| Andy Grover | 1e23b3e | 2009-02-24 15:30:34 +0000 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2006 Oracle.  All rights reserved. | 
|  | 3 | * | 
|  | 4 | * This software is available to you under a choice of one of two | 
|  | 5 | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | 6 | * General Public License (GPL) Version 2, available from the file | 
|  | 7 | * COPYING in the main directory of this source tree, or the | 
|  | 8 | * OpenIB.org BSD license below: | 
|  | 9 | * | 
|  | 10 | *     Redistribution and use in source and binary forms, with or | 
|  | 11 | *     without modification, are permitted provided that the following | 
|  | 12 | *     conditions are met: | 
|  | 13 | * | 
|  | 14 | *      - Redistributions of source code must retain the above | 
|  | 15 | *        copyright notice, this list of conditions and the following | 
|  | 16 | *        disclaimer. | 
|  | 17 | * | 
|  | 18 | *      - Redistributions in binary form must reproduce the above | 
|  | 19 | *        copyright notice, this list of conditions and the following | 
|  | 20 | *        disclaimer in the documentation and/or other materials | 
|  | 21 | *        provided with the distribution. | 
|  | 22 | * | 
|  | 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | 30 | * SOFTWARE. | 
|  | 31 | * | 
|  | 32 | */ | 
|  | 33 | #include <linux/kernel.h> | 
|  | 34 | #include <linux/pci.h> | 
|  | 35 | #include <linux/dma-mapping.h> | 
|  | 36 | #include <rdma/rdma_cm.h> | 
|  | 37 |  | 
|  | 38 | #include "rds.h" | 
|  | 39 | #include "ib.h" | 
|  | 40 |  | 
|  | 41 | static struct kmem_cache *rds_ib_incoming_slab; | 
|  | 42 | static struct kmem_cache *rds_ib_frag_slab; | 
|  | 43 | static atomic_t	rds_ib_allocation = ATOMIC_INIT(0); | 
|  | 44 |  | 
|  | 45 | static void rds_ib_frag_drop_page(struct rds_page_frag *frag) | 
|  | 46 | { | 
|  | 47 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | 
|  | 48 | __free_page(frag->f_page); | 
|  | 49 | frag->f_page = NULL; | 
|  | 50 | } | 
|  | 51 |  | 
|  | 52 | static void rds_ib_frag_free(struct rds_page_frag *frag) | 
|  | 53 | { | 
|  | 54 | rdsdebug("frag %p page %p\n", frag, frag->f_page); | 
|  | 55 | BUG_ON(frag->f_page != NULL); | 
|  | 56 | kmem_cache_free(rds_ib_frag_slab, frag); | 
|  | 57 | } | 
|  | 58 |  | 
|  | 59 | /* | 
|  | 60 | * We map a page at a time.  Its fragments are posted in order.  This | 
|  | 61 | * is called in fragment order as the fragments get send completion events. | 
|  | 62 | * Only the last frag in the page performs the unmapping. | 
|  | 63 | * | 
|  | 64 | * It's OK for ring cleanup to call this in whatever order it likes because | 
|  | 65 | * DMA is not in flight and so we can unmap while other ring entries still | 
|  | 66 | * hold page references in their frags. | 
|  | 67 | */ | 
|  | 68 | static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic, | 
|  | 69 | struct rds_ib_recv_work *recv) | 
|  | 70 | { | 
|  | 71 | struct rds_page_frag *frag = recv->r_frag; | 
|  | 72 |  | 
|  | 73 | rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page); | 
|  | 74 | if (frag->f_mapped) | 
|  | 75 | ib_dma_unmap_page(ic->i_cm_id->device, | 
|  | 76 | frag->f_mapped, | 
|  | 77 | RDS_FRAG_SIZE, DMA_FROM_DEVICE); | 
|  | 78 | frag->f_mapped = 0; | 
|  | 79 | } | 
|  | 80 |  | 
|  | 81 | void rds_ib_recv_init_ring(struct rds_ib_connection *ic) | 
|  | 82 | { | 
|  | 83 | struct rds_ib_recv_work *recv; | 
|  | 84 | u32 i; | 
|  | 85 |  | 
|  | 86 | for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { | 
|  | 87 | struct ib_sge *sge; | 
|  | 88 |  | 
|  | 89 | recv->r_ibinc = NULL; | 
|  | 90 | recv->r_frag = NULL; | 
|  | 91 |  | 
|  | 92 | recv->r_wr.next = NULL; | 
|  | 93 | recv->r_wr.wr_id = i; | 
|  | 94 | recv->r_wr.sg_list = recv->r_sge; | 
|  | 95 | recv->r_wr.num_sge = RDS_IB_RECV_SGE; | 
|  | 96 |  | 
|  | 97 | sge = rds_ib_data_sge(ic, recv->r_sge); | 
|  | 98 | sge->addr = 0; | 
|  | 99 | sge->length = RDS_FRAG_SIZE; | 
|  | 100 | sge->lkey = ic->i_mr->lkey; | 
|  | 101 |  | 
|  | 102 | sge = rds_ib_header_sge(ic, recv->r_sge); | 
|  | 103 | sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); | 
|  | 104 | sge->length = sizeof(struct rds_header); | 
|  | 105 | sge->lkey = ic->i_mr->lkey; | 
|  | 106 | } | 
|  | 107 | } | 
|  | 108 |  | 
|  | 109 | static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, | 
|  | 110 | struct rds_ib_recv_work *recv) | 
|  | 111 | { | 
|  | 112 | if (recv->r_ibinc) { | 
|  | 113 | rds_inc_put(&recv->r_ibinc->ii_inc); | 
|  | 114 | recv->r_ibinc = NULL; | 
|  | 115 | } | 
|  | 116 | if (recv->r_frag) { | 
|  | 117 | rds_ib_recv_unmap_page(ic, recv); | 
