blob: 231d0d04c3e8d0424317c83b24ca250557b8b90b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_IA64_SN_SN_SAL_H
2#define _ASM_IA64_SN_SN_SAL_H
3
4/*
5 * System Abstraction Layer definitions for IA64
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
Russ Anderson93a07d02005-04-25 13:19:52 -070011 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All rights reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -070012 */
13
14
15#include <linux/config.h>
16#include <asm/sal.h>
17#include <asm/sn/sn_cpuid.h>
18#include <asm/sn/arch.h>
19#include <asm/sn/geo.h>
20#include <asm/sn/nodepda.h>
21#include <asm/sn/shub_mmr.h>
22
23// SGI Specific Calls
24#define SN_SAL_POD_MODE 0x02000001
25#define SN_SAL_SYSTEM_RESET 0x02000002
26#define SN_SAL_PROBE 0x02000003
27#define SN_SAL_GET_MASTER_NASID 0x02000004
28#define SN_SAL_GET_KLCONFIG_ADDR 0x02000005
29#define SN_SAL_LOG_CE 0x02000006
30#define SN_SAL_REGISTER_CE 0x02000007
31#define SN_SAL_GET_PARTITION_ADDR 0x02000009
32#define SN_SAL_XP_ADDR_REGION 0x0200000f
33#define SN_SAL_NO_FAULT_ZONE_VIRTUAL 0x02000010
34#define SN_SAL_NO_FAULT_ZONE_PHYSICAL 0x02000011
35#define SN_SAL_PRINT_ERROR 0x02000012
36#define SN_SAL_SET_ERROR_HANDLING_FEATURES 0x0200001a // reentrant
37#define SN_SAL_GET_FIT_COMPT 0x0200001b // reentrant
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#define SN_SAL_GET_SAPIC_INFO 0x0200001d
Jack Steinerbf1cf98f2005-04-25 11:42:39 -070039#define SN_SAL_GET_SN_INFO 0x0200001e
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#define SN_SAL_CONSOLE_PUTC 0x02000021
41#define SN_SAL_CONSOLE_GETC 0x02000022
42#define SN_SAL_CONSOLE_PUTS 0x02000023
43#define SN_SAL_CONSOLE_GETS 0x02000024
44#define SN_SAL_CONSOLE_GETS_TIMEOUT 0x02000025
45#define SN_SAL_CONSOLE_POLL 0x02000026
46#define SN_SAL_CONSOLE_INTR 0x02000027
47#define SN_SAL_CONSOLE_PUTB 0x02000028
48#define SN_SAL_CONSOLE_XMIT_CHARS 0x0200002a
49#define SN_SAL_CONSOLE_READC 0x0200002b
50#define SN_SAL_SYSCTL_MODID_GET 0x02000031
51#define SN_SAL_SYSCTL_GET 0x02000032
52#define SN_SAL_SYSCTL_IOBRICK_MODULE_GET 0x02000033
53#define SN_SAL_SYSCTL_IO_PORTSPEED_GET 0x02000035
54#define SN_SAL_SYSCTL_SLAB_GET 0x02000036
55#define SN_SAL_BUS_CONFIG 0x02000037
56#define SN_SAL_SYS_SERIAL_GET 0x02000038
57#define SN_SAL_PARTITION_SERIAL_GET 0x02000039
58#define SN_SAL_SYSCTL_PARTITION_GET 0x0200003a
59#define SN_SAL_SYSTEM_POWER_DOWN 0x0200003b
60#define SN_SAL_GET_MASTER_BASEIO_NASID 0x0200003c
61#define SN_SAL_COHERENCE 0x0200003d
62#define SN_SAL_MEMPROTECT 0x0200003e
63#define SN_SAL_SYSCTL_FRU_CAPTURE 0x0200003f
64
65#define SN_SAL_SYSCTL_IOBRICK_PCI_OP 0x02000042 // reentrant
66#define SN_SAL_IROUTER_OP 0x02000043
Greg Howard67639de2005-04-25 13:28:52 -070067#define SN_SAL_SYSCTL_EVENT 0x02000044
Linus Torvalds1da177e2005-04-16 15:20:36 -070068#define SN_SAL_IOIF_INTERRUPT 0x0200004a
69#define SN_SAL_HWPERF_OP 0x02000050 // lock
70#define SN_SAL_IOIF_ERROR_INTERRUPT 0x02000051
71
72#define SN_SAL_IOIF_SLOT_ENABLE 0x02000053
73#define SN_SAL_IOIF_SLOT_DISABLE 0x02000054
74#define SN_SAL_IOIF_GET_HUBDEV_INFO 0x02000055
75#define SN_SAL_IOIF_GET_PCIBUS_INFO 0x02000056
76#define SN_SAL_IOIF_GET_PCIDEV_INFO 0x02000057
77#define SN_SAL_IOIF_GET_WIDGET_DMAFLUSH_LIST 0x02000058
78
79#define SN_SAL_HUB_ERROR_INTERRUPT 0x02000060
Russ Anderson93a07d02005-04-25 13:19:52 -070080#define SN_SAL_BTE_RECOVER 0x02000061
Mark Goodwin0985ea82005-04-25 13:21:54 -070081#define SN_SAL_IOIF_GET_PCI_TOPOLOGY 0x02000062
Linus Torvalds1da177e2005-04-16 15:20:36 -070082
Jack Steinera1cddb82005-08-31 08:05:00 -070083#define SN_SAL_GET_PROM_FEATURE_SET 0x02000065
84#define SN_SAL_SET_OS_FEATURE_SET 0x02000066
85
Linus Torvalds1da177e2005-04-16 15:20:36 -070086/*
87 * Service-specific constants
88 */
89
90/* Console interrupt manipulation */
91 /* action codes */
92#define SAL_CONSOLE_INTR_OFF 0 /* turn the interrupt off */
93#define SAL_CONSOLE_INTR_ON 1 /* turn the interrupt on */
94#define SAL_CONSOLE_INTR_STATUS 2 /* retrieve the interrupt status */
