void (*func)(struct perf_event *))
2113{
2114 struct perf_event_context *ctx = event->ctx;
2115 struct perf_event *sibling;
2116
2117 WARN_ON_ONCE(ctx->parent_ctx);
2118 mutex_lock(&ctx->mutex);
2119 event = event->group_leader;
2120
2121 perf_event_for_each_child(event, func);
2122 func(event);
2123 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2124 perf_event_for_each_child(event, func);
2125 mutex_unlock(&ctx->mutex);
2126}
2127
2128static int perf_event_period(struct perf_event *event, u64 __user *arg)
2129{
2130 struct perf_event_context *ctx = event->ctx;
2131 unsigned long size;
2132 int ret = 0;
2133 u64 value;
2134
2135 if (!event->attr.sample_period)
2136 return -EINVAL;
2137
2138 size = copy_from_user(&value, arg, sizeof(value));
2139 if (size != sizeof(value))
2140 return -EFAULT;
2141
2142 if (!value)
2143 return -EINVAL;
2144
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002145 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002146 if (event->attr.freq) {
2147 if (value > sysctl_perf_event_sample_rate) {
2148 ret = -EINVAL;
2149 goto unlock;
2150 }
2151
2152 event->attr.sample_freq = value;
2153 } else {
2154 event->attr.sample_period = value;
2155 event->hw.sample_period = value;
2156 }
2157unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002158 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002159
2160 return ret;
2161}
2162
Li Zefan6fb29152009-10-15 11:21:42 +08002163static int perf_event_set_output(struct perf_event *event, int output_fd);
2164static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002165
2166static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2167{
2168 struct perf_event *event = file->private_data;
2169 void (*func)(struct perf_event *);
2170 u32 flags = arg;
2171
2172 switch (cmd) {
2173 case PERF_EVENT_IOC_ENABLE:
2174 func = perf_event_enable;
2175 break;
2176 case PERF_EVENT_IOC_DISABLE:
2177 func = perf_event_disable;
2178 break;
2179 case PERF_EVENT_IOC_RESET:
2180 func = perf_event_reset;
2181 break;
2182
2183 case PERF_EVENT_IOC_REFRESH:
2184 return perf_event_refresh(event, arg);
2185
2186 case PERF_EVENT_IOC_PERIOD:
2187 return perf_event_period(event, (u64 __user *)arg);
2188
2189 case PERF_EVENT_IOC_SET_OUTPUT:
2190 return perf_event_set_output(event, arg);
2191
Li Zefan6fb29152009-10-15 11:21:42 +08002192 case PERF_EVENT_IOC_SET_FILTER:
2193 return perf_event_set_filter(event, (void __user *)arg);
2194
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002195 default:
2196 return -ENOTTY;
2197 }
2198
2199 if (flags & PERF_IOC_FLAG_GROUP)
2200 perf_event_for_each(event, func);
2201 else
2202 perf_event_for_each_child(event, func);
2203
2204 return 0;
2205}
2206
2207int perf_event_task_enable(void)
2208{
2209 struct perf_event *event;
2210
2211 mutex_lock(&current->perf_event_mutex);
2212 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2213 perf_event_for_each_child(event, perf_event_enable);
2214 mutex_unlock(&current->perf_event_mutex);
2215
2216 return 0;
2217}
2218
2219int perf_event_task_disable(void)
2220{
2221 struct perf_event *event;
2222
2223 mutex_lock(&current->perf_event_mutex);
2224 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2225 perf_event_for_each_child(event, perf_event_disable);
2226 mutex_unlock(&current->perf_event_mutex);
2227
2228 return 0;
2229}
2230
2231#ifndef PERF_EVENT_INDEX_OFFSET
2232# define PERF_EVENT_INDEX_OFFSET 0
2233#endif
2234
2235static int perf_event_index(struct perf_event *event)
2236{
2237 if (event->state != PERF_EVENT_STATE_ACTIVE)
2238 return 0;
2239
2240 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2241}
2242
2243/*
2244 * Callers need to ensure there can be no nesting of this function, otherwise
2245 * the seqlock logic goes bad. We can not serialize this because the arch
2246 * code calls this from NMI context.
2247 */
2248void perf_event_update_userpage(struct perf_event *event)
2249{
2250 struct perf_event_mmap_page *userpg;
2251 struct perf_mmap_data *data;
2252
2253 rcu_read_lock();
2254 data = rcu_dereference(event->data);
2255 if (!data)
2256 goto unlock;
2257
2258 userpg = data->user_page;
2259
2260 /*
2261 * Disable preemption so as to not let the corresponding user-space
2262 * spin too long if we get preempted.
2263 */
2264 preempt_disable();
2265 ++userpg->lock;
2266 barrier();
2267 userpg->index = perf_event_index(event);
2268 userpg->offset = atomic64_read(&event->count);
2269 if (event->state == PERF_EVENT_STATE_ACTIVE)
2270 userpg->offset -= atomic64_read(&event->hw.prev_count);
2271
2272 userpg->time_enabled = event->total_time_enabled +
2273 atomic64_read(&event->child_total_time_enabled);
2274
2275 userpg->time_running = event->total_time_running +
2276 atomic64_read(&event->child_total_time_running);
2277
2278 barrier();
2279 ++userpg->lock;
2280 preempt_enable();
2281unlock:
2282 rcu_read_unlock();
2283}
2284
Peter Zijlstra906010b2009-09-21 16:08:49 +02002285static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002286{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002287 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002288}
2289
Peter Zijlstra906010b2009-09-21 16:08:49 +02002290#ifndef CONFIG_PERF_USE_VMALLOC
2291
2292/*
2293 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2294 */
2295
2296static struct page *
2297perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2298{
2299 if (pgoff > data->nr_pages)
2300 return NULL;
2301
2302 if (pgoff == 0)
2303 return virt_to_page(data->user_page);
2304
2305 return virt_to_page(data->data_pages[pgoff - 1]);
2306}
2307
2308static struct perf_mmap_data *
2309perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002310{
2311 struct perf_mmap_data *data;
2312 unsigned long size;
2313 int i;
2314
2315 WARN_ON(atomic_read(&event->mmap_count));
2316
2317 size = sizeof(struct perf_mmap_data);
2318 size += nr_pages * sizeof(void *);
2319
2320 data = kzalloc(size, GFP_KERNEL);
2321 if (!data)
2322 goto fail;
2323
2324 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2325 if (!data->user_page)
2326 goto fail_user_page;
2327
2328 for (i = 0; i < nr_pages; i++) {
2329 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2330 if (!data->data_pages[i])
2331 goto fail_data_pages;
2332 }
2333
Peter Zijlstra906010b2009-09-21 16:08:49 +02002334 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002335 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002336
Peter Zijlstra906010b2009-09-21 16:08:49 +02002337 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002338
2339fail_data_pages:
2340 for (i--; i >= 0; i--)
2341 free_page((unsigned long)data->data_pages[i]);
2342
2343 free_page((unsigned long)data->user_page);
2344
2345fail_user_page:
2346 kfree(data);
2347
2348fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002349 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002350}
2351
2352static void perf_mmap_free_page(unsigned long addr)
2353{
2354 struct page *page = virt_to_page((void *)addr);
2355
2356 page->mapping = NULL;
2357 __free_page(page);
2358}
2359
Peter Zijlstra906010b2009-09-21 16:08:49 +02002360static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002361{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002362 int i;
2363
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002364 perf_mmap_free_page((unsigned long)data->user_page);
2365 for (i = 0; i < data->nr_pages; i++)
2366 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002367 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002368}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002369
Peter Zijlstra906010b2009-09-21 16:08:49 +02002370#else
2371
2372/*
2373 * Back perf_mmap() with vmalloc memory.
2374 *
2375 * Required for architectures that have d-cache aliasing issues.
2376 */
2377
2378static struct page *
2379perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2380{
2381 if (pgoff > (1UL << data->data_order))
2382 return NULL;
2383
2384 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2385}
2386
2387static void perf_mmap_unmark_page(void *addr)
2388{
2389 struct page *page = vmalloc_to_page(addr);
2390
2391 page->mapping = NULL;
2392}
2393
2394static void perf_mmap_data_free_work(struct work_struct *work)
2395{
2396 struct perf_mmap_data *data;
2397 void *base;
2398 int i, nr;
2399
2400 data = container_of(work, struct perf_mmap_data, work);
2401 nr = 1 << data->data_order;
2402
2403 base = data->user_page;
2404 for (i = 0; i < nr + 1; i++)
2405 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2406
2407 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002408 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002409}
2410
2411static void perf_mmap_data_free(struct perf_mmap_data *data)
2412{
2413 schedule_work(&data->work);
2414}
2415
2416static struct perf_mmap_data *
2417perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2418{
2419 struct perf_mmap_data *data;
2420 unsigned long size;
2421 void *all_buf;
2422
2423 WARN_ON(atomic_read(&event->mmap_count));
2424
2425 size = sizeof(struct perf_mmap_data);
2426 size += sizeof(void *);
2427
2428 data = kzalloc(size, GFP_KERNEL);
2429 if (!data)
2430 goto fail;
2431
2432 INIT_WORK(&data->work, perf_mmap_data_free_work);
2433
2434 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2435 if (!all_buf)
2436 goto fail_all_buf;
2437
2438 data->user_page = all_buf;
2439 data->data_pages[0] = all_buf + PAGE_SIZE;
2440 data->data_order = ilog2(nr_pages);
2441 data->nr_pages = 1;
2442
2443 return data;
2444
2445fail_all_buf:
2446 kfree(data);
2447
2448fail:
2449 return NULL;
2450}
2451
2452#endif
2453
2454static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2455{
2456 struct perf_event *event = vma->vm_file->private_data;
2457 struct perf_mmap_data *data;
2458 int ret = VM_FAULT_SIGBUS;
2459
2460 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2461 if (vmf->pgoff == 0)
2462 ret = 0;
2463 return ret;
2464 }
2465
2466 rcu_read_lock();
2467 data = rcu_dereference(event->data);
2468 if (!data)
2469 goto unlock;
2470
2471 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2472 goto unlock;
2473
2474 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2475 if (!vmf->page)
2476 goto unlock;
2477
2478 get_page(vmf->page);
2479 vmf->page->mapping = vma->vm_file->f_mapping;
2480 vmf->page->index = vmf->pgoff;
2481
2482 ret = 0;
2483unlock:
2484 rcu_read_unlock();
2485
2486 return ret;
2487}
2488
2489static void
2490perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2491{
2492 long max_size = perf_data_size(data);
2493
2494 atomic_set(&data->lock, -1);
2495
2496 if (event->attr.watermark) {
2497 data->watermark = min_t(long, max_size,
2498 event->attr.wakeup_watermark);
2499 }
2500
2501 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002502 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002503
2504
2505 rcu_assign_pointer(event->data, data);
2506}
2507
2508static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2509{
2510 struct perf_mmap_data *data;
2511
2512 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2513 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002514}
2515
Peter Zijlstra906010b2009-09-21 16:08:49 +02002516static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002517{
2518 struct perf_mmap_data *data = event->data;
2519
2520 WARN_ON(atomic_read(&event->mmap_count));
2521
2522 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002523 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002524}
2525
2526static void perf_mmap_open(struct vm_area_struct *vma)
2527{
2528 struct perf_event *event = vma->vm_file->private_data;
2529
2530 atomic_inc(&event->mmap_count);
2531}
2532
2533static void perf_mmap_close(struct vm_area_struct *vma)
2534{
2535 struct perf_event *event = vma->vm_file->private_data;
2536
2537 WARN_ON_ONCE(event->ctx->parent_ctx);
2538 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002539 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002540 struct user_struct *user = current_user();
2541
Peter Zijlstra906010b2009-09-21 16:08:49 +02002542 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002543 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002544 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002545 mutex_unlock(&event->mmap_mutex);
2546 }
2547}
2548
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002549static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002550 .open = perf_mmap_open,
2551 .close = perf_mmap_close,
2552 .fault = perf_mmap_fault,
2553 .page_mkwrite = perf_mmap_fault,
2554};
2555
2556static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2557{
2558 struct perf_event *event = file->private_data;
2559 unsigned long user_locked, user_lock_limit;
2560 struct user_struct *user = current_user();
2561 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002562 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002563 unsigned long vma_size;
2564 unsigned long nr_pages;
2565 long user_extra, extra;
2566 int ret = 0;
2567
2568 if (!(vma->vm_flags & VM_SHARED))
2569 return -EINVAL;
2570
2571 vma_size = vma->vm_end - vma->vm_start;
2572 nr_pages = (vma_size / PAGE_SIZE) - 1;
2573
2574 /*
2575 * If we have data pages ensure they're a power-of-two number, so we
2576 * can do bitmasks instead of modulo.
