blob: 9a2ce0637c807d49d48049f60e4456b5302a8bad [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/types.h>
11#include <linux/pci.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/interrupt.h>
15
16#include <asm/apb.h>
17#include <asm/pbm.h>
18#include <asm/iommu.h>
19#include <asm/irq.h>
20#include <asm/smp.h>
21#include <asm/oplib.h>
David S. Millere87dc352006-06-21 18:18:47 -070022#include <asm/prom.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070023
24#include "pci_impl.h"
25#include "iommu_common.h"
26
27/* All SABRE registers are 64-bits. The following accessor
28 * routines are how they are accessed. The REG parameter
29 * is a physical address.
30 */
31#define sabre_read(__reg) \
32({ u64 __ret; \
33 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "=r" (__ret) \
35 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36 : "memory"); \
37 __ret; \
38})
39#define sabre_write(__reg, __val) \
40 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : /* no outputs */ \
42 : "r" (__val), "r" (__reg), \
43 "i" (ASI_PHYS_BYPASS_EC_E) \
44 : "memory")
45
46/* SABRE PCI controller register offsets and definitions. */
47#define SABRE_UE_AFSR 0x0030UL
48#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
49#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
50#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
51#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
52#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
53#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
54#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
55#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
56#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
57#define SABRE_UECE_AFAR 0x0038UL
58#define SABRE_CE_AFSR 0x0040UL
59#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
60#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
61#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
62#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
63#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
64#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
65#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
66#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
67#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
68#define SABRE_IOMMU_CONTROL 0x0200UL
69#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
70#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
71#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
72#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
73#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
74#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
75#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
76#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
77#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
78#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
79#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
80#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
81#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
83#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
84#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
85#define SABRE_IOMMU_TSBBASE 0x0208UL
86#define SABRE_IOMMU_FLUSH 0x0210UL
87#define SABRE_IMAP_A_SLOT0 0x0c00UL
88#define SABRE_IMAP_B_SLOT0 0x0c20UL
89#define SABRE_IMAP_SCSI 0x1000UL
90#define SABRE_IMAP_ETH 0x1008UL
91#define SABRE_IMAP_BPP 0x1010UL
92#define SABRE_IMAP_AU_REC 0x1018UL
93#define SABRE_IMAP_AU_PLAY 0x1020UL
94#define SABRE_IMAP_PFAIL 0x1028UL
95#define SABRE_IMAP_KMS 0x1030UL
96#define SABRE_IMAP_FLPY 0x1038UL
97#define SABRE_IMAP_SHW 0x1040UL
98#define SABRE_IMAP_KBD 0x1048UL
99#define SABRE_IMAP_MS 0x1050UL
100#define SABRE_IMAP_SER 0x1058UL
101#define SABRE_IMAP_UE 0x1070UL
102#define SABRE_IMAP_CE 0x1078UL
103#define SABRE_IMAP_PCIERR 0x1080UL
104#define SABRE_IMAP_GFX 0x1098UL
105#define SABRE_IMAP_EUPA 0x10a0UL
106#define SABRE_ICLR_A_SLOT0 0x1400UL
107#define SABRE_ICLR_B_SLOT0 0x1480UL
108#define SABRE_ICLR_SCSI 0x1800UL
109#define SABRE_ICLR_ETH 0x1808UL
110#define SABRE_ICLR_BPP 0x1810UL
111#define SABRE_ICLR_AU_REC 0x1818UL
112#define SABRE_ICLR_AU_PLAY 0x1820UL
113#define SABRE_ICLR_PFAIL 0x1828UL
114#define SABRE_ICLR_KMS 0x1830UL
115#define SABRE_ICLR_FLPY 0x1838UL
116#define SABRE_ICLR_SHW 0x1840UL
117#define SABRE_ICLR_KBD 0x1848UL
118#define SABRE_ICLR_MS 0x1850UL
119#define SABRE_ICLR_SER 0x1858UL
120#define SABRE_ICLR_UE 0x1870UL
121#define SABRE_ICLR_CE 0x1878UL
122#define SABRE_ICLR_PCIERR 0x1880UL
123#define SABRE_WRSYNC 0x1c20UL
124#define SABRE_PCICTRL 0x2000UL
125#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
126#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
127#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
129#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
130#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
131#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
132#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
133#define SABRE_PIOAFSR 0x2010UL
134#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
135#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
136#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
137#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
138#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
139#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
140#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
141#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
142#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
