blob: 9a18ff28ea5b6d2add93251d4269b92e7f771605 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
249/*
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
252 */
253static void
254list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255{
256 struct perf_event *group_leader = event->group_leader;
257
258 /*
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
262 */
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
268 }
269
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
274}
275
276/*
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
279 */
280static void
281list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282{
283 struct perf_event *sibling, *tmp;
284
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
290
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
293
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
296
297 /*
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
301 */
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
306 }
307}
308
309static void
310event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313{
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
316
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
321 }
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
325
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
331}
332
333static void
334group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
337{
338 struct perf_event *event;
339
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
342
343 event_sched_out(group_event, cpuctx, ctx);
344
345 /*
346 * Schedule out siblings (if any):
347 */
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
350
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
353}
354
355/*
356 * Cross CPU call to remove a performance event
357 *
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
360 */
361static void __perf_event_remove_from_context(void *info)
362{
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
366
367 /*
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
371 */
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
374
375 spin_lock(&ctx->lock);
376 /*
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
379 */
380 perf_disable();
381
382 event_sched_out(event, cpuctx, ctx);
383
384 list_del_event(event, ctx);
385
386 if (!ctx->task) {
387 /*
388 * Allow more per task events with respect to the
389 * reservation:
390 */
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
394 }
395
396 perf_enable();
397 spin_unlock(&ctx->lock);
398}
399
400
401/*
402 * Remove the event from a task's (or a CPU's) list of events.
403 *
404 * Must be called with ctx->mutex held.
405 *
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
408 *
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
415 */
416static void perf_event_remove_from_context(struct perf_event *event)
417{
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
420
421 if (!task) {
422 /*
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
425 */
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
430 }
431
432retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
435
436 spin_lock_irq(&ctx->lock);
437 /*
438 * If the context is active we need to retry the smp call.
439 */
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
443 }
444
445 /*
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
449 */
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
452 }
453 spin_unlock_irq(&ctx->lock);
454}
455
456static inline u64 perf_clock(void)
457{
458 return cpu_clock(smp_processor_id());
459}
460
461/*
462 * Update the record of the current time in a context.
463 */
464static void update_context_time(struct perf_event_context *ctx)
465{
466 u64 now = perf_clock();
467
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
470}
471
472/*
473 * Update the total_time_enabled and total_time_running fields for a event.
474 */
475static void update_event_times(struct perf_event *event)
476{
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
479
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
483
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
485
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
490
491 event->total_time_running = run_end - event->tstamp_running;
492}
493
494/*
495 * Update total_time_enabled and total_time_running for all events in a group.
496 */
497static void update_group_times(struct perf_event *leader)
498{
499 struct perf_event *event;
500
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
504}
505
506/*
507 * Cross CPU call to disable a performance event
508 */
509static void __perf_event_disable(void *info)
510{
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
514
515 /*
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
518 */
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
521
522 spin_lock(&ctx->lock);
523
524 /*
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
527 */
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
536 }
537
538 spin_unlock(&ctx->lock);
539}
540
541/*
542 * Disable a event.
543 *
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
553 */
554static void perf_event_disable(struct perf_event *event)
555{
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
558
559 if (!task) {
560 /*
561 * Disable the event on the cpu that it's on
562 */
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
566 }
567
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
570
571 spin_lock_irq(&ctx->lock);
572 /*
573 * If the event is still active, we need to retry the cross-call.
574 */
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
578 }
579
580 /*
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
583 */
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
587 }
588
589 spin_unlock_irq(&ctx->lock);
590}
591
592static int
593event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
597{
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
600
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
603 /*
604 * The new state must be visible before we turn it on in the hardware:
605 */
606 smp_wmb();
607
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
612 }
613
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
615
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
619
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
622
623 return 0;
624}
625
626static int
627group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
631{
632 struct perf_event *event, *partial_group;
633 int ret;
634
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
637
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
641
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
644
645 /*
646 * Schedule in siblings as one group (if any):
647 */
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
652 }
653 }
654
655 return 0;
656
657group_error:
658 /*
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
661 */
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
666 }
667 event_sched_out(group_event, cpuctx, ctx);
668
669 return -EAGAIN;
670}
671
672/*
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
675 */
676static int is_software_only_group(struct perf_event *leader)
677{
678 struct perf_event *event;
679
680 if (!is_software_event(leader))
681 return 0;
682
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
686
687 return 1;
688}
689
690/*
691 * Work out whether we can put this event group on the CPU now.
692 */
693static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
696{
697 /*
698 * Groups consisting entirely of software events can always go on.
699 */
700 if (is_software_only_group(event))
701 return 1;
702 /*
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
705 */
706 if (cpuctx->exclusive)
707 return 0;
708 /*
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
711 */
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
714 /*
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
717 */
718 return can_add_hw;
719}
720
721static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
723{
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
728}
729
730/*
731 * Cross CPU call to install and enable a performance event
732 *
733 * Must be called with ctx->mutex held
734 */
735static void __perf_install_in_context(void *info)
736{
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
743
744 /*
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
750 */
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
755 }
756
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
760
761 /*
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
764 */
765 perf_disable();
766
767 add_event_to_ctx(event, ctx);
768
769 /*
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
772 */
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
776
777 /*
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
781 */
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
786
787 if (err) {
788 /*
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
792 */
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
798 }
799 }
800
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
803
804 unlock:
805 perf_enable();
806
807 spin_unlock(&ctx->lock);
808}
809
810/*
811 * Attach a performance event to a context
812 *
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
815 *
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
819 *
820 * Must be called with ctx->mutex held.
821 */
822static void
823perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
826{
827 struct task_struct *task = ctx->task;
828
829 if (!task) {
830 /*
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
833 */
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
837 }
838
839retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
842
843 spin_lock_irq(&ctx->lock);
844 /*
845 * we need to retry the smp call.
846 */
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
850 }
851
852 /*
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
856 */
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
860}
861
862/*
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
869 */
870static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
872{
873 struct perf_event *sub;
874
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
881}
882
883/*
884 * Cross CPU call to enable a performance event
885 */
886static void __perf_event_enable(void *info)
887{
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
893
894 /*
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
897 */
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
902 }
903
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
907
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
911
912 /*
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
915 */
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
918
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
930 }
931
932 if (err) {
933 /*
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
936 */
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
942 }
943 }
944
945 unlock:
946 spin_unlock(&ctx->lock);
947}
948
949/*
950 * Enable a event.
951 *
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
957 */
958static void perf_event_enable(struct perf_event *event)
959{
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
962
963 if (!task) {
964 /*
965 * Enable the event on the cpu that it's on
966 */
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
970 }
971
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
975
976 /*
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
982 */
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
985
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
989
990 spin_lock_irq(&ctx->lock);
991
992 /*
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
995 */
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
998
999 /*
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1002 */
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1005
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1008}
1009
1010static int perf_event_refresh(struct perf_event *event, int refresh)
1011{
1012 /*
1013 * not supported on inherited events
1014 */
1015 if (event->attr.inherit)
1016 return -EINVAL;
1017
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1020
1021 return 0;
1022}
1023
1024void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1026{
1027 struct perf_event *event;
1028
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1034
1035 perf_disable();
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1039
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1043}
1044
1045/*
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1055 */
1056static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1058{
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1062}
1063
1064static void __perf_event_read(void *event);
1065
1066static void __perf_event_sync_stat(struct perf_event *event,
1067 struct perf_event *next_event)
1068{
1069 u64 value;
1070
1071 if (!event->attr.inherit_stat)
1072 return;
1073
1074 /*
1075 * Update the event value, we cannot use perf_event_read()
1076 * because we're in the middle of a context switch and have IRQs
1077 * disabled, which upsets smp_call_function_single(), however
1078 * we know the event must be on the current CPU, therefore we
1079 * don't need to use it.
1080 */
1081 switch (event->state) {
1082 case PERF_EVENT_STATE_ACTIVE:
1083 __perf_event_read(event);
1084 break;
1085
1086 case PERF_EVENT_STATE_INACTIVE:
1087 update_event_times(event);
1088 break;
1089
1090 default:
1091 break;
1092 }
1093
1094 /*
1095 * In order to keep per-task stats reliable we need to flip the event
1096 * values when we flip the contexts.
1097 */
1098 value = atomic64_read(&next_event->count);
1099 value = atomic64_xchg(&event->count, value);
1100 atomic64_set(&next_event->count, value);
1101
1102 swap(event->total_time_enabled, next_event->total_time_enabled);
1103 swap(event->total_time_running, next_event->total_time_running);
1104
1105 /*
1106 * Since we swizzled the values, update the user visible data too.
1107 */
1108 perf_event_update_userpage(event);
1109 perf_event_update_userpage(next_event);
1110}
1111
1112#define list_next_entry(pos, member) \
1113 list_entry(pos->member.next, typeof(*pos), member)
1114
1115static void perf_event_sync_stat(struct perf_event_context *ctx,
1116 struct perf_event_context *next_ctx)
1117{
1118 struct perf_event *event, *next_event;
1119
1120 if (!ctx->nr_stat)
1121 return;
1122
1123 event = list_first_entry(&ctx->event_list,
1124 struct perf_event, event_entry);
1125
1126 next_event = list_first_entry(&next_ctx->event_list,
1127 struct perf_event, event_entry);
1128
1129 while (&event->event_entry != &ctx->event_list &&
1130 &next_event->event_entry != &next_ctx->event_list) {
1131
1132 __perf_event_sync_stat(event, next_event);
1133
1134 event = list_next_entry(event, event_entry);
1135 next_event = list_next_entry(next_event, event_entry);
1136 }
1137}
1138
1139/*
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1142 *
1143 * We stop each event and update the event value in event->count.
1144 *
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1149 */
1150void perf_event_task_sched_out(struct task_struct *task,
1151 struct task_struct *next, int cpu)
1152{
1153 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 struct perf_event_context *ctx = task->perf_event_ctxp;
1155 struct perf_event_context *next_ctx;
1156 struct perf_event_context *parent;
1157 struct pt_regs *regs;
1158 int do_switch = 1;
1159
1160 regs = task_pt_regs(task);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162
1163 if (likely(!ctx || !cpuctx->task_ctx))
1164 return;
1165
1166 update_context_time(ctx);
1167
1168 rcu_read_lock();
1169 parent = rcu_dereference(ctx->parent_ctx);
1170 next_ctx = next->perf_event_ctxp;
1171 if (parent && next_ctx &&
1172 rcu_dereference(next_ctx->parent_ctx) == parent) {
1173 /*
1174 * Looks like the two contexts are clones, so we might be
1175 * able to optimize the context switch. We lock both
1176 * contexts and check that they are clones under the
1177 * lock (including re-checking that neither has been
1178 * uncloned in the meantime). It doesn't matter which
1179 * order we take the locks because no other cpu could
1180 * be trying to lock both of these tasks.
1181 */
1182 spin_lock(&ctx->lock);
1183 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1184 if (context_equiv(ctx, next_ctx)) {
1185 /*
1186 * XXX do we need a memory barrier of sorts
1187 * wrt to rcu_dereference() of perf_event_ctxp
1188 */
1189 task->perf_event_ctxp = next_ctx;
1190 next->perf_event_ctxp = ctx;
1191 ctx->task = next;
1192 next_ctx->task = task;
1193 do_switch = 0;
1194
1195 perf_event_sync_stat(ctx, next_ctx);
1196 }
1197 spin_unlock(&next_ctx->lock);
1198 spin_unlock(&ctx->lock);
1199 }
1200 rcu_read_unlock();
1201
1202 if (do_switch) {
1203 __perf_event_sched_out(ctx, cpuctx);
1204 cpuctx->task_ctx = NULL;
1205 }
1206}
1207
1208/*
1209 * Called with IRQs disabled
1210 */
1211static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1212{
1213 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1214
1215 if (!cpuctx->task_ctx)
1216 return;
1217
1218 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1219 return;
1220
1221 __perf_event_sched_out(ctx, cpuctx);
1222 cpuctx->task_ctx = NULL;
1223}
1224
1225/*
1226 * Called with IRQs disabled
1227 */
1228static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1229{
1230 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231}
1232
1233static void
1234__perf_event_sched_in(struct perf_event_context *ctx,
1235 struct perf_cpu_context *cpuctx, int cpu)
1236{
1237 struct perf_event *event;
1238 int can_add_hw = 1;
1239
1240 spin_lock(&ctx->lock);
1241 ctx->is_active = 1;
1242 if (likely(!ctx->nr_events))
1243 goto out;
1244
1245 ctx->timestamp = perf_clock();
1246
1247 perf_disable();
1248
1249 /*
1250 * First go through the list and put on any pinned groups
1251 * in order to give them the best chance of going on.
