| Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |   This is a maximally equidistributed combined Tausworthe generator | 
 | 3 |   based on code from GNU Scientific Library 1.5 (30 Jun 2004) | 
 | 4 |  | 
 | 5 |    x_n = (s1_n ^ s2_n ^ s3_n) | 
 | 6 |  | 
 | 7 |    s1_{n+1} = (((s1_n & 4294967294) <<12) ^ (((s1_n <<13) ^ s1_n) >>19)) | 
 | 8 |    s2_{n+1} = (((s2_n & 4294967288) << 4) ^ (((s2_n << 2) ^ s2_n) >>25)) | 
 | 9 |    s3_{n+1} = (((s3_n & 4294967280) <<17) ^ (((s3_n << 3) ^ s3_n) >>11)) | 
 | 10 |  | 
 | 11 |    The period of this generator is about 2^88. | 
 | 12 |  | 
 | 13 |    From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe | 
 | 14 |    Generators", Mathematics of Computation, 65, 213 (1996), 203--213. | 
 | 15 |  | 
 | 16 |    This is available on the net from L'Ecuyer's home page, | 
 | 17 |  | 
 | 18 |    http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps | 
 | 19 |    ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps | 
 | 20 |  | 
 | 21 |    There is an erratum in the paper "Tables of Maximally | 
 | 22 |    Equidistributed Combined LFSR Generators", Mathematics of | 
 | 23 |    Computation, 68, 225 (1999), 261--269: | 
 | 24 |    http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps | 
 | 25 |  | 
 | 26 |         ... the k_j most significant bits of z_j must be non- | 
 | 27 |         zero, for each j. (Note: this restriction also applies to the | 
 | 28 |         computer code given in [4], but was mistakenly not mentioned in | 
 | 29 |         that paper.) | 
 | 30 |  | 
 | 31 |    This affects the seeding procedure by imposing the requirement | 
 | 32 |    s1 > 1, s2 > 7, s3 > 15. | 
 | 33 |  | 
 | 34 | */ | 
 | 35 |  | 
 | 36 | #include <linux/types.h> | 
 | 37 | #include <linux/percpu.h> | 
 | 38 | #include <linux/module.h> | 
| Al Viro | f6a5703 | 2006-10-18 01:47:25 -0400 | [diff] [blame] | 39 | #include <linux/jiffies.h> | 
| Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 40 | #include <linux/random.h> | 
 | 41 |  | 
 | 42 | struct rnd_state { | 
 | 43 | 	u32 s1, s2, s3; | 
 | 44 | }; | 
 | 45 |  | 
 | 46 | static DEFINE_PER_CPU(struct rnd_state, net_rand_state); | 
 | 47 |  | 
 | 48 | static u32 __random32(struct rnd_state *state) | 
 | 49 | { | 
 | 50 | #define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b) | 
 | 51 |  | 
 | 52 | 	state->s1 = TAUSWORTHE(state->s1, 13, 19, 4294967294UL, 12); | 
 | 53 | 	state->s2 = TAUSWORTHE(state->s2, 2, 25, 4294967288UL, 4); | 
 | 54 | 	state->s3 = TAUSWORTHE(state->s3, 3, 11, 4294967280UL, 17); | 
 | 55 |  | 
 | 56 | 	return (state->s1 ^ state->s2 ^ state->s3); | 
 | 57 | } | 
 | 58 |  | 
 | 59 | static void __set_random32(struct rnd_state *state, unsigned long s) | 
 | 60 | { | 
 | 61 | 	if (s == 0) | 
 | 62 | 		s = 1;      /* default seed is 1 */ | 
 | 63 |  | 
 | 64 | #define LCG(n) (69069 * n) | 
 | 65 | 	state->s1 = LCG(s); | 
 | 66 | 	state->s2 = LCG(state->s1); | 
 | 67 | 	state->s3 = LCG(state->s2); | 
 | 68 |  | 
 | 69 | 	/* "warm it up" */ | 
 | 70 | 	__random32(state); | 
 | 71 | 	__random32(state); | 
 | 72 | 	__random32(state); | 
 | 73 | 	__random32(state); | 
 | 74 | 	__random32(state); | 
 | 75 | 	__random32(state); | 
 | 76 | } | 
 | 77 |  | 
 | 78 | /** | 
 | 79 |  *	random32 - pseudo random number generator | 
 | 80 |  * | 
 | 81 |  *	A 32 bit pseudo-random number is generated using a fast | 
 | 82 |  *	algorithm suitable for simulation. This algorithm is NOT | 
 | 83 |  *	considered safe for cryptographic use. | 
 | 84 |  */ | 
 | 85 | u32 random32(void) | 
 | 86 | { | 
 | 87 | 	unsigned long r; | 
 | 88 | 	struct rnd_state *state = &get_cpu_var(net_rand_state); | 
 | 89 | 	r = __random32(state); | 
 | 90 | 	put_cpu_var(state); | 
 | 91 | 	return r; | 
 | 92 | } | 
 | 93 | EXPORT_SYMBOL(random32); | 
 | 94 |  | 
 | 95 | /** | 
 | 96 |  *	srandom32 - add entropy to pseudo random number generator | 
 | 97 |  *	@seed: seed value | 
 | 98 |  * | 
 | 99 |  *	Add some additional seeding to the random32() pool. | 
 | 100 |  *	Note: this pool is per cpu so it only affects current CPU. | 
 | 101 |  */ | 
 | 102 | void srandom32(u32 entropy) | 
 | 103 | { | 
 | 104 | 	struct rnd_state *state = &get_cpu_var(net_rand_state); | 
 | 105 | 	__set_random32(state, state->s1 ^ entropy); | 
 | 106 | 	put_cpu_var(state); | 
 | 107 | } | 
 | 108 | EXPORT_SYMBOL(srandom32); | 
 | 109 |  | 
 | 110 | /* | 
 | 111 |  *	Generate some initially weak seeding values to allow | 
 | 112 |  *	to start the random32() engine. | 
 | 113 |  */ | 
 | 114 | static int __init random32_init(void) | 
 | 115 | { | 
 | 116 | 	int i; | 
 | 117 |  | 
 | 118 | 	for_each_possible_cpu(i) { | 
 | 119 | 		struct rnd_state *state = &per_cpu(net_rand_state,i); | 
 | 120 | 		__set_random32(state, i + jiffies); | 
 | 121 | 	} | 
 | 122 | 	return 0; | 
 | 123 | } | 
 | 124 | core_initcall(random32_init); | 
 | 125 |  | 
 | 126 | /* | 
 | 127 |  *	Generate better values after random number generator | 
 | 128 |  *	is fully initalized. | 
 | 129 |  */ | 
 | 130 | static int __init random32_reseed(void) | 
 | 131 | { | 
 | 132 | 	int i; | 
 | 133 | 	unsigned long seed; | 
 | 134 |  | 
 | 135 | 	for_each_possible_cpu(i) { | 
 | 136 | 		struct rnd_state *state = &per_cpu(net_rand_state,i); | 
 | 137 |  | 
 | 138 | 		get_random_bytes(&seed, sizeof(seed)); | 
 | 139 | 		__set_random32(state, seed); | 
 | 140 | 	} | 
 | 141 | 	return 0; | 
 | 142 | } | 
 | 143 | late_initcall(random32_reseed); |