143#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
144#define SABRE_PIOAFAR 0x2018UL
145#define SABRE_PCIDIAG 0x2020UL
146#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
147#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
148#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
149#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
150#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
151#define SABRE_PCITASR 0x2028UL
152#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
153#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
154#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
155#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
156#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
157#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
158#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
159#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
160#define SABRE_PIOBUF_DIAG 0x5000UL
161#define SABRE_DMABUF_DIAGLO 0x5100UL
162#define SABRE_DMABUF_DIAGHI 0x51c0UL
163#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
164#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
165#define SABRE_IOMMU_VADIAG 0xa400UL
166#define SABRE_IOMMU_TCDIAG 0xa408UL
167#define SABRE_IOMMU_TAG 0xa580UL
168#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
169#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
170#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
171#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
172#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
173#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
174#define SABRE_IOMMU_DATA 0xa600UL
175#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
176#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
177#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
178#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
179#define SABRE_PCI_IRQSTATE 0xa800UL
180#define SABRE_OBIO_IRQSTATE 0xa808UL
181#define SABRE_FFBCFG 0xf000UL
182#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
183#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
184#define SABRE_MCCTRL0 0xf010UL
185#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
186#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
187#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
188#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
189#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
190#define SABRE_MCCTRL1 0xf018UL
191#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
192#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
193#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
194#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
195#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
196#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
197#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
198#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
199#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
200#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
201#define SABRE_RESETCTRL 0xf020UL
202
203#define SABRE_CONFIGSPACE 0x001000000UL
204#define SABRE_IOSPACE 0x002000000UL
205#define SABRE_IOSPACE_SIZE 0x000ffffffUL
206#define SABRE_MEMSPACE 0x100000000UL
207#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208
209/* UltraSparc-IIi Programmer's Manual, page 325, PCI
210 * configuration space address format:
211 *
212 * 32 24 23 16 15 11 10 8 7 2 1 0
213 * ---------------------------------------------------------
214 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215 * ---------------------------------------------------------
216 */
217#define SABRE_CONFIG_BASE(PBM) \
218 ((PBM)->config_space | (1UL << 24))
219#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
220 (((unsigned long)(BUS) << 16) | \
221 ((unsigned long)(DEVFN) << 8) | \
222 ((unsigned long)(REG)))
223
224static int hummingbird_p;
225static struct pci_bus *sabre_root_bus;
226
227static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228 unsigned char bus,
229 unsigned int devfn,
230 int where)
231{
232 if (!pbm)
233 return NULL;
234 return (void *)
235 (SABRE_CONFIG_BASE(pbm) |
236 SABRE_CONFIG_ENCODE(bus, devfn, where));
237}
238
239static int sabre_out_of_range(unsigned char devfn)
240{
241 if (hummingbird_p)
242 return 0;
243
244 return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246 (PCI_SLOT(devfn) > 1));
247}
248
249static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250 unsigned char bus,
251 unsigned char devfn)
252{
253 if (hummingbird_p)
254 return 0;
255
256 return ((pbm->parent == 0) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257 ((pbm == &pbm->parent->pbm_A) &&
258 (bus == pbm->pci_first_busno) &&
259 PCI_SLOT(devfn) > 8));
260}
261
262static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
263 int where, int size, u32 *value)
264{
265 struct pci_pbm_info *pbm = bus_dev->sysdata;
266 unsigned char bus = bus_dev->number;
267 u32 *addr;
268 u16 tmp16;
269 u8 tmp8;
270
271 switch (size) {
272 case 1:
273 *value = 0xff;
274 break;
275 case 2:
276 *value = 0xffff;
277 break;
278 case 4:
279 *value = 0xffffffff;
280 break;
281 }
282
283 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
284 if (!addr)
285 return PCIBIOS_SUCCESSFUL;
286
287 if (__sabre_out_of_range(pbm, bus, devfn))
288 return PCIBIOS_SUCCESSFUL;
289
290 switch (size) {
291 case 1:
292 pci_config_read8((u8 *) addr, &tmp8);
293 *value = tmp8;
294 break;
295
296 case 2:
297 if (where & 0x01) {