1252 */
1253 list_for_each_entry(event, &ctx->group_list, group_entry) {
1254 if (event->state <= PERF_EVENT_STATE_OFF ||
1255 !event->attr.pinned)
1256 continue;
1257 if (event->cpu != -1 && event->cpu != cpu)
1258 continue;
1259
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001260 if (group_can_go_on(event, cpuctx, 1))
1261 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
1272
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 /*
1275 * Ignore events in OFF or ERROR state, and
1276 * ignore pinned events since we did them already.
1277 */
1278 if (event->state <= PERF_EVENT_STATE_OFF ||
1279 event->attr.pinned)
1280 continue;
1281
1282 /*
1283 * Listen to the 'cpu' scheduling filter constraint
1284 * of events:
1285 */
1286 if (event->cpu != -1 && event->cpu != cpu)
1287 continue;
1288
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001289 if (group_can_go_on(event, cpuctx, can_add_hw))
1290 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001292 }
1293 perf_enable();
1294 out:
1295 spin_unlock(&ctx->lock);
1296}
1297
1298/*
1299 * Called from scheduler to add the events of the current task
1300 * with interrupts disabled.
1301 *
1302 * We restore the event value and then enable it.
1303 *
1304 * This does not protect us against NMI, but enable()
1305 * sets the enabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * keep the event running.
1308 */
1309void perf_event_task_sched_in(struct task_struct *task, int cpu)
1310{
1311 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312 struct perf_event_context *ctx = task->perf_event_ctxp;
1313
1314 if (likely(!ctx))
1315 return;
1316 if (cpuctx->task_ctx == ctx)
1317 return;
1318 __perf_event_sched_in(ctx, cpuctx, cpu);
1319 cpuctx->task_ctx = ctx;
1320}
1321
1322static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1323{
1324 struct perf_event_context *ctx = &cpuctx->ctx;
1325
1326 __perf_event_sched_in(ctx, cpuctx, cpu);
1327}
1328
1329#define MAX_INTERRUPTS (~0ULL)
1330
1331static void perf_log_throttle(struct perf_event *event, int enable);
1332
1333static void perf_adjust_period(struct perf_event *event, u64 events)
1334{
1335 struct hw_perf_event *hwc = &event->hw;
1336 u64 period, sample_period;
1337 s64 delta;
1338
1339 events *= hwc->sample_period;
1340 period = div64_u64(events, event->attr.sample_freq);
1341
1342 delta = (s64)(period - hwc->sample_period);
1343 delta = (delta + 7) / 8; /* low pass filter */
1344
1345 sample_period = hwc->sample_period + delta;
1346
1347 if (!sample_period)
1348 sample_period = 1;
1349
1350 hwc->sample_period = sample_period;
1351}
1352
1353static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1354{
1355 struct perf_event *event;
1356 struct hw_perf_event *hwc;
1357 u64 interrupts, freq;
1358
1359 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001360 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001361 if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 continue;
1363
1364 hwc = &event->hw;
1365
1366 interrupts = hwc->interrupts;
1367 hwc->interrupts = 0;
1368
1369 /*
1370 * unthrottle events on the tick
1371 */
1372 if (interrupts == MAX_INTERRUPTS) {
1373 perf_log_throttle(event, 1);
1374 event->pmu->unthrottle(event);
1375 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 }
1377
1378 if (!event->attr.freq || !event->attr.sample_freq)
1379 continue;
1380
1381 /*
1382 * if the specified freq < HZ then we need to skip ticks
1383 */
1384 if (event->attr.sample_freq < HZ) {
1385 freq = event->attr.sample_freq;
1386
1387 hwc->freq_count += freq;
1388 hwc->freq_interrupts += interrupts;
1389
1390 if (hwc->freq_count < HZ)
1391 continue;
1392
1393 interrupts = hwc->freq_interrupts;
1394 hwc->freq_interrupts = 0;
1395 hwc->freq_count -= HZ;
1396 } else
1397 freq = HZ;
1398
1399 perf_adjust_period(event, freq * interrupts);
1400
1401 /*
1402 * In order to avoid being stalled by an (accidental) huge
1403 * sample period, force reset the sample period if we didn't
1404 * get any events in this freq period.
1405 */
1406 if (!interrupts) {
1407 perf_disable();
1408 event->pmu->disable(event);
1409 atomic64_set(&hwc->period_left, 0);
1410 event->pmu->enable(event);
1411 perf_enable();
1412 }
1413 }
1414 spin_unlock(&ctx->lock);
1415}
1416
1417/*
1418 * Round-robin a context's events:
1419 */
1420static void rotate_ctx(struct perf_event_context *ctx)
1421{
1422 struct perf_event *event;
1423
1424 if (!ctx->nr_events)
1425 return;
1426
1427 spin_lock(&ctx->lock);
1428 /*
1429 * Rotate the first entry last (works just fine for group events too):
1430 */
1431 perf_disable();
1432 list_for_each_entry(event, &ctx->group_list, group_entry) {
1433 list_move_tail(&event->group_entry, &ctx->group_list);
1434 break;
1435 }
1436 perf_enable();
1437
1438 spin_unlock(&ctx->lock);
1439}
1440
1441void perf_event_task_tick(struct task_struct *curr, int cpu)
1442{
1443 struct perf_cpu_context *cpuctx;
1444 struct perf_event_context *ctx;
1445
1446 if (!atomic_read(&nr_events))
1447 return;
1448
1449 cpuctx = &per_cpu(perf_cpu_context, cpu);
1450 ctx = curr->perf_event_ctxp;
1451
1452 perf_ctx_adjust_freq(&cpuctx->ctx);
1453 if (ctx)
1454 perf_ctx_adjust_freq(ctx);
1455
1456 perf_event_cpu_sched_out(cpuctx);
1457 if (ctx)
1458 __perf_event_task_sched_out(ctx);
1459
1460 rotate_ctx(&cpuctx->ctx);
1461 if (ctx)
1462 rotate_ctx(ctx);
1463
1464 perf_event_cpu_sched_in(cpuctx, cpu);
1465 if (ctx)
1466 perf_event_task_sched_in(curr, cpu);
1467}
1468
1469/*
1470 * Enable all of a task's events that have been marked enable-on-exec.
1471 * This expects task == current.
1472 */
1473static void perf_event_enable_on_exec(struct task_struct *task)
1474{
1475 struct perf_event_context *ctx;
1476 struct perf_event *event;
1477 unsigned long flags;
1478 int enabled = 0;
1479
1480 local_irq_save(flags);
1481 ctx = task->perf_event_ctxp;
1482 if (!ctx || !ctx->nr_events)
1483 goto out;
1484
1485 __perf_event_task_sched_out(ctx);
1486
1487 spin_lock(&ctx->lock);
1488
1489 list_for_each_entry(event, &ctx->group_list, group_entry) {
1490 if (!event->attr.enable_on_exec)
1491 continue;
1492 event->attr.enable_on_exec = 0;
1493 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494 continue;
1495 __perf_event_mark_enabled(event, ctx);
1496 enabled = 1;
1497 }
1498
1499 /*
1500 * Unclone this context if we enabled any event.
1501 */
1502 if (enabled)
1503 unclone_ctx(ctx);
1504
1505 spin_unlock(&ctx->lock);
1506
1507 perf_event_task_sched_in(task, smp_processor_id());
1508 out:
1509 local_irq_restore(flags);
1510}
1511
1512/*
1513 * Cross CPU call to read the hardware event
1514 */
1515static void __perf_event_read(void *info)
1516{
1517 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 struct perf_event *event = info;
1519 struct perf_event_context *ctx = event->ctx;
1520 unsigned long flags;
1521
1522 /*
1523 * If this is a task context, we need to check whether it is
1524 * the current task context of this cpu. If not it has been
1525 * scheduled out before the smp call arrived. In that case
1526 * event->count would have been updated to a recent sample
1527 * when the event was scheduled out.
1528 */
1529 if (ctx->task && cpuctx->task_ctx != ctx)
1530 return;
1531
1532 local_irq_save(flags);
1533 if (ctx->is_active)
1534 update_context_time(ctx);
1535 event->pmu->read(event);
1536 update_event_times(event);
1537 local_irq_restore(flags);
1538}
1539
1540static u64 perf_event_read(struct perf_event *event)
1541{
1542 /*
1543 * If event is enabled and currently active on a CPU, update the
1544 * value in the event structure:
1545 */
1546 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1547 smp_call_function_single(event->oncpu,
1548 __perf_event_read, event, 1);
1549 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1550 update_event_times(event);
1551 }
1552
1553 return atomic64_read(&event->count);
1554}
1555
1556/*
1557 * Initialize the perf_event context in a task_struct:
1558 */
1559static void
1560__perf_event_init_context(struct perf_event_context *ctx,
1561 struct task_struct *task)
1562{
1563 memset(ctx, 0, sizeof(*ctx));
1564 spin_lock_init(&ctx->lock);
1565 mutex_init(&ctx->mutex);
1566 INIT_LIST_HEAD(&ctx->group_list);
1567 INIT_LIST_HEAD(&ctx->event_list);
1568 atomic_set(&ctx->refcount, 1);
1569 ctx->task = task;
1570}
1571
1572static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1573{
1574 struct perf_event_context *ctx;
1575 struct perf_cpu_context *cpuctx;
1576 struct task_struct *task;
1577 unsigned long flags;
1578 int err;
1579
1580 /*
1581 * If cpu is not a wildcard then this is a percpu event:
1582 */
1583 if (cpu != -1) {
1584 /* Must be root to operate on a CPU event: */
1585 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1586 return ERR_PTR(-EACCES);
1587
1588 if (cpu < 0 || cpu > num_possible_cpus())
1589 return ERR_PTR(-EINVAL);
1590
1591 /*
1592 * We could be clever and allow to attach a event to an
1593 * offline CPU and activate it when the CPU comes up, but
1594 * that's for later.
1595 */
1596 if (!cpu_isset(cpu, cpu_online_map))
1597 return ERR_PTR(-ENODEV);
1598
1599 cpuctx = &per_cpu(perf_cpu_context, cpu);
1600 ctx = &cpuctx->ctx;
1601 get_ctx(ctx);
1602
1603 return ctx;
1604 }
1605
1606 rcu_read_lock();
1607 if (!pid)
1608 task = current;
1609 else
1610 task = find_task_by_vpid(pid);
1611 if (task)
1612 get_task_struct(task);
1613 rcu_read_unlock();
1614
1615 if (!task)
1616 return ERR_PTR(-ESRCH);
1617
1618 /*
1619 * Can't attach events to a dying task.
1620 */
1621 err = -ESRCH;
1622 if (task->flags & PF_EXITING)
1623 goto errout;
1624
1625 /* Reuse ptrace permission checks for now. */
1626 err = -EACCES;
1627 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1628 goto errout;
1629
1630 retry:
1631 ctx = perf_lock_task_context(task, &flags);
1632 if (ctx) {
1633 unclone_ctx(ctx);
1634 spin_unlock_irqrestore(&ctx->lock, flags);
1635 }
1636
1637 if (!ctx) {
1638 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1639 err = -ENOMEM;
1640 if (!ctx)
1641 goto errout;
1642 __perf_event_init_context(ctx, task);
1643 get_ctx(ctx);
1644 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1645 /*
1646 * We raced with some other task; use
1647 * the context they set.
1648 */
1649 kfree(ctx);
1650 goto retry;
1651 }
1652 get_task_struct(task);
1653 }
1654
1655 put_task_struct(task);
1656 return ctx;
1657
1658 errout:
1659 put_task_struct(task);
1660 return ERR_PTR(err);
1661}
1662
Li Zefan6fb29152009-10-15 11:21:42 +08001663static void perf_event_free_filter(struct perf_event *event);
1664
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001665static void free_event_rcu(struct rcu_head *head)
1666{
1667 struct perf_event *event;
1668
1669 event = container_of(head, struct perf_event, rcu_head);
1670 if (event->ns)
1671 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001672 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001673 kfree(event);
1674}
1675
1676static void perf_pending_sync(struct perf_event *event);
1677
1678static void free_event(struct perf_event *event)
1679{
1680 perf_pending_sync(event);
1681
1682 if (!event->parent) {
1683 atomic_dec(&nr_events);
1684 if (event->attr.mmap)
1685 atomic_dec(&nr_mmap_events);
1686 if (event->attr.comm)
1687 atomic_dec(&nr_comm_events);
1688 if (event->attr.task)
1689 atomic_dec(&nr_task_events);
1690 }
1691
1692 if (event->output) {
1693 fput(event->output->filp);
1694 event->output = NULL;
1695 }
1696
1697 if (event->destroy)
1698 event->destroy(event);
1699
1700 put_ctx(event->ctx);
1701 call_rcu(&event->rcu_head, free_event_rcu);
1702}
1703
1704/*
1705 * Called when the last reference to the file is gone.
