Steven Toth | aacb9d3 | 2007-12-18 01:55:51 -0300 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for Xceive XC5000 "QAM/8VSB single chip tuner" |
| 3 | * |
| 4 | * Copyright (c) 2007 Xceive Corporation |
| 5 | * Copyright (c) 2007 Steven Toth <stoth@hauppauge.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 21 | */ |
| 22 | |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/moduleparam.h> |
| 25 | #include <linux/delay.h> |
| 26 | #include <linux/dvb/frontend.h> |
| 27 | #include <linux/i2c.h> |
| 28 | |
| 29 | #include "dvb_frontend.h" |
| 30 | |
| 31 | #include "xc5000.h" |
| 32 | #include "xc5000_priv.h" |
| 33 | |
| 34 | static int debug; |
| 35 | module_param(debug, int, 0644); |
| 36 | MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); |
| 37 | |
| 38 | #define dprintk(level,fmt, arg...) if (debug >= level) \ |
| 39 | printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) |
| 40 | |
| 41 | #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw" |
| 42 | #define XC5000_DEFAULT_FIRMWARE_SIZE 12400 |
| 43 | |
| 44 | /* Misc Defines */ |
| 45 | #define MAX_TV_STANDARD 23 |
| 46 | #define XC_MAX_I2C_WRITE_LENGTH 64 |
| 47 | |
| 48 | /* Signal Types */ |
| 49 | #define XC_RF_MODE_AIR 0 |
| 50 | #define XC_RF_MODE_CABLE 1 |
| 51 | |
| 52 | /* Result codes */ |
| 53 | #define XC_RESULT_SUCCESS 0 |
| 54 | #define XC_RESULT_RESET_FAILURE 1 |
| 55 | #define XC_RESULT_I2C_WRITE_FAILURE 2 |
| 56 | #define XC_RESULT_I2C_READ_FAILURE 3 |
| 57 | #define XC_RESULT_OUT_OF_RANGE 5 |
| 58 | |
| 59 | /* Registers */ |
| 60 | #define XREG_INIT 0x00 |
| 61 | #define XREG_VIDEO_MODE 0x01 |
| 62 | #define XREG_AUDIO_MODE 0x02 |
| 63 | #define XREG_RF_FREQ 0x03 |
| 64 | #define XREG_D_CODE 0x04 |
| 65 | #define XREG_IF_OUT 0x05 |
| 66 | #define XREG_SEEK_MODE 0x07 |
| 67 | #define XREG_POWER_DOWN 0x0A |
| 68 | #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ |
| 69 | #define XREG_SMOOTHEDCVBS 0x0E |
| 70 | #define XREG_XTALFREQ 0x0F |
| 71 | #define XREG_FINERFFREQ 0x10 |
| 72 | #define XREG_DDIMODE 0x11 |
| 73 | |
| 74 | #define XREG_ADC_ENV 0x00 |
| 75 | #define XREG_QUALITY 0x01 |
| 76 | #define XREG_FRAME_LINES 0x02 |
| 77 | #define XREG_HSYNC_FREQ 0x03 |
| 78 | #define XREG_LOCK 0x04 |
| 79 | #define XREG_FREQ_ERROR 0x05 |
| 80 | #define XREG_SNR 0x06 |
| 81 | #define XREG_VERSION 0x07 |
| 82 | #define XREG_PRODUCT_ID 0x08 |
| 83 | #define XREG_BUSY 0x09 |
| 84 | |
| 85 | /* |
| 86 | Basic firmware description. This will remain with |
| 87 | the driver for documentation purposes. |
| 88 | |
| 89 | This represents an I2C firmware file encoded as a |
| 90 | string of unsigned char. Format is as follows: |
| 91 | |
| 92 | char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB |
| 93 | char[1 ]=len0_LSB -> length of first write transaction |
| 94 | char[2 ]=data0 -> first byte to be sent |
| 95 | char[3 ]=data1 |
| 96 | char[4 ]=data2 |
| 97 | char[ ]=... |
| 98 | char[M ]=dataN -> last byte to be sent |
| 99 | char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB |
| 100 | char[M+2]=len1_LSB -> length of second write transaction |
| 101 | char[M+3]=data0 |
| 102 | char[M+4]=data1 |
| 103 | ... |
| 104 | etc. |
| 105 | |
| 106 | The [len] value should be interpreted as follows: |
| 107 | |
| 108 | len= len_MSB _ len_LSB |
| 109 | len=1111_1111_1111_1111 : End of I2C_SEQUENCE |