|  | 118 | if (recv->r_frag->f_page) | 
|  | 119 | rds_ib_frag_drop_page(recv->r_frag); | 
|  | 120 | rds_ib_frag_free(recv->r_frag); | 
|  | 121 | recv->r_frag = NULL; | 
|  | 122 | } | 
|  | 123 | } | 
|  | 124 |  | 
|  | 125 | void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) | 
|  | 126 | { | 
|  | 127 | u32 i; | 
|  | 128 |  | 
|  | 129 | for (i = 0; i < ic->i_recv_ring.w_nr; i++) | 
|  | 130 | rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); | 
|  | 131 |  | 
|  | 132 | if (ic->i_frag.f_page) | 
|  | 133 | rds_ib_frag_drop_page(&ic->i_frag); | 
|  | 134 | } | 
|  | 135 |  | 
|  | 136 | static int rds_ib_recv_refill_one(struct rds_connection *conn, | 
|  | 137 | struct rds_ib_recv_work *recv, | 
|  | 138 | gfp_t kptr_gfp, gfp_t page_gfp) | 
|  | 139 | { | 
|  | 140 | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | 141 | dma_addr_t dma_addr; | 
|  | 142 | struct ib_sge *sge; | 
|  | 143 | int ret = -ENOMEM; | 
|  | 144 |  | 
|  | 145 | if (recv->r_ibinc == NULL) { | 
|  | 146 | if (atomic_read(&rds_ib_allocation) >= rds_ib_sysctl_max_recv_allocation) { | 
|  | 147 | rds_ib_stats_inc(s_ib_rx_alloc_limit); | 
|  | 148 | goto out; | 
|  | 149 | } | 
|  | 150 | recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab, | 
|  | 151 | kptr_gfp); | 
|  | 152 | if (recv->r_ibinc == NULL) | 
|  | 153 | goto out; | 
|  | 154 | atomic_inc(&rds_ib_allocation); | 
|  | 155 | INIT_LIST_HEAD(&recv->r_ibinc->ii_frags); | 
|  | 156 | rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr); | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 | if (recv->r_frag == NULL) { | 
|  | 160 | recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp); | 
|  | 161 | if (recv->r_frag == NULL) | 
|  | 162 | goto out; | 
|  | 163 | INIT_LIST_HEAD(&recv->r_frag->f_item); | 
|  | 164 | recv->r_frag->f_page = NULL; | 
|  | 165 | } | 
|  | 166 |  | 
|  | 167 | if (ic->i_frag.f_page == NULL) { | 
|  | 168 | ic->i_frag.f_page = alloc_page(page_gfp); | 
|  | 169 | if (ic->i_frag.f_page == NULL) | 
|  | 170 | goto out; | 
|  | 171 | ic->i_frag.f_offset = 0; | 
|  | 172 | } | 
|  | 173 |  | 
|  | 174 | dma_addr = ib_dma_map_page(ic->i_cm_id->device, | 
|  | 175 | ic->i_frag.f_page, | 
|  | 176 | ic->i_frag.f_offset, | 
|  | 177 | RDS_FRAG_SIZE, | 
|  | 178 | DMA_FROM_DEVICE); | 
|  | 179 | if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr)) | 
|  | 180 | goto out; | 
|  | 181 |  | 
|  | 182 | /* | 
|  | 183 | * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap() | 
|  | 184 | * must be called on this recv.  This happens as completions hit | 
|  | 185 | * in order or on connection shutdown. | 
|  | 186 | */ | 
|  | 187 | recv->r_frag->f_page = ic->i_frag.f_page; | 
|  | 188 | recv->r_frag->f_offset = ic->i_frag.f_offset; | 
|  | 189 | recv->r_frag->f_mapped = dma_addr; | 
|  | 190 |  | 
|  | 191 | sge = rds_ib_data_sge(ic, recv->r_sge); | 
|  | 192 | sge->addr = dma_addr; | 
|  | 193 | sge->length = RDS_FRAG_SIZE; | 
|  | 194 |  | 
|  | 195 | sge = rds_ib_header_sge(ic, recv->r_sge); | 
|  | 196 | sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); | 
|  | 197 | sge->length = sizeof(struct rds_header); | 
|  | 198 |  | 
|  | 199 | get_page(recv->r_frag->f_page); | 
|  | 200 |  | 
|  | 201 | if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) { | 
|  | 202 | ic->i_frag.f_offset += RDS_FRAG_SIZE; | 
|  | 203 | } else { | 
|  | 204 | put_page(ic->i_frag.f_page); | 
|  | 205 | ic->i_frag.f_page = NULL; | 
|  | 206 | ic->i_frag.f_offset = 0; | 
|  | 207 | } | 
|  | 208 |  | 
|  | 209 | ret = 0; | 
|  | 210 | out: | 
|  | 211 | return ret; | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | /* | 
|  | 215 | * This tries to allocate and post unused work requests after making sure that | 
|  | 216 | * they have all the allocations they need to queue received fragments into | 
|  | 217 | * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc | 
|  | 218 | * pairs don't go unmatched. | 
|  | 219 | * | 
|  | 220 | * -1 is returned if posting fails due to temporary resource exhaustion. | 
|  | 221 | */ | 
|  | 222 | int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp, | 
|  | 223 | gfp_t page_gfp, int prefill) | 
|  | 224 | { | 
|  | 225 | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | 226 | struct rds_ib_recv_work *recv; | 
|  | 227 | struct ib_recv_wr *failed_wr; | 
|  | 228 | unsigned int posted = 0; | 
|  | 229 | int ret = 0; | 
|  | 230 | u32 pos; | 
|  | 231 |  | 
|  | 232 | while ((prefill || rds_conn_up(conn)) | 
|  | 233 | && rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { | 
|  | 234 | if (pos >= ic->i_recv_ring.w_nr) { | 