298 printk("pci_read_config_word: misaligned reg [%x]\n",
299 where);
300 return PCIBIOS_SUCCESSFUL;
301 }
302 pci_config_read16((u16 *) addr, &tmp16);
303 *value = tmp16;
304 break;
305
306 case 4:
307 if (where & 0x03) {
308 printk("pci_read_config_dword: misaligned reg [%x]\n",
309 where);
310 return PCIBIOS_SUCCESSFUL;
311 }
312 pci_config_read32(addr, value);
313 break;
314 }
315
316 return PCIBIOS_SUCCESSFUL;
317}
318
319static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
320 int where, int size, u32 *value)
321{
David S. Miller97b3cf02007-03-11 16:42:53 -0700322 struct pci_pbm_info *pbm = bus->sysdata;
323
324 if (bus == pbm->pci_bus && devfn == 0x00)
325 return pci_host_bridge_read_pci_cfg(bus, devfn, where,
326 size, value);
327
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328 if (!bus->number && sabre_out_of_range(devfn)) {
329 switch (size) {
330 case 1:
331 *value = 0xff;
332 break;
333 case 2:
334 *value = 0xffff;
335 break;
336 case 4:
337 *value = 0xffffffff;
338 break;
339 }
340 return PCIBIOS_SUCCESSFUL;
341 }
342
343 if (bus->number || PCI_SLOT(devfn))
344 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
345
346 /* When accessing PCI config space of the PCI controller itself (bus
347 * 0, device slot 0, function 0) there are restrictions. Each
348 * register must be accessed as it's natural size. Thus, for example
349 * the Vendor ID must be accessed as a 16-bit quantity.
350 */
351
352 switch (size) {
353 case 1:
354 if (where < 8) {
355 u32 tmp32;
356 u16 tmp16;
357
358 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
359 tmp16 = (u16) tmp32;
360 if (where & 1)
361 *value = tmp16 >> 8;
362 else
363 *value = tmp16 & 0xff;
364 } else
365 return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
366 break;
367
368 case 2:
369 if (where < 8)
370 return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
371 else {
372 u32 tmp32;
373 u8 tmp8;
374
375 __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
376 tmp8 = (u8) tmp32;
377 *value = tmp8;
378 __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
379 tmp8 = (u8) tmp32;
380 *value |= tmp8 << 8;
381 }
382 break;
383
384 case 4: {
385 u32 tmp32;
386 u16 tmp16;
387
388 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
389 tmp16 = (u16) tmp32;
390 *value = tmp16;
391 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
392 tmp16 = (u16) tmp32;
393 *value |= tmp16 << 16;
394 break;
395 }
396 }
397 return PCIBIOS_SUCCESSFUL;
398}
399
400static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
401 int where, int size, u32 value)
402{
403 struct pci_pbm_info *pbm = bus_dev->sysdata;
404 unsigned char bus = bus_dev->number;
405 u32 *addr;
406
407 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
408 if (!addr)
409 return PCIBIOS_SUCCESSFUL;
410
411 if (__sabre_out_of_range(pbm, bus, devfn))
412 return PCIBIOS_SUCCESSFUL;
413
414 switch (size) {
415 case 1:
416 pci_config_write8((u8 *) addr, value);
417 break;
418
419 case 2:
420 if (where & 0x01) {
421 printk("pci_write_config_word: misaligned reg [%x]\n",
422 where);
423 return PCIBIOS_SUCCESSFUL;
424 }
425 pci_config_write16((u16 *) addr, value);
426 break;
427
428 case 4:
429 if (where & 0x03) {
430 printk("pci_write_config_dword: misaligned reg [%x]\n",
431 where);
432 return PCIBIOS_SUCCESSFUL;
433 }
434 pci_config_write32(addr, value);
435 break;
436 }
437
438 return PCIBIOS_SUCCESSFUL;
439}
440
441static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
442 int where, int size, u32 value)
443{
David S. Miller97b3cf02007-03-11 16:42:53 -0700444 struct pci_pbm_info *pbm = bus->sysdata;
445
446 if (bus == pbm->pci_bus && devfn == 0x00)
447 return pci_host_bridge_write_pci_cfg(bus, devfn, where,
448 size, value);
449
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450 if (bus->number)
451 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
452
453 if (sabre_out_of_range(devfn))
454 return PCIBIOS_SUCCESSFUL;
455
456 switch (size) {
457 case 1:
458 if (where < 8) {
459 u32 tmp32;
460 u16 tmp16;
461
462 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
463 tmp16 = (u16) tmp32;
464 if (where & 1) {
465 value &= 0x00ff;
466 value |= tmp16 << 8;
467 } else {
468 value &= 0xff00;
469 value |= tmp16;
470 }
471 tmp32 = (u32) tmp16;
472 return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
473 } else
474 return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
475 break;
476 case 2:
477 if (where < 8)
478 return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
479 else {
480 __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
481 __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
482 }
483 break;
484 case 4:
485 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
486 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
487 break;
488 }
489 return PCIBIOS_SUCCESSFUL;
490}
491
492static struct pci_ops sabre_ops = {
493 .read = sabre_read_pci_cfg,
494 .write = sabre_write_pci_cfg,
495};
496
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497/* SABRE error handling support. */
498static void sabre_check_iommu_error(struct pci_controller_info *p,
499 unsigned long afsr,
500 unsigned long afar)
501{
502 struct pci_iommu *iommu = p->pbm_A.iommu;
503 unsigned long iommu_tag[16];
504 unsigned long iommu_data[16];
505 unsigned long flags;
506 u64 control;
507 int i;
508
509 spin_lock_irqsave(&iommu->lock, flags);
510 control = sabre_read(iommu->iommu_control);
511 if (control & SABRE_IOMMUCTRL_ERR) {
512 char *type_string;
513
514 /* Clear the error encountered bit.