| 110 | len=0000_0000_0000_0000 : Reset command: Do hardware reset |
| 111 | len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) |
| 112 | len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms |
| 113 | |
| 114 | For the RESET and WAIT commands, the two following bytes will contain |
| 115 | immediately the length of the following transaction. |
| 116 | |
| 117 | */ |
| 118 | typedef struct { |
| 119 | char *Name; |
| 120 | unsigned short AudioMode; |
| 121 | unsigned short VideoMode; |
| 122 | } XC_TV_STANDARD; |
| 123 | |
| 124 | /* Tuner standards */ |
| 125 | #define DTV6 17 |
| 126 | |
| 127 | XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = { |
| 128 | {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, |
| 129 | {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, |
| 130 | {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, |
| 131 | {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, |
| 132 | {"B/G-PAL-A2", 0x0A00, 0x8049}, |
| 133 | {"B/G-PAL-NICAM", 0x0C04, 0x8049}, |
| 134 | {"B/G-PAL-MONO", 0x0878, 0x8059}, |
| 135 | {"I-PAL-NICAM", 0x1080, 0x8009}, |
| 136 | {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, |
| 137 | {"D/K-PAL-A2", 0x1600, 0x8009}, |
| 138 | {"D/K-PAL-NICAM", 0x0E80, 0x8009}, |
| 139 | {"D/K-PAL-MONO", 0x1478, 0x8009}, |
| 140 | {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, |
| 141 | {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009}, |
| 142 | {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, |
| 143 | {"L-SECAM-NICAM", 0x8E82, 0x0009}, |
| 144 | {"L'-SECAM-NICAM", 0x8E82, 0x4009}, |
| 145 | {"DTV6", 0x00C0, 0x8002}, |
| 146 | {"DTV8", 0x00C0, 0x800B}, |
| 147 | {"DTV7/8", 0x00C0, 0x801B}, |
| 148 | {"DTV7", 0x00C0, 0x8007}, |
| 149 | {"FM Radio-INPUT2", 0x9802, 0x9002}, |
| 150 | {"FM Radio-INPUT1", 0x0208, 0x9002} |
| 151 | }; |
| 152 | |
| 153 | static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len); |
| 154 | static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len); |
| 155 | static void xc5000_TunerReset(struct dvb_frontend *fe); |
| 156 | |
| 157 | int xc_send_i2c_data(struct xc5000_priv *priv, |
| 158 | unsigned char *bytes_to_send, int nb_bytes_to_send) |
| 159 | { |
| 160 | return xc5000_writeregs(priv, bytes_to_send, nb_bytes_to_send) |
| 161 | ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS; |
| 162 | } |
| 163 | |
| 164 | int xc_read_i2c_data(struct xc5000_priv *priv, unsigned char *bytes_received, |
| 165 | int nb_bytes_to_receive) |
| 166 | { |
| 167 | return xc5000_readregs(priv, bytes_received, nb_bytes_to_receive) |
| 168 | ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS; |
| 169 | } |
| 170 | |
| 171 | int xc_reset(struct dvb_frontend *fe) |
| 172 | { |
| 173 | xc5000_TunerReset(fe); |
| 174 | return XC_RESULT_SUCCESS; |
| 175 | } |
| 176 | |
| 177 | void xc_wait(int wait_ms) |
| 178 | { |
| 179 | msleep( wait_ms ); |
| 180 | } |
| 181 | |
| 182 | static void xc5000_TunerReset(struct dvb_frontend *fe) |
| 183 | { |
| 184 | struct xc5000_priv *priv = fe->tuner_priv; |
| 185 | int ret; |
| 186 | |
| 187 | dprintk(1, "%s()\n", __FUNCTION__); |
| 188 | |
| 189 | if(priv->cfg->tuner_reset) { |
| 190 | ret = priv->cfg->tuner_reset(fe); |
| 191 | if (ret) |
| 192 | printk(KERN_ERR "xc5000: reset failed\n"); |
| 193 | } else |
| 194 | printk(KERN_ERR "xc5000: no tuner reset function, fatal\n"); |