|  | 235 | printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", | 
|  | 236 | pos); | 
|  | 237 | ret = -EINVAL; | 
|  | 238 | break; | 
|  | 239 | } | 
|  | 240 |  | 
|  | 241 | recv = &ic->i_recvs[pos]; | 
|  | 242 | ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp); | 
|  | 243 | if (ret) { | 
|  | 244 | ret = -1; | 
|  | 245 | break; | 
|  | 246 | } | 
|  | 247 |  | 
|  | 248 | /* XXX when can this fail? */ | 
|  | 249 | ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); | 
|  | 250 | rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, | 
|  | 251 | recv->r_ibinc, recv->r_frag->f_page, | 
|  | 252 | (long) recv->r_frag->f_mapped, ret); | 
|  | 253 | if (ret) { | 
|  | 254 | rds_ib_conn_error(conn, "recv post on " | 
|  | 255 | "%pI4 returned %d, disconnecting and " | 
|  | 256 | "reconnecting\n", &conn->c_faddr, | 
|  | 257 | ret); | 
|  | 258 | ret = -1; | 
|  | 259 | break; | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | posted++; | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | /* We're doing flow control - update the window. */ | 
|  | 266 | if (ic->i_flowctl && posted) | 
|  | 267 | rds_ib_advertise_credits(conn, posted); | 
|  | 268 |  | 
|  | 269 | if (ret) | 
|  | 270 | rds_ib_ring_unalloc(&ic->i_recv_ring, 1); | 
|  | 271 | return ret; | 
|  | 272 | } | 
|  | 273 |  | 
|  | 274 | void rds_ib_inc_purge(struct rds_incoming *inc) | 
|  | 275 | { | 
|  | 276 | struct rds_ib_incoming *ibinc; | 
|  | 277 | struct rds_page_frag *frag; | 
|  | 278 | struct rds_page_frag *pos; | 
|  | 279 |  | 
|  | 280 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | 
|  | 281 | rdsdebug("purging ibinc %p inc %p\n", ibinc, inc); | 
|  | 282 |  | 
|  | 283 | list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { | 
|  | 284 | list_del_init(&frag->f_item); | 
|  | 285 | rds_ib_frag_drop_page(frag); | 
|  | 286 | rds_ib_frag_free(frag); | 
|  | 287 | } | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | void rds_ib_inc_free(struct rds_incoming *inc) | 
|  | 291 | { | 
|  | 292 | struct rds_ib_incoming *ibinc; | 
|  | 293 |  | 
|  | 294 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | 
|  | 295 |  | 
|  | 296 | rds_ib_inc_purge(inc); | 
|  | 297 | rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); | 
|  | 298 | BUG_ON(!list_empty(&ibinc->ii_frags)); | 
|  | 299 | kmem_cache_free(rds_ib_incoming_slab, ibinc); | 
|  | 300 | atomic_dec(&rds_ib_allocation); | 
|  | 301 | BUG_ON(atomic_read(&rds_ib_allocation) < 0); | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov, | 
|  | 305 | size_t size) | 
|  | 306 | { | 
|  | 307 | struct rds_ib_incoming *ibinc; | 
|  | 308 | struct rds_page_frag *frag; | 
|  | 309 | struct iovec *iov = first_iov; | 
|  | 310 | unsigned long to_copy; | 
|  | 311 | unsigned long frag_off = 0; | 
|  | 312 | unsigned long iov_off = 0; | 
|  | 313 | int copied = 0; | 
|  | 314 | int ret; | 
|  | 315 | u32 len; | 
|  | 316 |  | 
|  | 317 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); | 
|  | 318 | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); | 
|  | 319 | len = be32_to_cpu(inc->i_hdr.h_len); | 
|  | 320 |  | 
|  | 321 | while (copied < size && copied < len) { | 
|  | 322 | if (frag_off == RDS_FRAG_SIZE) { | 
|  | 323 | frag = list_entry(frag->f_item.next, | 
|  | 324 | struct rds_page_frag, f_item); | 
|  | 325 | frag_off = 0; | 
|  | 326 | } | 
|  | 327 | while (iov_off == iov->iov_len) { | 
|  | 328 | iov_off = 0; | 
|  | 329 | iov++; | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off); | 
|  | 333 | to_copy = min_t(size_t, to_copy, size - copied); | 
|  | 334 | to_copy = min_t(unsigned long, to_copy, len - copied); | 
|  | 335 |  | 
|  | 336 | rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag " | 
|  | 337 | "[%p, %lu] + %lu\n", | 
|  | 338 | to_copy, iov->iov_base, iov->iov_len, iov_off, | 
|  | 339 | frag->f_page, frag->f_offset, frag_off); | 
|  | 340 |  | 
|  | 341 | /* XXX needs + offset for multiple recvs per page */ | 
|  | 342 | ret = rds_page_copy_to_user(frag->f_page, | 
|  | 343 | frag->f_offset + frag_off, | 
|  | 344 | iov->iov_base + iov_off, | 
|  | 345 | to_copy); | 
|  | 346 | if (ret) { | 
|  | 347 | copied = ret; | 
|  | 348 | break; | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 | iov_off += to_copy; | 
|  | 352 | frag_off += to_copy; | 
|  | 353 | copied += to_copy; | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | return copied; | 
|  | 357 | } | 
|  | 358 |  | 
|  | 359 | /* ic starts out kzalloc()ed */ | 
|  | 360 | void rds_ib_recv_init_ack(struct rds_ib_connection *ic) | 
|  | 361 | { | 
|  | 362 | struct ib_send_wr *wr = &ic->i_ack_wr; | 