1706 */
1707static int perf_release(struct inode *inode, struct file *file)
1708{
1709 struct perf_event *event = file->private_data;
1710 struct perf_event_context *ctx = event->ctx;
1711
1712 file->private_data = NULL;
1713
1714 WARN_ON_ONCE(ctx->parent_ctx);
1715 mutex_lock(&ctx->mutex);
1716 perf_event_remove_from_context(event);
1717 mutex_unlock(&ctx->mutex);
1718
1719 mutex_lock(&event->owner->perf_event_mutex);
1720 list_del_init(&event->owner_entry);
1721 mutex_unlock(&event->owner->perf_event_mutex);
1722 put_task_struct(event->owner);
1723
1724 free_event(event);
1725
1726 return 0;
1727}
1728
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001729int perf_event_release_kernel(struct perf_event *event)
1730{
1731 struct perf_event_context *ctx = event->ctx;
1732
1733 WARN_ON_ONCE(ctx->parent_ctx);
1734 mutex_lock(&ctx->mutex);
1735 perf_event_remove_from_context(event);
1736 mutex_unlock(&ctx->mutex);
1737
1738 mutex_lock(&event->owner->perf_event_mutex);
1739 list_del_init(&event->owner_entry);
1740 mutex_unlock(&event->owner->perf_event_mutex);
1741 put_task_struct(event->owner);
1742
1743 free_event(event);
1744
1745 return 0;
1746}
1747EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1748
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001749static int perf_event_read_size(struct perf_event *event)
1750{
1751 int entry = sizeof(u64); /* value */
1752 int size = 0;
1753 int nr = 1;
1754
1755 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1756 size += sizeof(u64);
1757
1758 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1759 size += sizeof(u64);
1760
1761 if (event->attr.read_format & PERF_FORMAT_ID)
1762 entry += sizeof(u64);
1763
1764 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1765 nr += event->group_leader->nr_siblings;
1766 size += sizeof(u64);
1767 }
1768
1769 size += entry * nr;
1770
1771 return size;
1772}
1773
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001774u64 perf_event_read_value(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001775{
1776 struct perf_event *child;
1777 u64 total = 0;
1778
1779 total += perf_event_read(event);
1780 list_for_each_entry(child, &event->child_list, child_list)
1781 total += perf_event_read(child);
1782
1783 return total;
1784}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001785EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001786
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001787static int perf_event_read_group(struct perf_event *event,
1788 u64 read_format, char __user *buf)
1789{
1790 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001791 int n = 0, size = 0, ret = 0;
1792 u64 values[5];
1793 u64 count;
1794
1795 count = perf_event_read_value(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001796
1797 values[n++] = 1 + leader->nr_siblings;
1798 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1799 values[n++] = leader->total_time_enabled +
1800 atomic64_read(&leader->child_total_time_enabled);
1801 }
1802 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1803 values[n++] = leader->total_time_running +
1804 atomic64_read(&leader->child_total_time_running);
1805 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001806 values[n++] = count;
1807 if (read_format & PERF_FORMAT_ID)
1808 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001809
1810 size = n * sizeof(u64);
1811
1812 if (copy_to_user(buf, values, size))
1813 return -EFAULT;
1814
Peter Zijlstraabf48682009-11-20 22:19:49 +01001815 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001816
1817 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001818 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001819
Peter Zijlstraabf48682009-11-20 22:19:49 +01001820 values[n++] = perf_event_read_value(sub);
1821 if (read_format & PERF_FORMAT_ID)
1822 values[n++] = primary_event_id(sub);
1823
1824 size = n * sizeof(u64);
1825
1826 if (copy_to_user(buf + size, values, size))
1827 return -EFAULT;
1828
1829 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001830 }
1831
Peter Zijlstraabf48682009-11-20 22:19:49 +01001832 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001833}
1834
1835static int perf_event_read_one(struct perf_event *event,
1836 u64 read_format, char __user *buf)
1837{
1838 u64 values[4];
1839 int n = 0;
1840
1841 values[n++] = perf_event_read_value(event);
1842 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1843 values[n++] = event->total_time_enabled +
1844 atomic64_read(&event->child_total_time_enabled);
1845 }
1846 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1847 values[n++] = event->total_time_running +
1848 atomic64_read(&event->child_total_time_running);
1849 }
1850 if (read_format & PERF_FORMAT_ID)
1851 values[n++] = primary_event_id(event);
1852
1853 if (copy_to_user(buf, values, n * sizeof(u64)))
1854 return -EFAULT;
1855
1856 return n * sizeof(u64);
1857}
1858
1859/*
1860 * Read the performance event - simple non blocking version for now
1861 */
1862static ssize_t
1863perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1864{
1865 u64 read_format = event->attr.read_format;
1866 int ret;
1867
1868 /*
1869 * Return end-of-file for a read on a event that is in
1870 * error state (i.e. because it was pinned but it couldn't be
1871 * scheduled on to the CPU at some point).
1872 */
1873 if (event->state == PERF_EVENT_STATE_ERROR)
1874 return 0;
1875
1876 if (count < perf_event_read_size(event))
1877 return -ENOSPC;
1878
1879 WARN_ON_ONCE(event->ctx->parent_ctx);
1880 mutex_lock(&event->child_mutex);
1881 if (read_format & PERF_FORMAT_GROUP)
1882 ret = perf_event_read_group(event, read_format, buf);
1883 else
1884 ret = perf_event_read_one(event, read_format, buf);
1885 mutex_unlock(&event->child_mutex);
1886
1887 return ret;
1888}
1889
1890static ssize_t
1891perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1892{
1893 struct perf_event *event = file->private_data;
1894
1895 return perf_read_hw(event, buf, count);
1896}
1897
1898static unsigned int perf_poll(struct file *file, poll_table *wait)
1899{
1900 struct perf_event *event = file->private_data;
1901 struct perf_mmap_data *data;
1902 unsigned int events = POLL_HUP;
1903
1904 rcu_read_lock();
1905 data = rcu_dereference(event->data);
1906 if (data)
1907 events = atomic_xchg(&data->poll, 0);
1908 rcu_read_unlock();
1909
1910 poll_wait(file, &event->waitq, wait);
1911
1912 return events;
1913}
1914
1915static void perf_event_reset(struct perf_event *event)
1916{
1917 (void)perf_event_read(event);
1918 atomic64_set(&event->count, 0);
1919 perf_event_update_userpage(event);
1920}
1921
1922/*
1923 * Holding the top-level event's child_mutex means that any
1924 * descendant process that has inherited this event will block
1925 * in sync_child_event if it goes to exit, thus satisfying the
1926 * task existence requirements of perf_event_enable/disable.
1927 */
1928static void perf_event_for_each_child(struct perf_event *event,
1929 void (*func)(struct perf_event *))
1930{
1931 struct perf_event *child;
1932
1933 WARN_ON_ONCE(event->ctx->parent_ctx);
1934 mutex_lock(&event->child_mutex);
1935 func(event);
1936 list_for_each_entry(child, &event->child_list, child_list)
1937 func(child);
1938 mutex_unlock(&event->child_mutex);
1939}
1940
1941static void perf_event_for_each(struct perf_event *event,
1942 void (*func)(struct perf_event *))
1943{
1944 struct perf_event_context *ctx = event->ctx;
1945 struct perf_event *sibling;
1946
1947 WARN_ON_ONCE(ctx->parent_ctx);
1948 mutex_lock(&ctx->mutex);
1949 event = event->group_leader;
1950
1951 perf_event_for_each_child(event, func);
1952 func(event);
1953 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1954 perf_event_for_each_child(event, func);
1955 mutex_unlock(&ctx->mutex);
1956}
1957
1958static int perf_event_period(struct perf_event *event, u64 __user *arg)
1959{
1960 struct perf_event_context *ctx = event->ctx;
1961 unsigned long size;
1962 int ret = 0;
1963 u64 value;
1964
1965 if (!event->attr.sample_period)
1966 return -EINVAL;
1967
1968 size = copy_from_user(&value, arg, sizeof(value));
1969 if (size != sizeof(value))
1970 return -EFAULT;
1971
1972 if (!value)
1973 return -EINVAL;
1974
1975 spin_lock_irq(&ctx->lock);
1976 if (event->attr.freq) {
1977 if (value > sysctl_perf_event_sample_rate) {
1978 ret = -EINVAL;
1979 goto unlock;
1980 }
1981
1982 event->attr.sample_freq = value;
1983 } else {
1984 event->attr.sample_period = value;
1985 event->hw.sample_period = value;
1986 }
1987unlock:
1988 spin_unlock_irq(&ctx->lock);
1989
1990 return ret;
1991}
1992
Li Zefan6fb29152009-10-15 11:21:42 +08001993static int perf_event_set_output(struct perf_event *event, int output_fd);
1994static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001995
1996static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1997{
1998 struct perf_event *event = file->private_data;
1999 void (*func)(struct perf_event *);
2000 u32 flags = arg;
2001
2002 switch (cmd) {
2003 case PERF_EVENT_IOC_ENABLE:
2004 func = perf_event_enable;
2005 break;
2006 case PERF_EVENT_IOC_DISABLE:
2007 func = perf_event_disable;
2008 break;
2009 case PERF_EVENT_IOC_RESET:
2010 func = perf_event_reset;
2011 break;
2012
2013 case PERF_EVENT_IOC_REFRESH:
2014 return perf_event_refresh(event, arg);
2015
2016 case PERF_EVENT_IOC_PERIOD:
2017 return perf_event_period(event, (u64 __user *)arg);
2018
2019 case PERF_EVENT_IOC_SET_OUTPUT:
2020 return perf_event_set_output(event, arg);
2021
Li Zefan6fb29152009-10-15 11:21:42 +08002022 case PERF_EVENT_IOC_SET_FILTER:
2023 return perf_event_set_filter(event, (void __user *)arg);
2024
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002025 default:
2026 return -ENOTTY;
2027 }
2028
2029 if (flags & PERF_IOC_FLAG_GROUP)
2030 perf_event_for_each(event, func);
2031 else
2032 perf_event_for_each_child(event, func);
2033
2034 return 0;
2035}
2036
2037int perf_event_task_enable(void)
2038{
2039 struct perf_event *event;
2040
2041 mutex_lock(&current->perf_event_mutex);
2042 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2043 perf_event_for_each_child(event, perf_event_enable);
2044 mutex_unlock(&current->perf_event_mutex);
2045
2046 return 0;
2047}
2048
2049int perf_event_task_disable(void)
2050{
2051 struct perf_event *event;
2052
2053 mutex_lock(&current->perf_event_mutex);
2054 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2055 perf_event_for_each_child(event, perf_event_disable);
2056 mutex_unlock(&current->perf_event_mutex);
2057
2058 return 0;
2059}
2060
2061#ifndef PERF_EVENT_INDEX_OFFSET
2062# define PERF_EVENT_INDEX_OFFSET 0
2063#endif
2064
2065static int perf_event_index(struct perf_event *event)
2066{
2067 if (event->state != PERF_EVENT_STATE_ACTIVE)
2068 return 0;
2069
2070 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2071}
2072
2073/*
2074 * Callers need to ensure there can be no nesting of this function, otherwise
2075 * the seqlock logic goes bad. We can not serialize this because the arch
2076 * code calls this from NMI context.
2077 */
2078void perf_event_update_userpage(struct perf_event *event)
2079{
2080 struct perf_event_mmap_page *userpg;
2081 struct perf_mmap_data *data;
2082
2083 rcu_read_lock();
2084 data = rcu_dereference(event->data);
2085 if (!data)
2086 goto unlock;
2087
2088 userpg = data->user_page;
2089
2090 /*
2091 * Disable preemption so as to not let the corresponding user-space
2092 * spin too long if we get preempted.