515 * NOTE: On Sabre this is write 1 to clear,
516 * which is different from Psycho.
517 */
518 sabre_write(iommu->iommu_control, control);
519 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
520 case 1:
521 type_string = "Invalid Error";
522 break;
523 case 3:
524 type_string = "ECC Error";
525 break;
526 default:
527 type_string = "Unknown";
528 break;
529 };
530 printk("SABRE%d: IOMMU Error, type[%s]\n",
531 p->index, type_string);
532
533 /* Enter diagnostic mode and probe for error'd
534 * entries in the IOTLB.
535 */
536 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
537 sabre_write(iommu->iommu_control,
538 (control | SABRE_IOMMUCTRL_DENAB));
539 for (i = 0; i < 16; i++) {
540 unsigned long base = p->pbm_A.controller_regs;
541
542 iommu_tag[i] =
543 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
544 iommu_data[i] =
545 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
546 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
547 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
548 }
549 sabre_write(iommu->iommu_control, control);
550
551 for (i = 0; i < 16; i++) {
552 unsigned long tag, data;
553
554 tag = iommu_tag[i];
555 if (!(tag & SABRE_IOMMUTAG_ERR))
556 continue;
557
558 data = iommu_data[i];
559 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
560 case 1:
561 type_string = "Invalid Error";
562 break;
563 case 3:
564 type_string = "ECC Error";
565 break;
566 default:
567 type_string = "Unknown";
568 break;
569 };
570 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
571 p->index, i, tag, type_string,
572 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
573 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
574 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
575 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
576 p->index, i, data,
577 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
578 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
579 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
580 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
581 }
582 }
583 spin_unlock_irqrestore(&iommu->lock, flags);
584}
585
Al Viro6d24c8d2006-10-08 08:23:28 -0400586static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587{
588 struct pci_controller_info *p = dev_id;
589 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
590 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
591 unsigned long afsr, afar, error_bits;
592 int reported;
593
594 /* Latch uncorrectable error status. */
595 afar = sabre_read(afar_reg);
596 afsr = sabre_read(afsr_reg);
597
598 /* Clear the primary/secondary error status bits. */
599 error_bits = afsr &
600 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
601 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
602 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
603 if (!error_bits)
604 return IRQ_NONE;
605 sabre_write(afsr_reg, error_bits);
606
607 /* Log the error. */
608 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
609 p->index,
610 ((error_bits & SABRE_UEAFSR_PDRD) ?
611 "DMA Read" :
612 ((error_bits & SABRE_UEAFSR_PDWR) ?
613 "DMA Write" : "???")),
614 ((error_bits & SABRE_UEAFSR_PDTE) ?