| 195 | } |
| 196 | |
| 197 | int xc_write_reg(struct xc5000_priv *priv, unsigned short int regAddr, |
| 198 | unsigned short int i2cData) |
| 199 | { |
| 200 | unsigned char buf[4]; |
| 201 | int WatchDogTimer = 5; |
| 202 | int result; |
| 203 | |
| 204 | buf[0] = (regAddr >> 8) & 0xFF; |
| 205 | buf[1] = regAddr & 0xFF; |
| 206 | buf[2] = (i2cData >> 8) & 0xFF; |
| 207 | buf[3] = i2cData & 0xFF; |
| 208 | result = xc_send_i2c_data(priv, buf, 4); |
| 209 | if ( result == XC_RESULT_SUCCESS) { |
| 210 | /* wait for busy flag to clear */ |
| 211 | while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) { |
| 212 | buf[0] = 0; |
| 213 | buf[1] = XREG_BUSY; |
| 214 | |
| 215 | result = xc_send_i2c_data(priv, buf, 2); |
| 216 | if (result == XC_RESULT_SUCCESS) { |
| 217 | result = xc_read_i2c_data(priv, buf, 2); |
| 218 | if (result == XC_RESULT_SUCCESS) { |
| 219 | if ((buf[0] == 0) && (buf[1] == 0)) { |
| 220 | /* busy flag cleared */ |
| 221 | break; |
| 222 | } else { |
| 223 | xc_wait(100); /* wait 5 ms */ |
| 224 | WatchDogTimer--; |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | if (WatchDogTimer < 0) |
| 231 | result = XC_RESULT_I2C_WRITE_FAILURE; |
| 232 | |
| 233 | return result; |
| 234 | } |
| 235 | |
| 236 | int xc_read_reg(struct xc5000_priv *priv, unsigned short int regAddr, |
| 237 | unsigned short int *i2cData) |
| 238 | { |
| 239 | unsigned char buf[2]; |
| 240 | int result; |
| 241 | |
| 242 | buf[0] = (regAddr >> 8) & 0xFF; |
| 243 | buf[1] = regAddr & 0xFF; |
| 244 | result = xc_send_i2c_data(priv, buf, 2); |
| 245 | if (result!=XC_RESULT_SUCCESS) |
| 246 | return result; |
| 247 | |
| 248 | result = xc_read_i2c_data(priv, buf, 2); |
| 249 | if (result!=XC_RESULT_SUCCESS) |
| 250 | return result; |
| 251 | |
| 252 | *i2cData = buf[0] * 256 + buf[1]; |
| 253 | return result; |
| 254 | } |
| 255 | |
| 256 | int xc_load_i2c_sequence(struct dvb_frontend *fe, unsigned char i2c_sequence[]) |
| 257 | { |
| 258 | struct xc5000_priv *priv = fe->tuner_priv; |
| 259 | |
| 260 | int i, nbytes_to_send, result; |
| 261 | unsigned int len, pos, index; |
| 262 | unsigned char buf[XC_MAX_I2C_WRITE_LENGTH]; |
| 263 | |
| 264 | index=0; |
| 265 | while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) { |
| 266 | |
| 267 | len = i2c_sequence[index]* 256 + i2c_sequence[index+1]; |
| 268 | if (len==0x0000) { |
| 269 | /* RESET command */ |
| 270 | result = xc_reset(fe); |
| 271 | index += 2; |
| 272 | if (result!=XC_RESULT_SUCCESS) |
| 273 | return result; |
| 274 | } else if (len & 0x8000) { |
| 275 | /* WAIT command */ |
| 276 | xc_wait(len & 0x7FFF); |
| 277 | index += 2; |
| 278 | } else { |
| 279 | /* Send i2c data whilst ensuring individual transactions |
| 280 | * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. |
| 281 | */ |
| 282 | index += 2; |
| 283 | buf[0] = i2c_sequence[index]; |
| 284 | buf[1] = i2c_sequence[index + 1]; |
| 285 | pos = 2; |
| 286 | while (pos < len) { |
| 287 | if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) { |
| 288 | nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH; |
| 289 | } else { |
| 290 | nbytes_to_send = (len - pos + 2); |
| 291 | } |
| 292 | for (i=2; i<nbytes_to_send; i++) { |
| 293 | buf[i] = i2c_sequence[index + pos + i - 2]; |
| 294 | } |
| 295 | result = xc_send_i2c_data(priv, buf, nbytes_to_send); |
| 296 | |