2093 */
2094 preempt_disable();
2095 ++userpg->lock;
2096 barrier();
2097 userpg->index = perf_event_index(event);
2098 userpg->offset = atomic64_read(&event->count);
2099 if (event->state == PERF_EVENT_STATE_ACTIVE)
2100 userpg->offset -= atomic64_read(&event->hw.prev_count);
2101
2102 userpg->time_enabled = event->total_time_enabled +
2103 atomic64_read(&event->child_total_time_enabled);
2104
2105 userpg->time_running = event->total_time_running +
2106 atomic64_read(&event->child_total_time_running);
2107
2108 barrier();
2109 ++userpg->lock;
2110 preempt_enable();
2111unlock:
2112 rcu_read_unlock();
2113}
2114
Peter Zijlstra906010b2009-09-21 16:08:49 +02002115static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002116{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002117 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002118}
2119
Peter Zijlstra906010b2009-09-21 16:08:49 +02002120#ifndef CONFIG_PERF_USE_VMALLOC
2121
2122/*
2123 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2124 */
2125
2126static struct page *
2127perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2128{
2129 if (pgoff > data->nr_pages)
2130 return NULL;
2131
2132 if (pgoff == 0)
2133 return virt_to_page(data->user_page);
2134
2135 return virt_to_page(data->data_pages[pgoff - 1]);
2136}
2137
2138static struct perf_mmap_data *
2139perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002140{
2141 struct perf_mmap_data *data;
2142 unsigned long size;
2143 int i;
2144
2145 WARN_ON(atomic_read(&event->mmap_count));
2146
2147 size = sizeof(struct perf_mmap_data);
2148 size += nr_pages * sizeof(void *);
2149
2150 data = kzalloc(size, GFP_KERNEL);
2151 if (!data)
2152 goto fail;
2153
2154 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2155 if (!data->user_page)
2156 goto fail_user_page;
2157
2158 for (i = 0; i < nr_pages; i++) {
2159 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2160 if (!data->data_pages[i])
2161 goto fail_data_pages;
2162 }
2163
Peter Zijlstra906010b2009-09-21 16:08:49 +02002164 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002165 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002166
Peter Zijlstra906010b2009-09-21 16:08:49 +02002167 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002168
2169fail_data_pages:
2170 for (i--; i >= 0; i--)
2171 free_page((unsigned long)data->data_pages[i]);
2172
2173 free_page((unsigned long)data->user_page);
2174
2175fail_user_page:
2176 kfree(data);
2177
2178fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002179 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002180}
2181
2182static void perf_mmap_free_page(unsigned long addr)
2183{
2184 struct page *page = virt_to_page((void *)addr);
2185
2186 page->mapping = NULL;
2187 __free_page(page);
2188}
2189
Peter Zijlstra906010b2009-09-21 16:08:49 +02002190static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002191{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002192 int i;
2193
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002194 perf_mmap_free_page((unsigned long)data->user_page);
2195 for (i = 0; i < data->nr_pages; i++)
2196 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002197}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002198
Peter Zijlstra906010b2009-09-21 16:08:49 +02002199#else
2200
2201/*
2202 * Back perf_mmap() with vmalloc memory.
2203 *
2204 * Required for architectures that have d-cache aliasing issues.
2205 */
2206
2207static struct page *
2208perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2209{
2210 if (pgoff > (1UL << data->data_order))
2211 return NULL;
2212
2213 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2214}
2215
2216static void perf_mmap_unmark_page(void *addr)
2217{
2218 struct page *page = vmalloc_to_page(addr);
2219
2220 page->mapping = NULL;
2221}
2222
2223static void perf_mmap_data_free_work(struct work_struct *work)
2224{
2225 struct perf_mmap_data *data;
2226 void *base;
2227 int i, nr;
2228
2229 data = container_of(work, struct perf_mmap_data, work);
2230 nr = 1 << data->data_order;
2231
2232 base = data->user_page;
2233 for (i = 0; i < nr + 1; i++)
2234 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2235
2236 vfree(base);
2237}
2238
2239static void perf_mmap_data_free(struct perf_mmap_data *data)
2240{
2241 schedule_work(&data->work);
2242}
2243
2244static struct perf_mmap_data *
2245perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2246{
2247 struct perf_mmap_data *data;
2248 unsigned long size;
2249 void *all_buf;
2250
2251 WARN_ON(atomic_read(&event->mmap_count));
2252
2253 size = sizeof(struct perf_mmap_data);
2254 size += sizeof(void *);
2255
2256 data = kzalloc(size, GFP_KERNEL);
2257 if (!data)
2258 goto fail;
2259
2260 INIT_WORK(&data->work, perf_mmap_data_free_work);
2261
2262 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2263 if (!all_buf)
2264 goto fail_all_buf;
2265
2266 data->user_page = all_buf;
2267 data->data_pages[0] = all_buf + PAGE_SIZE;
2268 data->data_order = ilog2(nr_pages);
2269 data->nr_pages = 1;
2270
2271 return data;
2272
2273fail_all_buf:
2274 kfree(data);
2275
2276fail:
2277 return NULL;
2278}
2279
2280#endif
2281
2282static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2283{
2284 struct perf_event *event = vma->vm_file->private_data;
2285 struct perf_mmap_data *data;
2286 int ret = VM_FAULT_SIGBUS;
2287
2288 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2289 if (vmf->pgoff == 0)
2290 ret = 0;
2291 return ret;
2292 }
2293
2294 rcu_read_lock();
2295 data = rcu_dereference(event->data);
2296 if (!data)
2297 goto unlock;
2298
2299 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2300 goto unlock;
2301
2302 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2303 if (!vmf->page)
2304 goto unlock;
2305
2306 get_page(vmf->page);
2307 vmf->page->mapping = vma->vm_file->f_mapping;
2308 vmf->page->index = vmf->pgoff;
2309
2310 ret = 0;
2311unlock:
2312 rcu_read_unlock();
2313
2314 return ret;
2315}
2316
2317static void
2318perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2319{
2320 long max_size = perf_data_size(data);
2321
2322 atomic_set(&data->lock, -1);
2323
2324 if (event->attr.watermark) {
2325 data->watermark = min_t(long, max_size,
2326 event->attr.wakeup_watermark);
2327 }
2328
2329 if (!data->watermark)
2330 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2331
2332
2333 rcu_assign_pointer(event->data, data);
2334}
2335
2336static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2337{
2338 struct perf_mmap_data *data;
2339
2340 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2341 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002342 kfree(data);
2343}
2344
Peter Zijlstra906010b2009-09-21 16:08:49 +02002345static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002346{
2347 struct perf_mmap_data *data = event->data;
2348
2349 WARN_ON(atomic_read(&event->mmap_count));
2350
2351 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002352 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353}
2354
2355static void perf_mmap_open(struct vm_area_struct *vma)
2356{
2357 struct perf_event *event = vma->vm_file->private_data;
2358
2359 atomic_inc(&event->mmap_count);
2360}
2361
2362static void perf_mmap_close(struct vm_area_struct *vma)
2363{
2364 struct perf_event *event = vma->vm_file->private_data;
2365
2366 WARN_ON_ONCE(event->ctx->parent_ctx);
2367 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002368 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002369 struct user_struct *user = current_user();
2370
Peter Zijlstra906010b2009-09-21 16:08:49 +02002371 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002372 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002373 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002374 mutex_unlock(&event->mmap_mutex);
2375 }
2376}
2377
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002378static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002379 .open = perf_mmap_open,
2380 .close = perf_mmap_close,
2381 .fault = perf_mmap_fault,
2382 .page_mkwrite = perf_mmap_fault,
2383};
2384
2385static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2386{
2387 struct perf_event *event = file->private_data;
2388 unsigned long user_locked, user_lock_limit;
2389 struct user_struct *user = current_user();
2390 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002391 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002392 unsigned long vma_size;
2393 unsigned long nr_pages;
2394 long user_extra, extra;
2395 int ret = 0;
2396
2397 if (!(vma->vm_flags & VM_SHARED))
2398 return -EINVAL;
2399
2400 vma_size = vma->vm_end - vma->vm_start;
2401 nr_pages = (vma_size / PAGE_SIZE) - 1;
2402
2403 /*
2404 * If we have data pages ensure they're a power-of-two number, so we
2405 * can do bitmasks instead of modulo.
2406 */
2407 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2408 return -EINVAL;
2409
2410 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2411 return -EINVAL;
2412
2413 if (vma->vm_pgoff != 0)
2414 return -EINVAL;
2415
2416 WARN_ON_ONCE(event->ctx->parent_ctx);
2417 mutex_lock(&event->mmap_mutex);
2418 if (event->output) {
2419 ret = -EINVAL;
2420 goto unlock;
2421 }
2422
2423 if (atomic_inc_not_zero(&event->mmap_count)) {
2424 if (nr_pages != event->data->nr_pages)
2425 ret = -EINVAL;
2426 goto unlock;
2427 }
2428
2429 user_extra = nr_pages + 1;
2430 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2431
2432 /*
2433 * Increase the limit linearly with more CPUs:
2434 */
2435 user_lock_limit *= num_online_cpus();
2436
2437 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2438
2439 extra = 0;
2440 if (user_locked > user_lock_limit)
2441 extra = user_locked - user_lock_limit;
2442
2443 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2444 lock_limit >>= PAGE_SHIFT;
2445 locked = vma->vm_mm->locked_vm + extra;
2446
2447 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2448 !capable(CAP_IPC_LOCK)) {
2449 ret = -EPERM;
2450 goto unlock;
2451 }
2452
2453 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002454
2455 data = perf_mmap_data_alloc(event, nr_pages);
2456 ret = -ENOMEM;
2457 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002458 goto unlock;
2459
Peter Zijlstra906010b2009-09-21 16:08:49 +02002460 ret = 0;
2461 perf_mmap_data_init(event, data);
2462
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002463 atomic_set(&event->mmap_count, 1);
2464 atomic_long_add(user_extra, &user->locked_vm);
2465 vma->vm_mm->locked_vm += extra;
2466 event->data->nr_locked = extra;
2467 if (vma->vm_flags & VM_WRITE)
2468 event->data->writable = 1;
2469
2470unlock:
2471 mutex_unlock(&event->mmap_mutex);
2472
2473 vma->vm_flags |= VM_RESERVED;
2474 vma->vm_ops = &perf_mmap_vmops;
2475
2476 return ret;
2477}
2478
2479static int perf_fasync(int fd, struct file *filp, int on)
2480{
2481 struct inode *inode = filp->f_path.dentry->d_inode;
2482 struct perf_event *event = filp->private_data;
2483 int retval;
2484
2485 mutex_lock(&inode->i_mutex);
2486 retval = fasync_helper(fd, filp, on, &event->fasync);
2487 mutex_unlock(&inode->i_mutex);
2488
2489 if (retval < 0)
2490 return retval;
2491
2492 return 0;
2493}
2494
2495static const struct file_operations perf_fops = {
2496 .release = perf_release,
2497 .read = perf_read,
2498 .poll = perf_poll,
2499 .unlocked_ioctl = perf_ioctl,
2500 .compat_ioctl = perf_ioctl,
2501 .mmap = perf_mmap,
2502 .fasync = perf_fasync,
2503};
2504
2505/*
2506 * Perf event wakeup
2507 *
2508 * If there's data, ensure we set the poll() state and publish everything
2509 * to user-space before waking everybody up.
2510 */
2511
2512void perf_event_wakeup(struct perf_event *event)
2513{
2514 wake_up_all(&event->waitq);
2515
2516 if (event->pending_kill) {
2517 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2518 event->pending_kill = 0;
2519 }
2520}
2521
2522/*
2523 * Pending wakeups
2524 *
2525 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2526 *
2527 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2528 * single linked list and use cmpxchg() to add entries lockless.
2529 */
2530
2531static void perf_pending_event(struct perf_pending_entry *entry)
2532{
2533 struct perf_event *event = container_of(entry,
2534 struct perf_event, pending);
2535
2536 if (event->pending_disable) {
2537 event->pending_disable = 0;
2538 __perf_event_disable(event);
2539 }
2540
2541 if (event->pending_wakeup) {
2542 event->pending_wakeup = 0;
2543 perf_event_wakeup(event);
2544 }
2545}
2546
2547#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2548
2549static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2550 PENDING_TAIL,
2551};
2552
2553static void perf_pending_queue(struct perf_pending_entry *entry,
2554 void (*func)(struct perf_pending_entry *))
2555{
2556 struct perf_pending_entry **head;
2557
2558 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2559 return;
2560
2561 entry->func = func;
2562
2563 head = &get_cpu_var(perf_pending_head);
2564
2565 do {
2566 entry->next = *head;
2567 } while (cmpxchg(head, entry->next, entry) != entry->next);
2568
2569 set_perf_event_pending();
2570
2571 put_cpu_var(perf_pending_head);
2572}
2573
2574static int __perf_pending_run(void)
2575{
2576 struct perf_pending_entry *list;
2577 int nr = 0;
2578
2579 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2580 while (list != PENDING_TAIL) {
2581 void (*func)(struct perf_pending_entry *);
2582 struct perf_pending_entry *entry = list;
2583
2584 list = list->next;
2585
2586 func = entry->func;
2587 entry->next = NULL;
2588 /*
2589 * Ensure we observe the unqueue before we issue the wakeup,
2590 * so that we won't be waiting forever.
2591 * -- see perf_not_pending().