2577 */
2578 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2579 return -EINVAL;
2580
2581 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2582 return -EINVAL;
2583
2584 if (vma->vm_pgoff != 0)
2585 return -EINVAL;
2586
2587 WARN_ON_ONCE(event->ctx->parent_ctx);
2588 mutex_lock(&event->mmap_mutex);
2589 if (event->output) {
2590 ret = -EINVAL;
2591 goto unlock;
2592 }
2593
2594 if (atomic_inc_not_zero(&event->mmap_count)) {
2595 if (nr_pages != event->data->nr_pages)
2596 ret = -EINVAL;
2597 goto unlock;
2598 }
2599
2600 user_extra = nr_pages + 1;
2601 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2602
2603 /*
2604 * Increase the limit linearly with more CPUs:
2605 */
2606 user_lock_limit *= num_online_cpus();
2607
2608 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2609
2610 extra = 0;
2611 if (user_locked > user_lock_limit)
2612 extra = user_locked - user_lock_limit;
2613
Jiri Slaby78d7d402010-03-05 13:42:54 -08002614 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002615 lock_limit >>= PAGE_SHIFT;
2616 locked = vma->vm_mm->locked_vm + extra;
2617
2618 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2619 !capable(CAP_IPC_LOCK)) {
2620 ret = -EPERM;
2621 goto unlock;
2622 }
2623
2624 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002625
2626 data = perf_mmap_data_alloc(event, nr_pages);
2627 ret = -ENOMEM;
2628 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002629 goto unlock;
2630
Peter Zijlstra906010b2009-09-21 16:08:49 +02002631 ret = 0;
2632 perf_mmap_data_init(event, data);
2633
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002634 atomic_set(&event->mmap_count, 1);
2635 atomic_long_add(user_extra, &user->locked_vm);
2636 vma->vm_mm->locked_vm += extra;
2637 event->data->nr_locked = extra;
2638 if (vma->vm_flags & VM_WRITE)
2639 event->data->writable = 1;
2640
2641unlock:
2642 mutex_unlock(&event->mmap_mutex);
2643
2644 vma->vm_flags |= VM_RESERVED;
2645 vma->vm_ops = &perf_mmap_vmops;
2646
2647 return ret;
2648}
2649
2650static int perf_fasync(int fd, struct file *filp, int on)
2651{
2652 struct inode *inode = filp->f_path.dentry->d_inode;
2653 struct perf_event *event = filp->private_data;
2654 int retval;
2655
2656 mutex_lock(&inode->i_mutex);
2657 retval = fasync_helper(fd, filp, on, &event->fasync);
2658 mutex_unlock(&inode->i_mutex);
2659
2660 if (retval < 0)
2661 return retval;
2662
2663 return 0;
2664}
2665
2666static const struct file_operations perf_fops = {
Arnd Bergmann3326c1c2010-03-23 19:09:33 +01002667 .llseek = no_llseek,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002668 .release = perf_release,
2669 .read = perf_read,
2670 .poll = perf_poll,
2671 .unlocked_ioctl = perf_ioctl,
2672 .compat_ioctl = perf_ioctl,
2673 .mmap = perf_mmap,
2674 .fasync = perf_fasync,
2675};
2676
2677/*
2678 * Perf event wakeup
2679 *
2680 * If there's data, ensure we set the poll() state and publish everything
2681 * to user-space before waking everybody up.
2682 */
2683
2684void perf_event_wakeup(struct perf_event *event)
2685{
2686 wake_up_all(&event->waitq);
2687
2688 if (event->pending_kill) {
2689 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2690 event->pending_kill = 0;
2691 }
2692}
2693
2694/*
2695 * Pending wakeups
2696 *
2697 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2698 *
2699 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2700 * single linked list and use cmpxchg() to add entries lockless.
2701 */
2702
2703static void perf_pending_event(struct perf_pending_entry *entry)
2704{
2705 struct perf_event *event = container_of(entry,
2706 struct perf_event, pending);
2707
2708 if (event->pending_disable) {
2709 event->pending_disable = 0;
2710 __perf_event_disable(event);
2711 }
2712
2713 if (event->pending_wakeup) {
2714 event->pending_wakeup = 0;
2715 perf_event_wakeup(event);
2716 }
2717}
2718
2719#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2720
2721static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2722 PENDING_TAIL,
2723};
2724
2725static void perf_pending_queue(struct perf_pending_entry *entry,
2726 void (*func)(struct perf_pending_entry *))
2727{
2728 struct perf_pending_entry **head;
2729
2730 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2731 return;
2732
2733 entry->func = func;
2734
2735 head = &get_cpu_var(perf_pending_head);
2736
2737 do {
2738 entry->next = *head;
2739 } while (cmpxchg(head, entry->next, entry) != entry->next);
2740
2741 set_perf_event_pending();
2742
2743 put_cpu_var(perf_pending_head);
2744}
2745
2746static int __perf_pending_run(void)
2747{
2748 struct perf_pending_entry *list;
2749 int nr = 0;
2750
2751 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2752 while (list != PENDING_TAIL) {
2753 void (*func)(struct perf_pending_entry *);
2754 struct perf_pending_entry *entry = list;
2755
2756 list = list->next;
2757
2758 func = entry->func;
2759 entry->next = NULL;
2760 /*
2761 * Ensure we observe the unqueue before we issue the wakeup,
2762 * so that we won't be waiting forever.
2763 * -- see perf_not_pending().
2764 */
2765 smp_wmb();
2766
2767 func(entry);
2768 nr++;
2769 }
2770
2771 return nr;
2772}
2773
2774static inline int perf_not_pending(struct perf_event *event)
2775{
2776 /*
2777 * If we flush on whatever cpu we run, there is a chance we don't
2778 * need to wait.
2779 */
2780 get_cpu();
2781 __perf_pending_run();
2782 put_cpu();
2783
2784 /*
2785 * Ensure we see the proper queue state before going to sleep
2786 * so that we do not miss the wakeup. -- see perf_pending_handle()
2787 */
2788 smp_rmb();
2789 return event->pending.next == NULL;
2790}
2791
2792static void perf_pending_sync(struct perf_event *event)
2793{
2794 wait_event(event->waitq, perf_not_pending(event));
2795}
2796
2797void perf_event_do_pending(void)
2798{
2799 __perf_pending_run();
2800}
2801
2802/*
2803 * Callchain support -- arch specific
2804 */
2805
2806__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2807{
2808 return NULL;
2809}
2810
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002811__weak
2812void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2813{
2814}
Frederic Weisbecker26d80aa2010-04-03 12:22:05 +02002815
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002816
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002817/*
Zhang, Yanmin39447b32010-04-19 13:32:41 +08002818 * We assume there is only KVM supporting the callbacks.
2819 * Later on, we might change it to a list if there is
2820 * another virtualization implementation supporting the callbacks.
2821 */
2822struct perf_guest_info_callbacks *perf_guest_cbs;
2823
2824int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2825{
2826 perf_guest_cbs = cbs;
2827 return 0;
2828}
2829EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2830
2831int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2832{
2833 perf_guest_cbs = NULL;
2834 return 0;
2835}
2836EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2837
2838/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002839 * Output
2840 */
2841static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2842 unsigned long offset, unsigned long head)
2843{
2844 unsigned long mask;
2845
2846 if (!data->writable)
2847 return true;
2848
Peter Zijlstra906010b2009-09-21 16:08:49 +02002849 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002850
2851 offset = (offset - tail) & mask;
2852 head = (head - tail) & mask;
2853
2854 if ((int)(head - offset) < 0)
2855 return false;
2856
2857 return true;
2858}
2859
2860static void perf_output_wakeup(struct perf_output_handle *handle)
2861{
2862 atomic_set(&handle->data->poll, POLL_IN);
2863
2864 if (handle->nmi) {
2865 handle->event->pending_wakeup = 1;
2866 perf_pending_queue(&handle->event->pending,
2867 perf_pending_event);
2868 } else
2869 perf_event_wakeup(handle->event);
2870}
2871
2872/*
2873 * Curious locking construct.
2874 *
2875 * We need to ensure a later event_id doesn't publish a head when a former
2876 * event_id isn't done writing. However since we need to deal with NMIs we
2877 * cannot fully serialize things.
2878 *
2879 * What we do is serialize between CPUs so we only have to deal with NMI
2880 * nesting on a single CPU.
2881 *
2882 * We only publish the head (and generate a wakeup) when the outer-most
2883 * event_id completes.
2884 */
2885static void perf_output_lock(struct perf_output_handle *handle)
2886{
2887 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002888 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002889
2890 handle->locked = 0;
2891
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002892 for (;;) {
2893 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2894 if (cur == -1) {
2895 handle->locked = 1;
2896 break;
2897 }
2898 if (cur == cpu)
2899 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002900
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002901 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002902 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002903}
2904
2905static void perf_output_unlock(struct perf_output_handle *handle)
2906{
2907 struct perf_mmap_data *data = handle->data;
2908 unsigned long head;
2909 int cpu;
2910
2911 data->done_head = data->head;
2912
2913 if (!handle->locked)
2914 goto out;
2915
2916again:
2917 /*
2918 * The xchg implies a full barrier that ensures all writes are done
2919 * before we publish the new head, matched by a rmb() in userspace when
2920 * reading this position.
2921 */
2922 while ((head = atomic_long_xchg(&data->done_head, 0)))
2923 data->user_page->data_head = head;
2924
2925 /*
2926 * NMI can happen here, which means we can miss a done_head update.
2927 */
2928
2929 cpu = atomic_xchg(&data->lock, -1);
2930 WARN_ON_ONCE(cpu != smp_processor_id());
2931
2932 /*
2933 * Therefore we have to validate we did not indeed do so.
2934 */
2935 if (unlikely(atomic_long_read(&data->done_head))) {
2936 /*
2937 * Since we had it locked, we can lock it again.
2938 */
2939 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2940 cpu_relax();
2941
2942 goto again;
2943 }
2944
2945 if (atomic_xchg(&data->wakeup, 0))
2946 perf_output_wakeup(handle);
2947out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002948 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002949}
2950
2951void perf_output_copy(struct perf_output_handle *handle,
2952 const void *buf, unsigned int len)
2953{
2954 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002955 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002956 unsigned int size;
2957 void **pages;
2958
2959 offset = handle->offset;
2960 pages_mask = handle->data->nr_pages - 1;
2961 pages = handle->data->data_pages;
2962
2963 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002964 unsigned long page_offset;
2965 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002966 int nr;
2967
2968 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002969 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2970 page_offset = offset & (page_size - 1);
2971 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002972
2973 memcpy(pages[nr] + page_offset, buf, size);
2974
2975 len -= size;
2976 buf += size;
2977 offset += size;
2978 } while (len);
2979
2980 handle->offset = offset;
2981
2982 /*
2983 * Check we didn't copy past our reservation window, taking the
2984 * possible unsigned int wrap into account.
2985 */
2986 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2987}
2988
2989int perf_output_begin(struct perf_output_handle *handle,
2990 struct perf_event *event, unsigned int size,
2991 int nmi, int sample)
2992{
2993 struct perf_event *output_event;
2994 struct perf_mmap_data *data;
2995 unsigned long tail, offset, head;
2996 int have_lost;
2997 struct {
2998 struct perf_event_header header;
2999 u64 id;
3000 u64 lost;
3001 } lost_event;
3002
3003 rcu_read_lock();
3004 /*
3005 * For inherited events we send all the output towards the parent.
3006 */
3007 if (event->parent)
3008 event = event->parent;
3009
3010 output_event = rcu_dereference(event->output);
3011 if (output_event)
3012 event = output_event;
3013
3014 data = rcu_dereference(event->data);
3015 if (!data)
3016 goto out;
3017
3018 handle->data = data;
3019 handle->event = event;
3020 handle->nmi = nmi;
3021 handle->sample = sample;
3022
3023 if (!data->nr_pages)
3024 goto fail;
3025
3026 have_lost = atomic_read(&data->lost);
3027 if (have_lost)
3028 size += sizeof(lost_event);
3029
3030 perf_output_lock(handle);
3031
3032 do {
3033 /*
3034 * Userspace could choose to issue a mb() before updating the
3035 * tail pointer. So that all reads will be completed before the
3036 * write is issued.