| 297 | if (result!=XC_RESULT_SUCCESS) |
| 298 | return result; |
| 299 | |
| 300 | pos += nbytes_to_send - 2; |
| 301 | } |
| 302 | index += len; |
| 303 | } |
| 304 | } |
| 305 | return XC_RESULT_SUCCESS; |
| 306 | } |
| 307 | |
| 308 | int xc_initialize(struct xc5000_priv *priv) |
| 309 | { |
| 310 | dprintk(1, "%s()\n", __FUNCTION__); |
| 311 | return xc_write_reg(priv, XREG_INIT, 0); |
| 312 | } |
| 313 | |
| 314 | int xc_SetTVStandard(struct xc5000_priv *priv, unsigned short int VideoMode, |
| 315 | unsigned short int AudioMode) |
| 316 | { |
| 317 | int ret; |
| 318 | dprintk(1, "%s(%d,%d)\n", __FUNCTION__, VideoMode, AudioMode); |
| 319 | dprintk(1, "%s() Standard = %s\n", |
| 320 | __FUNCTION__, |
| 321 | XC5000_Standard[priv->video_standard].Name); |
| 322 | |
| 323 | ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode); |
| 324 | if (ret == XC_RESULT_SUCCESS) |
| 325 | ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode); |
| 326 | |
| 327 | return ret; |
| 328 | } |
| 329 | |
| 330 | int xc_shutdown(struct xc5000_priv *priv) |
| 331 | { |
| 332 | return xc_write_reg(priv, XREG_POWER_DOWN, 0); |
| 333 | } |
| 334 | |
| 335 | int xc_SetSignalSource(struct xc5000_priv *priv, unsigned short int rf_mode) |
| 336 | { |
| 337 | dprintk(1, "%s(%d) Source = %s\n", __FUNCTION__, rf_mode, |
| 338 | rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); |
| 339 | |
| 340 | if( (rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE) ) |
| 341 | { |
| 342 | rf_mode = XC_RF_MODE_CABLE; |
| 343 | printk(KERN_ERR |
| 344 | "%s(), Invalid mode, defaulting to CABLE", |
| 345 | __FUNCTION__); |
| 346 | } |
| 347 | return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); |
| 348 | } |
| 349 | |
| 350 | int xc_set_RF_frequency(struct xc5000_priv *priv, long frequency_in_hz) |
| 351 | { |
| 352 | unsigned int frequency_code = (unsigned int)(frequency_in_hz / 15625); |
| 353 | |
| 354 | if ((frequency_in_hz>1023000000) || (frequency_in_hz<1000000)) |
| 355 | return XC_RESULT_OUT_OF_RANGE; |
| 356 | |
| 357 | return xc_write_reg(priv, XREG_RF_FREQ ,frequency_code); |
| 358 | } |
| 359 | |
| 360 | int xc_FineTune_RF_frequency(struct xc5000_priv *priv, long frequency_in_hz) |
| 361 | { |
| 362 | unsigned int frequency_code = (unsigned int)(frequency_in_hz / 15625); |
| 363 | if ((frequency_in_hz>1023000000) || (frequency_in_hz<1000000)) |
| 364 | return XC_RESULT_OUT_OF_RANGE; |
| 365 | |
| 366 | return xc_write_reg(priv, XREG_FINERFFREQ ,frequency_code); |
| 367 | } |
| 368 | |
| 369 | int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_hz) |
| 370 | { |
| 371 | u32 freq_code = (freq_hz * 1024)/1000000; |
| 372 | dprintk(1, "%s(%d)\n", __FUNCTION__, freq_hz); |
| 373 | |
| 374 | printk(KERN_ERR "FIXME - Hardcoded IF, FIXME\n"); |
| 375 | freq_code = 0x1585; |
| 376 | |
| 377 | return xc_write_reg(priv, XREG_IF_OUT ,freq_code); |
| 378 | } |
| 379 | |
| 380 | int xc_set_Xtal_frequency(struct xc5000_priv *priv, long xtalFreqInKHz) |
| 381 | { |
| 382 | unsigned int xtalRatio = (32000 * 0x8000)/xtalFreqInKHz; |
| 383 | return xc_write_reg(priv, XREG_XTALFREQ ,xtalRatio); |
| 384 | } |
| 385 | |
| 386 | int xc_get_ADC_Envelope(struct xc5000_priv *priv, |
| 387 | unsigned short int *adc_envelope) |
| 388 | { |
| 389 | return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope); |
| 390 | } |
| 391 | |