95 /* interrupt specification & status return codes */
96#define SAL_CONSOLE_INTR_XMIT 1 /* output interrupt */
97#define SAL_CONSOLE_INTR_RECV 2 /* input interrupt */
98
99/* interrupt handling */
100#define SAL_INTR_ALLOC 1
101#define SAL_INTR_FREE 2
102
103/*
104 * IRouter (i.e. generalized system controller) operations
105 */
106#define SAL_IROUTER_OPEN 0 /* open a subchannel */
107#define SAL_IROUTER_CLOSE 1 /* close a subchannel */
108#define SAL_IROUTER_SEND 2 /* send part of an IRouter packet */
109#define SAL_IROUTER_RECV 3 /* receive part of an IRouter packet */
110#define SAL_IROUTER_INTR_STATUS 4 /* check the interrupt status for
111 * an open subchannel
112 */
113#define SAL_IROUTER_INTR_ON 5 /* enable an interrupt */
114#define SAL_IROUTER_INTR_OFF 6 /* disable an interrupt */
115#define SAL_IROUTER_INIT 7 /* initialize IRouter driver */
116
117/* IRouter interrupt mask bits */
118#define SAL_IROUTER_INTR_XMIT SAL_CONSOLE_INTR_XMIT
119#define SAL_IROUTER_INTR_RECV SAL_CONSOLE_INTR_RECV
120
Russ Anderson6872ec52005-05-16 15:30:00 -0700121/*
122 * Error Handling Features
123 */
Jack Steinera1cddb82005-08-31 08:05:00 -0700124#define SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV 0x1 // obsolete
125#define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete
Russ Anderson6872ec52005-05-16 15:30:00 -0700126#define SAL_ERR_FEAT_MFR_OVERRIDE 0x4
127#define SAL_ERR_FEAT_SBE_THRESHOLD 0xffff0000
Linus Torvalds1da177e2005-04-16 15:20:36 -0700128
129/*
130 * SAL Error Codes
131 */
132#define SALRET_MORE_PASSES 1
133#define SALRET_OK 0
134#define SALRET_NOT_IMPLEMENTED (-1)
135#define SALRET_INVALID_ARG (-2)
136#define SALRET_ERROR (-3)
137
Jack Steiner71a5d022005-05-10 08:01:00 -0700138#define SN_SAL_FAKE_PROM 0x02009999
139
Linus Torvalds1da177e2005-04-16 15:20:36 -0700140/**
Prarit Bhargava283c7f62005-07-06 15:29:13 -0700141 * sn_sal_revision - get the SGI SAL revision number
142 *
143 * The SGI PROM stores its version in the sal_[ab]_rev_(major|minor).
144 * This routine simply extracts the major and minor values and
145 * presents them in a u32 format.
146 *
147 * For example, version 4.05 would be represented at 0x0405.
148 */
149static inline u32
150sn_sal_rev(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151{
152 struct ia64_sal_systab *systab = efi.sal_systab;
153
Prarit Bhargava283c7f62005-07-06 15:29:13 -0700154 return (u32)(systab->sal_b_rev_major << 8 | systab->sal_b_rev_minor);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700155}
156
157/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158 * Returns the master console nasid, if the call fails, return an illegal
159 * value.
160 */
161static inline u64
162ia64_sn_get_console_nasid(void)
163{
164 struct ia64_sal_retval ret_stuff;
165
166 ret_stuff.status = 0;
167 ret_stuff.v0 = 0;
168 ret_stuff.v1 = 0;
169 ret_stuff.v2 = 0;
170 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_NASID, 0, 0, 0, 0, 0, 0, 0);
171
172 if (ret_stuff.status < 0)
173 return ret_stuff.status;
174
175 /* Master console nasid is in 'v0' */
176 return ret_stuff.v0;
177}
178
179/*
180 * Returns the master baseio nasid, if the call fails, return an illegal
181 * value.
182 */
183static inline u64
184ia64_sn_get_master_baseio_nasid(void)
185{
186 struct ia64_sal_retval ret_stuff;
187
188 ret_stuff.status = 0;
189 ret_stuff.v0 = 0;
190 ret_stuff.v1 = 0;
191 ret_stuff.v2 = 0;
192 SAL_CALL(ret_stuff, SN_SAL_GET_MASTER_BASEIO_NASID, 0, 0, 0, 0, 0, 0, 0);
193
194 if (ret_stuff.status < 0)
195 return ret_stuff.status;
196
197 /* Master baseio nasid is in 'v0' */
198 return ret_stuff.v0;
199}
200
201static inline char *
202ia64_sn_get_klconfig_addr(nasid_t nasid)
203{
204 struct ia64_sal_retval ret_stuff;
205 int cnodeid;
206
207 cnodeid = nasid_to_cnodeid(nasid);
208 ret_stuff.status = 0;
209 ret_stuff.v0 = 0;
210 ret_stuff.v1 = 0;
211 ret_stuff.v2 = 0;
212 SAL_CALL(ret_stuff, SN_SAL_GET_KLCONFIG_ADDR, (u64)nasid, 0, 0, 0, 0, 0, 0);
213
214 /*
215 * We should panic if a valid cnode nasid does not produce
216 * a klconfig address.