|  | 363 | struct ib_sge *sge = &ic->i_ack_sge; | 
|  | 364 |  | 
|  | 365 | sge->addr = ic->i_ack_dma; | 
|  | 366 | sge->length = sizeof(struct rds_header); | 
|  | 367 | sge->lkey = ic->i_mr->lkey; | 
|  | 368 |  | 
|  | 369 | wr->sg_list = sge; | 
|  | 370 | wr->num_sge = 1; | 
|  | 371 | wr->opcode = IB_WR_SEND; | 
|  | 372 | wr->wr_id = RDS_IB_ACK_WR_ID; | 
|  | 373 | wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | /* | 
|  | 377 | * You'd think that with reliable IB connections you wouldn't need to ack | 
|  | 378 | * messages that have been received.  The problem is that IB hardware generates | 
|  | 379 | * an ack message before it has DMAed the message into memory.  This creates a | 
|  | 380 | * potential message loss if the HCA is disabled for any reason between when it | 
|  | 381 | * sends the ack and before the message is DMAed and processed.  This is only a | 
|  | 382 | * potential issue if another HCA is available for fail-over. | 
|  | 383 | * | 
|  | 384 | * When the remote host receives our ack they'll free the sent message from | 
|  | 385 | * their send queue.  To decrease the latency of this we always send an ack | 
|  | 386 | * immediately after we've received messages. | 
|  | 387 | * | 
|  | 388 | * For simplicity, we only have one ack in flight at a time.  This puts | 
|  | 389 | * pressure on senders to have deep enough send queues to absorb the latency of | 
|  | 390 | * a single ack frame being in flight.  This might not be good enough. | 
|  | 391 | * | 
|  | 392 | * This is implemented by have a long-lived send_wr and sge which point to a | 
|  | 393 | * statically allocated ack frame.  This ack wr does not fall under the ring | 
|  | 394 | * accounting that the tx and rx wrs do.  The QP attribute specifically makes | 
|  | 395 | * room for it beyond the ring size.  Send completion notices its special | 
|  | 396 | * wr_id and avoids working with the ring in that case. | 
|  | 397 | */ | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 398 | #ifndef KERNEL_HAS_ATOMIC64 | 
| Andy Grover | 1e23b3e | 2009-02-24 15:30:34 +0000 | [diff] [blame] | 399 | static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, | 
|  | 400 | int ack_required) | 
|  | 401 | { | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 402 | unsigned long flags; | 
|  | 403 |  | 
|  | 404 | spin_lock_irqsave(&ic->i_ack_lock, flags); | 
|  | 405 | ic->i_ack_next = seq; | 
|  | 406 | if (ack_required) | 
|  | 407 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | 408 | spin_unlock_irqrestore(&ic->i_ack_lock, flags); | 
|  | 409 | } | 
|  | 410 |  | 
|  | 411 | static u64 rds_ib_get_ack(struct rds_ib_connection *ic) | 
|  | 412 | { | 
|  | 413 | unsigned long flags; | 
|  | 414 | u64 seq; | 
|  | 415 |  | 
|  | 416 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | 417 |  | 
|  | 418 | spin_lock_irqsave(&ic->i_ack_lock, flags); | 
|  | 419 | seq = ic->i_ack_next; | 
|  | 420 | spin_unlock_irqrestore(&ic->i_ack_lock, flags); | 
|  | 421 |  | 
|  | 422 | return seq; | 
|  | 423 | } | 
|  | 424 | #else | 
|  | 425 | static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, | 
|  | 426 | int ack_required) | 
|  | 427 | { | 
|  | 428 | atomic64_set(&ic->i_ack_next, seq); | 
| Andy Grover | 1e23b3e | 2009-02-24 15:30:34 +0000 | [diff] [blame] | 429 | if (ack_required) { | 
|  | 430 | smp_mb__before_clear_bit(); | 
|  | 431 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | 432 | } | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | static u64 rds_ib_get_ack(struct rds_ib_connection *ic) | 
|  | 436 | { | 
|  | 437 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | 438 | smp_mb__after_clear_bit(); | 
|  | 439 |  | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 440 | return atomic64_read(&ic->i_ack_next); | 
| Andy Grover | 1e23b3e | 2009-02-24 15:30:34 +0000 | [diff] [blame] | 441 | } | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 442 | #endif | 
|  | 443 |  | 
| Andy Grover | 1e23b3e | 2009-02-24 15:30:34 +0000 | [diff] [blame] | 444 |  | 
|  | 445 | static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) | 
|  | 446 | { | 
|  | 447 | struct rds_header *hdr = ic->i_ack; | 
|  | 448 | struct ib_send_wr *failed_wr; | 
|  | 449 | u64 seq; | 
|  | 450 | int ret; | 
|  | 451 |  | 
|  | 452 | seq = rds_ib_get_ack(ic); | 
|  | 453 |  | 
|  | 454 | rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); | 
|  | 455 | rds_message_populate_header(hdr, 0, 0, 0); | 
|  | 456 | hdr->h_ack = cpu_to_be64(seq); | 
|  | 457 | hdr->h_credit = adv_credits; | 
|  | 458 | rds_message_make_checksum(hdr); | 
|  | 459 | ic->i_ack_queued = jiffies; | 