615 ":Translation Error" : ""));
616 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
617 p->index,
618 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
619 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
620 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
621 printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
622 printk("SABRE%d: UE Secondary errors [", p->index);
623 reported = 0;
624 if (afsr & SABRE_UEAFSR_SDRD) {
625 reported++;
626 printk("(DMA Read)");
627 }
628 if (afsr & SABRE_UEAFSR_SDWR) {
629 reported++;
630 printk("(DMA Write)");
631 }
632 if (afsr & SABRE_UEAFSR_SDTE) {
633 reported++;
634 printk("(Translation Error)");
635 }
636 if (!reported)
637 printk("(none)");
638 printk("]\n");
639
640 /* Interrogate IOMMU for error status. */
641 sabre_check_iommu_error(p, afsr, afar);
642
643 return IRQ_HANDLED;
644}
645
Al Viro6d24c8d2006-10-08 08:23:28 -0400646static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647{
648 struct pci_controller_info *p = dev_id;
649 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
650 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
651 unsigned long afsr, afar, error_bits;
652 int reported;
653
654 /* Latch error status. */
655 afar = sabre_read(afar_reg);
656 afsr = sabre_read(afsr_reg);
657
658 /* Clear primary/secondary error status bits. */
659 error_bits = afsr &
660 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
661 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
662 if (!error_bits)
663 return IRQ_NONE;
664 sabre_write(afsr_reg, error_bits);
665
666 /* Log the error. */
667 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
668 p->index,
669 ((error_bits & SABRE_CEAFSR_PDRD) ?
670 "DMA Read" :
671 ((error_bits & SABRE_CEAFSR_PDWR) ?
672 "DMA Write" : "???")));
673
674 /* XXX Use syndrome and afar to print out module string just like
675 * XXX UDB CE trap handler does... -DaveM
676 */
677 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
678 "was_block(%d)\n",
679 p->index,
680 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
681 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
682 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
683 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
684 printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
685 printk("SABRE%d: CE Secondary errors [", p->index);
686 reported = 0;
687 if (afsr & SABRE_CEAFSR_SDRD) {
688 reported++;
689 printk("(DMA Read)");
690 }
691 if (afsr & SABRE_CEAFSR_SDWR) {
692 reported++;
693 printk("(DMA Write)");
694 }
695 if (!reported)
696 printk("(none)");
697 printk("]\n");
698
699 return IRQ_HANDLED;
700}
701
702static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
703{
704 unsigned long csr_reg, csr, csr_error_bits;
705 irqreturn_t ret = IRQ_NONE;
706 u16 stat;
707
708 csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
709 csr = sabre_read(csr_reg);
710 csr_error_bits =
711 csr & SABRE_PCICTRL_SERR;
712 if (csr_error_bits) {
713 /* Clear the errors. */
714 sabre_write(csr_reg, csr);
715
716 /* Log 'em. */
717 if (csr_error_bits & SABRE_PCICTRL_SERR)
718 printk("SABRE%d: PCI SERR signal asserted.\n",
719 p->index);
720 ret = IRQ_HANDLED;
721 }
David S. Millera2fb23a2007-02-28 23:35:04 -0800722 pci_bus_read_config_word(sabre_root_bus, 0,
723 PCI_STATUS, &stat);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700724 if (stat & (PCI_STATUS_PARITY |
725 PCI_STATUS_SIG_TARGET_ABORT |
726 PCI_STATUS_REC_TARGET_ABORT |
727 PCI_STATUS_REC_MASTER_ABORT |
728 PCI_STATUS_SIG_SYSTEM_ERROR)) {
729 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
730 p->index, stat);
David S. Millera2fb23a2007-02-28 23:35:04 -0800731 pci_bus_write_config_word(sabre_root_bus, 0,
732 PCI_STATUS, 0xffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700733 ret = IRQ_HANDLED;
734 }
735 return ret;
736}
737
Al Viro6d24c8d2006-10-08 08:23:28 -0400738static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739{
740 struct pci_controller_info *p = dev_id;
741 unsigned long afsr_reg, afar_reg;
742 unsigned long afsr, afar, error_bits;
743 int reported;
744
745 afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
746 afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
747
748 /* Latch error status. */
749 afar = sabre_read(afar_reg);
750 afsr = sabre_read(afsr_reg);
751
752 /* Clear primary/secondary error status bits. */
753 error_bits = afsr &
754 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
755 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
756 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
757 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
758 if (!error_bits)
759 return sabre_pcierr_intr_other(p);
760 sabre_write(afsr_reg, error_bits);
761
762 /* Log the error. */
763 printk("SABRE%d: PCI Error, primary error type[%s]\n",
764 p->index,
765 (((error_bits & SABRE_PIOAFSR_PMA) ?
766 "Master Abort" :
767 ((error_bits & SABRE_PIOAFSR_PTA) ?
768 "Target Abort" :
769 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
770 "Excessive Retries" :
771 ((error_bits & SABRE_PIOAFSR_PPERR) ?