217 */
218 if (ret_stuff.status != 0) {
219 panic("ia64_sn_get_klconfig_addr: Returned error %lx\n", ret_stuff.status);
220 }
221 return ret_stuff.v0 ? __va(ret_stuff.v0) : NULL;
222}
223
224/*
225 * Returns the next console character.
226 */
227static inline u64
228ia64_sn_console_getc(int *ch)
229{
230 struct ia64_sal_retval ret_stuff;
231
232 ret_stuff.status = 0;
233 ret_stuff.v0 = 0;
234 ret_stuff.v1 = 0;
235 ret_stuff.v2 = 0;
236 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_GETC, 0, 0, 0, 0, 0, 0, 0);
237
238 /* character is in 'v0' */
239 *ch = (int)ret_stuff.v0;
240
241 return ret_stuff.status;
242}
243
244/*
245 * Read a character from the SAL console device, after a previous interrupt
246 * or poll operation has given us to know that a character is available
247 * to be read.
248 */
249static inline u64
250ia64_sn_console_readc(void)
251{
252 struct ia64_sal_retval ret_stuff;
253
254 ret_stuff.status = 0;
255 ret_stuff.v0 = 0;
256 ret_stuff.v1 = 0;
257 ret_stuff.v2 = 0;
258 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_READC, 0, 0, 0, 0, 0, 0, 0);
259
260 /* character is in 'v0' */
261 return ret_stuff.v0;
262}
263
264/*
265 * Sends the given character to the console.
266 */
267static inline u64
268ia64_sn_console_putc(char ch)
269{
270 struct ia64_sal_retval ret_stuff;
271
272 ret_stuff.status = 0;
273 ret_stuff.v0 = 0;
274 ret_stuff.v1 = 0;
275 ret_stuff.v2 = 0;
276 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTC, (uint64_t)ch, 0, 0, 0, 0, 0, 0);
277
278 return ret_stuff.status;
279}
280
281/*
282 * Sends the given buffer to the console.
283 */
284static inline u64
285ia64_sn_console_putb(const char *buf, int len)
286{
287 struct ia64_sal_retval ret_stuff;
288
289 ret_stuff.status = 0;
290 ret_stuff.v0 = 0;
291 ret_stuff.v1 = 0;
292 ret_stuff.v2 = 0;
293 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_PUTB, (uint64_t)buf, (uint64_t)len, 0, 0, 0, 0, 0);
294
295 if ( ret_stuff.status == 0 ) {
296 return ret_stuff.v0;
297 }
298 return (u64)0;
299}
300
301/*
302 * Print a platform error record
303 */
304static inline u64
305ia64_sn_plat_specific_err_print(int (*hook)(const char*, ...), char *rec)
306{
307 struct ia64_sal_retval ret_stuff;
308
309 ret_stuff.status = 0;
310 ret_stuff.v0 = 0;
311 ret_stuff.v1 = 0;
312 ret_stuff.v2 = 0;
313 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_PRINT_ERROR, (uint64_t)hook, (uint64_t)rec, 0, 0, 0, 0, 0);
314
315 return ret_stuff.status;
316}
317
318/*
319 * Check for Platform errors
320 */
321static inline u64
322ia64_sn_plat_cpei_handler(void)
323{
324 struct ia64_sal_retval ret_stuff;
325
326 ret_stuff.status = 0;
327 ret_stuff.v0 = 0;
328 ret_stuff.v1 = 0;
329 ret_stuff.v2 = 0;
330 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_LOG_CE, 0, 0, 0, 0, 0, 0, 0);
331
332 return ret_stuff.status;
333}
334
335/*
Jack Steinera1cddb82005-08-31 08:05:00 -0700336 * Set Error Handling Features (Obsolete)
Russ Anderson6872ec52005-05-16 15:30:00 -0700337 */
338static inline u64
339ia64_sn_plat_set_error_handling_features(void)
340{
341 struct ia64_sal_retval ret_stuff;
342
343 ret_stuff.status = 0;
344 ret_stuff.v0 = 0;
345 ret_stuff.v1 = 0;
346 ret_stuff.v2 = 0;
347 SAL_CALL_REENTRANT(ret_stuff, SN_SAL_SET_ERROR_HANDLING_FEATURES,
348 (SAL_ERR_FEAT_MCA_SLV_TO_OS_INIT_SLV | SAL_ERR_FEAT_LOG_SBES),
349 0, 0, 0, 0, 0, 0);
350
351 return ret_stuff.status;
352}
353
354/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355 * Checks for console input.
356 */
357static inline u64
358ia64_sn_console_check(int *result)
359{
360 struct ia64_sal_retval ret_stuff;
361
362 ret_stuff.status = 0;
363 ret_stuff.v0 = 0;
364 ret_stuff.v1 = 0;
365 ret_stuff.v2 = 0;
366 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_POLL, 0, 0, 0, 0, 0, 0, 0);
367
368 /* result is in 'v0' */
369 *result = (int)ret_stuff.v0;
370
371 return ret_stuff.status;
372}
373
374/*
375 * Checks console interrupt status
376 */
377static inline u64
378ia64_sn_console_intr_status(void)
379{
380 struct ia64_sal_retval ret_stuff;
381
382 ret_stuff.status = 0;
383 ret_stuff.v0 = 0;
384 ret_stuff.v1 = 0;
385 ret_stuff.v2 = 0;
386 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
387 0, SAL_CONSOLE_INTR_STATUS,
388 0, 0, 0, 0, 0);
389
390 if (ret_stuff.status == 0) {
391 return ret_stuff.v0;
392 }
393
394 return 0;
395}
396
397/*
398 * Enable an interrupt on the SAL console device.