3037 */
3038 tail = ACCESS_ONCE(data->user_page->data_tail);
3039 smp_rmb();
3040 offset = head = atomic_long_read(&data->head);
3041 head += size;
3042 if (unlikely(!perf_output_space(data, tail, offset, head)))
3043 goto fail;
3044 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3045
3046 handle->offset = offset;
3047 handle->head = head;
3048
3049 if (head - tail > data->watermark)
3050 atomic_set(&data->wakeup, 1);
3051
3052 if (have_lost) {
3053 lost_event.header.type = PERF_RECORD_LOST;
3054 lost_event.header.misc = 0;
3055 lost_event.header.size = sizeof(lost_event);
3056 lost_event.id = event->id;
3057 lost_event.lost = atomic_xchg(&data->lost, 0);
3058
3059 perf_output_put(handle, lost_event);
3060 }
3061
3062 return 0;
3063
3064fail:
3065 atomic_inc(&data->lost);
3066 perf_output_unlock(handle);
3067out:
3068 rcu_read_unlock();
3069
3070 return -ENOSPC;
3071}
3072
3073void perf_output_end(struct perf_output_handle *handle)
3074{
3075 struct perf_event *event = handle->event;
3076 struct perf_mmap_data *data = handle->data;
3077
3078 int wakeup_events = event->attr.wakeup_events;
3079
3080 if (handle->sample && wakeup_events) {
3081 int events = atomic_inc_return(&data->events);
3082 if (events >= wakeup_events) {
3083 atomic_sub(wakeup_events, &data->events);
3084 atomic_set(&data->wakeup, 1);
3085 }
3086 }
3087
3088 perf_output_unlock(handle);
3089 rcu_read_unlock();
3090}
3091
3092static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3093{
3094 /*
3095 * only top level events have the pid namespace they were created in
3096 */
3097 if (event->parent)
3098 event = event->parent;
3099
3100 return task_tgid_nr_ns(p, event->ns);
3101}
3102
3103static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3104{
3105 /*
3106 * only top level events have the pid namespace they were created in
3107 */
3108 if (event->parent)
3109 event = event->parent;
3110
3111 return task_pid_nr_ns(p, event->ns);
3112}
3113
3114static void perf_output_read_one(struct perf_output_handle *handle,
3115 struct perf_event *event)
3116{
3117 u64 read_format = event->attr.read_format;
3118 u64 values[4];
3119 int n = 0;
3120
3121 values[n++] = atomic64_read(&event->count);
3122 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3123 values[n++] = event->total_time_enabled +
3124 atomic64_read(&event->child_total_time_enabled);
3125 }
3126 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3127 values[n++] = event->total_time_running +
3128 atomic64_read(&event->child_total_time_running);
3129 }
3130 if (read_format & PERF_FORMAT_ID)
3131 values[n++] = primary_event_id(event);
3132
3133 perf_output_copy(handle, values, n * sizeof(u64));
3134}
3135
3136/*
3137 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3138 */
3139static void perf_output_read_group(struct perf_output_handle *handle,
3140 struct perf_event *event)
3141{
3142 struct perf_event *leader = event->group_leader, *sub;
3143 u64 read_format = event->attr.read_format;
3144 u64 values[5];
3145 int n = 0;
3146
3147 values[n++] = 1 + leader->nr_siblings;
3148
3149 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3150 values[n++] = leader->total_time_enabled;
3151
3152 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3153 values[n++] = leader->total_time_running;
3154
3155 if (leader != event)
3156 leader->pmu->read(leader);
3157
3158 values[n++] = atomic64_read(&leader->count);
3159 if (read_format & PERF_FORMAT_ID)
3160 values[n++] = primary_event_id(leader);
3161
3162 perf_output_copy(handle, values, n * sizeof(u64));
3163
3164 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3165 n = 0;
3166
3167 if (sub != event)
3168 sub->pmu->read(sub);
3169
3170 values[n++] = atomic64_read(&sub->count);
3171 if (read_format & PERF_FORMAT_ID)
3172 values[n++] = primary_event_id(sub);
3173
3174 perf_output_copy(handle, values, n * sizeof(u64));
3175 }
3176}
3177
3178static void perf_output_read(struct perf_output_handle *handle,
3179 struct perf_event *event)
3180{
3181 if (event->attr.read_format & PERF_FORMAT_GROUP)
3182 perf_output_read_group(handle, event);
3183 else
3184 perf_output_read_one(handle, event);
3185}
3186
3187void perf_output_sample(struct perf_output_handle *handle,
3188 struct perf_event_header *header,
3189 struct perf_sample_data *data,
3190 struct perf_event *event)
3191{
3192 u64 sample_type = data->type;
3193
3194 perf_output_put(handle, *header);
3195
3196 if (sample_type & PERF_SAMPLE_IP)
3197 perf_output_put(handle, data->ip);
3198
3199 if (sample_type & PERF_SAMPLE_TID)
3200 perf_output_put(handle, data->tid_entry);
3201
3202 if (sample_type & PERF_SAMPLE_TIME)
3203 perf_output_put(handle, data->time);
3204
3205 if (sample_type & PERF_SAMPLE_ADDR)
3206 perf_output_put(handle, data->addr);
3207
3208 if (sample_type & PERF_SAMPLE_ID)
3209 perf_output_put(handle, data->id);
3210
3211 if (sample_type & PERF_SAMPLE_STREAM_ID)
3212 perf_output_put(handle, data->stream_id);
3213
3214 if (sample_type & PERF_SAMPLE_CPU)
3215 perf_output_put(handle, data->cpu_entry);
3216
3217 if (sample_type & PERF_SAMPLE_PERIOD)
3218 perf_output_put(handle, data->period);
3219
3220 if (sample_type & PERF_SAMPLE_READ)
3221 perf_output_read(handle, event);
3222
3223 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3224 if (data->callchain) {
3225 int size = 1;
3226
3227 if (data->callchain)
3228 size += data->callchain->nr;
3229
3230 size *= sizeof(u64);
3231
3232 perf_output_copy(handle, data->callchain, size);
3233 } else {
3234 u64 nr = 0;
3235 perf_output_put(handle, nr);
3236 }
3237 }
3238
3239 if (sample_type & PERF_SAMPLE_RAW) {
3240 if (data->raw) {
3241 perf_output_put(handle, data->raw->size);
3242 perf_output_copy(handle, data->raw->data,
3243 data->raw->size);
3244 } else {
3245 struct {
3246 u32 size;
3247 u32 data;
3248 } raw = {
3249 .size = sizeof(u32),
3250 .data = 0,
3251 };
3252 perf_output_put(handle, raw);
3253 }
3254 }
3255}
3256
3257void perf_prepare_sample(struct perf_event_header *header,
3258 struct perf_sample_data *data,
3259 struct perf_event *event,
3260 struct pt_regs *regs)
3261{
3262 u64 sample_type = event->attr.sample_type;
3263
3264 data->type = sample_type;
3265
3266 header->type = PERF_RECORD_SAMPLE;
3267 header->size = sizeof(*header);
3268
3269 header->misc = 0;
3270 header->misc |= perf_misc_flags(regs);
3271
3272 if (sample_type & PERF_SAMPLE_IP) {
3273 data->ip = perf_instruction_pointer(regs);
3274
3275 header->size += sizeof(data->ip);
3276 }
3277
3278 if (sample_type & PERF_SAMPLE_TID) {
3279 /* namespace issues */
3280 data->tid_entry.pid = perf_event_pid(event, current);
3281 data->tid_entry.tid = perf_event_tid(event, current);
3282
3283 header->size += sizeof(data->tid_entry);
3284 }
3285
3286 if (sample_type & PERF_SAMPLE_TIME) {
3287 data->time = perf_clock();
3288
3289 header->size += sizeof(data->time);
3290 }
3291
3292 if (sample_type & PERF_SAMPLE_ADDR)
3293 header->size += sizeof(data->addr);
3294
3295 if (sample_type & PERF_SAMPLE_ID) {
3296 data->id = primary_event_id(event);
3297
3298 header->size += sizeof(data->id);
3299 }
3300
3301 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3302 data->stream_id = event->id;
3303
3304 header->size += sizeof(data->stream_id);
3305 }
3306
3307 if (sample_type & PERF_SAMPLE_CPU) {
3308 data->cpu_entry.cpu = raw_smp_processor_id();
3309 data->cpu_entry.reserved = 0;
3310
3311 header->size += sizeof(data->cpu_entry);
3312 }
3313
3314 if (sample_type & PERF_SAMPLE_PERIOD)
3315 header->size += sizeof(data->period);
3316
3317 if (sample_type & PERF_SAMPLE_READ)
3318 header->size += perf_event_read_size(event);
3319
3320 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3321 int size = 1;
3322
3323 data->callchain = perf_callchain(regs);
3324
3325 if (data->callchain)
3326 size += data->callchain->nr;
3327
3328 header->size += size * sizeof(u64);
3329 }
3330
3331 if (sample_type & PERF_SAMPLE_RAW) {
3332 int size = sizeof(u32);
3333
3334 if (data->raw)
3335 size += data->raw->size;
3336 else
3337 size += sizeof(u32);
3338
3339 WARN_ON_ONCE(size & (sizeof(u64)-1));
3340 header->size += size;
3341 }
3342}
3343
3344static void perf_event_output(struct perf_event *event, int nmi,
3345 struct perf_sample_data *data,
3346 struct pt_regs *regs)
3347{
3348 struct perf_output_handle handle;
3349 struct perf_event_header header;
3350
3351 perf_prepare_sample(&header, data, event, regs);
3352
3353 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3354 return;
3355
3356 perf_output_sample(&handle, &header, data, event);
3357
3358 perf_output_end(&handle);
3359}
3360
3361/*
3362 * read event_id
3363 */
3364
3365struct perf_read_event {
3366 struct perf_event_header header;
3367
3368 u32 pid;
3369 u32 tid;
3370};
3371
3372static void
3373perf_event_read_event(struct perf_event *event,
3374 struct task_struct *task)
3375{
3376 struct perf_output_handle handle;
3377 struct perf_read_event read_event = {
3378 .header = {
3379 .type = PERF_RECORD_READ,
3380 .misc = 0,
3381 .size = sizeof(read_event) + perf_event_read_size(event),
3382 },
3383 .pid = perf_event_pid(event, task),
3384 .tid = perf_event_tid(event, task),
3385 };
3386 int ret;
3387
3388 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3389 if (ret)
3390 return;
3391
3392 perf_output_put(&handle, read_event);
3393 perf_output_read(&handle, event);
3394
3395 perf_output_end(&handle);
3396}
3397
3398/*
3399 * task tracking -- fork/exit
3400 *
3401 * enabled by: attr.comm | attr.mmap | attr.task
3402 */
3403
3404struct perf_task_event {
3405 struct task_struct *task;
3406 struct perf_event_context *task_ctx;
3407
3408 struct {
3409 struct perf_event_header header;
3410
3411 u32 pid;
3412 u32 ppid;
3413 u32 tid;
3414 u32 ptid;
3415 u64 time;
3416 } event_id;
3417};
3418
3419static void perf_event_task_output(struct perf_event *event,
3420 struct perf_task_event *task_event)
3421{
3422 struct perf_output_handle handle;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003423 struct task_struct *task = task_event->task;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003424 unsigned long flags;
3425 int size, ret;
3426
3427 /*
3428 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3429 * in perf_output_lock() from interrupt context, it's game over.