2592 */
2593 smp_wmb();
2594
2595 func(entry);
2596 nr++;
2597 }
2598
2599 return nr;
2600}
2601
2602static inline int perf_not_pending(struct perf_event *event)
2603{
2604 /*
2605 * If we flush on whatever cpu we run, there is a chance we don't
2606 * need to wait.
2607 */
2608 get_cpu();
2609 __perf_pending_run();
2610 put_cpu();
2611
2612 /*
2613 * Ensure we see the proper queue state before going to sleep
2614 * so that we do not miss the wakeup. -- see perf_pending_handle()
2615 */
2616 smp_rmb();
2617 return event->pending.next == NULL;
2618}
2619
2620static void perf_pending_sync(struct perf_event *event)
2621{
2622 wait_event(event->waitq, perf_not_pending(event));
2623}
2624
2625void perf_event_do_pending(void)
2626{
2627 __perf_pending_run();
2628}
2629
2630/*
2631 * Callchain support -- arch specific
2632 */
2633
2634__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2635{
2636 return NULL;
2637}
2638
2639/*
2640 * Output
2641 */
2642static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2643 unsigned long offset, unsigned long head)
2644{
2645 unsigned long mask;
2646
2647 if (!data->writable)
2648 return true;
2649
Peter Zijlstra906010b2009-09-21 16:08:49 +02002650 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002651
2652 offset = (offset - tail) & mask;
2653 head = (head - tail) & mask;
2654
2655 if ((int)(head - offset) < 0)
2656 return false;
2657
2658 return true;
2659}
2660
2661static void perf_output_wakeup(struct perf_output_handle *handle)
2662{
2663 atomic_set(&handle->data->poll, POLL_IN);
2664
2665 if (handle->nmi) {
2666 handle->event->pending_wakeup = 1;
2667 perf_pending_queue(&handle->event->pending,
2668 perf_pending_event);
2669 } else
2670 perf_event_wakeup(handle->event);
2671}
2672
2673/*
2674 * Curious locking construct.
2675 *
2676 * We need to ensure a later event_id doesn't publish a head when a former
2677 * event_id isn't done writing. However since we need to deal with NMIs we
2678 * cannot fully serialize things.
2679 *
2680 * What we do is serialize between CPUs so we only have to deal with NMI
2681 * nesting on a single CPU.
2682 *
2683 * We only publish the head (and generate a wakeup) when the outer-most
2684 * event_id completes.
2685 */
2686static void perf_output_lock(struct perf_output_handle *handle)
2687{
2688 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002689 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002690
2691 handle->locked = 0;
2692
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002693 for (;;) {
2694 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2695 if (cur == -1) {
2696 handle->locked = 1;
2697 break;
2698 }
2699 if (cur == cpu)
2700 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002701
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002702 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002703 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002704}
2705
2706static void perf_output_unlock(struct perf_output_handle *handle)
2707{
2708 struct perf_mmap_data *data = handle->data;
2709 unsigned long head;
2710 int cpu;
2711
2712 data->done_head = data->head;
2713
2714 if (!handle->locked)
2715 goto out;
2716
2717again:
2718 /*
2719 * The xchg implies a full barrier that ensures all writes are done
2720 * before we publish the new head, matched by a rmb() in userspace when
2721 * reading this position.
2722 */
2723 while ((head = atomic_long_xchg(&data->done_head, 0)))
2724 data->user_page->data_head = head;
2725
2726 /*
2727 * NMI can happen here, which means we can miss a done_head update.
2728 */
2729
2730 cpu = atomic_xchg(&data->lock, -1);
2731 WARN_ON_ONCE(cpu != smp_processor_id());
2732
2733 /*
2734 * Therefore we have to validate we did not indeed do so.
2735 */
2736 if (unlikely(atomic_long_read(&data->done_head))) {
2737 /*
2738 * Since we had it locked, we can lock it again.
2739 */
2740 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2741 cpu_relax();
2742
2743 goto again;
2744 }
2745
2746 if (atomic_xchg(&data->wakeup, 0))
2747 perf_output_wakeup(handle);
2748out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002749 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002750}
2751
2752void perf_output_copy(struct perf_output_handle *handle,
2753 const void *buf, unsigned int len)
2754{
2755 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002756 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002757 unsigned int size;
2758 void **pages;
2759
2760 offset = handle->offset;
2761 pages_mask = handle->data->nr_pages - 1;
2762 pages = handle->data->data_pages;
2763
2764 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002765 unsigned long page_offset;
2766 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002767 int nr;
2768
2769 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002770 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2771 page_offset = offset & (page_size - 1);
2772 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002773
2774 memcpy(pages[nr] + page_offset, buf, size);
2775
2776 len -= size;
2777 buf += size;
2778 offset += size;
2779 } while (len);
2780
2781 handle->offset = offset;
2782
2783 /*
2784 * Check we didn't copy past our reservation window, taking the
2785 * possible unsigned int wrap into account.
2786 */
2787 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2788}
2789
2790int perf_output_begin(struct perf_output_handle *handle,
2791 struct perf_event *event, unsigned int size,
2792 int nmi, int sample)
2793{
2794 struct perf_event *output_event;
2795 struct perf_mmap_data *data;
2796 unsigned long tail, offset, head;
2797 int have_lost;
2798 struct {
2799 struct perf_event_header header;
2800 u64 id;
2801 u64 lost;
2802 } lost_event;
2803
2804 rcu_read_lock();
2805 /*
2806 * For inherited events we send all the output towards the parent.
2807 */
2808 if (event->parent)
2809 event = event->parent;
2810
2811 output_event = rcu_dereference(event->output);
2812 if (output_event)
2813 event = output_event;
2814
2815 data = rcu_dereference(event->data);
2816 if (!data)
2817 goto out;
2818
2819 handle->data = data;
2820 handle->event = event;
2821 handle->nmi = nmi;
2822 handle->sample = sample;
2823
2824 if (!data->nr_pages)
2825 goto fail;
2826
2827 have_lost = atomic_read(&data->lost);
2828 if (have_lost)
2829 size += sizeof(lost_event);
2830
2831 perf_output_lock(handle);
2832
2833 do {
2834 /*
2835 * Userspace could choose to issue a mb() before updating the
2836 * tail pointer. So that all reads will be completed before the
2837 * write is issued.
2838 */
2839 tail = ACCESS_ONCE(data->user_page->data_tail);
2840 smp_rmb();
2841 offset = head = atomic_long_read(&data->head);
2842 head += size;
2843 if (unlikely(!perf_output_space(data, tail, offset, head)))
2844 goto fail;
2845 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2846
2847 handle->offset = offset;
2848 handle->head = head;
2849
2850 if (head - tail > data->watermark)
2851 atomic_set(&data->wakeup, 1);
2852
2853 if (have_lost) {
2854 lost_event.header.type = PERF_RECORD_LOST;
2855 lost_event.header.misc = 0;
2856 lost_event.header.size = sizeof(lost_event);
2857 lost_event.id = event->id;
2858 lost_event.lost = atomic_xchg(&data->lost, 0);
2859
2860 perf_output_put(handle, lost_event);
2861 }
2862
2863 return 0;
2864
2865fail:
2866 atomic_inc(&data->lost);
2867 perf_output_unlock(handle);
2868out:
2869 rcu_read_unlock();
2870
2871 return -ENOSPC;
2872}
2873
2874void perf_output_end(struct perf_output_handle *handle)
2875{
2876 struct perf_event *event = handle->event;
2877 struct perf_mmap_data *data = handle->data;
2878
2879 int wakeup_events = event->attr.wakeup_events;
2880
2881 if (handle->sample && wakeup_events) {
2882 int events = atomic_inc_return(&data->events);
2883 if (events >= wakeup_events) {
2884 atomic_sub(wakeup_events, &data->events);
2885 atomic_set(&data->wakeup, 1);
2886 }
2887 }
2888
2889 perf_output_unlock(handle);
2890 rcu_read_unlock();
2891}
2892
2893static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2894{
2895 /*
2896 * only top level events have the pid namespace they were created in
2897 */
2898 if (event->parent)
2899 event = event->parent;
2900
2901 return task_tgid_nr_ns(p, event->ns);
2902}
2903
2904static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2905{
2906 /*
2907 * only top level events have the pid namespace they were created in
2908 */
2909 if (event->parent)
2910 event = event->parent;
2911
2912 return task_pid_nr_ns(p, event->ns);
2913}
2914
2915static void perf_output_read_one(struct perf_output_handle *handle,
2916 struct perf_event *event)
2917{
2918 u64 read_format = event->attr.read_format;
2919 u64 values[4];
2920 int n = 0;
2921
2922 values[n++] = atomic64_read(&event->count);
2923 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2924 values[n++] = event->total_time_enabled +
2925 atomic64_read(&event->child_total_time_enabled);
2926 }
2927 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2928 values[n++] = event->total_time_running +
2929 atomic64_read(&event->child_total_time_running);
2930 }
2931 if (read_format & PERF_FORMAT_ID)
2932 values[n++] = primary_event_id(event);
2933
2934 perf_output_copy(handle, values, n * sizeof(u64));
2935}
2936
2937/*
2938 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2939 */
2940static void perf_output_read_group(struct perf_output_handle *handle,
2941 struct perf_event *event)
2942{
2943 struct perf_event *leader = event->group_leader, *sub;
2944 u64 read_format = event->attr.read_format;
2945 u64 values[5];
2946 int n = 0;
2947
2948 values[n++] = 1 + leader->nr_siblings;
2949
2950 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2951 values[n++] = leader->total_time_enabled;
2952
2953 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2954 values[n++] = leader->total_time_running;
2955
2956 if (leader != event)
2957 leader->pmu->read(leader);
2958
2959 values[n++] = atomic64_read(&leader->count);
2960 if (read_format & PERF_FORMAT_ID)
2961 values[n++] = primary_event_id(leader);
2962
2963 perf_output_copy(handle, values, n * sizeof(u64));
2964
2965 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2966 n = 0;
2967
2968 if (sub != event)
2969 sub->pmu->read(sub);
2970
2971 values[n++] = atomic64_read(&sub->count);
2972 if (read_format & PERF_FORMAT_ID)
2973 values[n++] = primary_event_id(sub);
2974
2975 perf_output_copy(handle, values, n * sizeof(u64));
2976 }
2977}
2978
2979static void perf_output_read(struct perf_output_handle *handle,
2980 struct perf_event *event)
2981{
2982 if (event->attr.read_format & PERF_FORMAT_GROUP)
2983 perf_output_read_group(handle, event);
2984 else
2985 perf_output_read_one(handle, event);
2986}
2987
2988void perf_output_sample(struct perf_output_handle *handle,
2989 struct perf_event_header *header,
2990 struct perf_sample_data *data,
2991 struct perf_event *event)
2992{
2993 u64 sample_type = data->type;
2994
2995 perf_output_put(handle, *header);
2996
2997 if (sample_type & PERF_SAMPLE_IP)
2998 perf_output_put(handle, data->ip);
2999
3000 if (sample_type & PERF_SAMPLE_TID)
3001 perf_output_put(handle, data->tid_entry);
3002
3003 if (sample_type & PERF_SAMPLE_TIME)
3004 perf_output_put(handle, data->time);
3005
3006 if (sample_type & PERF_SAMPLE_ADDR)
3007 perf_output_put(handle, data->addr);
3008
3009 if (sample_type & PERF_SAMPLE_ID)
3010 perf_output_put(handle, data->id);
3011
3012 if (sample_type & PERF_SAMPLE_STREAM_ID)
3013 perf_output_put(handle, data->stream_id);
3014
3015 if (sample_type & PERF_SAMPLE_CPU)
3016 perf_output_put(handle, data->cpu_entry);
3017
3018 if (sample_type & PERF_SAMPLE_PERIOD)
3019 perf_output_put(handle, data->period);
3020
3021 if (sample_type & PERF_SAMPLE_READ)
3022 perf_output_read(handle, event);
3023
3024 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3025 if (data->callchain) {
3026 int size = 1;
3027
3028 if (data->callchain)
3029 size += data->callchain->nr;
3030
3031 size *= sizeof(u64);
3032
3033 perf_output_copy(handle, data->callchain, size);
3034 } else {
3035 u64 nr = 0;
3036 perf_output_put(handle, nr);
3037 }
3038 }
3039
3040 if (sample_type & PERF_SAMPLE_RAW) {