399 */
400static inline void
401ia64_sn_console_intr_enable(uint64_t intr)
402{
403 struct ia64_sal_retval ret_stuff;
404
405 ret_stuff.status = 0;
406 ret_stuff.v0 = 0;
407 ret_stuff.v1 = 0;
408 ret_stuff.v2 = 0;
409 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
410 intr, SAL_CONSOLE_INTR_ON,
411 0, 0, 0, 0, 0);
412}
413
414/*
415 * Disable an interrupt on the SAL console device.
416 */
417static inline void
418ia64_sn_console_intr_disable(uint64_t intr)
419{
420 struct ia64_sal_retval ret_stuff;
421
422 ret_stuff.status = 0;
423 ret_stuff.v0 = 0;
424 ret_stuff.v1 = 0;
425 ret_stuff.v2 = 0;
426 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_INTR,
427 intr, SAL_CONSOLE_INTR_OFF,
428 0, 0, 0, 0, 0);
429}
430
431/*
432 * Sends a character buffer to the console asynchronously.
433 */
434static inline u64
435ia64_sn_console_xmit_chars(char *buf, int len)
436{
437 struct ia64_sal_retval ret_stuff;
438
439 ret_stuff.status = 0;
440 ret_stuff.v0 = 0;
441 ret_stuff.v1 = 0;
442 ret_stuff.v2 = 0;
443 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_CONSOLE_XMIT_CHARS,
444 (uint64_t)buf, (uint64_t)len,
445 0, 0, 0, 0, 0);
446
447 if (ret_stuff.status == 0) {
448 return ret_stuff.v0;
449 }
450
451 return 0;
452}
453
454/*
455 * Returns the iobrick module Id
456 */
457static inline u64
458ia64_sn_sysctl_iobrick_module_get(nasid_t nasid, int *result)
459{
460 struct ia64_sal_retval ret_stuff;
461
462 ret_stuff.status = 0;
463 ret_stuff.v0 = 0;
464 ret_stuff.v1 = 0;
465 ret_stuff.v2 = 0;
466 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYSCTL_IOBRICK_MODULE_GET, nasid, 0, 0, 0, 0, 0, 0);
467
468 /* result is in 'v0' */
469 *result = (int)ret_stuff.v0;
470
471 return ret_stuff.status;
472}
473
474/**
475 * ia64_sn_pod_mode - call the SN_SAL_POD_MODE function
476 *
477 * SN_SAL_POD_MODE actually takes an argument, but it's always
478 * 0 when we call it from the kernel, so we don't have to expose
479 * it to the caller.
480 */
481static inline u64
482ia64_sn_pod_mode(void)
483{
484 struct ia64_sal_retval isrv;
Russ Anderson8eac3752005-05-16 15:19:00 -0700485 SAL_CALL_REENTRANT(isrv, SN_SAL_POD_MODE, 0, 0, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486 if (isrv.status)
487 return 0;
488 return isrv.v0;
489}
490
491/**
492 * ia64_sn_probe_mem - read from memory safely
493 * @addr: address to probe
494 * @size: number bytes to read (1,2,4,8)
495 * @data_ptr: address to store value read by probe (-1 returned if probe fails)
496 *
497 * Call into the SAL to do a memory read. If the read generates a machine
498 * check, this routine will recover gracefully and return -1 to the caller.
499 * @addr is usually a kernel virtual address in uncached space (i.e. the
500 * address starts with 0xc), but if called in physical mode, @addr should
501 * be a physical address.
502 *
503 * Return values:
504 * 0 - probe successful
505 * 1 - probe failed (generated MCA)
506 * 2 - Bad arg
507 * <0 - PAL error
508 */
509static inline u64
510ia64_sn_probe_mem(long addr, long size, void *data_ptr)
511{
512 struct ia64_sal_retval isrv;
513
514 SAL_CALL(isrv, SN_SAL_PROBE, addr, size, 0, 0, 0, 0, 0);
515
516 if (data_ptr) {
517 switch (size) {
518 case 1:
519 *((u8*)data_ptr) = (u8)isrv.v0;
520 break;
521 case 2:
522 *((u16*)data_ptr) = (u16)isrv.v0;
523 break;
524 case 4:
525 *((u32*)data_ptr) = (u32)isrv.v0;
526 break;
527 case 8:
528 *((u64*)data_ptr) = (u64)isrv.v0;
529 break;
530 default:
531 isrv.status = 2;
532 }
533 }
534 return isrv.status;
535}
536
537/*
538 * Retrieve the system serial number as an ASCII string.
539 */
540static inline u64
541ia64_sn_sys_serial_get(char *buf)
542{
543 struct ia64_sal_retval ret_stuff;
544 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_SYS_SERIAL_GET, buf, 0, 0, 0, 0, 0, 0);
545 return ret_stuff.status;
546}
547
548extern char sn_system_serial_number_string[];
549extern u64 sn_partition_serial_number;
550
551static inline char *
552sn_system_serial_number(void) {
553 if (sn_system_serial_number_string[0]) {
554 return(sn_system_serial_number_string);
555 } else {
556 ia64_sn_sys_serial_get(sn_system_serial_number_string);
557 return(sn_system_serial_number_string);
558 }
559}
560
561
562/*
563 * Returns a unique id number for this system and partition (suitable for
564 * use with license managers), based in part on the system serial number.