| 392 | int xc_get_frequency_error(struct xc5000_priv *priv, u32 *frequency_error_hz) |
| 393 | { |
| 394 | int result; |
| 395 | unsigned short int regData; |
| 396 | u32 tmp; |
| 397 | |
| 398 | result = xc_read_reg(priv, XREG_FREQ_ERROR, ®Data); |
| 399 | if (result) |
| 400 | return result; |
| 401 | |
| 402 | tmp = (u32)regData; |
| 403 | (*frequency_error_hz) = (tmp * 15625) / 1000; |
| 404 | return result; |
| 405 | } |
| 406 | |
| 407 | int xc_get_lock_status(struct xc5000_priv *priv, |
| 408 | unsigned short int *lock_status) |
| 409 | { |
| 410 | return xc_read_reg(priv, XREG_LOCK, lock_status); |
| 411 | } |
| 412 | |
| 413 | int xc_get_version(struct xc5000_priv *priv, |
| 414 | unsigned char* hw_majorversion, |
| 415 | unsigned char* hw_minorversion, |
| 416 | unsigned char* fw_majorversion, |
| 417 | unsigned char* fw_minorversion) |
| 418 | { |
| 419 | unsigned short int data; |
| 420 | int result; |
| 421 | |
| 422 | result = xc_read_reg(priv, XREG_VERSION, &data); |
| 423 | if (result) |
| 424 | return result; |
| 425 | |
| 426 | (*hw_majorversion) = (data>>12) & 0x0F; |
| 427 | (*hw_minorversion) = (data>>8) & 0x0F; |
| 428 | (*fw_majorversion) = (data>>4) & 0x0F; |
| 429 | (*fw_minorversion) = (data) & 0x0F; |
| 430 | |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | int xc_get_product_id(struct xc5000_priv *priv, unsigned short int *product_id) |
| 435 | { |
| 436 | return xc_read_reg(priv, XREG_PRODUCT_ID, product_id); |
| 437 | } |
| 438 | |
| 439 | int xc_get_hsync_freq(struct xc5000_priv *priv, int *hsync_freq_hz) |
| 440 | { |
| 441 | unsigned short int regData; |
| 442 | int result; |
| 443 | |
| 444 | result = xc_read_reg(priv, XREG_HSYNC_FREQ, ®Data); |
| 445 | if (result) |
| 446 | return result; |
| 447 | |
| 448 | (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100; |
| 449 | return result; |
| 450 | } |
| 451 | |
| 452 | int xc_get_frame_lines(struct xc5000_priv *priv, |
| 453 | unsigned short int *frame_lines) |
| 454 | { |
| 455 | return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines); |
| 456 | } |
| 457 | |
| 458 | int xc_get_quality(struct xc5000_priv *priv, unsigned short int *quality) |
| 459 | { |
| 460 | return xc_read_reg(priv, XREG_QUALITY, quality); |
| 461 | } |
| 462 | |
| 463 | unsigned short int WaitForLock(struct xc5000_priv *priv) |
| 464 | { |
| 465 | unsigned short int lockState = 0; |
| 466 | int watchDogCount = 40; |
| 467 | while ((lockState == 0) && (watchDogCount > 0)) |
| 468 | { |
| 469 | xc_get_lock_status(priv, &lockState); |
| 470 | if (lockState != 1) |
| 471 | { |
| 472 | xc_wait(5); |
| 473 | watchDogCount--; |
| 474 | } |
| 475 | } |
| 476 | return lockState; |
| 477 | } |
| 478 | |
| 479 | int xc_tune_channel(struct xc5000_priv *priv, u32 freq) |
| 480 | { |
| 481 | int found = 0; |
| 482 | |
| 483 | dprintk(1, "%s(%d)\n", __FUNCTION__, freq); |
| 484 | |
| 485 | if (xc_set_RF_frequency(priv, freq) != XC_RESULT_SUCCESS) |
| 486 | return 0; |
| 487 | |
| 488 | if (WaitForLock(priv)== 1) |
| 489 | found = 1; |
| 490 | |
| 491 | return found; |
| 492 | } |
| 493 | |
| 494 | static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) |
| 495 | { |
| 496 | u8 buf[2] = { reg >> 8, reg & 0xff }; |
| 497 | u8 bval[2] = { 0, 0 }; |
| 498 | struct i2c_msg msg[2] = { |
| 499 | { .addr = priv->cfg->i2c_address, |