772 "Parity Error" : "???"))))));
773 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
774 p->index,
775 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
776 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
777 printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
778 printk("SABRE%d: PCI Secondary errors [", p->index);
779 reported = 0;
780 if (afsr & SABRE_PIOAFSR_SMA) {
781 reported++;
782 printk("(Master Abort)");
783 }
784 if (afsr & SABRE_PIOAFSR_STA) {
785 reported++;
786 printk("(Target Abort)");
787 }
788 if (afsr & SABRE_PIOAFSR_SRTRY) {
789 reported++;
790 printk("(Excessive Retries)");
791 }
792 if (afsr & SABRE_PIOAFSR_SPERR) {
793 reported++;
794 printk("(Parity Error)");
795 }
796 if (!reported)
797 printk("(none)");
798 printk("]\n");
799
800 /* For the error types shown, scan both PCI buses for devices
801 * which have logged that error type.
802 */
803
804 /* If we see a Target Abort, this could be the result of an
805 * IOMMU translation error of some sort. It is extremely
806 * useful to log this information as usually it indicates
807 * a bug in the IOMMU support code or a PCI device driver.
808 */
809 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
810 sabre_check_iommu_error(p, afsr, afar);
811 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812 }
David S. Miller01f94c42007-03-04 12:53:19 -0800813 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
David S. Miller01f94c42007-03-04 12:53:19 -0800815
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816 /* For excessive retries, SABRE/PBM will abort the device
817 * and there is no way to specifically check for excessive
818 * retries in the config space status registers. So what
819 * we hope is that we'll catch it via the master/target
820 * abort events.
821 */
822
David S. Miller01f94c42007-03-04 12:53:19 -0800823 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700824 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700825
826 return IRQ_HANDLED;
827}
828
David S. Miller085ae412005-08-08 13:19:08 -0700829static void sabre_register_error_handlers(struct pci_controller_info *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700830{
831 struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
David S. Miller2b1e5972006-06-29 15:07:37 -0700832 struct device_node *dp = pbm->prom_node;
833 struct of_device *op;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700834 unsigned long base = pbm->controller_regs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700835 u64 tmp;
836
David S. Miller2b1e5972006-06-29 15:07:37 -0700837 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
838 dp = dp->parent;
839
840 op = of_find_device_by_node(dp);
841 if (!op)
842 return;
843
844 /* Sabre/Hummingbird IRQ property layout is:
845 * 0: PCI ERR
846 * 1: UE ERR
847 * 2: CE ERR
848 * 3: POWER FAIL
849 */
850 if (op->num_irqs < 4)
851 return;
852
Linus Torvalds1da177e2005-04-16 15:20:36 -0700853 /* We clear the error bits in the appropriate AFSR before
854 * registering the handler so that we don't get spurious
855 * interrupts.
856 */
857 sabre_write(base + SABRE_UE_AFSR,
858 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
859 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
860 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
David S. Miller2b1e5972006-06-29 15:07:37 -0700861
Thomas Gleixnerd356d7f2006-07-01 19:29:26 -0700862 request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700863
864 sabre_write(base + SABRE_CE_AFSR,
865 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
866 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867
Thomas Gleixnerd356d7f2006-07-01 19:29:26 -0700868 request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
869 request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
David S. Miller2b1e5972006-06-29 15:07:37 -0700870 "SABRE PCIERR", p);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700871
872 tmp = sabre_read(base + SABRE_PCICTRL);
873 tmp |= SABRE_PCICTRL_ERREN;
874 sabre_write(base + SABRE_PCICTRL, tmp);
875}
876
David S. Miller085ae412005-08-08 13:19:08 -0700877static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878{
879 struct pci_dev *pdev;
880
881 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700882 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
883 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700884 u16 word16;
885
David S. Miller01f94c42007-03-04 12:53:19 -0800886 pci_read_config_word(pdev, PCI_COMMAND, &word16);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700887 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
888 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
889 PCI_COMMAND_IO;
David S. Miller01f94c42007-03-04 12:53:19 -0800890 pci_write_config_word(pdev, PCI_COMMAND, word16);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891
892 /* Status register bits are "write 1 to clear". */
David S. Miller01f94c42007-03-04 12:53:19 -0800893 pci_write_config_word(pdev, PCI_STATUS, 0xffff);
894 pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895
896 /* Use a primary/seconday latency timer value
897 * of 64.