565 */
566static inline u64
567ia64_sn_partition_serial_get(void)
568{
569 struct ia64_sal_retval ret_stuff;
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700570 ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0,
571 0, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700572 if (ret_stuff.status != 0)
573 return 0;
574 return ret_stuff.v0;
575}
576
577static inline u64
578sn_partition_serial_number_val(void) {
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700579 if (unlikely(sn_partition_serial_number == 0)) {
580 sn_partition_serial_number = ia64_sn_partition_serial_get();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581 }
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700582 return sn_partition_serial_number;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700583}
584
585/*
586 * Returns the partition id of the nasid passed in as an argument,
587 * or INVALID_PARTID if the partition id cannot be retrieved.
588 */
589static inline partid_t
590ia64_sn_sysctl_partition_get(nasid_t nasid)
591{
592 struct ia64_sal_retval ret_stuff;
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700593 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid,
594 0, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595 if (ret_stuff.status != 0)
596 return INVALID_PARTID;
597 return ((partid_t)ret_stuff.v0);
598}
599
600/*
601 * Returns the partition id of the current processor.
602 */
603
604extern partid_t sn_partid;
605
606static inline partid_t
607sn_local_partid(void) {
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700608 if (unlikely(sn_partid < 0)) {
609 sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700610 }
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700611 return sn_partid;
612}
613
614/*
615 * Returns the physical address of the partition's reserved page through
616 * an iterative number of calls.
617 *
618 * On first call, 'cookie' and 'len' should be set to 0, and 'addr'
619 * set to the nasid of the partition whose reserved page's address is
620 * being sought.
621 * On subsequent calls, pass the values, that were passed back on the
622 * previous call.
623 *
624 * While the return status equals SALRET_MORE_PASSES, keep calling
625 * this function after first copying 'len' bytes starting at 'addr'
626 * into 'buf'. Once the return status equals SALRET_OK, 'addr' will
627 * be the physical address of the partition's reserved page. If the
628 * return status equals neither of these, an error as occurred.
629 */
630static inline s64
631sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
632{
633 struct ia64_sal_retval rv;
634 ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie,
635 *addr, buf, *len, 0, 0, 0);
636 *cookie = rv.v0;
637 *addr = rv.v1;
638 *len = rv.v2;
639 return rv.status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640}
641
642/*
643 * Register or unregister a physical address range being referenced across
644 * a partition boundary for which certain SAL errors should be scanned for,
645 * cleaned up and ignored. This is of value for kernel partitioning code only.
646 * Values for the operation argument:
647 * 1 = register this address range with SAL
648 * 0 = unregister this address range with SAL
649 *
650 * SAL maintains a reference count on an address range in case it is registered
651 * multiple times.
652 *
653 * On success, returns the reference count of the address range after the SAL
654 * call has performed the current registration/unregistration. Returns a
655 * negative value if an error occurred.
656 */
657static inline int
658sn_register_xp_addr_region(u64 paddr, u64 len, int operation)
659{
660 struct ia64_sal_retval ret_stuff;
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700661 ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len,
662 (u64)operation, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700663 return ret_stuff.status;
664}
665
666/*
667 * Register or unregister an instruction range for which SAL errors should
668 * be ignored. If an error occurs while in the registered range, SAL jumps
669 * to return_addr after ignoring the error. Values for the operation argument:
670 * 1 = register this instruction range with SAL
671 * 0 = unregister this instruction range with SAL
672 *
673 * Returns 0 on success, or a negative value if an error occurred.
674 */
675static inline int
676sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr,
677 int virtual, int operation)
678{
679 struct ia64_sal_retval ret_stuff;
680 u64 call;
681 if (virtual) {
682 call = SN_SAL_NO_FAULT_ZONE_VIRTUAL;
683 } else {
684 call = SN_SAL_NO_FAULT_ZONE_PHYSICAL;
685 }
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700686 ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr,
687 (u64)1, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688 return ret_stuff.status;
689}
690
691/*
692 * Change or query the coherence domain for this partition. Each cpu-based
693 * nasid is represented by a bit in an array of 64-bit words:
694 * 0 = not in this partition's coherency domain
695 * 1 = in this partition's coherency domain
696 *
697 * It is not possible for the local system's nasids to be removed from
698 * the coherency domain. Purpose of the domain arguments:
699 * new_domain = set the coherence domain to the given nasids
700 * old_domain = return the current coherence domain
701 *
702 * Returns 0 on success, or a negative value if an error occurred.
703 */
704static inline int
705sn_change_coherence(u64 *new_domain, u64 *old_domain)
706{
707 struct ia64_sal_retval ret_stuff;
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700708 ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain,
709 (u64)old_domain, 0, 0, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 return ret_stuff.status;
711}
712
713/*
714 * Change memory access protections for a physical address range.
715 * nasid_array is not used on Altix, but may be in future architectures.
716 * Available memory protection access classes are defined after the function.