3430 */
3431 local_irq_save(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003432
3433 size = task_event->event_id.header.size;
3434 ret = perf_output_begin(&handle, event, size, 0, 0);
3435
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003436 if (ret) {
3437 local_irq_restore(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003438 return;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003439 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003440
3441 task_event->event_id.pid = perf_event_pid(event, task);
3442 task_event->event_id.ppid = perf_event_pid(event, current);
3443
3444 task_event->event_id.tid = perf_event_tid(event, task);
3445 task_event->event_id.ptid = perf_event_tid(event, current);
3446
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003447 perf_output_put(&handle, task_event->event_id);
3448
3449 perf_output_end(&handle);
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003450 local_irq_restore(flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003451}
3452
3453static int perf_event_task_match(struct perf_event *event)
3454{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003455 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003456 return 0;
3457
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003458 if (event->cpu != -1 && event->cpu != smp_processor_id())
3459 return 0;
3460
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003461 if (event->attr.comm || event->attr.mmap || event->attr.task)
3462 return 1;
3463
3464 return 0;
3465}
3466
3467static void perf_event_task_ctx(struct perf_event_context *ctx,
3468 struct perf_task_event *task_event)
3469{
3470 struct perf_event *event;
3471
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003472 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3473 if (perf_event_task_match(event))
3474 perf_event_task_output(event, task_event);
3475 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003476}
3477
3478static void perf_event_task_event(struct perf_task_event *task_event)
3479{
3480 struct perf_cpu_context *cpuctx;
3481 struct perf_event_context *ctx = task_event->task_ctx;
3482
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003483 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003484 cpuctx = &get_cpu_var(perf_cpu_context);
3485 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003486 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003487 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003488 if (ctx)
3489 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003490 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003491 rcu_read_unlock();
3492}
3493
3494static void perf_event_task(struct task_struct *task,
3495 struct perf_event_context *task_ctx,
3496 int new)
3497{
3498 struct perf_task_event task_event;
3499
3500 if (!atomic_read(&nr_comm_events) &&
3501 !atomic_read(&nr_mmap_events) &&
3502 !atomic_read(&nr_task_events))
3503 return;
3504
3505 task_event = (struct perf_task_event){
3506 .task = task,
3507 .task_ctx = task_ctx,
3508 .event_id = {
3509 .header = {
3510 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3511 .misc = 0,
3512 .size = sizeof(task_event.event_id),
3513 },
3514 /* .pid */
3515 /* .ppid */
3516 /* .tid */
3517 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003518 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003519 },
3520 };
3521
3522 perf_event_task_event(&task_event);
3523}
3524
3525void perf_event_fork(struct task_struct *task)
3526{
3527 perf_event_task(task, NULL, 1);
3528}
3529
3530/*
3531 * comm tracking
3532 */
3533
3534struct perf_comm_event {
3535 struct task_struct *task;
3536 char *comm;
3537 int comm_size;
3538
3539 struct {
3540 struct perf_event_header header;
3541
3542 u32 pid;
3543 u32 tid;
3544 } event_id;
3545};
3546
3547static void perf_event_comm_output(struct perf_event *event,
3548 struct perf_comm_event *comm_event)
3549{
3550 struct perf_output_handle handle;
3551 int size = comm_event->event_id.header.size;
3552 int ret = perf_output_begin(&handle, event, size, 0, 0);
3553
3554 if (ret)
3555 return;
3556
3557 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3558 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3559
3560 perf_output_put(&handle, comm_event->event_id);
3561 perf_output_copy(&handle, comm_event->comm,
3562 comm_event->comm_size);
3563 perf_output_end(&handle);
3564}
3565
3566static int perf_event_comm_match(struct perf_event *event)
3567{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003568 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003569 return 0;
3570
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003571 if (event->cpu != -1 && event->cpu != smp_processor_id())
3572 return 0;
3573
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003574 if (event->attr.comm)
3575 return 1;
3576
3577 return 0;
3578}
3579
3580static void perf_event_comm_ctx(struct perf_event_context *ctx,
3581 struct perf_comm_event *comm_event)
3582{
3583 struct perf_event *event;
3584
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003585 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3586 if (perf_event_comm_match(event))
3587 perf_event_comm_output(event, comm_event);
3588 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003589}
3590
3591static void perf_event_comm_event(struct perf_comm_event *comm_event)
3592{
3593 struct perf_cpu_context *cpuctx;
3594 struct perf_event_context *ctx;
3595 unsigned int size;
3596 char comm[TASK_COMM_LEN];
3597
3598 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003599 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003600 size = ALIGN(strlen(comm)+1, sizeof(u64));
3601
3602 comm_event->comm = comm;
3603 comm_event->comm_size = size;
3604
3605 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3606
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003607 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003608 cpuctx = &get_cpu_var(perf_cpu_context);
3609 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003610 ctx = rcu_dereference(current->perf_event_ctxp);
3611 if (ctx)
3612 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003613 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003614 rcu_read_unlock();
3615}
3616
3617void perf_event_comm(struct task_struct *task)
3618{
3619 struct perf_comm_event comm_event;
3620
3621 if (task->perf_event_ctxp)
3622 perf_event_enable_on_exec(task);
3623
3624 if (!atomic_read(&nr_comm_events))
3625 return;
3626
3627 comm_event = (struct perf_comm_event){
3628 .task = task,
3629 /* .comm */
3630 /* .comm_size */
3631 .event_id = {
3632 .header = {
3633 .type = PERF_RECORD_COMM,
3634 .misc = 0,
3635 /* .size */
3636 },
3637 /* .pid */
3638 /* .tid */
3639 },
3640 };
3641
3642 perf_event_comm_event(&comm_event);
3643}
3644
3645/*
3646 * mmap tracking
3647 */
3648
3649struct perf_mmap_event {
3650 struct vm_area_struct *vma;
3651
3652 const char *file_name;
3653 int file_size;
3654
3655 struct {
3656 struct perf_event_header header;
3657
3658 u32 pid;
3659 u32 tid;
3660 u64 start;
3661 u64 len;
3662 u64 pgoff;
3663 } event_id;
3664};
3665
3666static void perf_event_mmap_output(struct perf_event *event,
3667 struct perf_mmap_event *mmap_event)
3668{
3669 struct perf_output_handle handle;
3670 int size = mmap_event->event_id.header.size;
3671 int ret = perf_output_begin(&handle, event, size, 0, 0);
3672
3673 if (ret)
3674 return;
3675
3676 mmap_event->event_id.pid = perf_event_pid(event, current);
3677 mmap_event->event_id.tid = perf_event_tid(event, current);
3678
3679 perf_output_put(&handle, mmap_event->event_id);
3680 perf_output_copy(&handle, mmap_event->file_name,
3681 mmap_event->file_size);
3682 perf_output_end(&handle);
3683}
3684
3685static int perf_event_mmap_match(struct perf_event *event,
3686 struct perf_mmap_event *mmap_event)
3687{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003688 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003689 return 0;
3690
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003691 if (event->cpu != -1 && event->cpu != smp_processor_id())
3692 return 0;
3693
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003694 if (event->attr.mmap)
3695 return 1;
3696
3697 return 0;
3698}
3699
3700static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3701 struct perf_mmap_event *mmap_event)
3702{
3703 struct perf_event *event;
3704
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003705 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3706 if (perf_event_mmap_match(event, mmap_event))
3707 perf_event_mmap_output(event, mmap_event);
3708 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003709}
3710
3711static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3712{
3713 struct perf_cpu_context *cpuctx;
3714 struct perf_event_context *ctx;
3715 struct vm_area_struct *vma = mmap_event->vma;
3716 struct file *file = vma->vm_file;
3717 unsigned int size;
3718 char tmp[16];
3719 char *buf = NULL;
3720 const char *name;
3721
3722 memset(tmp, 0, sizeof(tmp));
3723
3724 if (file) {
3725 /*
3726 * d_path works from the end of the buffer backwards, so we
3727 * need to add enough zero bytes after the string to handle
3728 * the 64bit alignment we do later.
3729 */
3730 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3731 if (!buf) {
3732 name = strncpy(tmp, "//enomem", sizeof(tmp));
3733 goto got_name;
3734 }
3735 name = d_path(&file->f_path, buf, PATH_MAX);
3736 if (IS_ERR(name)) {
3737 name = strncpy(tmp, "//toolong", sizeof(tmp));
3738 goto got_name;
3739 }
3740 } else {
3741 if (arch_vma_name(mmap_event->vma)) {
3742 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3743 sizeof(tmp));
3744 goto got_name;
3745 }
3746
3747 if (!vma->vm_mm) {
3748 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3749 goto got_name;
3750 }
3751
3752 name = strncpy(tmp, "//anon", sizeof(tmp));
3753 goto got_name;
3754 }
3755
3756got_name:
3757 size = ALIGN(strlen(name)+1, sizeof(u64));
3758
3759 mmap_event->file_name = name;
3760 mmap_event->file_size = size;
3761
3762 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3763
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003764 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003765 cpuctx = &get_cpu_var(perf_cpu_context);
3766 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003767 ctx = rcu_dereference(current->perf_event_ctxp);
3768 if (ctx)
3769 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003770 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003771 rcu_read_unlock();
3772
3773 kfree(buf);
3774}
3775
3776void __perf_event_mmap(struct vm_area_struct *vma)
3777{
3778 struct perf_mmap_event mmap_event;
3779
3780 if (!atomic_read(&nr_mmap_events))
3781 return;
3782
3783 mmap_event = (struct perf_mmap_event){
3784 .vma = vma,
3785 /* .file_name */
3786 /* .file_size */
3787 .event_id = {
3788 .header = {
3789 .type = PERF_RECORD_MMAP,
Zhang, Yanmin39447b32010-04-19 13:32:41 +08003790 .misc = PERF_RECORD_MISC_USER,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003791 /* .size */
3792 },
3793 /* .pid */
3794 /* .tid */
3795 .start = vma->vm_start,
3796 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003797 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003798 },
3799 };
3800
3801 perf_event_mmap_event(&mmap_event);
3802}
3803
3804/*
3805 * IRQ throttle logging
3806 */
3807
3808static void perf_log_throttle(struct perf_event *event, int enable)
3809{
3810 struct perf_output_handle handle;
3811 int ret;
3812
3813 struct {
3814 struct perf_event_header header;
3815 u64 time;
3816 u64 id;
3817 u64 stream_id;
3818 } throttle_event = {
3819 .header = {
3820 .type = PERF_RECORD_THROTTLE,
3821 .misc = 0,
3822 .size = sizeof(throttle_event),
3823 },
3824 .time = perf_clock(),
3825 .id = primary_event_id(event),
3826 .stream_id = event->id,
3827 };
3828
3829 if (enable)
3830 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3831
3832 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3833 if (ret)
3834 return;
3835
3836 perf_output_put(&handle, throttle_event);
3837 perf_output_end(&handle);
3838}
3839
3840/*
3841 * Generic event overflow handling, sampling.
3842 */
3843
3844static int __perf_event_overflow(struct perf_event *event, int nmi,
3845 int throttle, struct perf_sample_data *data,
3846 struct pt_regs *regs)
3847{
3848 int events = atomic_read(&event->event_limit);
3849 struct hw_perf_event *hwc = &event->hw;
3850 int ret = 0;
3851
3852 throttle = (throttle && event->pmu->unthrottle != NULL);
3853
3854 if (!throttle) {
3855 hwc->interrupts++;
3856 } else {
3857 if (hwc->interrupts != MAX_INTERRUPTS) {
3858 hwc->interrupts++;
3859 if (HZ * hwc->interrupts >
3860 (u64)sysctl_perf_event_sample_rate) {
3861 hwc->interrupts = MAX_INTERRUPTS;
3862 perf_log_throttle(event, 0);
3863 ret = 1;
3864 }
3865 } else {
3866 /*
3867 * Keep re-disabling events even though on the previous
3868 * pass we disabled it - just in case we raced with a
3869 * sched-in and the event got enabled again:
3870 */
3871 ret = 1;
3872 }
3873 }
3874
3875 if (event->attr.freq) {
3876 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003877 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003878
Peter Zijlstraabd50712010-01-26 18:50:16 +01003879 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003880
Peter Zijlstraabd50712010-01-26 18:50:16 +01003881 if (delta > 0 && delta < 2*TICK_NSEC)
3882 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003883 }
3884
3885 /*
3886 * XXX event_limit might not quite work as expected on inherited
3887 * events
3888 */
3889
3890 event->pending_kill = POLL_IN;
3891 if (events && atomic_dec_and_test(&event->event_limit)) {
3892 ret = 1;
3893 event->pending_kill = POLL_HUP;
3894 if (nmi) {
3895 event->pending_disable = 1;
3896 perf_pending_queue(&event->pending,
3897 perf_pending_event);
3898 } else
3899 perf_event_disable(event);
3900 }
3901
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003902 if (event->overflow_handler)
3903 event->overflow_handler(event, nmi, data, regs);
3904 else
3905 perf_event_output(event, nmi, data, regs);
3906
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003907 return ret;
3908}
3909
3910int perf_event_overflow(struct perf_event *event, int nmi,
3911 struct perf_sample_data *data,
3912 struct pt_regs *regs)
3913{
3914 return __perf_event_overflow(event, nmi, 1, data, regs);
3915}
3916
3917/*
3918 * Generic software event infrastructure
3919 */
3920
3921/*
3922 * We directly increment event->count and keep a second value in
3923 * event->hw.period_left to count intervals. This period event
3924 * is kept in the range [-sample_period, 0] so that we can use the
3925 * sign as trigger.