3041 if (data->raw) {
3042 perf_output_put(handle, data->raw->size);
3043 perf_output_copy(handle, data->raw->data,
3044 data->raw->size);
3045 } else {
3046 struct {
3047 u32 size;
3048 u32 data;
3049 } raw = {
3050 .size = sizeof(u32),
3051 .data = 0,
3052 };
3053 perf_output_put(handle, raw);
3054 }
3055 }
3056}
3057
3058void perf_prepare_sample(struct perf_event_header *header,
3059 struct perf_sample_data *data,
3060 struct perf_event *event,
3061 struct pt_regs *regs)
3062{
3063 u64 sample_type = event->attr.sample_type;
3064
3065 data->type = sample_type;
3066
3067 header->type = PERF_RECORD_SAMPLE;
3068 header->size = sizeof(*header);
3069
3070 header->misc = 0;
3071 header->misc |= perf_misc_flags(regs);
3072
3073 if (sample_type & PERF_SAMPLE_IP) {
3074 data->ip = perf_instruction_pointer(regs);
3075
3076 header->size += sizeof(data->ip);
3077 }
3078
3079 if (sample_type & PERF_SAMPLE_TID) {
3080 /* namespace issues */
3081 data->tid_entry.pid = perf_event_pid(event, current);
3082 data->tid_entry.tid = perf_event_tid(event, current);
3083
3084 header->size += sizeof(data->tid_entry);
3085 }
3086
3087 if (sample_type & PERF_SAMPLE_TIME) {
3088 data->time = perf_clock();
3089
3090 header->size += sizeof(data->time);
3091 }
3092
3093 if (sample_type & PERF_SAMPLE_ADDR)
3094 header->size += sizeof(data->addr);
3095
3096 if (sample_type & PERF_SAMPLE_ID) {
3097 data->id = primary_event_id(event);
3098
3099 header->size += sizeof(data->id);
3100 }
3101
3102 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3103 data->stream_id = event->id;
3104
3105 header->size += sizeof(data->stream_id);
3106 }
3107
3108 if (sample_type & PERF_SAMPLE_CPU) {
3109 data->cpu_entry.cpu = raw_smp_processor_id();
3110 data->cpu_entry.reserved = 0;
3111
3112 header->size += sizeof(data->cpu_entry);
3113 }
3114
3115 if (sample_type & PERF_SAMPLE_PERIOD)
3116 header->size += sizeof(data->period);
3117
3118 if (sample_type & PERF_SAMPLE_READ)
3119 header->size += perf_event_read_size(event);
3120
3121 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3122 int size = 1;
3123
3124 data->callchain = perf_callchain(regs);
3125
3126 if (data->callchain)
3127 size += data->callchain->nr;
3128
3129 header->size += size * sizeof(u64);
3130 }
3131
3132 if (sample_type & PERF_SAMPLE_RAW) {
3133 int size = sizeof(u32);
3134
3135 if (data->raw)
3136 size += data->raw->size;
3137 else
3138 size += sizeof(u32);
3139
3140 WARN_ON_ONCE(size & (sizeof(u64)-1));
3141 header->size += size;
3142 }
3143}
3144
3145static void perf_event_output(struct perf_event *event, int nmi,
3146 struct perf_sample_data *data,
3147 struct pt_regs *regs)
3148{
3149 struct perf_output_handle handle;
3150 struct perf_event_header header;
3151
3152 perf_prepare_sample(&header, data, event, regs);
3153
3154 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3155 return;
3156
3157 perf_output_sample(&handle, &header, data, event);
3158
3159 perf_output_end(&handle);
3160}
3161
3162/*
3163 * read event_id
3164 */
3165
3166struct perf_read_event {
3167 struct perf_event_header header;
3168
3169 u32 pid;
3170 u32 tid;
3171};
3172
3173static void
3174perf_event_read_event(struct perf_event *event,
3175 struct task_struct *task)
3176{
3177 struct perf_output_handle handle;
3178 struct perf_read_event read_event = {
3179 .header = {
3180 .type = PERF_RECORD_READ,
3181 .misc = 0,
3182 .size = sizeof(read_event) + perf_event_read_size(event),
3183 },
3184 .pid = perf_event_pid(event, task),
3185 .tid = perf_event_tid(event, task),
3186 };
3187 int ret;
3188
3189 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3190 if (ret)
3191 return;
3192
3193 perf_output_put(&handle, read_event);
3194 perf_output_read(&handle, event);
3195
3196 perf_output_end(&handle);
3197}
3198
3199/*
3200 * task tracking -- fork/exit
3201 *
3202 * enabled by: attr.comm | attr.mmap | attr.task
3203 */
3204
3205struct perf_task_event {
3206 struct task_struct *task;
3207 struct perf_event_context *task_ctx;
3208
3209 struct {
3210 struct perf_event_header header;
3211
3212 u32 pid;
3213 u32 ppid;
3214 u32 tid;
3215 u32 ptid;
3216 u64 time;
3217 } event_id;
3218};
3219
3220static void perf_event_task_output(struct perf_event *event,
3221 struct perf_task_event *task_event)
3222{
3223 struct perf_output_handle handle;
3224 int size;
3225 struct task_struct *task = task_event->task;
3226 int ret;
3227
3228 size = task_event->event_id.header.size;
3229 ret = perf_output_begin(&handle, event, size, 0, 0);
3230
3231 if (ret)
3232 return;
3233
3234 task_event->event_id.pid = perf_event_pid(event, task);
3235 task_event->event_id.ppid = perf_event_pid(event, current);
3236
3237 task_event->event_id.tid = perf_event_tid(event, task);
3238 task_event->event_id.ptid = perf_event_tid(event, current);
3239
3240 task_event->event_id.time = perf_clock();
3241
3242 perf_output_put(&handle, task_event->event_id);
3243
3244 perf_output_end(&handle);
3245}
3246
3247static int perf_event_task_match(struct perf_event *event)
3248{
3249 if (event->attr.comm || event->attr.mmap || event->attr.task)
3250 return 1;
3251
3252 return 0;
3253}
3254
3255static void perf_event_task_ctx(struct perf_event_context *ctx,
3256 struct perf_task_event *task_event)
3257{
3258 struct perf_event *event;
3259
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003260 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3261 if (perf_event_task_match(event))
3262 perf_event_task_output(event, task_event);
3263 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003264}
3265
3266static void perf_event_task_event(struct perf_task_event *task_event)
3267{
3268 struct perf_cpu_context *cpuctx;
3269 struct perf_event_context *ctx = task_event->task_ctx;
3270
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003271 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003272 cpuctx = &get_cpu_var(perf_cpu_context);
3273 perf_event_task_ctx(&cpuctx->ctx, task_event);
3274 put_cpu_var(perf_cpu_context);
3275
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003276 if (!ctx)
3277 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3278 if (ctx)
3279 perf_event_task_ctx(ctx, task_event);
3280 rcu_read_unlock();
3281}
3282
3283static void perf_event_task(struct task_struct *task,
3284 struct perf_event_context *task_ctx,
3285 int new)
3286{
3287 struct perf_task_event task_event;
3288
3289 if (!atomic_read(&nr_comm_events) &&
3290 !atomic_read(&nr_mmap_events) &&
3291 !atomic_read(&nr_task_events))
3292 return;
3293
3294 task_event = (struct perf_task_event){
3295 .task = task,
3296 .task_ctx = task_ctx,
3297 .event_id = {
3298 .header = {
3299 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3300 .misc = 0,
3301 .size = sizeof(task_event.event_id),
3302 },
3303 /* .pid */
3304 /* .ppid */
3305 /* .tid */
3306 /* .ptid */
3307 },
3308 };
3309
3310 perf_event_task_event(&task_event);
3311}
3312
3313void perf_event_fork(struct task_struct *task)
3314{
3315 perf_event_task(task, NULL, 1);
3316}
3317
3318/*
3319 * comm tracking
3320 */
3321
3322struct perf_comm_event {
3323 struct task_struct *task;
3324 char *comm;
3325 int comm_size;
3326
3327 struct {
3328 struct perf_event_header header;
3329
3330 u32 pid;
3331 u32 tid;
3332 } event_id;
3333};
3334
3335static void perf_event_comm_output(struct perf_event *event,
3336 struct perf_comm_event *comm_event)
3337{
3338 struct perf_output_handle handle;
3339 int size = comm_event->event_id.header.size;
3340 int ret = perf_output_begin(&handle, event, size, 0, 0);
3341
3342 if (ret)
3343 return;
3344
3345 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3346 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3347
3348 perf_output_put(&handle, comm_event->event_id);
3349 perf_output_copy(&handle, comm_event->comm,
3350 comm_event->comm_size);
3351 perf_output_end(&handle);
3352}
3353
3354static int perf_event_comm_match(struct perf_event *event)
3355{
3356 if (event->attr.comm)
3357 return 1;
3358
3359 return 0;
3360}
3361
3362static void perf_event_comm_ctx(struct perf_event_context *ctx,
3363 struct perf_comm_event *comm_event)
3364{
3365 struct perf_event *event;
3366
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003367 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3368 if (perf_event_comm_match(event))
3369 perf_event_comm_output(event, comm_event);
3370 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003371}
3372
3373static void perf_event_comm_event(struct perf_comm_event *comm_event)
3374{
3375 struct perf_cpu_context *cpuctx;
3376 struct perf_event_context *ctx;
3377 unsigned int size;
3378 char comm[TASK_COMM_LEN];
3379
3380 memset(comm, 0, sizeof(comm));
3381 strncpy(comm, comm_event->task->comm, sizeof(comm));
3382 size = ALIGN(strlen(comm)+1, sizeof(u64));
3383
3384 comm_event->comm = comm;
3385 comm_event->comm_size = size;
3386
3387 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3388
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003389 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003390 cpuctx = &get_cpu_var(perf_cpu_context);
3391 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3392 put_cpu_var(perf_cpu_context);
3393
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003394 /*
3395 * doesn't really matter which of the child contexts the
3396 * events ends up in.
3397 */
3398 ctx = rcu_dereference(current->perf_event_ctxp);
3399 if (ctx)
3400 perf_event_comm_ctx(ctx, comm_event);
3401 rcu_read_unlock();
3402}
3403
3404void perf_event_comm(struct task_struct *task)
3405{
3406 struct perf_comm_event comm_event;
3407
3408 if (task->perf_event_ctxp)
3409 perf_event_enable_on_exec(task);
3410
3411 if (!atomic_read(&nr_comm_events))
3412 return;
3413
3414 comm_event = (struct perf_comm_event){
3415 .task = task,
3416 /* .comm */
3417 /* .comm_size */
3418 .event_id = {
3419 .header = {
3420 .type = PERF_RECORD_COMM,
3421 .misc = 0,
3422 /* .size */
3423 },
3424 /* .pid */
3425 /* .tid */
3426 },
3427 };
3428
3429 perf_event_comm_event(&comm_event);
3430}
3431
3432/*
3433 * mmap tracking
3434 */
3435
3436struct perf_mmap_event {
3437 struct vm_area_struct *vma;
3438
3439 const char *file_name;
3440 int file_size;
3441
3442 struct {
3443 struct perf_event_header header;
3444
3445 u32 pid;
3446 u32 tid;
3447 u64 start;
3448 u64 len;
3449 u64 pgoff;
3450 } event_id;
3451};
3452
3453static void perf_event_mmap_output(struct perf_event *event,
3454 struct perf_mmap_event *mmap_event)
3455{
3456 struct perf_output_handle handle;
3457 int size = mmap_event->event_id.header.size;
3458 int ret = perf_output_begin(&handle, event, size, 0, 0);
3459
3460 if (ret)
3461 return;
3462
3463 mmap_event->event_id.pid = perf_event_pid(event, current);
3464 mmap_event->event_id.tid = perf_event_tid(event, current);
3465
3466 perf_output_put(&handle, mmap_event->event_id);
3467 perf_output_copy(&handle, mmap_event->file_name,
3468 mmap_event->file_size);
3469 perf_output_end(&handle);
3470}
3471
3472static int perf_event_mmap_match(struct perf_event *event,
3473 struct perf_mmap_event *mmap_event)
3474{
3475 if (event->attr.mmap)
3476 return 1;
3477
3478 return 0;
3479}
3480
3481static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3482 struct perf_mmap_event *mmap_event)
3483{
3484 struct perf_event *event;
3485
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003486 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3487 if (perf_event_mmap_match(event, mmap_event))
3488 perf_event_mmap_output(event, mmap_event);
3489 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003490}
3491
3492static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3493{
3494 struct perf_cpu_context *cpuctx;
3495 struct perf_event_context *ctx;
3496 struct vm_area_struct *vma = mmap_event->vma;
3497 struct file *file = vma->vm_file;
3498 unsigned int size;
3499 char tmp[16];
3500 char *buf = NULL;
3501 const char *name;
3502
3503 memset(tmp, 0, sizeof(tmp));
3504
3505 if (file) {
3506 /*
3507 * d_path works from the end of the buffer backwards, so we
3508 * need to add enough zero bytes after the string to handle
3509 * the 64bit alignment we do later.