717 */
718static inline int
719sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array)
720{
721 struct ia64_sal_retval ret_stuff;
722 int cnodeid;
723 unsigned long irq_flags;
724
725 cnodeid = nasid_to_cnodeid(get_node_number(paddr));
726 // spin_lock(&NODEPDA(cnodeid)->bist_lock);
727 local_irq_save(irq_flags);
Dean Nelsonb48fc7b2005-03-23 19:05:00 -0700728 ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len,
729 (u64)nasid_array, perms, 0, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730 local_irq_restore(irq_flags);
731 // spin_unlock(&NODEPDA(cnodeid)->bist_lock);
732 return ret_stuff.status;
733}
734#define SN_MEMPROT_ACCESS_CLASS_0 0x14a080
735#define SN_MEMPROT_ACCESS_CLASS_1 0x2520c2
736#define SN_MEMPROT_ACCESS_CLASS_2 0x14a1ca
737#define SN_MEMPROT_ACCESS_CLASS_3 0x14a290
738#define SN_MEMPROT_ACCESS_CLASS_6 0x084080
739#define SN_MEMPROT_ACCESS_CLASS_7 0x021080
740
741/*
742 * Turns off system power.
743 */
744static inline void
745ia64_sn_power_down(void)
746{
747 struct ia64_sal_retval ret_stuff;
748 SAL_CALL(ret_stuff, SN_SAL_SYSTEM_POWER_DOWN, 0, 0, 0, 0, 0, 0, 0);
749 while(1);
750 /* never returns */
751}
752
753/**
754 * ia64_sn_fru_capture - tell the system controller to capture hw state
755 *
756 * This routine will call the SAL which will tell the system controller(s)
757 * to capture hw mmr information from each SHub in the system.
758 */
759static inline u64
760ia64_sn_fru_capture(void)
761{
762 struct ia64_sal_retval isrv;
763 SAL_CALL(isrv, SN_SAL_SYSCTL_FRU_CAPTURE, 0, 0, 0, 0, 0, 0, 0);
764 if (isrv.status)
765 return 0;
766 return isrv.v0;
767}
768
769/*
770 * Performs an operation on a PCI bus or slot -- power up, power down
771 * or reset.
772 */
773static inline u64
774ia64_sn_sysctl_iobrick_pci_op(nasid_t n, u64 connection_type,
775 u64 bus, char slot,
776 u64 action)
777{
778 struct ia64_sal_retval rv = {0, 0, 0, 0};
779
780 SAL_CALL_NOLOCK(rv, SN_SAL_SYSCTL_IOBRICK_PCI_OP, connection_type, n, action,
781 bus, (u64) slot, 0, 0);
782 if (rv.status)
783 return rv.v0;
784 return 0;
785}
786
787
788/*
789 * Open a subchannel for sending arbitrary data to the system
790 * controller network via the system controller device associated with
791 * 'nasid'. Return the subchannel number or a negative error code.
792 */
793static inline int
794ia64_sn_irtr_open(nasid_t nasid)
795{
796 struct ia64_sal_retval rv;
797 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_OPEN, nasid,
798 0, 0, 0, 0, 0);
799 return (int) rv.v0;
800}
801
802/*
803 * Close system controller subchannel 'subch' previously opened on 'nasid'.
804 */
805static inline int
806ia64_sn_irtr_close(nasid_t nasid, int subch)
807{
808 struct ia64_sal_retval rv;
809 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_CLOSE,
810 (u64) nasid, (u64) subch, 0, 0, 0, 0);
811 return (int) rv.status;
812}
813
814/*
815 * Read data from system controller associated with 'nasid' on
816 * subchannel 'subch'. The buffer to be filled is pointed to by
817 * 'buf', and its capacity is in the integer pointed to by 'len'. The
818 * referent of 'len' is set to the number of bytes read by the SAL
819 * call. The return value is either SALRET_OK (for bytes read) or
820 * SALRET_ERROR (for error or "no data available").
821 */
822static inline int
823ia64_sn_irtr_recv(nasid_t nasid, int subch, char *buf, int *len)
824{
825 struct ia64_sal_retval rv;
826 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_RECV,
827 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
828 0, 0);
829 return (int) rv.status;
830}
831
832/*
833 * Write data to the system controller network via the system
834 * controller associated with 'nasid' on suchannel 'subch'. The
835 * buffer to be written out is pointed to by 'buf', and 'len' is the
836 * number of bytes to be written. The return value is either the
837 * number of bytes written (which could be zero) or a negative error
838 * code.
839 */
840static inline int
841ia64_sn_irtr_send(nasid_t nasid, int subch, char *buf, int len)
842{
843 struct ia64_sal_retval rv;
844 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_SEND,
845 (u64) nasid, (u64) subch, (u64) buf, (u64) len,
846 0, 0);
847 return (int) rv.v0;
848}
849
850/*
851 * Check whether any interrupts are pending for the system controller
852 * associated with 'nasid' and its subchannel 'subch'. The return
853 * value is a mask of pending interrupts (SAL_IROUTER_INTR_XMIT and/or
854 * SAL_IROUTER_INTR_RECV).
855 */
856static inline int
857ia64_sn_irtr_intr(nasid_t nasid, int subch)
858{
859 struct ia64_sal_retval rv;
860 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_STATUS,
861 (u64) nasid, (u64) subch, 0, 0, 0, 0);
862 return (int) rv.v0;
863}
864
865/*
866 * Enable the interrupt indicated by the intr parameter (either
867 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
868 */
869static inline int
870ia64_sn_irtr_intr_enable(nasid_t nasid, int subch, u64 intr)
871{
872 struct ia64_sal_retval rv;
873 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_ON,
874 (u64) nasid, (u64) subch, intr, 0, 0, 0);
875 return (int) rv.v0;
876}
877
878/*
879 * Disable the interrupt indicated by the intr parameter (either
880 * SAL_IROUTER_INTR_XMIT or SAL_IROUTER_INTR_RECV).