898 */
David S. Miller01f94c42007-03-04 12:53:19 -0800899 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
900 pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700901
902 /* Enable reporting/forwarding of master aborts,
903 * parity, and SERR.
904 */
David S. Miller01f94c42007-03-04 12:53:19 -0800905 pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
906 (PCI_BRIDGE_CTL_PARITY |
907 PCI_BRIDGE_CTL_SERR |
908 PCI_BRIDGE_CTL_MASTER_ABORT));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700909 }
910 }
911}
912
David S. Miller085ae412005-08-08 13:19:08 -0700913static void sabre_scan_bus(struct pci_controller_info *p)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700914{
915 static int once;
David S. Miller01f94c42007-03-04 12:53:19 -0800916 struct pci_bus *pbus;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700917
918 /* The APB bridge speaks to the Sabre host PCI bridge
919 * at 66Mhz, but the front side of APB runs at 33Mhz
920 * for both segments.
921 */
922 p->pbm_A.is_66mhz_capable = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700923
924 /* This driver has not been verified to handle
925 * multiple SABREs yet, so trap this.
926 *
927 * Also note that the SABRE host bridge is hardwired
928 * to live at bus 0.
929 */
930 if (once != 0) {
931 prom_printf("SABRE: Multiple controllers unsupported.\n");
932 prom_halt();
933 }
934 once++;
935
David S. Miller01f94c42007-03-04 12:53:19 -0800936 pbus = pci_scan_one_pbm(&p->pbm_A);
937 if (!pbus)
David S. Millera2fb23a2007-02-28 23:35:04 -0800938 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939
David S. Miller01f94c42007-03-04 12:53:19 -0800940 sabre_root_bus = pbus;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941
David S. Miller01f94c42007-03-04 12:53:19 -0800942 apb_init(p, pbus);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700943
944 sabre_register_error_handlers(p);
945}
946
David S. Miller085ae412005-08-08 13:19:08 -0700947static void sabre_iommu_init(struct pci_controller_info *p,
948 int tsbsize, unsigned long dvma_offset,
949 u32 dma_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700950{
951 struct pci_iommu *iommu = p->pbm_A.iommu;
David S. Miller51e85132005-10-13 21:10:08 -0700952 unsigned long i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953 u64 control;
954
Linus Torvalds1da177e2005-04-16 15:20:36 -0700955 /* Register addresses. */
956 iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
957 iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
958 iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
959 iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
960 /* Sabre's IOMMU lacks ctx flushing. */
961 iommu->iommu_ctxflush = 0;
962
963 /* Invalidate TLB Entries. */
964 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
965 control |= SABRE_IOMMUCTRL_DENAB;
966 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
967
968 for(i = 0; i < 16; i++) {
969 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
970 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
971 }
972
973 /* Leave diag mode enabled for full-flushing done
974 * in pci_iommu.c
975 */
David S. Miller51e85132005-10-13 21:10:08 -0700976 pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977
David S. Miller51e85132005-10-13 21:10:08 -0700978 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
979 __pa(iommu->page_table));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980
981 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
982 control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
983 control |= SABRE_IOMMUCTRL_ENAB;
984 switch(tsbsize) {
985 case 64:
986 control |= SABRE_IOMMU_TSBSZ_64K;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987 break;
988 case 128:
989 control |= SABRE_IOMMU_TSBSZ_128K;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700990 break;
991 default:
992 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
993 prom_halt();
994 break;
995 }
996 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997}
998
David S. Miller9fd8b642007-03-08 21:55:49 -0800999static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000{
1001 struct pci_pbm_info *pbm;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002
David S. Miller01f94c42007-03-04 12:53:19 -08001003 pbm = &p->pbm_A;
1004 pbm->name = dp->full_name;
1005 printk("%s: SABRE PCI Bus Module\n", pbm->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001006
David S. Miller01f94c42007-03-04 12:53:19 -08001007 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1008 pbm->parent = p;
1009 pbm->prom_node = dp;
David S. Miller01f94c42007-03-04 12:53:19 -08001010 pbm->pci_first_busno = p->pci_first_busno;
1011 pbm->pci_last_busno = p->pci_last_busno;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012
David S. Miller9fd8b642007-03-08 21:55:49 -08001013 pci_determine_mem_io_space(pbm);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014}
1015
David S. Millere87dc352006-06-21 18:18:47 -07001016void sabre_init(struct device_node *dp, char *model_name)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017{
David S. Millera165b422007-03-29 01:50:16 -07001018 const struct linux_prom64_registers *pr_regs;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 struct pci_controller_info *p;
1020 struct pci_iommu *iommu;
David S. Millere87dc352006-06-21 18:18:47 -07001021 int tsbsize;
David S. Millera165b422007-03-29 01:50:16 -07001022 const u32 *busrange;
1023 const u32 *vdma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 u32 upa_portid, dma_mask;
1025 u64 clear_irq;
1026
1027 hummingbird_p = 0;
1028 if (!strcmp(model_name, "pci108e,a001"))
1029 hummingbird_p = 1;
1030 else if (!strcmp(model_name, "SUNW,sabre")) {
David S. Miller01f94c42007-03-04 12:53:19 -08001031 const char *compat = of_get_property(dp, "compatible", NULL);
1032 if (compat && !strcmp(compat, "pci108e,a001"))
1033 hummingbird_p = 1;
David S. Millere87dc352006-06-21 18:18:47 -07001034 if (!hummingbird_p) {
David S. Miller07f8e5f2006-06-21 23:34:02 -07001035 struct device_node *dp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001036
1037 /* Of course, Sun has to encode things a thousand
1038 * different ways, inconsistently.