3926 */
3927
3928static u64 perf_swevent_set_period(struct perf_event *event)
3929{
3930 struct hw_perf_event *hwc = &event->hw;
3931 u64 period = hwc->last_period;
3932 u64 nr, offset;
3933 s64 old, val;
3934
3935 hwc->last_period = hwc->sample_period;
3936
3937again:
3938 old = val = atomic64_read(&hwc->period_left);
3939 if (val < 0)
3940 return 0;
3941
3942 nr = div64_u64(period + val, period);
3943 offset = nr * period;
3944 val -= offset;
3945 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3946 goto again;
3947
3948 return nr;
3949}
3950
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003951static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003952 int nmi, struct perf_sample_data *data,
3953 struct pt_regs *regs)
3954{
3955 struct hw_perf_event *hwc = &event->hw;
3956 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003957
3958 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003959 if (!overflow)
3960 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003961
3962 if (hwc->interrupts == MAX_INTERRUPTS)
3963 return;
3964
3965 for (; overflow; overflow--) {
3966 if (__perf_event_overflow(event, nmi, throttle,
3967 data, regs)) {
3968 /*
3969 * We inhibit the overflow from happening when
3970 * hwc->interrupts == MAX_INTERRUPTS.
3971 */
3972 break;
3973 }
3974 throttle = 1;
3975 }
3976}
3977
3978static void perf_swevent_unthrottle(struct perf_event *event)
3979{
3980 /*
3981 * Nothing to do, we already reset hwc->interrupts.
3982 */
3983}
3984
3985static void perf_swevent_add(struct perf_event *event, u64 nr,
3986 int nmi, struct perf_sample_data *data,
3987 struct pt_regs *regs)
3988{
3989 struct hw_perf_event *hwc = &event->hw;
3990
3991 atomic64_add(nr, &event->count);
3992
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003993 if (!regs)
3994 return;
3995
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003996 if (!hwc->sample_period)
3997 return;
3998
3999 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4000 return perf_swevent_overflow(event, 1, nmi, data, regs);
4001
4002 if (atomic64_add_negative(nr, &hwc->period_left))
4003 return;
4004
4005 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004006}
4007
Li Zefan6fb29152009-10-15 11:21:42 +08004008static int perf_tp_event_match(struct perf_event *event,
4009 struct perf_sample_data *data);
4010
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004011static int perf_exclude_event(struct perf_event *event,
4012 struct pt_regs *regs)
4013{
4014 if (regs) {
4015 if (event->attr.exclude_user && user_mode(regs))
4016 return 1;
4017
4018 if (event->attr.exclude_kernel && !user_mode(regs))
4019 return 1;
4020 }
4021
4022 return 0;
4023}
4024
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004025static int perf_swevent_match(struct perf_event *event,
4026 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004027 u32 event_id,
4028 struct perf_sample_data *data,
4029 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004030{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004031 if (event->attr.type != type)
4032 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004033
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004034 if (event->attr.config != event_id)
4035 return 0;
4036
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004037 if (perf_exclude_event(event, regs))
4038 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004039
Li Zefan6fb29152009-10-15 11:21:42 +08004040 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4041 !perf_tp_event_match(event, data))
4042 return 0;
4043
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004044 return 1;
4045}
4046
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004047static inline u64 swevent_hash(u64 type, u32 event_id)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004048{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004049 u64 val = event_id | (type << 32);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004050
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004051 return hash_64(val, SWEVENT_HLIST_BITS);
4052}
4053
4054static struct hlist_head *
4055find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4056{
4057 u64 hash;
4058 struct swevent_hlist *hlist;
4059
4060 hash = swevent_hash(type, event_id);
4061
4062 hlist = rcu_dereference(ctx->swevent_hlist);
4063 if (!hlist)
4064 return NULL;
4065
4066 return &hlist->heads[hash];
4067}
4068
4069static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4070 u64 nr, int nmi,
4071 struct perf_sample_data *data,
4072 struct pt_regs *regs)
4073{
4074 struct perf_cpu_context *cpuctx;
4075 struct perf_event *event;
4076 struct hlist_node *node;
4077 struct hlist_head *head;
4078
4079 cpuctx = &__get_cpu_var(perf_cpu_context);
4080
4081 rcu_read_lock();
4082
4083 head = find_swevent_head(cpuctx, type, event_id);
4084
4085 if (!head)
4086 goto end;
4087
4088 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004089 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004090 perf_swevent_add(event, nr, nmi, data, regs);
4091 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004092end:
4093 rcu_read_unlock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004094}
4095
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004096int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004097{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004098 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4099 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004100
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004101 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004102 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004103 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004104 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004105 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004106 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004107 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004108 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004109
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004110 if (cpuctx->recursion[rctx]) {
4111 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004112 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004113 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004114
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004115 cpuctx->recursion[rctx]++;
4116 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004117
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004118 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004119}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004120EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004121
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004122void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004123{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004124 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4125 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004126 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004127 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004128}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004129EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004130
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004131
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004132void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4133 struct pt_regs *regs, u64 addr)
4134{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004135 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004136 int rctx;
4137
4138 rctx = perf_swevent_get_recursion_context();
4139 if (rctx < 0)
4140 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004141
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004142 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004143
4144 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004145
4146 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004147}
4148
4149static void perf_swevent_read(struct perf_event *event)
4150{
4151}
4152
4153static int perf_swevent_enable(struct perf_event *event)
4154{
4155 struct hw_perf_event *hwc = &event->hw;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004156 struct perf_cpu_context *cpuctx;
4157 struct hlist_head *head;
4158
4159 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004160
4161 if (hwc->sample_period) {
4162 hwc->last_period = hwc->sample_period;
4163 perf_swevent_set_period(event);
4164 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004165
4166 head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4167 if (WARN_ON_ONCE(!head))
4168 return -EINVAL;
4169
4170 hlist_add_head_rcu(&event->hlist_entry, head);
4171
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004172 return 0;
4173}
4174
4175static void perf_swevent_disable(struct perf_event *event)
4176{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004177 hlist_del_rcu(&event->hlist_entry);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004178}
4179
4180static const struct pmu perf_ops_generic = {
4181 .enable = perf_swevent_enable,
4182 .disable = perf_swevent_disable,
4183 .read = perf_swevent_read,
4184 .unthrottle = perf_swevent_unthrottle,
4185};
4186
4187/*
4188 * hrtimer based swevent callback
4189 */
4190
4191static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4192{
4193 enum hrtimer_restart ret = HRTIMER_RESTART;
4194 struct perf_sample_data data;
4195 struct pt_regs *regs;
4196 struct perf_event *event;
4197 u64 period;
4198
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004199 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004200 event->pmu->read(event);
4201
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004202 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004203 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004204 regs = get_irq_regs();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004205
Frederic Weisbeckerdf8290b2010-04-09 00:28:14 +02004206 if (regs && !perf_exclude_event(event, regs)) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004207 if (!(event->attr.exclude_idle && current->pid == 0))
4208 if (perf_event_overflow(event, 0, &data, regs))
4209 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004210 }
4211
4212 period = max_t(u64, 10000, event->hw.sample_period);
4213 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4214
4215 return ret;
4216}
4217
Soeren Sandmann721a6692009-09-15 14:33:08 +02004218static void perf_swevent_start_hrtimer(struct perf_event *event)
4219{
4220 struct hw_perf_event *hwc = &event->hw;
4221
4222 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4223 hwc->hrtimer.function = perf_swevent_hrtimer;
4224 if (hwc->sample_period) {
4225 u64 period;
4226
4227 if (hwc->remaining) {
4228 if (hwc->remaining < 0)
4229 period = 10000;
4230 else
4231 period = hwc->remaining;
4232 hwc->remaining = 0;
4233 } else {
4234 period = max_t(u64, 10000, hwc->sample_period);
4235 }
4236 __hrtimer_start_range_ns(&hwc->hrtimer,
4237 ns_to_ktime(period), 0,
4238 HRTIMER_MODE_REL, 0);
4239 }
4240}
4241
4242static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4243{
4244 struct hw_perf_event *hwc = &event->hw;
4245
4246 if (hwc->sample_period) {
4247 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4248 hwc->remaining = ktime_to_ns(remaining);
4249
4250 hrtimer_cancel(&hwc->hrtimer);
4251 }
4252}
4253
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004254/*
4255 * Software event: cpu wall time clock
4256 */
4257
4258static void cpu_clock_perf_event_update(struct perf_event *event)
4259{
4260 int cpu = raw_smp_processor_id();
4261 s64 prev;
4262 u64 now;
4263
4264 now = cpu_clock(cpu);
Xiao Guangrongec89a062009-12-09 11:30:36 +08004265 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004266 atomic64_add(now - prev, &event->count);
4267}
4268
4269static int cpu_clock_perf_event_enable(struct perf_event *event)
4270{
4271 struct hw_perf_event *hwc = &event->hw;
4272 int cpu = raw_smp_processor_id();
4273
4274 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004275 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004276
4277 return 0;
4278}
4279
4280static void cpu_clock_perf_event_disable(struct perf_event *event)
4281{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004282 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004283 cpu_clock_perf_event_update(event);
4284}
4285
4286static void cpu_clock_perf_event_read(struct perf_event *event)
4287{
4288 cpu_clock_perf_event_update(event);
4289}
4290
4291static const struct pmu perf_ops_cpu_clock = {
4292 .enable = cpu_clock_perf_event_enable,
4293 .disable = cpu_clock_perf_event_disable,
4294 .read = cpu_clock_perf_event_read,
4295};
4296
4297/*
4298 * Software event: task time clock
4299 */
4300
4301static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4302{
4303 u64 prev;
4304 s64 delta;
4305
4306 prev = atomic64_xchg(&event->hw.prev_count, now);
4307 delta = now - prev;
4308 atomic64_add(delta, &event->count);
4309}
4310
4311static int task_clock_perf_event_enable(struct perf_event *event)
4312{
4313 struct hw_perf_event *hwc = &event->hw;
4314 u64 now;
4315
4316 now = event->ctx->time;
4317
4318 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004319
4320 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004321
4322 return 0;
4323}
4324
4325static void task_clock_perf_event_disable(struct perf_event *event)
4326{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004327 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004328 task_clock_perf_event_update(event, event->ctx->time);
4329
4330}
4331
4332static void task_clock_perf_event_read(struct perf_event *event)
4333{
4334 u64 time;
4335
4336 if (!in_nmi()) {
4337 update_context_time(event->ctx);
4338 time = event->ctx->time;
4339 } else {
4340 u64 now = perf_clock();
4341 u64 delta = now - event->ctx->timestamp;
4342 time = event->ctx->time + delta;
4343 }
4344
4345 task_clock_perf_event_update(event, time);
4346}
4347
4348static const struct pmu perf_ops_task_clock = {
4349 .enable = task_clock_perf_event_enable,
4350 .disable = task_clock_perf_event_disable,
4351 .read = task_clock_perf_event_read,
4352};
4353
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004354static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4355{
4356 struct swevent_hlist *hlist;
4357
4358 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4359 kfree(hlist);
4360}
4361
4362static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4363{
4364 struct swevent_hlist *hlist;
4365
4366 if (!cpuctx->swevent_hlist)
4367 return;
4368
4369 hlist = cpuctx->swevent_hlist;
4370 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4371 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4372}
4373
4374static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4375{
4376 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4377
4378 mutex_lock(&cpuctx->hlist_mutex);
4379
4380 if (!--cpuctx->hlist_refcount)
4381 swevent_hlist_release(cpuctx);
4382
4383 mutex_unlock(&cpuctx->hlist_mutex);
4384}
4385
4386static void swevent_hlist_put(struct perf_event *event)
4387{
4388 int cpu;
4389
4390 if (event->cpu != -1) {
4391 swevent_hlist_put_cpu(event, event->cpu);
4392 return;
4393 }
4394
4395 for_each_possible_cpu(cpu)
4396 swevent_hlist_put_cpu(event, cpu);
4397}
4398
4399static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4400{
4401 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4402 int err = 0;
4403
4404 mutex_lock(&cpuctx->hlist_mutex);
4405
4406 if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4407 struct swevent_hlist *hlist;
4408
4409 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4410 if (!hlist) {
4411 err = -ENOMEM;
4412 goto exit;
4413 }
4414 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4415 }
4416 cpuctx->hlist_refcount++;
4417 exit:
4418 mutex_unlock(&cpuctx->hlist_mutex);
4419
4420 return err;
4421}
4422
4423static int swevent_hlist_get(struct perf_event *event)
4424{
4425 int err;
4426 int cpu, failed_cpu;
4427
4428 if (event->cpu != -1)
4429 return swevent_hlist_get_cpu(event, event->cpu);
4430
4431 get_online_cpus();
4432 for_each_possible_cpu(cpu) {
4433 err = swevent_hlist_get_cpu(event, cpu);
4434 if (err) {
4435 failed_cpu = cpu;
4436 goto fail;
4437 }
4438 }
4439 put_online_cpus();
4440
4441 return 0;
4442 fail:
4443 for_each_possible_cpu(cpu) {
4444 if (cpu == failed_cpu)
4445 break;
4446 swevent_hlist_put_cpu(event, cpu);
4447 }
4448
4449 put_online_cpus();
4450 return err;
4451}
4452
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004453#ifdef CONFIG_EVENT_TRACING
4454
4455void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4456 int entry_size, struct pt_regs *regs)
4457{
4458 struct perf_sample_data data;
4459 struct perf_raw_record raw = {
4460 .size = entry_size,
4461 .data = record,
4462 };
4463
4464 perf_sample_data_init(&data, addr);
4465 data.raw = &raw;
4466
4467 /* Trace events already protected against recursion */
4468 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4469 &data, regs);
4470}
4471EXPORT_SYMBOL_GPL(perf_tp_event);
4472
4473static int perf_tp_event_match(struct perf_event *event,
4474 struct perf_sample_data *data)
4475{
4476 void *record = data->raw->data;
4477
4478 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4479 return 1;
4480 return 0;
4481}
4482
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004483static void tp_perf_event_destroy(struct perf_event *event)
4484{
Frederic Weisbecker97d5a222010-03-05 05:35:37 +01004485 perf_trace_disable(event->attr.config);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004486 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004487}
4488
4489static const struct pmu *tp_perf_event_init(struct perf_event *event)
4490{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004491 int err;
4492
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004493 /*
4494 * Raw tracepoint data is a severe data leak, only allow root to
4495 * have these.