3510 */
3511 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3512 if (!buf) {
3513 name = strncpy(tmp, "//enomem", sizeof(tmp));
3514 goto got_name;
3515 }
3516 name = d_path(&file->f_path, buf, PATH_MAX);
3517 if (IS_ERR(name)) {
3518 name = strncpy(tmp, "//toolong", sizeof(tmp));
3519 goto got_name;
3520 }
3521 } else {
3522 if (arch_vma_name(mmap_event->vma)) {
3523 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3524 sizeof(tmp));
3525 goto got_name;
3526 }
3527
3528 if (!vma->vm_mm) {
3529 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3530 goto got_name;
3531 }
3532
3533 name = strncpy(tmp, "//anon", sizeof(tmp));
3534 goto got_name;
3535 }
3536
3537got_name:
3538 size = ALIGN(strlen(name)+1, sizeof(u64));
3539
3540 mmap_event->file_name = name;
3541 mmap_event->file_size = size;
3542
3543 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3544
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003545 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003546 cpuctx = &get_cpu_var(perf_cpu_context);
3547 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3548 put_cpu_var(perf_cpu_context);
3549
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003550 /*
3551 * doesn't really matter which of the child contexts the
3552 * events ends up in.
3553 */
3554 ctx = rcu_dereference(current->perf_event_ctxp);
3555 if (ctx)
3556 perf_event_mmap_ctx(ctx, mmap_event);
3557 rcu_read_unlock();
3558
3559 kfree(buf);
3560}
3561
3562void __perf_event_mmap(struct vm_area_struct *vma)
3563{
3564 struct perf_mmap_event mmap_event;
3565
3566 if (!atomic_read(&nr_mmap_events))
3567 return;
3568
3569 mmap_event = (struct perf_mmap_event){
3570 .vma = vma,
3571 /* .file_name */
3572 /* .file_size */
3573 .event_id = {
3574 .header = {
3575 .type = PERF_RECORD_MMAP,
3576 .misc = 0,
3577 /* .size */
3578 },
3579 /* .pid */
3580 /* .tid */
3581 .start = vma->vm_start,
3582 .len = vma->vm_end - vma->vm_start,
3583 .pgoff = vma->vm_pgoff,
3584 },
3585 };
3586
3587 perf_event_mmap_event(&mmap_event);
3588}
3589
3590/*
3591 * IRQ throttle logging
3592 */
3593
3594static void perf_log_throttle(struct perf_event *event, int enable)
3595{
3596 struct perf_output_handle handle;
3597 int ret;
3598
3599 struct {
3600 struct perf_event_header header;
3601 u64 time;
3602 u64 id;
3603 u64 stream_id;
3604 } throttle_event = {
3605 .header = {
3606 .type = PERF_RECORD_THROTTLE,
3607 .misc = 0,
3608 .size = sizeof(throttle_event),
3609 },
3610 .time = perf_clock(),
3611 .id = primary_event_id(event),
3612 .stream_id = event->id,
3613 };
3614
3615 if (enable)
3616 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3617
3618 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3619 if (ret)
3620 return;
3621
3622 perf_output_put(&handle, throttle_event);
3623 perf_output_end(&handle);
3624}
3625
3626/*
3627 * Generic event overflow handling, sampling.
3628 */
3629
3630static int __perf_event_overflow(struct perf_event *event, int nmi,
3631 int throttle, struct perf_sample_data *data,
3632 struct pt_regs *regs)
3633{
3634 int events = atomic_read(&event->event_limit);
3635 struct hw_perf_event *hwc = &event->hw;
3636 int ret = 0;
3637
3638 throttle = (throttle && event->pmu->unthrottle != NULL);
3639
3640 if (!throttle) {
3641 hwc->interrupts++;
3642 } else {
3643 if (hwc->interrupts != MAX_INTERRUPTS) {
3644 hwc->interrupts++;
3645 if (HZ * hwc->interrupts >
3646 (u64)sysctl_perf_event_sample_rate) {
3647 hwc->interrupts = MAX_INTERRUPTS;
3648 perf_log_throttle(event, 0);
3649 ret = 1;
3650 }
3651 } else {
3652 /*
3653 * Keep re-disabling events even though on the previous
3654 * pass we disabled it - just in case we raced with a
3655 * sched-in and the event got enabled again:
3656 */
3657 ret = 1;
3658 }
3659 }
3660
3661 if (event->attr.freq) {
3662 u64 now = perf_clock();
3663 s64 delta = now - hwc->freq_stamp;
3664
3665 hwc->freq_stamp = now;
3666
3667 if (delta > 0 && delta < TICK_NSEC)
3668 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3669 }
3670
3671 /*
3672 * XXX event_limit might not quite work as expected on inherited
3673 * events
3674 */
3675
3676 event->pending_kill = POLL_IN;
3677 if (events && atomic_dec_and_test(&event->event_limit)) {
3678 ret = 1;
3679 event->pending_kill = POLL_HUP;
3680 if (nmi) {
3681 event->pending_disable = 1;
3682 perf_pending_queue(&event->pending,
3683 perf_pending_event);
3684 } else
3685 perf_event_disable(event);
3686 }
3687
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003688 if (event->overflow_handler)
3689 event->overflow_handler(event, nmi, data, regs);
3690 else
3691 perf_event_output(event, nmi, data, regs);
3692
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003693 return ret;
3694}
3695
3696int perf_event_overflow(struct perf_event *event, int nmi,
3697 struct perf_sample_data *data,
3698 struct pt_regs *regs)
3699{
3700 return __perf_event_overflow(event, nmi, 1, data, regs);
3701}
3702
3703/*
3704 * Generic software event infrastructure
3705 */
3706
3707/*
3708 * We directly increment event->count and keep a second value in
3709 * event->hw.period_left to count intervals. This period event
3710 * is kept in the range [-sample_period, 0] so that we can use the
3711 * sign as trigger.
3712 */
3713
3714static u64 perf_swevent_set_period(struct perf_event *event)
3715{
3716 struct hw_perf_event *hwc = &event->hw;
3717 u64 period = hwc->last_period;
3718 u64 nr, offset;
3719 s64 old, val;
3720
3721 hwc->last_period = hwc->sample_period;
3722
3723again:
3724 old = val = atomic64_read(&hwc->period_left);
3725 if (val < 0)
3726 return 0;
3727
3728 nr = div64_u64(period + val, period);
3729 offset = nr * period;
3730 val -= offset;
3731 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3732 goto again;
3733
3734 return nr;
3735}
3736
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003737static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003738 int nmi, struct perf_sample_data *data,
3739 struct pt_regs *regs)
3740{
3741 struct hw_perf_event *hwc = &event->hw;
3742 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003743
3744 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003745 if (!overflow)
3746 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003747
3748 if (hwc->interrupts == MAX_INTERRUPTS)
3749 return;
3750
3751 for (; overflow; overflow--) {
3752 if (__perf_event_overflow(event, nmi, throttle,
3753 data, regs)) {
3754 /*
3755 * We inhibit the overflow from happening when
3756 * hwc->interrupts == MAX_INTERRUPTS.
3757 */
3758 break;
3759 }
3760 throttle = 1;
3761 }
3762}
3763
3764static void perf_swevent_unthrottle(struct perf_event *event)
3765{
3766 /*
3767 * Nothing to do, we already reset hwc->interrupts.
3768 */
3769}
3770
3771static void perf_swevent_add(struct perf_event *event, u64 nr,
3772 int nmi, struct perf_sample_data *data,
3773 struct pt_regs *regs)
3774{
3775 struct hw_perf_event *hwc = &event->hw;
3776
3777 atomic64_add(nr, &event->count);
3778
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003779 if (!regs)
3780 return;
3781
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003782 if (!hwc->sample_period)
3783 return;
3784
3785 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3786 return perf_swevent_overflow(event, 1, nmi, data, regs);
3787
3788 if (atomic64_add_negative(nr, &hwc->period_left))
3789 return;
3790
3791 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003792}
3793
3794static int perf_swevent_is_counting(struct perf_event *event)
3795{
3796 /*
3797 * The event is active, we're good!
3798 */
3799 if (event->state == PERF_EVENT_STATE_ACTIVE)
3800 return 1;
3801
3802 /*
3803 * The event is off/error, not counting.
3804 */
3805 if (event->state != PERF_EVENT_STATE_INACTIVE)
3806 return 0;
3807
3808 /*
3809 * The event is inactive, if the context is active
3810 * we're part of a group that didn't make it on the 'pmu',
3811 * not counting.
3812 */
3813 if (event->ctx->is_active)
3814 return 0;
3815
3816 /*
3817 * We're inactive and the context is too, this means the
3818 * task is scheduled out, we're counting events that happen
3819 * to us, like migration events.
3820 */
3821 return 1;
3822}
3823
Li Zefan6fb29152009-10-15 11:21:42 +08003824static int perf_tp_event_match(struct perf_event *event,
3825 struct perf_sample_data *data);
3826
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003827static int perf_swevent_match(struct perf_event *event,
3828 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003829 u32 event_id,
3830 struct perf_sample_data *data,
3831 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003832{
3833 if (!perf_swevent_is_counting(event))
3834 return 0;
3835
3836 if (event->attr.type != type)
3837 return 0;
3838 if (event->attr.config != event_id)
3839 return 0;
3840
3841 if (regs) {
3842 if (event->attr.exclude_user && user_mode(regs))
3843 return 0;
3844
3845 if (event->attr.exclude_kernel && !user_mode(regs))
3846 return 0;
3847 }
3848
Li Zefan6fb29152009-10-15 11:21:42 +08003849 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3850 !perf_tp_event_match(event, data))
3851 return 0;
3852
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003853 return 1;
3854}
3855
3856static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3857 enum perf_type_id type,
3858 u32 event_id, u64 nr, int nmi,
3859 struct perf_sample_data *data,
3860 struct pt_regs *regs)
3861{
3862 struct perf_event *event;
3863
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003864 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003865 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003866 perf_swevent_add(event, nr, nmi, data, regs);
3867 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003868}
3869
3870static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3871{
3872 if (in_nmi())
3873 return &cpuctx->recursion[3];
3874
3875 if (in_irq())
3876 return &cpuctx->recursion[2];
3877
3878 if (in_softirq())
3879 return &cpuctx->recursion[1];
3880
3881 return &cpuctx->recursion[0];
3882}
3883
3884static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3885 u64 nr, int nmi,
3886 struct perf_sample_data *data,
3887 struct pt_regs *regs)
3888{
3889 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3890 int *recursion = perf_swevent_recursion_context(cpuctx);
3891 struct perf_event_context *ctx;
3892
3893 if (*recursion)
3894 goto out;
3895
3896 (*recursion)++;
3897 barrier();
3898
Peter Zijlstra81520182009-11-20 22:19:45 +01003899 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003900 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3901 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003902 /*
3903 * doesn't really matter which of the child contexts the
3904 * events ends up in.
3905 */
3906 ctx = rcu_dereference(current->perf_event_ctxp);
3907 if (ctx)
3908 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3909 rcu_read_unlock();
3910
3911 barrier();
3912 (*recursion)--;
3913
3914out:
3915 put_cpu_var(perf_cpu_context);
3916}
3917
3918void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3919 struct pt_regs *regs, u64 addr)
3920{
3921 struct perf_sample_data data = {
3922 .addr = addr,
3923 };
3924
3925 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3926 &data, regs);
3927}
3928
3929static void perf_swevent_read(struct perf_event *event)
3930{
3931}
3932
3933static int perf_swevent_enable(struct perf_event *event)
3934{
3935 struct hw_perf_event *hwc = &event->hw;
3936
3937 if (hwc->sample_period) {
3938 hwc->last_period = hwc->sample_period;
3939 perf_swevent_set_period(event);
3940 }
3941 return 0;
3942}
3943
3944static void perf_swevent_disable(struct perf_event *event)
3945{
3946}
3947
3948static const struct pmu perf_ops_generic = {
3949 .enable = perf_swevent_enable,
3950 .disable = perf_swevent_disable,
3951 .read = perf_swevent_read,
3952 .unthrottle = perf_swevent_unthrottle,
3953};
3954
3955/*
3956 * hrtimer based swevent callback
3957 */
3958
3959static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3960{
3961 enum hrtimer_restart ret = HRTIMER_RESTART;
3962 struct perf_sample_data data;
3963 struct pt_regs *regs;
3964 struct perf_event *event;
3965 u64 period;
3966
3967 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3968 event->pmu->read(event);
3969
3970 data.addr = 0;
3971 regs = get_irq_regs();
3972 /*
3973 * In case we exclude kernel IPs or are somehow not in interrupt
3974 * context, provide the next best thing, the user IP.