1039 */
David S. Miller07f8e5f2006-06-21 23:34:02 -07001040 cpu_find_by_instance(0, &dp, NULL);
1041 if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001042 hummingbird_p = 1;
1043 }
1044 }
1045
Eric Sesterhenn91329832006-03-06 13:48:40 -08001046 p = kzalloc(sizeof(*p), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047 if (!p) {
1048 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1049 prom_halt();
1050 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001051
Eric Sesterhenn91329832006-03-06 13:48:40 -08001052 iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001053 if (!iommu) {
1054 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1055 prom_halt();
1056 }
David S. Miller01f94c42007-03-04 12:53:19 -08001057 p->pbm_A.iommu = iommu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058
David S. Miller01f94c42007-03-04 12:53:19 -08001059 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060
1061 p->next = pci_controller_root;
1062 pci_controller_root = p;
1063
1064 p->pbm_A.portid = upa_portid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065 p->index = pci_num_controllers++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001066 p->scan_bus = sabre_scan_bus;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067 p->pci_ops = &sabre_ops;
1068
1069 /*
1070 * Map in SABRE register set and report the presence of this SABRE.
1071 */
David S. Millere87dc352006-06-21 18:18:47 -07001072
David S. Miller01f94c42007-03-04 12:53:19 -08001073 pr_regs = of_get_property(dp, "reg", NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074
1075 /*
1076 * First REG in property is base of entire SABRE register space.
1077 */
1078 p->pbm_A.controller_regs = pr_regs[0].phys_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080 /* Clear interrupts */
1081
1082 /* PCI first */
1083 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1084 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1085
1086 /* Then OBIO */
1087 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1088 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1089
1090 /* Error interrupts are enabled later after the bus scan. */
1091 sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1092 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
1093 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1094
1095 /* Now map in PCI config space for entire SABRE. */
David S. Miller01f94c42007-03-04 12:53:19 -08001096 p->pbm_A.config_space =
Linus Torvalds1da177e2005-04-16 15:20:36 -07001097 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098
David S. Miller01f94c42007-03-04 12:53:19 -08001099 vdma = of_get_property(dp, "virtual-dma", NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001100
1101 dma_mask = vdma[0];
1102 switch(vdma[1]) {
1103 case 0x20000000:
1104 dma_mask |= 0x1fffffff;
1105 tsbsize = 64;
1106 break;
1107 case 0x40000000:
1108 dma_mask |= 0x3fffffff;
1109 tsbsize = 128;
1110 break;
1111
1112 case 0x80000000:
1113 dma_mask |= 0x7fffffff;
1114 tsbsize = 128;
1115 break;
1116 default:
1117 prom_printf("SABRE: strange virtual-dma size.\n");
1118 prom_halt();
1119 }
1120
1121 sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1122
David S. Miller01f94c42007-03-04 12:53:19 -08001123 busrange = of_get_property(dp, "bus-range", NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 p->pci_first_busno = busrange[0];
1125 p->pci_last_busno = busrange[1];
1126
1127 /*
1128 * Look for APB underneath.
1129 */
David S. Miller9fd8b642007-03-08 21:55:49 -08001130 sabre_pbm_init(p, dp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001131}