4496 */
4497 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4498 perf_paranoid_tracepoint_raw() &&
4499 !capable(CAP_SYS_ADMIN))
4500 return ERR_PTR(-EPERM);
4501
Frederic Weisbecker97d5a222010-03-05 05:35:37 +01004502 if (perf_trace_enable(event->attr.config))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004503 return NULL;
4504
4505 event->destroy = tp_perf_event_destroy;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004506 err = swevent_hlist_get(event);
4507 if (err) {
4508 perf_trace_disable(event->attr.config);
4509 return ERR_PTR(err);
4510 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004511
4512 return &perf_ops_generic;
4513}
Li Zefan6fb29152009-10-15 11:21:42 +08004514
4515static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4516{
4517 char *filter_str;
4518 int ret;
4519
4520 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4521 return -EINVAL;
4522
4523 filter_str = strndup_user(arg, PAGE_SIZE);
4524 if (IS_ERR(filter_str))
4525 return PTR_ERR(filter_str);
4526
4527 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4528
4529 kfree(filter_str);
4530 return ret;
4531}
4532
4533static void perf_event_free_filter(struct perf_event *event)
4534{
4535 ftrace_profile_free_filter(event);
4536}
4537
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004538#else
Li Zefan6fb29152009-10-15 11:21:42 +08004539
4540static int perf_tp_event_match(struct perf_event *event,
4541 struct perf_sample_data *data)
4542{
4543 return 1;
4544}
4545
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004546static const struct pmu *tp_perf_event_init(struct perf_event *event)
4547{
4548 return NULL;
4549}
Li Zefan6fb29152009-10-15 11:21:42 +08004550
4551static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4552{
4553 return -ENOENT;
4554}
4555
4556static void perf_event_free_filter(struct perf_event *event)
4557{
4558}
4559
Li Zefan07b139c2009-12-21 14:27:35 +08004560#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004561
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004562#ifdef CONFIG_HAVE_HW_BREAKPOINT
4563static void bp_perf_event_destroy(struct perf_event *event)
4564{
4565 release_bp_slot(event);
4566}
4567
4568static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4569{
4570 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004571
4572 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004573 if (err)
4574 return ERR_PTR(err);
4575
4576 bp->destroy = bp_perf_event_destroy;
4577
4578 return &perf_ops_bp;
4579}
4580
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004581void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004582{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004583 struct perf_sample_data sample;
4584 struct pt_regs *regs = data;
4585
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004586 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004587
4588 if (!perf_exclude_event(bp, regs))
4589 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004590}
4591#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004592static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4593{
4594 return NULL;
4595}
4596
4597void perf_bp_event(struct perf_event *bp, void *regs)
4598{
4599}
4600#endif
4601
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004602atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4603
4604static void sw_perf_event_destroy(struct perf_event *event)
4605{
4606 u64 event_id = event->attr.config;
4607
4608 WARN_ON(event->parent);
4609
4610 atomic_dec(&perf_swevent_enabled[event_id]);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004611 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004612}
4613
4614static const struct pmu *sw_perf_event_init(struct perf_event *event)
4615{
4616 const struct pmu *pmu = NULL;
4617 u64 event_id = event->attr.config;
4618
4619 /*
4620 * Software events (currently) can't in general distinguish
4621 * between user, kernel and hypervisor events.
4622 * However, context switches and cpu migrations are considered
4623 * to be kernel events, and page faults are never hypervisor
4624 * events.
4625 */
4626 switch (event_id) {
4627 case PERF_COUNT_SW_CPU_CLOCK:
4628 pmu = &perf_ops_cpu_clock;
4629
4630 break;
4631 case PERF_COUNT_SW_TASK_CLOCK:
4632 /*
4633 * If the user instantiates this as a per-cpu event,
4634 * use the cpu_clock event instead.
4635 */
4636 if (event->ctx->task)
4637 pmu = &perf_ops_task_clock;
4638 else
4639 pmu = &perf_ops_cpu_clock;
4640
4641 break;
4642 case PERF_COUNT_SW_PAGE_FAULTS:
4643 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4644 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4645 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4646 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004647 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4648 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004649 if (!event->parent) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004650 int err;
4651
4652 err = swevent_hlist_get(event);
4653 if (err)
4654 return ERR_PTR(err);
4655
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004656 atomic_inc(&perf_swevent_enabled[event_id]);
4657 event->destroy = sw_perf_event_destroy;
4658 }
4659 pmu = &perf_ops_generic;
4660 break;
4661 }
4662
4663 return pmu;
4664}
4665
4666/*
4667 * Allocate and initialize a event structure
4668 */
4669static struct perf_event *
4670perf_event_alloc(struct perf_event_attr *attr,
4671 int cpu,
4672 struct perf_event_context *ctx,
4673 struct perf_event *group_leader,
4674 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004675 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004676 gfp_t gfpflags)
4677{
4678 const struct pmu *pmu;
4679 struct perf_event *event;
4680 struct hw_perf_event *hwc;
4681 long err;
4682
4683 event = kzalloc(sizeof(*event), gfpflags);
4684 if (!event)
4685 return ERR_PTR(-ENOMEM);
4686
4687 /*
4688 * Single events are their own group leaders, with an
4689 * empty sibling list:
4690 */
4691 if (!group_leader)
4692 group_leader = event;
4693
4694 mutex_init(&event->child_mutex);
4695 INIT_LIST_HEAD(&event->child_list);
4696
4697 INIT_LIST_HEAD(&event->group_entry);
4698 INIT_LIST_HEAD(&event->event_entry);
4699 INIT_LIST_HEAD(&event->sibling_list);
4700 init_waitqueue_head(&event->waitq);
4701
4702 mutex_init(&event->mmap_mutex);
4703
4704 event->cpu = cpu;
4705 event->attr = *attr;
4706 event->group_leader = group_leader;
4707 event->pmu = NULL;
4708 event->ctx = ctx;
4709 event->oncpu = -1;
4710
4711 event->parent = parent_event;
4712
4713 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4714 event->id = atomic64_inc_return(&perf_event_id);
4715
4716 event->state = PERF_EVENT_STATE_INACTIVE;
4717
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004718 if (!overflow_handler && parent_event)
4719 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004720
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004721 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004722
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004723 if (attr->disabled)
4724 event->state = PERF_EVENT_STATE_OFF;
4725
4726 pmu = NULL;
4727
4728 hwc = &event->hw;
4729 hwc->sample_period = attr->sample_period;
4730 if (attr->freq && attr->sample_freq)
4731 hwc->sample_period = 1;
4732 hwc->last_period = hwc->sample_period;
4733
4734 atomic64_set(&hwc->period_left, hwc->sample_period);
4735
4736 /*
4737 * we currently do not support PERF_FORMAT_GROUP on inherited events
4738 */
4739 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4740 goto done;
4741
4742 switch (attr->type) {
4743 case PERF_TYPE_RAW:
4744 case PERF_TYPE_HARDWARE:
4745 case PERF_TYPE_HW_CACHE:
4746 pmu = hw_perf_event_init(event);
4747 break;
4748
4749 case PERF_TYPE_SOFTWARE:
4750 pmu = sw_perf_event_init(event);
4751 break;
4752
4753 case PERF_TYPE_TRACEPOINT:
4754 pmu = tp_perf_event_init(event);
4755 break;
4756
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004757 case PERF_TYPE_BREAKPOINT:
4758 pmu = bp_perf_event_init(event);
4759 break;
4760
4761
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004762 default:
4763 break;
4764 }
4765done:
4766 err = 0;
4767 if (!pmu)
4768 err = -EINVAL;
4769 else if (IS_ERR(pmu))
4770 err = PTR_ERR(pmu);
4771
4772 if (err) {
4773 if (event->ns)
4774 put_pid_ns(event->ns);
4775 kfree(event);
4776 return ERR_PTR(err);
4777 }
4778
4779 event->pmu = pmu;
4780
4781 if (!event->parent) {
4782 atomic_inc(&nr_events);
4783 if (event->attr.mmap)
4784 atomic_inc(&nr_mmap_events);
4785 if (event->attr.comm)
4786 atomic_inc(&nr_comm_events);
4787 if (event->attr.task)
4788 atomic_inc(&nr_task_events);
4789 }
4790
4791 return event;
4792}
4793
4794static int perf_copy_attr(struct perf_event_attr __user *uattr,
4795 struct perf_event_attr *attr)
4796{
4797 u32 size;
4798 int ret;
4799
4800 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4801 return -EFAULT;
4802
4803 /*
4804 * zero the full structure, so that a short copy will be nice.
4805 */
4806 memset(attr, 0, sizeof(*attr));
4807
4808 ret = get_user(size, &uattr->size);
4809 if (ret)
4810 return ret;
4811
4812 if (size > PAGE_SIZE) /* silly large */
4813 goto err_size;
4814
4815 if (!size) /* abi compat */
4816 size = PERF_ATTR_SIZE_VER0;
4817
4818 if (size < PERF_ATTR_SIZE_VER0)
4819 goto err_size;
4820
4821 /*
4822 * If we're handed a bigger struct than we know of,
4823 * ensure all the unknown bits are 0 - i.e. new
4824 * user-space does not rely on any kernel feature
4825 * extensions we dont know about yet.
4826 */
4827 if (size > sizeof(*attr)) {
4828 unsigned char __user *addr;
4829 unsigned char __user *end;
4830 unsigned char val;
4831
4832 addr = (void __user *)uattr + sizeof(*attr);
4833 end = (void __user *)uattr + size;
4834
4835 for (; addr < end; addr++) {
4836 ret = get_user(val, addr);
4837 if (ret)
4838 return ret;
4839 if (val)
4840 goto err_size;
4841 }
4842 size = sizeof(*attr);
4843 }
4844
4845 ret = copy_from_user(attr, uattr, size);
4846 if (ret)
4847 return -EFAULT;
4848
4849 /*
4850 * If the type exists, the corresponding creation will verify
4851 * the attr->config.