|  | 460 |  | 
|  | 461 | ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); | 
|  | 462 | if (unlikely(ret)) { | 
|  | 463 | /* Failed to send. Release the WR, and | 
|  | 464 | * force another ACK. | 
|  | 465 | */ | 
|  | 466 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
|  | 467 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | 468 |  | 
|  | 469 | rds_ib_stats_inc(s_ib_ack_send_failure); | 
|  | 470 | /* Need to finesse this later. */ | 
|  | 471 | BUG(); | 
|  | 472 | } else | 
|  | 473 | rds_ib_stats_inc(s_ib_ack_sent); | 
|  | 474 | } | 
|  | 475 |  | 
|  | 476 | /* | 
|  | 477 | * There are 3 ways of getting acknowledgements to the peer: | 
|  | 478 | *  1.	We call rds_ib_attempt_ack from the recv completion handler | 
|  | 479 | *	to send an ACK-only frame. | 
|  | 480 | *	However, there can be only one such frame in the send queue | 
|  | 481 | *	at any time, so we may have to postpone it. | 
|  | 482 | *  2.	When another (data) packet is transmitted while there's | 
|  | 483 | *	an ACK in the queue, we piggyback the ACK sequence number | 
|  | 484 | *	on the data packet. | 
|  | 485 | *  3.	If the ACK WR is done sending, we get called from the | 
|  | 486 | *	send queue completion handler, and check whether there's | 
|  | 487 | *	another ACK pending (postponed because the WR was on the | 
|  | 488 | *	queue). If so, we transmit it. | 
|  | 489 | * | 
|  | 490 | * We maintain 2 variables: | 
|  | 491 | *  -	i_ack_flags, which keeps track of whether the ACK WR | 
|  | 492 | *	is currently in the send queue or not (IB_ACK_IN_FLIGHT) | 
|  | 493 | *  -	i_ack_next, which is the last sequence number we received | 
|  | 494 | * | 
|  | 495 | * Potentially, send queue and receive queue handlers can run concurrently. | 
| Andy Grover | 8cbd960 | 2009-04-01 08:20:20 +0000 | [diff] [blame] | 496 | * It would be nice to not have to use a spinlock to synchronize things, | 
|  | 497 | * but the one problem that rules this out is that 64bit updates are | 
|  | 498 | * not atomic on all platforms. Things would be a lot simpler if | 
|  | 499 | * we had atomic64 or maybe cmpxchg64 everywhere. | 
| Andy Grover | 1e23b3e | 2009-02-24 15:30:34 +0000 | [diff] [blame] | 500 | * | 
|  | 501 | * Reconnecting complicates this picture just slightly. When we | 
|  | 502 | * reconnect, we may be seeing duplicate packets. The peer | 
|  | 503 | * is retransmitting them, because it hasn't seen an ACK for | 
|  | 504 | * them. It is important that we ACK these. | 
|  | 505 | * | 
|  | 506 | * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with | 
|  | 507 | * this flag set *MUST* be acknowledged immediately. | 
|  | 508 | */ | 
|  | 509 |  | 
|  | 510 | /* | 
|  | 511 | * When we get here, we're called from the recv queue handler. | 
|  | 512 | * Check whether we ought to transmit an ACK. | 
|  | 513 | */ | 
|  | 514 | void rds_ib_attempt_ack(struct rds_ib_connection *ic) | 
|  | 515 | { | 
|  | 516 | unsigned int adv_credits; | 
|  | 517 |  | 
|  | 518 | if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | 
|  | 519 | return; | 
|  | 520 |  | 
|  | 521 | if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { | 
|  | 522 | rds_ib_stats_inc(s_ib_ack_send_delayed); | 
|  | 523 | return; | 
|  | 524 | } | 
|  | 525 |  | 
|  | 526 | /* Can we get a send credit? */ | 
| Steve Wise | 7b70d03 | 2009-04-09 14:09:39 +0000 | [diff] [blame] | 527 | if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { | 
| Andy Grover | 1e23b3e | 2009-02-24 15:30:34 +0000 | [diff] [blame] | 528 | rds_ib_stats_inc(s_ib_tx_throttle); | 
|  | 529 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
|  | 530 | return; | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | 534 | rds_ib_send_ack(ic, adv_credits); | 
|  | 535 | } | 
|  | 536 |  | 
|  | 537 | /* | 
|  | 538 | * We get here from the send completion handler, when the | 
|  | 539 | * adapter tells us the ACK frame was sent. | 
|  | 540 | */ | 
|  | 541 | void rds_ib_ack_send_complete(struct rds_ib_connection *ic) | 
|  | 542 | { | 
|  | 543 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); | 
|  | 544 | rds_ib_attempt_ack(ic); | 
|  | 545 | } | 
|  | 546 |  | 
|  | 547 | /* | 
|  | 548 | * This is called by the regular xmit code when it wants to piggyback | 
|  | 549 | * an ACK on an outgoing frame. | 
|  | 550 | */ | 
|  | 551 | u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) | 
|  | 552 | { | 
|  | 553 | if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) | 
|  | 554 | rds_ib_stats_inc(s_ib_ack_send_piggybacked); | 
|  | 555 | return rds_ib_get_ack(ic); | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | /* | 