881 */
882static inline int
883ia64_sn_irtr_intr_disable(nasid_t nasid, int subch, u64 intr)
884{
885 struct ia64_sal_retval rv;
886 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INTR_OFF,
887 (u64) nasid, (u64) subch, intr, 0, 0, 0);
888 return (int) rv.v0;
889}
890
Greg Howard67639de2005-04-25 13:28:52 -0700891/*
892 * Set up a node as the point of contact for system controller
893 * environmental event delivery.
894 */
895static inline int
896ia64_sn_sysctl_event_init(nasid_t nasid)
897{
898 struct ia64_sal_retval rv;
899 SAL_CALL_REENTRANT(rv, SN_SAL_SYSCTL_EVENT, (u64) nasid,
900 0, 0, 0, 0, 0, 0);
901 return (int) rv.v0;
902}
903
Linus Torvalds1da177e2005-04-16 15:20:36 -0700904/**
905 * ia64_sn_get_fit_compt - read a FIT entry from the PROM header
906 * @nasid: NASID of node to read
907 * @index: FIT entry index to be retrieved (0..n)
908 * @fitentry: 16 byte buffer where FIT entry will be stored.
909 * @banbuf: optional buffer for retrieving banner
910 * @banlen: length of banner buffer
911 *
912 * Access to the physical PROM chips needs to be serialized since reads and
913 * writes can't occur at the same time, so we need to call into the SAL when
914 * we want to look at the FIT entries on the chips.
915 *
916 * Returns:
917 * %SALRET_OK if ok
918 * %SALRET_INVALID_ARG if index too big
919 * %SALRET_NOT_IMPLEMENTED if running on older PROM
920 * ??? if nasid invalid OR banner buffer not large enough
921 */
922static inline int
923ia64_sn_get_fit_compt(u64 nasid, u64 index, void *fitentry, void *banbuf,
924 u64 banlen)
925{
926 struct ia64_sal_retval rv;
927 SAL_CALL_NOLOCK(rv, SN_SAL_GET_FIT_COMPT, nasid, index, fitentry,
928 banbuf, banlen, 0, 0);
929 return (int) rv.status;
930}
931
932/*
933 * Initialize the SAL components of the system controller
934 * communication driver; specifically pass in a sizable buffer that
935 * can be used for allocation of subchannel queues as new subchannels
936 * are opened. "buf" points to the buffer, and "len" specifies its
937 * length.
938 */
939static inline int
940ia64_sn_irtr_init(nasid_t nasid, void *buf, int len)
941{
942 struct ia64_sal_retval rv;
943 SAL_CALL_REENTRANT(rv, SN_SAL_IROUTER_OP, SAL_IROUTER_INIT,
944 (u64) nasid, (u64) buf, (u64) len, 0, 0, 0);
945 return (int) rv.status;
946}
947
948/*
949 * Returns the nasid, subnode & slice corresponding to a SAPIC ID
950 *
951 * In:
952 * arg0 - SN_SAL_GET_SAPIC_INFO
953 * arg1 - sapicid (lid >> 16)
954 * Out:
955 * v0 - nasid
956 * v1 - subnode
957 * v2 - slice
958 */
959static inline u64
960ia64_sn_get_sapic_info(int sapicid, int *nasid, int *subnode, int *slice)
961{
962 struct ia64_sal_retval ret_stuff;
963
964 ret_stuff.status = 0;
965 ret_stuff.v0 = 0;
966 ret_stuff.v1 = 0;
967 ret_stuff.v2 = 0;
968 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SAPIC_INFO, sapicid, 0, 0, 0, 0, 0, 0);
969
970/***** BEGIN HACK - temp til old proms no longer supported ********/
971 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
972 if (nasid) *nasid = sapicid & 0xfff;
973 if (subnode) *subnode = (sapicid >> 13) & 1;
974 if (slice) *slice = (sapicid >> 12) & 3;
975 return 0;
976 }
977/***** END HACK *******/
978
979 if (ret_stuff.status < 0)
980 return ret_stuff.status;
981
982 if (nasid) *nasid = (int) ret_stuff.v0;
983 if (subnode) *subnode = (int) ret_stuff.v1;
984 if (slice) *slice = (int) ret_stuff.v2;
985 return 0;
986}
987
988/*
989 * Returns information about the HUB/SHUB.