4852 */
4853 if (attr->type >= PERF_TYPE_MAX)
4854 return -EINVAL;
4855
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304856 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004857 return -EINVAL;
4858
4859 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4860 return -EINVAL;
4861
4862 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4863 return -EINVAL;
4864
4865out:
4866 return ret;
4867
4868err_size:
4869 put_user(sizeof(*attr), &uattr->size);
4870 ret = -E2BIG;
4871 goto out;
4872}
4873
Li Zefan6fb29152009-10-15 11:21:42 +08004874static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004875{
4876 struct perf_event *output_event = NULL;
4877 struct file *output_file = NULL;
4878 struct perf_event *old_output;
4879 int fput_needed = 0;
4880 int ret = -EINVAL;
4881
4882 if (!output_fd)
4883 goto set;
4884
4885 output_file = fget_light(output_fd, &fput_needed);
4886 if (!output_file)
4887 return -EBADF;
4888
4889 if (output_file->f_op != &perf_fops)
4890 goto out;
4891
4892 output_event = output_file->private_data;
4893
4894 /* Don't chain output fds */
4895 if (output_event->output)
4896 goto out;
4897
4898 /* Don't set an output fd when we already have an output channel */
4899 if (event->data)
4900 goto out;
4901
4902 atomic_long_inc(&output_file->f_count);
4903
4904set:
4905 mutex_lock(&event->mmap_mutex);
4906 old_output = event->output;
4907 rcu_assign_pointer(event->output, output_event);
4908 mutex_unlock(&event->mmap_mutex);
4909
4910 if (old_output) {
4911 /*
4912 * we need to make sure no existing perf_output_*()
4913 * is still referencing this event.
4914 */
4915 synchronize_rcu();
4916 fput(old_output->filp);
4917 }
4918
4919 ret = 0;
4920out:
4921 fput_light(output_file, fput_needed);
4922 return ret;
4923}
4924
4925/**
4926 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4927 *
4928 * @attr_uptr: event_id type attributes for monitoring/sampling
4929 * @pid: target pid
4930 * @cpu: target cpu
4931 * @group_fd: group leader event fd
4932 */
4933SYSCALL_DEFINE5(perf_event_open,
4934 struct perf_event_attr __user *, attr_uptr,
4935 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4936{
4937 struct perf_event *event, *group_leader;
4938 struct perf_event_attr attr;
4939 struct perf_event_context *ctx;
4940 struct file *event_file = NULL;
4941 struct file *group_file = NULL;
4942 int fput_needed = 0;
4943 int fput_needed2 = 0;
4944 int err;
4945
4946 /* for future expandability... */
4947 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4948 return -EINVAL;
4949
4950 err = perf_copy_attr(attr_uptr, &attr);
4951 if (err)
4952 return err;
4953
4954 if (!attr.exclude_kernel) {
4955 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4956 return -EACCES;
4957 }
4958
4959 if (attr.freq) {
4960 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4961 return -EINVAL;
4962 }
4963
4964 /*
4965 * Get the target context (task or percpu):
4966 */
4967 ctx = find_get_context(pid, cpu);
4968 if (IS_ERR(ctx))
4969 return PTR_ERR(ctx);
4970
4971 /*
4972 * Look up the group leader (we will attach this event to it):
4973 */
4974 group_leader = NULL;
4975 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4976 err = -EINVAL;
4977 group_file = fget_light(group_fd, &fput_needed);
4978 if (!group_file)
4979 goto err_put_context;
4980 if (group_file->f_op != &perf_fops)
4981 goto err_put_context;
4982
4983 group_leader = group_file->private_data;
4984 /*
4985 * Do not allow a recursive hierarchy (this new sibling
4986 * becoming part of another group-sibling):
4987 */
4988 if (group_leader->group_leader != group_leader)
4989 goto err_put_context;
4990 /*
4991 * Do not allow to attach to a group in a different
4992 * task or CPU context:
4993 */
4994 if (group_leader->ctx != ctx)
4995 goto err_put_context;
4996 /*
4997 * Only a group leader can be exclusive or pinned
4998 */
4999 if (attr.exclusive || attr.pinned)
5000 goto err_put_context;
5001 }
5002
5003 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005004 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005005 err = PTR_ERR(event);
5006 if (IS_ERR(event))
5007 goto err_put_context;
5008
Roland Dreier628ff7c2009-12-18 09:41:24 -08005009 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005010 if (err < 0)
5011 goto err_free_put_context;
5012
5013 event_file = fget_light(err, &fput_needed2);
5014 if (!event_file)
5015 goto err_free_put_context;
5016
5017 if (flags & PERF_FLAG_FD_OUTPUT) {
5018 err = perf_event_set_output(event, group_fd);
5019 if (err)
5020 goto err_fput_free_put_context;
5021 }
5022
5023 event->filp = event_file;
5024 WARN_ON_ONCE(ctx->parent_ctx);
5025 mutex_lock(&ctx->mutex);
5026 perf_install_in_context(ctx, event, cpu);
5027 ++ctx->generation;
5028 mutex_unlock(&ctx->mutex);
5029
5030 event->owner = current;
5031 get_task_struct(current);
5032 mutex_lock(&current->perf_event_mutex);
5033 list_add_tail(&event->owner_entry, &current->perf_event_list);
5034 mutex_unlock(&current->perf_event_mutex);
5035
5036err_fput_free_put_context:
5037 fput_light(event_file, fput_needed2);
5038
5039err_free_put_context:
5040 if (err < 0)
Tejun Heo048c8522010-05-01 10:11:35 +02005041 free_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005042
5043err_put_context:
5044 if (err < 0)
5045 put_ctx(ctx);
5046
5047 fput_light(group_file, fput_needed);
5048
5049 return err;
5050}
5051
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005052/**
5053 * perf_event_create_kernel_counter
5054 *
5055 * @attr: attributes of the counter to create
5056 * @cpu: cpu in which the counter is bound
5057 * @pid: task to profile
5058 */
5059struct perf_event *
5060perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005061 pid_t pid,
5062 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005063{
5064 struct perf_event *event;
5065 struct perf_event_context *ctx;
5066 int err;
5067
5068 /*
5069 * Get the target context (task or percpu):
5070 */
5071
5072 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005073 if (IS_ERR(ctx)) {
5074 err = PTR_ERR(ctx);
5075 goto err_exit;
5076 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005077
5078 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005079 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005080 if (IS_ERR(event)) {
5081 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005082 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005083 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005084
5085 event->filp = NULL;
5086 WARN_ON_ONCE(ctx->parent_ctx);
5087 mutex_lock(&ctx->mutex);
5088 perf_install_in_context(ctx, event, cpu);
5089 ++ctx->generation;
5090 mutex_unlock(&ctx->mutex);
5091
5092 event->owner = current;
5093 get_task_struct(current);
5094 mutex_lock(&current->perf_event_mutex);
5095 list_add_tail(&event->owner_entry, &current->perf_event_list);
5096 mutex_unlock(&current->perf_event_mutex);
5097
5098 return event;
5099
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005100 err_put_context:
5101 put_ctx(ctx);
5102 err_exit:
5103 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005104}
5105EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5106
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005107/*
5108 * inherit a event from parent task to child task:
5109 */
5110static struct perf_event *
5111inherit_event(struct perf_event *parent_event,
5112 struct task_struct *parent,
5113 struct perf_event_context *parent_ctx,
5114 struct task_struct *child,
5115 struct perf_event *group_leader,
5116 struct perf_event_context *child_ctx)
5117{
5118 struct perf_event *child_event;
5119
5120 /*
5121 * Instead of creating recursive hierarchies of events,
5122 * we link inherited events back to the original parent,
5123 * which has a filp for sure, which we use as the reference
5124 * count:
5125 */
5126 if (parent_event->parent)
5127 parent_event = parent_event->parent;
5128
5129 child_event = perf_event_alloc(&parent_event->attr,
5130 parent_event->cpu, child_ctx,
5131 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005132 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005133 if (IS_ERR(child_event))
5134 return child_event;
5135 get_ctx(child_ctx);
5136
5137 /*
5138 * Make the child state follow the state of the parent event,
5139 * not its attr.disabled bit. We hold the parent's mutex,
5140 * so we won't race with perf_event_{en, dis}able_family.
5141 */
5142 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5143 child_event->state = PERF_EVENT_STATE_INACTIVE;
5144 else
5145 child_event->state = PERF_EVENT_STATE_OFF;
5146
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005147 if (parent_event->attr.freq) {
5148 u64 sample_period = parent_event->hw.sample_period;
5149 struct hw_perf_event *hwc = &child_event->hw;
5150
5151 hwc->sample_period = sample_period;
5152 hwc->last_period = sample_period;
5153
5154 atomic64_set(&hwc->period_left, sample_period);
5155 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005156
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005157 child_event->overflow_handler = parent_event->overflow_handler;
5158
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005159 /*
5160 * Link it up in the child's context:
5161 */
5162 add_event_to_ctx(child_event, child_ctx);
5163
5164 /*
5165 * Get a reference to the parent filp - we will fput it
5166 * when the child event exits. This is safe to do because
5167 * we are in the parent and we know that the filp still
5168 * exists and has a nonzero count:
5169 */
5170 atomic_long_inc(&parent_event->filp->f_count);
5171
5172 /*
5173 * Link this into the parent event's child list
5174 */
5175 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5176 mutex_lock(&parent_event->child_mutex);
5177 list_add_tail(&child_event->child_list, &parent_event->child_list);
5178 mutex_unlock(&parent_event->child_mutex);
5179
5180 return child_event;
5181}
5182
5183static int inherit_group(struct perf_event *parent_event,
5184 struct task_struct *parent,
5185 struct perf_event_context *parent_ctx,
5186 struct task_struct *child,
5187 struct perf_event_context *child_ctx)
5188{
5189 struct perf_event *leader;
5190 struct perf_event *sub;
5191 struct perf_event *child_ctr;
5192
5193 leader = inherit_event(parent_event, parent, parent_ctx,
5194 child, NULL, child_ctx);
5195 if (IS_ERR(leader))
5196 return PTR_ERR(leader);
5197 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5198 child_ctr = inherit_event(sub, parent, parent_ctx,
5199 child, leader, child_ctx);
5200 if (IS_ERR(child_ctr))
5201 return PTR_ERR(child_ctr);
5202 }
5203 return 0;
5204}
5205
5206static void sync_child_event(struct perf_event *child_event,
5207 struct task_struct *child)
5208{
5209 struct perf_event *parent_event = child_event->parent;
5210 u64 child_val;
5211
5212 if (child_event->attr.inherit_stat)
5213 perf_event_read_event(child_event, child);
5214
5215 child_val = atomic64_read(&child_event->count);
5216
5217 /*
5218 * Add back the child's count to the parent's count:
5219 */
5220 atomic64_add(child_val, &parent_event->count);
5221 atomic64_add(child_event->total_time_enabled,
5222 &parent_event->child_total_time_enabled);
5223 atomic64_add(child_event->total_time_running,
5224 &parent_event->child_total_time_running);
5225
5226 /*
5227 * Remove this event from the parent's list
5228 */
5229 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5230 mutex_lock(&parent_event->child_mutex);
5231 list_del_init(&child_event->child_list);
5232 mutex_unlock(&parent_event->child_mutex);
5233
5234 /*
5235 * Release the parent event, if this was the last
5236 * reference to it.
5237 */
5238 fput(parent_event->filp);
5239}
5240
5241static void
5242__perf_event_exit_task(struct perf_event *child_event,
5243 struct perf_event_context *child_ctx,
5244 struct task_struct *child)
5245{
5246 struct perf_event *parent_event;
5247
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005248 perf_event_remove_from_context(child_event);
5249
5250 parent_event = child_event->parent;
5251 /*
5252 * It can happen that parent exits first, and has events
5253 * that are still around due to the child reference. These
5254 * events need to be zapped - but otherwise linger.
5255 */
5256 if (parent_event) {
5257 sync_child_event(child_event, child);
5258 free_event(child_event);
5259 }
5260}
5261
5262/*
5263 * When a child task exits, feed back event values to parent events.
5264 */
5265void perf_event_exit_task(struct task_struct *child)
5266{
5267 struct perf_event *child_event, *tmp;
5268 struct perf_event_context *child_ctx;
5269 unsigned long flags;
5270
5271 if (likely(!child->perf_event_ctxp)) {
5272 perf_event_task(child, NULL, 0);
5273 return;
5274 }
5275
5276 local_irq_save(flags);
5277 /*
5278 * We can't reschedule here because interrupts are disabled,
5279 * and either child is current or it is a task that can't be
5280 * scheduled, so we are now safe from rescheduling changing
5281 * our context.
5282 */
5283 child_ctx = child->perf_event_ctxp;
5284 __perf_event_task_sched_out(child_ctx);
5285
5286 /*
5287 * Take the context lock here so that if find_get_context is
5288 * reading child->perf_event_ctxp, we wait until it has
5289 * incremented the context's refcount before we do put_ctx below.
5290 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005291 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005292 child->perf_event_ctxp = NULL;
5293 /*
5294 * If this context is a clone; unclone it so it can't get
5295 * swapped to another process while we're removing all
5296 * the events from it.