| 500 | .flags = 0, .buf = &buf[0], .len = 2 }, |
| 501 | { .addr = priv->cfg->i2c_address, |
| 502 | .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, |
| 503 | }; |
| 504 | |
| 505 | if (i2c_transfer(priv->i2c, msg, 2) != 2) { |
| 506 | printk(KERN_WARNING "xc5000 I2C read failed\n"); |
| 507 | return -EREMOTEIO; |
| 508 | } |
| 509 | |
| 510 | *val = (bval[0] << 8) | bval[1]; |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len) |
| 515 | { |
| 516 | struct i2c_msg msg = { .addr = priv->cfg->i2c_address, |
| 517 | .flags = 0, .buf = buf, .len = len }; |
| 518 | |
| 519 | if (i2c_transfer(priv->i2c, &msg, 1) != 1) { |
| 520 | printk(KERN_ERR "xc5000 I2C write failed (len=%i)\n", |
| 521 | (int)len); |
| 522 | return -EREMOTEIO; |
| 523 | } |
| 524 | return 0; |
| 525 | } |
| 526 | |
| 527 | static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len) |
| 528 | { |
| 529 | struct i2c_msg msg = { .addr = priv->cfg->i2c_address, |
| 530 | .flags = I2C_M_RD, .buf = buf, .len = len }; |
| 531 | |
| 532 | if (i2c_transfer(priv->i2c, &msg, 1) != 1) { |
| 533 | printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len); |
| 534 | return -EREMOTEIO; |
| 535 | } |
| 536 | return 0; |
| 537 | } |
| 538 | |
| 539 | static int xc5000_fwupload(struct dvb_frontend* fe) |
| 540 | { |
| 541 | struct xc5000_priv *priv = fe->tuner_priv; |
| 542 | const struct firmware *fw; |
| 543 | int ret; |
| 544 | |
| 545 | /* request the firmware, this will block until someone uploads it */ |
| 546 | printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n", |
| 547 | XC5000_DEFAULT_FIRMWARE); |
| 548 | |
| 549 | if(!priv->cfg->request_firmware) { |
| 550 | printk(KERN_ERR "xc5000: no firmware callback, fatal\n"); |
| 551 | return -EIO; |
| 552 | } |
| 553 | |
| 554 | ret = priv->cfg->request_firmware(fe, &fw, XC5000_DEFAULT_FIRMWARE); |
| 555 | if (ret) { |
| 556 | printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n"); |
| 557 | ret = XC_RESULT_RESET_FAILURE; |
| 558 | } else { |
| 559 | printk(KERN_INFO "xc5000: firmware read %d bytes.\n", fw->size); |
| 560 | ret = XC_RESULT_SUCCESS; |
| 561 | } |
| 562 | |
| 563 | if(fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) { |
| 564 | printk(KERN_ERR "xc5000: firmware incorrect size\n"); |
| 565 | ret = XC_RESULT_RESET_FAILURE; |
| 566 | } else { |
| 567 | printk(KERN_INFO "xc5000: firmware upload\n"); |
| 568 | ret = xc_load_i2c_sequence(fe, fw->data ); |
| 569 | } |
| 570 | |
| 571 | release_firmware(fw); |
| 572 | return ret; |
| 573 | } |
| 574 | |
| 575 | void xc_debug_dump(struct xc5000_priv *priv) |
| 576 | { |
| 577 | unsigned short adc_envelope; |
| 578 | u32 frequency_error_hz; |
| 579 | unsigned short lock_status; |
| 580 | unsigned char hw_majorversion, hw_minorversion = 0; |
| 581 | unsigned char fw_majorversion, fw_minorversion = 0; |
| 582 | int hsync_freq_hz; |
| 583 | unsigned short frame_lines; |
| 584 | unsigned short quality; |
| 585 | |
| 586 | /* Wait for stats to stabilize. |
| 587 | * Frame Lines needs two frame times after initial lock |
| 588 | * before it is valid. |
| 589 | */ |
| 590 | xc_wait( 100 ); |
| 591 | |
| 592 | xc_get_ADC_Envelope(priv, &adc_envelope ); |
| 593 | dprintk(1, "*** ADC envelope (0-1023) = %u\n", adc_envelope); |
| 594 | |
| 595 | xc_get_frequency_error(priv, &frequency_error_hz ); |