|  | 559 | * It's kind of lame that we're copying from the posted receive pages into | 
|  | 560 | * long-lived bitmaps.  We could have posted the bitmaps and rdma written into | 
|  | 561 | * them.  But receiving new congestion bitmaps should be a *rare* event, so | 
|  | 562 | * hopefully we won't need to invest that complexity in making it more | 
|  | 563 | * efficient.  By copying we can share a simpler core with TCP which has to | 
|  | 564 | * copy. | 
|  | 565 | */ | 
|  | 566 | static void rds_ib_cong_recv(struct rds_connection *conn, | 
|  | 567 | struct rds_ib_incoming *ibinc) | 
|  | 568 | { | 
|  | 569 | struct rds_cong_map *map; | 
|  | 570 | unsigned int map_off; | 
|  | 571 | unsigned int map_page; | 
|  | 572 | struct rds_page_frag *frag; | 
|  | 573 | unsigned long frag_off; | 
|  | 574 | unsigned long to_copy; | 
|  | 575 | unsigned long copied; | 
|  | 576 | uint64_t uncongested = 0; | 
|  | 577 | void *addr; | 
|  | 578 |  | 
|  | 579 | /* catch completely corrupt packets */ | 
|  | 580 | if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) | 
|  | 581 | return; | 
|  | 582 |  | 
|  | 583 | map = conn->c_fcong; | 
|  | 584 | map_page = 0; | 
|  | 585 | map_off = 0; | 
|  | 586 |  | 
|  | 587 | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); | 
|  | 588 | frag_off = 0; | 
|  | 589 |  | 
|  | 590 | copied = 0; | 
|  | 591 |  | 
|  | 592 | while (copied < RDS_CONG_MAP_BYTES) { | 
|  | 593 | uint64_t *src, *dst; | 
|  | 594 | unsigned int k; | 
|  | 595 |  | 
|  | 596 | to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); | 
|  | 597 | BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ | 
|  | 598 |  | 
|  | 599 | addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0); | 
|  | 600 |  | 
|  | 601 | src = addr + frag_off; | 
|  | 602 | dst = (void *)map->m_page_addrs[map_page] + map_off; | 
|  | 603 | for (k = 0; k < to_copy; k += 8) { | 
|  | 604 | /* Record ports that became uncongested, ie | 
|  | 605 | * bits that changed from 0 to 1. */ | 
|  | 606 | uncongested |= ~(*src) & *dst; | 
|  | 607 | *dst++ = *src++; | 
|  | 608 | } | 
|  | 609 | kunmap_atomic(addr, KM_SOFTIRQ0); | 
|  | 610 |  | 
|  | 611 | copied += to_copy; | 
|  | 612 |  | 
|  | 613 | map_off += to_copy; | 
|  | 614 | if (map_off == PAGE_SIZE) { | 
|  | 615 | map_off = 0; | 
|  | 616 | map_page++; | 
|  | 617 | } | 
|  | 618 |  | 
|  | 619 | frag_off += to_copy; | 
|  | 620 | if (frag_off == RDS_FRAG_SIZE) { | 
|  | 621 | frag = list_entry(frag->f_item.next, | 
|  | 622 | struct rds_page_frag, f_item); | 
|  | 623 | frag_off = 0; | 
|  | 624 | } | 
|  | 625 | } | 
|  | 626 |  | 
|  | 627 | /* the congestion map is in little endian order */ | 
|  | 628 | uncongested = le64_to_cpu(uncongested); | 
|  | 629 |  | 
|  | 630 | rds_cong_map_updated(map, uncongested); | 
|  | 631 | } | 
|  | 632 |  | 
|  | 633 | /* | 
|  | 634 | * Rings are posted with all the allocations they'll need to queue the | 
|  | 635 | * incoming message to the receiving socket so this can't fail. | 
|  | 636 | * All fragments start with a header, so we can make sure we're not receiving | 
|  | 637 | * garbage, and we can tell a small 8 byte fragment from an ACK frame. | 
|  | 638 | */ | 
|  | 639 | struct rds_ib_ack_state { | 
|  | 640 | u64		ack_next; | 
|  | 641 | u64		ack_recv; | 
|  | 642 | unsigned int	ack_required:1; | 
|  | 643 | unsigned int	ack_next_valid:1; | 
|  | 644 | unsigned int	ack_recv_valid:1; | 
|  | 645 | }; | 
|  | 646 |  | 
|  | 647 | static void rds_ib_process_recv(struct rds_connection *conn, | 
|  | 648 | struct rds_ib_recv_work *recv, u32 byte_len, | 
|  | 649 | struct rds_ib_ack_state *state) | 
|  | 650 | { | 
|  | 651 | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | 652 | struct rds_ib_incoming *ibinc = ic->i_ibinc; | 
|  | 653 | struct rds_header *ihdr, *hdr; | 
|  | 654 |  | 
|  | 655 | /* XXX shut down the connection if port 0,0 are seen? */ | 
|  | 656 |  | 
|  | 657 | rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, | 
|  | 658 | byte_len); | 
|  | 659 |  | 
|  | 660 | if (byte_len < sizeof(struct rds_header)) { | 
|  | 661 | rds_ib_conn_error(conn, "incoming message " | 
|  | 662 | "from %pI4 didn't inclue a " | 
|  | 663 | "header, disconnecting and " | 
|  | 664 | "reconnecting\n", | 
|  | 665 | &conn->c_faddr); | 
|  | 666 | return; | 
|  | 667 | } | 
|  | 668 | byte_len -= sizeof(struct rds_header); | 
|  | 669 |  | 
|  | 670 | ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; | 
|  | 671 |  | 
|  | 672 | /* Validate the checksum. */ | 
|  | 673 | if (!rds_message_verify_checksum(ihdr)) { | 
|  | 674 | rds_ib_conn_error(conn, "incoming message " | 