990 * In:
991 * arg0 - SN_SAL_GET_SN_INFO
992 * arg1 - 0 (other values reserved for future use)
993 * Out:
994 * v0
995 * [7:0] - shub type (0=shub1, 1=shub2)
996 * [15:8] - Log2 max number of nodes in entire system (includes
997 * C-bricks, I-bricks, etc)
998 * [23:16] - Log2 of nodes per sharing domain
999 * [31:24] - partition ID
1000 * [39:32] - coherency_id
1001 * [47:40] - regionsize
1002 * v1
1003 * [15:0] - nasid mask (ex., 0x7ff for 11 bit nasid)
1004 * [23:15] - bit position of low nasid bit
1005 */
1006static inline u64
1007ia64_sn_get_sn_info(int fc, u8 *shubtype, u16 *nasid_bitmask, u8 *nasid_shift,
1008 u8 *systemsize, u8 *sharing_domain_size, u8 *partid, u8 *coher, u8 *reg)
1009{
1010 struct ia64_sal_retval ret_stuff;
1011
1012 ret_stuff.status = 0;
1013 ret_stuff.v0 = 0;
1014 ret_stuff.v1 = 0;
1015 ret_stuff.v2 = 0;
1016 SAL_CALL_NOLOCK(ret_stuff, SN_SAL_GET_SN_INFO, fc, 0, 0, 0, 0, 0, 0);
1017
1018/***** BEGIN HACK - temp til old proms no longer supported ********/
1019 if (ret_stuff.status == SALRET_NOT_IMPLEMENTED) {
1020 int nasid = get_sapicid() & 0xfff;;
1021#define SH_SHUB_ID_NODES_PER_BIT_MASK 0x001f000000000000UL
1022#define SH_SHUB_ID_NODES_PER_BIT_SHFT 48
1023 if (shubtype) *shubtype = 0;
1024 if (nasid_bitmask) *nasid_bitmask = 0x7ff;
1025 if (nasid_shift) *nasid_shift = 38;
1026 if (systemsize) *systemsize = 11;
1027 if (sharing_domain_size) *sharing_domain_size = 9;
1028 if (partid) *partid = ia64_sn_sysctl_partition_get(nasid);
1029 if (coher) *coher = nasid >> 9;
1030 if (reg) *reg = (HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_SHUB_ID)) & SH_SHUB_ID_NODES_PER_BIT_MASK) >>
1031 SH_SHUB_ID_NODES_PER_BIT_SHFT;
1032 return 0;
1033 }
1034/***** END HACK *******/
1035
1036 if (ret_stuff.status < 0)
1037 return ret_stuff.status;
1038
1039 if (shubtype) *shubtype = ret_stuff.v0 & 0xff;
1040 if (systemsize) *systemsize = (ret_stuff.v0 >> 8) & 0xff;
1041 if (sharing_domain_size) *sharing_domain_size = (ret_stuff.v0 >> 16) & 0xff;
1042 if (partid) *partid = (ret_stuff.v0 >> 24) & 0xff;
1043 if (coher) *coher = (ret_stuff.v0 >> 32) & 0xff;
1044 if (reg) *reg = (ret_stuff.v0 >> 40) & 0xff;
1045 if (nasid_bitmask) *nasid_bitmask = (ret_stuff.v1 & 0xffff);
1046 if (nasid_shift) *nasid_shift = (ret_stuff.v1 >> 16) & 0xff;
1047 return 0;
1048}
1049
1050/*
1051 * This is the access point to the Altix PROM hardware performance
1052 * and status monitoring interface. For info on using this, see
1053 * include/asm-ia64/sn/sn2/sn_hwperf.h
1054 */
1055static inline int
1056ia64_sn_hwperf_op(nasid_t nasid, u64 opcode, u64 a0, u64 a1, u64 a2,
1057 u64 a3, u64 a4, int *v0)
1058{
1059 struct ia64_sal_retval rv;
1060 SAL_CALL_NOLOCK(rv, SN_SAL_HWPERF_OP, (u64)nasid,
1061 opcode, a0, a1, a2, a3, a4);
1062 if (v0)
1063 *v0 = (int) rv.v0;
1064 return (int) rv.status;
1065}
1066
Mark Goodwin4a5c13c2005-04-25 13:04:22 -07001067static inline int
1068ia64_sn_ioif_get_pci_topology(u64 rack, u64 bay, u64 slot, u64 slab,
Mark Goodwin0985ea82005-04-25 13:21:54 -07001069 u64 buf, u64 len)
Mark Goodwin4a5c13c2005-04-25 13:04:22 -07001070{
1071 struct ia64_sal_retval rv;
1072 SAL_CALL_NOLOCK(rv, SN_SAL_IOIF_GET_PCI_TOPOLOGY,
1073 rack, bay, slot, slab, buf, len, 0);
1074 return (int) rv.status;
1075}
1076
Russ Anderson93a07d02005-04-25 13:19:52 -07001077/*
1078 * BTE error recovery is implemented in SAL
1079 */
1080static inline int
1081ia64_sn_bte_recovery(nasid_t nasid)
1082{
1083 struct ia64_sal_retval rv;
1084
1085 rv.status = 0;
1086 SAL_CALL_NOLOCK(rv, SN_SAL_BTE_RECOVER, 0, 0, 0, 0, 0, 0, 0);
1087 if (rv.status == SALRET_NOT_IMPLEMENTED)
1088 return 0;
1089 return (int) rv.status;
1090}
1091
Jack Steiner71a5d022005-05-10 08:01:00 -07001092static inline int
1093ia64_sn_is_fake_prom(void)
1094{
1095 struct ia64_sal_retval rv;
1096 SAL_CALL_NOLOCK(rv, SN_SAL_FAKE_PROM, 0, 0, 0, 0, 0, 0, 0);
1097 return (rv.status == 0);
1098}
1099
Jack Steinera1cddb82005-08-31 08:05:00 -07001100static inline int
1101ia64_sn_get_prom_feature_set(int set, unsigned long *feature_set)
1102{
1103 struct ia64_sal_retval rv;
1104
1105 SAL_CALL_NOLOCK(rv, SN_SAL_GET_PROM_FEATURE_SET, set, 0, 0, 0, 0, 0, 0);
1106 if (rv.status != 0)
1107 return rv.status;
1108 *feature_set = rv.v0;
1109 return 0;
1110}
1111
1112static inline int
1113ia64_sn_set_os_feature(int feature)
1114{
1115 struct ia64_sal_retval rv;
1116
1117 SAL_CALL_NOLOCK(rv, SN_SAL_SET_OS_FEATURE_SET, feature, 0, 0, 0, 0, 0, 0);
1118 return rv.status;
1119}
1120
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121#endif /* _ASM_IA64_SN_SN_SAL_H */