| 596 | dprintk(1, "*** Frequency error = %d Hz\n", frequency_error_hz); |
| 597 | |
| 598 | xc_get_lock_status(priv, &lock_status ); |
| 599 | dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %u\n", |
| 600 | lock_status); |
| 601 | |
| 602 | xc_get_version(priv, &hw_majorversion, &hw_minorversion, |
| 603 | &fw_majorversion, &fw_minorversion ); |
| 604 | dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n", |
| 605 | hw_majorversion, hw_minorversion, |
| 606 | fw_majorversion, fw_minorversion); |
| 607 | |
| 608 | xc_get_hsync_freq(priv, &hsync_freq_hz ); |
| 609 | dprintk(1, "*** Horizontal sync frequency = %u Hz\n", hsync_freq_hz); |
| 610 | |
| 611 | xc_get_frame_lines(priv, &frame_lines ); |
| 612 | dprintk(1, "*** Frame lines = %u\n", frame_lines); |
| 613 | |
| 614 | xc_get_quality(priv, &quality ); |
| 615 | dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %u\n", quality); |
| 616 | } |
| 617 | |
| 618 | static int xc5000_set_params(struct dvb_frontend *fe, |
| 619 | struct dvb_frontend_parameters *params) |
| 620 | { |
| 621 | struct xc5000_priv *priv = fe->tuner_priv; |
| 622 | |
| 623 | dprintk(1, "%s() frequency=%d\n", __FUNCTION__, params->frequency); |
| 624 | |
| 625 | priv->frequency = params->frequency - 1750000; |
| 626 | priv->bandwidth = 6; |
| 627 | priv->video_standard = DTV6; |
| 628 | |
| 629 | switch(params->u.vsb.modulation) { |
| 630 | case VSB_8: |
| 631 | case VSB_16: |
| 632 | dprintk(1, "%s() VSB modulation\n", __FUNCTION__); |
| 633 | priv->rf_mode = XC_RF_MODE_AIR; |
| 634 | break; |
| 635 | case QAM_64: |
| 636 | case QAM_256: |
| 637 | case QAM_AUTO: |
| 638 | dprintk(1, "%s() QAM modulation\n", __FUNCTION__); |
| 639 | priv->rf_mode = XC_RF_MODE_CABLE; |
| 640 | break; |
| 641 | default: |
| 642 | return -EINVAL; |
| 643 | } |
| 644 | |
| 645 | dprintk(1, "%s() frequency=%d (compensated)\n", |
| 646 | __FUNCTION__, priv->frequency); |
| 647 | |
| 648 | /* FIXME: check result codes */ |
| 649 | xc_SetSignalSource(priv, priv->rf_mode); |
| 650 | |
| 651 | xc_SetTVStandard(priv, |
| 652 | XC5000_Standard[priv->video_standard].VideoMode, |
| 653 | XC5000_Standard[priv->video_standard].AudioMode); |
| 654 | |
| 655 | xc_set_IF_frequency(priv, priv->cfg->if_frequency); |
| 656 | xc_tune_channel(priv, priv->frequency); |
| 657 | xc_debug_dump(priv); |
| 658 | |
| 659 | return 0; |
| 660 | } |
| 661 | |
| 662 | static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) |
| 663 | { |
| 664 | struct xc5000_priv *priv = fe->tuner_priv; |
| 665 | dprintk(1, "%s()\n", __FUNCTION__); |
| 666 | *freq = priv->frequency; |
| 667 | return 0; |
| 668 | } |
| 669 | |
| 670 | static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) |
| 671 | { |
| 672 | struct xc5000_priv *priv = fe->tuner_priv; |
| 673 | dprintk(1, "%s()\n", __FUNCTION__); |
| 674 | *bw = priv->bandwidth; |
| 675 | return 0; |
| 676 | } |
| 677 | |
| 678 | static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) |
| 679 | { |
| 680 | struct xc5000_priv *priv = fe->tuner_priv; |
| 681 | unsigned short int lock_status = 0; |
| 682 | |
| 683 | xc_get_lock_status(priv, &lock_status); |
| 684 | |
| 685 | dprintk(1, "%s() lock_status = 0x%08x\n", __FUNCTION__, lock_status); |
| 686 | |
| 687 | *status = lock_status; |
| 688 | |
| 689 | return 0; |
| 690 | } |
| 691 | |
| 692 | int xc_load_fw_and_init_tuner(struct dvb_frontend *fe) |