|  | 675 | "from %pI4 has corrupted header - " | 
|  | 676 | "forcing a reconnect\n", | 
|  | 677 | &conn->c_faddr); | 
|  | 678 | rds_stats_inc(s_recv_drop_bad_checksum); | 
|  | 679 | return; | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | /* Process the ACK sequence which comes with every packet */ | 
|  | 683 | state->ack_recv = be64_to_cpu(ihdr->h_ack); | 
|  | 684 | state->ack_recv_valid = 1; | 
|  | 685 |  | 
|  | 686 | /* Process the credits update if there was one */ | 
|  | 687 | if (ihdr->h_credit) | 
|  | 688 | rds_ib_send_add_credits(conn, ihdr->h_credit); | 
|  | 689 |  | 
|  | 690 | if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) { | 
|  | 691 | /* This is an ACK-only packet. The fact that it gets | 
|  | 692 | * special treatment here is that historically, ACKs | 
|  | 693 | * were rather special beasts. | 
|  | 694 | */ | 
|  | 695 | rds_ib_stats_inc(s_ib_ack_received); | 
|  | 696 |  | 
|  | 697 | /* | 
|  | 698 | * Usually the frags make their way on to incs and are then freed as | 
|  | 699 | * the inc is freed.  We don't go that route, so we have to drop the | 
|  | 700 | * page ref ourselves.  We can't just leave the page on the recv | 
|  | 701 | * because that confuses the dma mapping of pages and each recv's use | 
|  | 702 | * of a partial page.  We can leave the frag, though, it will be | 
|  | 703 | * reused. | 
|  | 704 | * | 
|  | 705 | * FIXME: Fold this into the code path below. | 
|  | 706 | */ | 
|  | 707 | rds_ib_frag_drop_page(recv->r_frag); | 
|  | 708 | return; | 
|  | 709 | } | 
|  | 710 |  | 
|  | 711 | /* | 
|  | 712 | * If we don't already have an inc on the connection then this | 
|  | 713 | * fragment has a header and starts a message.. copy its header | 
|  | 714 | * into the inc and save the inc so we can hang upcoming fragments | 
|  | 715 | * off its list. | 
|  | 716 | */ | 
|  | 717 | if (ibinc == NULL) { | 
|  | 718 | ibinc = recv->r_ibinc; | 
|  | 719 | recv->r_ibinc = NULL; | 
|  | 720 | ic->i_ibinc = ibinc; | 
|  | 721 |  | 
|  | 722 | hdr = &ibinc->ii_inc.i_hdr; | 
|  | 723 | memcpy(hdr, ihdr, sizeof(*hdr)); | 
|  | 724 | ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); | 
|  | 725 |  | 
|  | 726 | rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, | 
|  | 727 | ic->i_recv_data_rem, hdr->h_flags); | 
|  | 728 | } else { | 
|  | 729 | hdr = &ibinc->ii_inc.i_hdr; | 
|  | 730 | /* We can't just use memcmp here; fragments of a | 
|  | 731 | * single message may carry different ACKs */ | 
|  | 732 | if (hdr->h_sequence != ihdr->h_sequence | 
|  | 733 | || hdr->h_len != ihdr->h_len | 
|  | 734 | || hdr->h_sport != ihdr->h_sport | 
|  | 735 | || hdr->h_dport != ihdr->h_dport) { | 
|  | 736 | rds_ib_conn_error(conn, | 
|  | 737 | "fragment header mismatch; forcing reconnect\n"); | 
|  | 738 | return; | 
|  | 739 | } | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); | 
|  | 743 | recv->r_frag = NULL; | 
|  | 744 |  | 
|  | 745 | if (ic->i_recv_data_rem > RDS_FRAG_SIZE) | 
|  | 746 | ic->i_recv_data_rem -= RDS_FRAG_SIZE; | 
|  | 747 | else { | 
|  | 748 | ic->i_recv_data_rem = 0; | 
|  | 749 | ic->i_ibinc = NULL; | 
|  | 750 |  | 
|  | 751 | if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) | 
|  | 752 | rds_ib_cong_recv(conn, ibinc); | 
|  | 753 | else { | 
|  | 754 | rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, | 
|  | 755 | &ibinc->ii_inc, GFP_ATOMIC, | 
|  | 756 | KM_SOFTIRQ0); | 
|  | 757 | state->ack_next = be64_to_cpu(hdr->h_sequence); | 
|  | 758 | state->ack_next_valid = 1; | 
|  | 759 | } | 
|  | 760 |  | 
|  | 761 | /* Evaluate the ACK_REQUIRED flag *after* we received | 
|  | 762 | * the complete frame, and after bumping the next_rx | 
|  | 763 | * sequence. */ | 
|  | 764 | if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { | 
|  | 765 | rds_stats_inc(s_recv_ack_required); | 
|  | 766 | state->ack_required = 1; | 
|  | 767 | } | 
|  | 768 |  | 
|  | 769 | rds_inc_put(&ibinc->ii_inc); | 
|  | 770 | } | 
|  | 771 | } | 
|  | 772 |  | 
|  | 773 | /* | 
|  | 774 | * Plucking the oldest entry from the ring can be done concurrently with | 
|  | 775 | * the thread refilling the ring.  Each ring operation is protected by | 
|  | 776 | * spinlocks and the transient state of refilling doesn't change the | 
|  | 777 | * recording of which entry is oldest. | 
|  | 778 | * | 
|  | 779 | * This relies on IB only calling one cq comp_handler for each cq so that | 
|  | 780 | * there will only be one caller of rds_recv_incoming() per RDS connection. | 
|  | 781 | */ | 
|  | 782 | void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context) | 
|  | 783 | { | 