5297 */
5298 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005299 update_context_time(child_ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005300 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005301
5302 /*
5303 * Report the task dead after unscheduling the events so that we
5304 * won't get any samples after PERF_RECORD_EXIT. We can however still
5305 * get a few PERF_RECORD_READ events.
5306 */
5307 perf_event_task(child, child_ctx, 0);
5308
5309 /*
5310 * We can recurse on the same lock type through:
5311 *
5312 * __perf_event_exit_task()
5313 * sync_child_event()
5314 * fput(parent_event->filp)
5315 * perf_release()
5316 * mutex_lock(&ctx->mutex)
5317 *
5318 * But since its the parent context it won't be the same instance.
5319 */
Peter Zijlstraa0507c82010-05-06 15:42:53 +02005320 mutex_lock(&child_ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005321
5322again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005323 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5324 group_entry)
5325 __perf_event_exit_task(child_event, child_ctx, child);
5326
5327 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005328 group_entry)
5329 __perf_event_exit_task(child_event, child_ctx, child);
5330
5331 /*
5332 * If the last event was a group event, it will have appended all
5333 * its siblings to the list, but we obtained 'tmp' before that which
5334 * will still point to the list head terminating the iteration.
5335 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005336 if (!list_empty(&child_ctx->pinned_groups) ||
5337 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005338 goto again;
5339
5340 mutex_unlock(&child_ctx->mutex);
5341
5342 put_ctx(child_ctx);
5343}
5344
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005345static void perf_free_event(struct perf_event *event,
5346 struct perf_event_context *ctx)
5347{
5348 struct perf_event *parent = event->parent;
5349
5350 if (WARN_ON_ONCE(!parent))
5351 return;
5352
5353 mutex_lock(&parent->child_mutex);
5354 list_del_init(&event->child_list);
5355 mutex_unlock(&parent->child_mutex);
5356
5357 fput(parent->filp);
5358
5359 list_del_event(event, ctx);
5360 free_event(event);
5361}
5362
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005363/*
5364 * free an unexposed, unused context as created by inheritance by
5365 * init_task below, used by fork() in case of fail.
5366 */
5367void perf_event_free_task(struct task_struct *task)
5368{
5369 struct perf_event_context *ctx = task->perf_event_ctxp;
5370 struct perf_event *event, *tmp;
5371
5372 if (!ctx)
5373 return;
5374
5375 mutex_lock(&ctx->mutex);
5376again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005377 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5378 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005379
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005380 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5381 group_entry)
5382 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005383
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005384 if (!list_empty(&ctx->pinned_groups) ||
5385 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005386 goto again;
5387
5388 mutex_unlock(&ctx->mutex);
5389
5390 put_ctx(ctx);
5391}
5392
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005393static int
5394inherit_task_group(struct perf_event *event, struct task_struct *parent,
5395 struct perf_event_context *parent_ctx,
5396 struct task_struct *child,
5397 int *inherited_all)
5398{
5399 int ret;
5400 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5401
5402 if (!event->attr.inherit) {
5403 *inherited_all = 0;
5404 return 0;
5405 }
5406
5407 if (!child_ctx) {
5408 /*
5409 * This is executed from the parent task context, so
5410 * inherit events that have been marked for cloning.
5411 * First allocate and initialize a context for the
5412 * child.
5413 */
5414
5415 child_ctx = kzalloc(sizeof(struct perf_event_context),
5416 GFP_KERNEL);
5417 if (!child_ctx)
5418 return -ENOMEM;
5419
5420 __perf_event_init_context(child_ctx, child);
5421 child->perf_event_ctxp = child_ctx;
5422 get_task_struct(child);
5423 }
5424
5425 ret = inherit_group(event, parent, parent_ctx,
5426 child, child_ctx);
5427
5428 if (ret)
5429 *inherited_all = 0;
5430
5431 return ret;
5432}
5433
5434
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005435/*
5436 * Initialize the perf_event context in task_struct
5437 */
5438int perf_event_init_task(struct task_struct *child)
5439{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005440 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005441 struct perf_event_context *cloned_ctx;
5442 struct perf_event *event;
5443 struct task_struct *parent = current;
5444 int inherited_all = 1;
5445 int ret = 0;
5446
5447 child->perf_event_ctxp = NULL;
5448
5449 mutex_init(&child->perf_event_mutex);
5450 INIT_LIST_HEAD(&child->perf_event_list);
5451
5452 if (likely(!parent->perf_event_ctxp))
5453 return 0;
5454
5455 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005456 * If the parent's context is a clone, pin it so it won't get
5457 * swapped under us.
5458 */
5459 parent_ctx = perf_pin_task_context(parent);
5460
5461 /*
5462 * No need to check if parent_ctx != NULL here; since we saw
5463 * it non-NULL earlier, the only reason for it to become NULL
5464 * is if we exit, and since we're currently in the middle of
5465 * a fork we can't be exiting at the same time.
5466 */
5467
5468 /*
5469 * Lock the parent list. No need to lock the child - not PID
5470 * hashed yet and not running, so nobody can access it.
5471 */
5472 mutex_lock(&parent_ctx->mutex);
5473
5474 /*
5475 * We dont have to disable NMIs - we are only looking at
5476 * the list, not manipulating it:
5477 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005478 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5479 ret = inherit_task_group(event, parent, parent_ctx, child,
5480 &inherited_all);
5481 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005482 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005483 }
5484
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005485 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5486 ret = inherit_task_group(event, parent, parent_ctx, child,
5487 &inherited_all);
5488 if (ret)
5489 break;
5490 }
5491
5492 child_ctx = child->perf_event_ctxp;
5493
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005494 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005495 /*
5496 * Mark the child context as a clone of the parent
5497 * context, or of whatever the parent is a clone of.
5498 * Note that if the parent is a clone, it could get
5499 * uncloned at any point, but that doesn't matter
5500 * because the list of events and the generation
5501 * count can't have changed since we took the mutex.
5502 */
5503 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5504 if (cloned_ctx) {
5505 child_ctx->parent_ctx = cloned_ctx;
5506 child_ctx->parent_gen = parent_ctx->parent_gen;
5507 } else {
5508 child_ctx->parent_ctx = parent_ctx;
5509 child_ctx->parent_gen = parent_ctx->generation;
5510 }
5511 get_ctx(child_ctx->parent_ctx);
5512 }
5513
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005514 mutex_unlock(&parent_ctx->mutex);
5515
5516 perf_unpin_context(parent_ctx);
5517
5518 return ret;
5519}
5520
Paul Mackerras220b1402010-03-10 20:45:52 +11005521static void __init perf_event_init_all_cpus(void)
5522{
5523 int cpu;
5524 struct perf_cpu_context *cpuctx;
5525
5526 for_each_possible_cpu(cpu) {
5527 cpuctx = &per_cpu(perf_cpu_context, cpu);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005528 mutex_init(&cpuctx->hlist_mutex);
Paul Mackerras220b1402010-03-10 20:45:52 +11005529 __perf_event_init_context(&cpuctx->ctx, NULL);
5530 }
5531}
5532
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005533static void __cpuinit perf_event_init_cpu(int cpu)
5534{
5535 struct perf_cpu_context *cpuctx;
5536
5537 cpuctx = &per_cpu(perf_cpu_context, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005538
5539 spin_lock(&perf_resource_lock);
5540 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5541 spin_unlock(&perf_resource_lock);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005542
5543 mutex_lock(&cpuctx->hlist_mutex);
5544 if (cpuctx->hlist_refcount > 0) {
5545 struct swevent_hlist *hlist;
5546
5547 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5548 WARN_ON_ONCE(!hlist);
5549 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5550 }
5551 mutex_unlock(&cpuctx->hlist_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005552}
5553
5554#ifdef CONFIG_HOTPLUG_CPU
5555static void __perf_event_exit_cpu(void *info)
5556{
5557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5558 struct perf_event_context *ctx = &cpuctx->ctx;
5559 struct perf_event *event, *tmp;
5560
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005561 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5562 __perf_event_remove_from_context(event);
5563 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005564 __perf_event_remove_from_context(event);
5565}
5566static void perf_event_exit_cpu(int cpu)
5567{
5568 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5569 struct perf_event_context *ctx = &cpuctx->ctx;
5570
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005571 mutex_lock(&cpuctx->hlist_mutex);
5572 swevent_hlist_release(cpuctx);
5573 mutex_unlock(&cpuctx->hlist_mutex);
5574
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005575 mutex_lock(&ctx->mutex);
5576 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5577 mutex_unlock(&ctx->mutex);
5578}
5579#else
5580static inline void perf_event_exit_cpu(int cpu) { }
5581#endif
5582
5583static int __cpuinit
5584perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5585{
5586 unsigned int cpu = (long)hcpu;
5587
5588 switch (action) {
5589
5590 case CPU_UP_PREPARE:
5591 case CPU_UP_PREPARE_FROZEN:
5592 perf_event_init_cpu(cpu);
5593 break;
5594
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005595 case CPU_DOWN_PREPARE:
5596 case CPU_DOWN_PREPARE_FROZEN:
5597 perf_event_exit_cpu(cpu);
5598 break;
5599
5600 default:
5601 break;
5602 }
5603
5604 return NOTIFY_OK;
5605}
5606
5607/*
5608 * This has to have a higher priority than migration_notifier in sched.c.
5609 */
5610static struct notifier_block __cpuinitdata perf_cpu_nb = {
5611 .notifier_call = perf_cpu_notify,
5612 .priority = 20,
5613};
5614
5615void __init perf_event_init(void)
5616{
Paul Mackerras220b1402010-03-10 20:45:52 +11005617 perf_event_init_all_cpus();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005618 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5619 (void *)(long)smp_processor_id());
5620 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5621 (void *)(long)smp_processor_id());
5622 register_cpu_notifier(&perf_cpu_nb);
5623}
5624
Andi Kleenc9be0a32010-01-05 12:47:58 +01005625static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5626 struct sysdev_class_attribute *attr,
5627 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005628{
5629 return sprintf(buf, "%d\n", perf_reserved_percpu);
5630}
5631
5632static ssize_t
5633perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005634 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005635 const char *buf,
5636 size_t count)
5637{
5638 struct perf_cpu_context *cpuctx;
5639 unsigned long val;
5640 int err, cpu, mpt;
5641
5642 err = strict_strtoul(buf, 10, &val);
5643 if (err)
5644 return err;
5645 if (val > perf_max_events)
5646 return -EINVAL;
5647
5648 spin_lock(&perf_resource_lock);
5649 perf_reserved_percpu = val;
5650 for_each_online_cpu(cpu) {
5651 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005652 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005653 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5654 perf_max_events - perf_reserved_percpu);
5655 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005656 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005657 }
5658 spin_unlock(&perf_resource_lock);
5659
5660 return count;
5661}
5662
Andi Kleenc9be0a32010-01-05 12:47:58 +01005663static ssize_t perf_show_overcommit(struct sysdev_class *class,
5664 struct sysdev_class_attribute *attr,
5665 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005666{
5667 return sprintf(buf, "%d\n", perf_overcommit);
5668}
5669
5670static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005671perf_set_overcommit(struct sysdev_class *class,
5672 struct sysdev_class_attribute *attr,
5673 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005674{
5675 unsigned long val;
5676 int err;
5677
5678 err = strict_strtoul(buf, 10, &val);
5679 if (err)
5680 return err;
5681 if (val > 1)
5682 return -EINVAL;
5683
5684 spin_lock(&perf_resource_lock);
5685 perf_overcommit = val;
5686 spin_unlock(&perf_resource_lock);
5687
5688 return count;
5689}
5690
5691static SYSDEV_CLASS_ATTR(
5692 reserve_percpu,
5693 0644,
5694 perf_show_reserve_percpu,
5695 perf_set_reserve_percpu
5696 );
5697
5698static SYSDEV_CLASS_ATTR(
5699 overcommit,
5700 0644,
5701 perf_show_overcommit,
5702 perf_set_overcommit
5703 );
5704
5705static struct attribute *perfclass_attrs[] = {
5706 &attr_reserve_percpu.attr,
5707 &attr_overcommit.attr,
5708 NULL
5709};
5710
5711static struct attribute_group perfclass_attr_group = {
5712 .attrs = perfclass_attrs,
5713 .name = "perf_events",
5714};
5715
5716static int __init perf_event_sysfs_init(void)
5717{
5718 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5719 &perfclass_attr_group);
5720}
5721device_initcall(perf_event_sysfs_init);