| 693 | { |
| 694 | struct xc5000_priv *priv = fe->tuner_priv; |
| 695 | int ret; |
| 696 | |
| 697 | if(priv->fwloaded == 0) { |
| 698 | ret = xc5000_fwupload(fe); |
| 699 | if( ret != XC_RESULT_SUCCESS ) |
| 700 | return -EREMOTEIO; |
| 701 | |
| 702 | priv->fwloaded = 1; |
| 703 | } |
| 704 | |
| 705 | /* Start the tuner self-calibration process */ |
| 706 | ret |= xc_initialize(priv); |
| 707 | |
| 708 | /* Wait for calibration to complete. |
| 709 | * We could continue but XC5000 will clock stretch subsequent |
| 710 | * I2C transactions until calibration is complete. This way we |
| 711 | * don't have to rely on clock stretching working. |
| 712 | */ |
| 713 | xc_wait( 100 ); |
| 714 | |
| 715 | /* Default to "CABLE" mode */ |
| 716 | ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); |
| 717 | |
| 718 | return ret; |
| 719 | } |
| 720 | |
| 721 | static int xc5000_init(struct dvb_frontend *fe) |
| 722 | { |
| 723 | struct xc5000_priv *priv = fe->tuner_priv; |
| 724 | dprintk(1, "%s()\n", __FUNCTION__); |
| 725 | |
| 726 | xc_load_fw_and_init_tuner(fe); |
| 727 | xc_debug_dump(priv); |
| 728 | |
| 729 | return 0; |
| 730 | } |
| 731 | |
| 732 | static int xc5000_release(struct dvb_frontend *fe) |
| 733 | { |
| 734 | dprintk(1, "%s()\n", __FUNCTION__); |
| 735 | kfree(fe->tuner_priv); |
| 736 | fe->tuner_priv = NULL; |
| 737 | return 0; |
| 738 | } |
| 739 | |
| 740 | static const struct dvb_tuner_ops xc5000_tuner_ops = { |
| 741 | .info = { |
| 742 | .name = "Xceive XC5000", |
| 743 | .frequency_min = 1000000, |
| 744 | .frequency_max = 1023000000, |
| 745 | .frequency_step = 50000, |
| 746 | }, |
| 747 | |
| 748 | .release = xc5000_release, |
| 749 | .init = xc5000_init, |
| 750 | |
| 751 | .set_params = xc5000_set_params, |
| 752 | .get_frequency = xc5000_get_frequency, |
| 753 | .get_bandwidth = xc5000_get_bandwidth, |
| 754 | .get_status = xc5000_get_status |
| 755 | }; |
| 756 | |
| 757 | struct dvb_frontend * xc5000_attach(struct dvb_frontend *fe, |
| 758 | struct i2c_adapter *i2c, |
| 759 | struct xc5000_config *cfg) |
| 760 | { |
| 761 | struct xc5000_priv *priv = NULL; |
| 762 | u16 id = 0; |
| 763 | |
| 764 | dprintk(1, "%s()\n", __FUNCTION__); |
| 765 | |
| 766 | priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL); |
| 767 | if (priv == NULL) |
| 768 | return NULL; |
| 769 | |
| 770 | priv->cfg = cfg; |
| 771 | priv->bandwidth = 6000000; /* 6MHz */ |
| 772 | priv->i2c = i2c; |
| 773 | priv->fwloaded = 0; |
| 774 | |
| 775 | if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) { |
| 776 | kfree(priv); |
| 777 | return NULL; |
| 778 | } |
| 779 | |
| 780 | if ( (id != 0x2000) && (id != 0x1388) ) { |
| 781 | printk(KERN_ERR |
| 782 | "xc5000: Device not found at addr 0x%02x (0x%x)\n", |
| 783 | cfg->i2c_address, id); |
| 784 | kfree(priv); |
| 785 | return NULL; |
| 786 | } |
| 787 | |
| 788 | printk(KERN_INFO "xc5000: successfully identified at address 0x%02x\n", |
| 789 | cfg->i2c_address); |
| 790 | |
| 791 | memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, |
| 792 | sizeof(struct dvb_tuner_ops)); |
| 793 | |
| 794 | fe->tuner_priv = priv; |
| 795 | |
| 796 | return fe; |
| 797 | } |
| 798 | EXPORT_SYMBOL(xc5000_attach); |
| 799 | |
| 800 | MODULE_AUTHOR("Steven Toth"); |
| 801 | MODULE_DESCRIPTION("Xceive XC5000 silicon tuner driver"); |
| 802 | MODULE_LICENSE("GPL"); |