|  | 784 | struct rds_connection *conn = context; | 
|  | 785 | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | 786 | struct ib_wc wc; | 
|  | 787 | struct rds_ib_ack_state state = { 0, }; | 
|  | 788 | struct rds_ib_recv_work *recv; | 
|  | 789 |  | 
|  | 790 | rdsdebug("conn %p cq %p\n", conn, cq); | 
|  | 791 |  | 
|  | 792 | rds_ib_stats_inc(s_ib_rx_cq_call); | 
|  | 793 |  | 
|  | 794 | ib_req_notify_cq(cq, IB_CQ_SOLICITED); | 
|  | 795 |  | 
|  | 796 | while (ib_poll_cq(cq, 1, &wc) > 0) { | 
|  | 797 | rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", | 
|  | 798 | (unsigned long long)wc.wr_id, wc.status, wc.byte_len, | 
|  | 799 | be32_to_cpu(wc.ex.imm_data)); | 
|  | 800 | rds_ib_stats_inc(s_ib_rx_cq_event); | 
|  | 801 |  | 
|  | 802 | recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; | 
|  | 803 |  | 
|  | 804 | rds_ib_recv_unmap_page(ic, recv); | 
|  | 805 |  | 
|  | 806 | /* | 
|  | 807 | * Also process recvs in connecting state because it is possible | 
|  | 808 | * to get a recv completion _before_ the rdmacm ESTABLISHED | 
|  | 809 | * event is processed. | 
|  | 810 | */ | 
|  | 811 | if (rds_conn_up(conn) || rds_conn_connecting(conn)) { | 
|  | 812 | /* We expect errors as the qp is drained during shutdown */ | 
|  | 813 | if (wc.status == IB_WC_SUCCESS) { | 
|  | 814 | rds_ib_process_recv(conn, recv, wc.byte_len, &state); | 
|  | 815 | } else { | 
|  | 816 | rds_ib_conn_error(conn, "recv completion on " | 
|  | 817 | "%pI4 had status %u, disconnecting and " | 
|  | 818 | "reconnecting\n", &conn->c_faddr, | 
|  | 819 | wc.status); | 
|  | 820 | } | 
|  | 821 | } | 
|  | 822 |  | 
|  | 823 | rds_ib_ring_free(&ic->i_recv_ring, 1); | 
|  | 824 | } | 
|  | 825 |  | 
|  | 826 | if (state.ack_next_valid) | 
|  | 827 | rds_ib_set_ack(ic, state.ack_next, state.ack_required); | 
|  | 828 | if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { | 
|  | 829 | rds_send_drop_acked(conn, state.ack_recv, NULL); | 
|  | 830 | ic->i_ack_recv = state.ack_recv; | 
|  | 831 | } | 
|  | 832 | if (rds_conn_up(conn)) | 
|  | 833 | rds_ib_attempt_ack(ic); | 
|  | 834 |  | 
|  | 835 | /* If we ever end up with a really empty receive ring, we're | 
|  | 836 | * in deep trouble, as the sender will definitely see RNR | 
|  | 837 | * timeouts. */ | 
|  | 838 | if (rds_ib_ring_empty(&ic->i_recv_ring)) | 
|  | 839 | rds_ib_stats_inc(s_ib_rx_ring_empty); | 
|  | 840 |  | 
|  | 841 | /* | 
|  | 842 | * If the ring is running low, then schedule the thread to refill. | 
|  | 843 | */ | 
|  | 844 | if (rds_ib_ring_low(&ic->i_recv_ring)) | 
|  | 845 | queue_delayed_work(rds_wq, &conn->c_recv_w, 0); | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | int rds_ib_recv(struct rds_connection *conn) | 
|  | 849 | { | 
|  | 850 | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | 851 | int ret = 0; | 
|  | 852 |  | 
|  | 853 | rdsdebug("conn %p\n", conn); | 
|  | 854 |  | 
|  | 855 | /* | 
|  | 856 | * If we get a temporary posting failure in this context then | 
|  | 857 | * we're really low and we want the caller to back off for a bit. | 
|  | 858 | */ | 
|  | 859 | mutex_lock(&ic->i_recv_mutex); | 
|  | 860 | if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0)) | 
|  | 861 | ret = -ENOMEM; | 
|  | 862 | else | 
|  | 863 | rds_ib_stats_inc(s_ib_rx_refill_from_thread); | 
|  | 864 | mutex_unlock(&ic->i_recv_mutex); | 
|  | 865 |  | 
|  | 866 | if (rds_conn_up(conn)) | 
|  | 867 | rds_ib_attempt_ack(ic); | 
|  | 868 |  | 
|  | 869 | return ret; | 
|  | 870 | } | 
|  | 871 |  | 
|  | 872 | int __init rds_ib_recv_init(void) | 
|  | 873 | { | 
|  | 874 | struct sysinfo si; | 
|  | 875 | int ret = -ENOMEM; | 
|  | 876 |  | 
|  | 877 | /* Default to 30% of all available RAM for recv memory */ | 
|  | 878 | si_meminfo(&si); | 
|  | 879 | rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; | 
|  | 880 |  | 
|  | 881 | rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", | 
|  | 882 | sizeof(struct rds_ib_incoming), | 
|  | 883 | 0, 0, NULL); | 
|  | 884 | if (rds_ib_incoming_slab == NULL) | 
|  | 885 | goto out; | 
|  | 886 |  | 
|  | 887 | rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", | 
|  | 888 | sizeof(struct rds_page_frag), | 
|  | 889 | 0, 0, NULL); | 
|  | 890 | if (rds_ib_frag_slab == NULL) | 
|  | 891 | kmem_cache_destroy(rds_ib_incoming_slab); | 
|  | 892 | else | 
|  | 893 | ret = 0; | 
|  | 894 | out: | 
|  | 895 | return ret; | 
|  | 896 | } | 
|  | 897 |  | 
|  | 898 | void rds_ib_recv_exit(void) | 
|  | 899 | { | 
|  | 900 | kmem_cache_destroy(rds_ib_incoming_slab); | 
|  | 901 | kmem_cache_destroy(rds_ib_frag_slab); | 
|  | 902 | } |