3975 */
3976 if ((event->attr.exclude_kernel || !regs) &&
3977 !event->attr.exclude_user)
3978 regs = task_pt_regs(current);
3979
3980 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02003981 if (!(event->attr.exclude_idle && current->pid == 0))
3982 if (perf_event_overflow(event, 0, &data, regs))
3983 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003984 }
3985
3986 period = max_t(u64, 10000, event->hw.sample_period);
3987 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3988
3989 return ret;
3990}
3991
Soeren Sandmann721a6692009-09-15 14:33:08 +02003992static void perf_swevent_start_hrtimer(struct perf_event *event)
3993{
3994 struct hw_perf_event *hwc = &event->hw;
3995
3996 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3997 hwc->hrtimer.function = perf_swevent_hrtimer;
3998 if (hwc->sample_period) {
3999 u64 period;
4000
4001 if (hwc->remaining) {
4002 if (hwc->remaining < 0)
4003 period = 10000;
4004 else
4005 period = hwc->remaining;
4006 hwc->remaining = 0;
4007 } else {
4008 period = max_t(u64, 10000, hwc->sample_period);
4009 }
4010 __hrtimer_start_range_ns(&hwc->hrtimer,
4011 ns_to_ktime(period), 0,
4012 HRTIMER_MODE_REL, 0);
4013 }
4014}
4015
4016static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4017{
4018 struct hw_perf_event *hwc = &event->hw;
4019
4020 if (hwc->sample_period) {
4021 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4022 hwc->remaining = ktime_to_ns(remaining);
4023
4024 hrtimer_cancel(&hwc->hrtimer);
4025 }
4026}
4027
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004028/*
4029 * Software event: cpu wall time clock
4030 */
4031
4032static void cpu_clock_perf_event_update(struct perf_event *event)
4033{
4034 int cpu = raw_smp_processor_id();
4035 s64 prev;
4036 u64 now;
4037
4038 now = cpu_clock(cpu);
4039 prev = atomic64_read(&event->hw.prev_count);
4040 atomic64_set(&event->hw.prev_count, now);
4041 atomic64_add(now - prev, &event->count);
4042}
4043
4044static int cpu_clock_perf_event_enable(struct perf_event *event)
4045{
4046 struct hw_perf_event *hwc = &event->hw;
4047 int cpu = raw_smp_processor_id();
4048
4049 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004050 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004051
4052 return 0;
4053}
4054
4055static void cpu_clock_perf_event_disable(struct perf_event *event)
4056{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004057 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004058 cpu_clock_perf_event_update(event);
4059}
4060
4061static void cpu_clock_perf_event_read(struct perf_event *event)
4062{
4063 cpu_clock_perf_event_update(event);
4064}
4065
4066static const struct pmu perf_ops_cpu_clock = {
4067 .enable = cpu_clock_perf_event_enable,
4068 .disable = cpu_clock_perf_event_disable,
4069 .read = cpu_clock_perf_event_read,
4070};
4071
4072/*
4073 * Software event: task time clock
4074 */
4075
4076static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4077{
4078 u64 prev;
4079 s64 delta;
4080
4081 prev = atomic64_xchg(&event->hw.prev_count, now);
4082 delta = now - prev;
4083 atomic64_add(delta, &event->count);
4084}
4085
4086static int task_clock_perf_event_enable(struct perf_event *event)
4087{
4088 struct hw_perf_event *hwc = &event->hw;
4089 u64 now;
4090
4091 now = event->ctx->time;
4092
4093 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004094
4095 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004096
4097 return 0;
4098}
4099
4100static void task_clock_perf_event_disable(struct perf_event *event)
4101{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004102 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004103 task_clock_perf_event_update(event, event->ctx->time);
4104
4105}
4106
4107static void task_clock_perf_event_read(struct perf_event *event)
4108{
4109 u64 time;
4110
4111 if (!in_nmi()) {
4112 update_context_time(event->ctx);
4113 time = event->ctx->time;
4114 } else {
4115 u64 now = perf_clock();
4116 u64 delta = now - event->ctx->timestamp;
4117 time = event->ctx->time + delta;
4118 }
4119
4120 task_clock_perf_event_update(event, time);
4121}
4122
4123static const struct pmu perf_ops_task_clock = {
4124 .enable = task_clock_perf_event_enable,
4125 .disable = task_clock_perf_event_disable,
4126 .read = task_clock_perf_event_read,
4127};
4128
4129#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004130
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004131void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4132 int entry_size)
4133{
4134 struct perf_raw_record raw = {
4135 .size = entry_size,
4136 .data = record,
4137 };
4138
4139 struct perf_sample_data data = {
4140 .addr = addr,
4141 .raw = &raw,
4142 };
4143
4144 struct pt_regs *regs = get_irq_regs();
4145
4146 if (!regs)
4147 regs = task_pt_regs(current);
4148
4149 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4150 &data, regs);
4151}
4152EXPORT_SYMBOL_GPL(perf_tp_event);
4153
Li Zefan6fb29152009-10-15 11:21:42 +08004154static int perf_tp_event_match(struct perf_event *event,
4155 struct perf_sample_data *data)
4156{
4157 void *record = data->raw->data;
4158
4159 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4160 return 1;
4161 return 0;
4162}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004163
4164static void tp_perf_event_destroy(struct perf_event *event)
4165{
4166 ftrace_profile_disable(event->attr.config);
4167}
4168
4169static const struct pmu *tp_perf_event_init(struct perf_event *event)
4170{
4171 /*
4172 * Raw tracepoint data is a severe data leak, only allow root to
4173 * have these.
4174 */
4175 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4176 perf_paranoid_tracepoint_raw() &&
4177 !capable(CAP_SYS_ADMIN))
4178 return ERR_PTR(-EPERM);
4179
4180 if (ftrace_profile_enable(event->attr.config))
4181 return NULL;
4182
4183 event->destroy = tp_perf_event_destroy;
4184
4185 return &perf_ops_generic;
4186}
Li Zefan6fb29152009-10-15 11:21:42 +08004187
4188static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4189{
4190 char *filter_str;
4191 int ret;
4192
4193 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4194 return -EINVAL;
4195
4196 filter_str = strndup_user(arg, PAGE_SIZE);
4197 if (IS_ERR(filter_str))
4198 return PTR_ERR(filter_str);
4199
4200 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4201
4202 kfree(filter_str);
4203 return ret;
4204}
4205
4206static void perf_event_free_filter(struct perf_event *event)
4207{
4208 ftrace_profile_free_filter(event);
4209}
4210
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004211#else
Li Zefan6fb29152009-10-15 11:21:42 +08004212
4213static int perf_tp_event_match(struct perf_event *event,
4214 struct perf_sample_data *data)
4215{
4216 return 1;
4217}
4218
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004219static const struct pmu *tp_perf_event_init(struct perf_event *event)
4220{
4221 return NULL;
4222}
Li Zefan6fb29152009-10-15 11:21:42 +08004223
4224static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4225{
4226 return -ENOENT;
4227}
4228
4229static void perf_event_free_filter(struct perf_event *event)
4230{
4231}
4232
4233#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004234
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004235#ifdef CONFIG_HAVE_HW_BREAKPOINT
4236static void bp_perf_event_destroy(struct perf_event *event)
4237{
4238 release_bp_slot(event);
4239}
4240
4241static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4242{
4243 int err;
4244 /*
4245 * The breakpoint is already filled if we haven't created the counter
4246 * through perf syscall
4247 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4248 */
4249 if (!bp->callback)
4250 err = register_perf_hw_breakpoint(bp);
4251 else
4252 err = __register_perf_hw_breakpoint(bp);
4253 if (err)
4254 return ERR_PTR(err);
4255
4256 bp->destroy = bp_perf_event_destroy;
4257
4258 return &perf_ops_bp;
4259}
4260
4261void perf_bp_event(struct perf_event *bp, void *regs)
4262{
4263 /* TODO */
4264}
4265#else
4266static void bp_perf_event_destroy(struct perf_event *event)
4267{
4268}
4269
4270static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4271{
4272 return NULL;
4273}
4274
4275void perf_bp_event(struct perf_event *bp, void *regs)
4276{
4277}
4278#endif
4279
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004280atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4281
4282static void sw_perf_event_destroy(struct perf_event *event)
4283{
4284 u64 event_id = event->attr.config;
4285
4286 WARN_ON(event->parent);
4287
4288 atomic_dec(&perf_swevent_enabled[event_id]);
4289}
4290
4291static const struct pmu *sw_perf_event_init(struct perf_event *event)
4292{
4293 const struct pmu *pmu = NULL;
4294 u64 event_id = event->attr.config;
4295
4296 /*
4297 * Software events (currently) can't in general distinguish
4298 * between user, kernel and hypervisor events.
4299 * However, context switches and cpu migrations are considered
4300 * to be kernel events, and page faults are never hypervisor
4301 * events.
4302 */
4303 switch (event_id) {
4304 case PERF_COUNT_SW_CPU_CLOCK:
4305 pmu = &perf_ops_cpu_clock;
4306
4307 break;
4308 case PERF_COUNT_SW_TASK_CLOCK:
4309 /*
4310 * If the user instantiates this as a per-cpu event,
4311 * use the cpu_clock event instead.
4312 */
4313 if (event->ctx->task)
4314 pmu = &perf_ops_task_clock;
4315 else
4316 pmu = &perf_ops_cpu_clock;
4317
4318 break;
4319 case PERF_COUNT_SW_PAGE_FAULTS:
4320 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4321 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4322 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4323 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004324 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4325 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004326 if (!event->parent) {
4327 atomic_inc(&perf_swevent_enabled[event_id]);
4328 event->destroy = sw_perf_event_destroy;
4329 }
4330 pmu = &perf_ops_generic;
4331 break;
4332 }
4333
4334 return pmu;
4335}
4336
4337/*
4338 * Allocate and initialize a event structure
4339 */
4340static struct perf_event *
4341perf_event_alloc(struct perf_event_attr *attr,
4342 int cpu,
4343 struct perf_event_context *ctx,
4344 struct perf_event *group_leader,
4345 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004346 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004347 gfp_t gfpflags)
4348{
4349 const struct pmu *pmu;
4350 struct perf_event *event;
4351 struct hw_perf_event *hwc;
4352 long err;
4353
4354 event = kzalloc(sizeof(*event), gfpflags);
4355 if (!event)
4356 return ERR_PTR(-ENOMEM);
4357
4358 /*
4359 * Single events are their own group leaders, with an
4360 * empty sibling list:
4361 */
4362 if (!group_leader)
4363 group_leader = event;
4364
4365 mutex_init(&event->child_mutex);
4366 INIT_LIST_HEAD(&event->child_list);
4367
4368 INIT_LIST_HEAD(&event->group_entry);
4369 INIT_LIST_HEAD(&event->event_entry);
4370 INIT_LIST_HEAD(&event->sibling_list);
4371 init_waitqueue_head(&event->waitq);
4372
4373 mutex_init(&event->mmap_mutex);
4374
4375 event->cpu = cpu;
4376 event->attr = *attr;
4377 event->group_leader = group_leader;
4378 event->pmu = NULL;
4379 event->ctx = ctx;
4380 event->oncpu = -1;
4381
4382 event->parent = parent_event;
4383
4384 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4385 event->id = atomic64_inc_return(&perf_event_id);
4386
4387 event->state = PERF_EVENT_STATE_INACTIVE;
4388
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004389 if (!callback && parent_event)
4390 callback = parent_event->callback;
4391
4392 event->callback = callback;
4393
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004394 if (attr->disabled)
4395 event->state = PERF_EVENT_STATE_OFF;
4396
4397 pmu = NULL;
4398
4399 hwc = &event->hw;
4400 hwc->sample_period = attr->sample_period;
4401 if (attr->freq && attr->sample_freq)
4402 hwc->sample_period = 1;
4403 hwc->last_period = hwc->sample_period;
4404
4405 atomic64_set(&hwc->period_left, hwc->sample_period);
4406
4407 /*
4408 * we currently do not support PERF_FORMAT_GROUP on inherited events
4409 */
4410 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4411 goto done;
4412
4413 switch (attr->type) {
4414 case PERF_TYPE_RAW:
4415 case PERF_TYPE_HARDWARE:
4416 case PERF_TYPE_HW_CACHE:
4417 pmu = hw_perf_event_init(event);
4418 break;
4419
4420 case PERF_TYPE_SOFTWARE:
4421 pmu = sw_perf_event_init(event);
4422 break;
4423
4424 case PERF_TYPE_TRACEPOINT:
4425 pmu = tp_perf_event_init(event);
4426 break;
4427
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004428 case PERF_TYPE_BREAKPOINT:
4429 pmu = bp_perf_event_init(event);
4430 break;
4431
4432
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004433 default:
4434 break;
4435 }
4436done:
4437 err = 0;
4438 if (!pmu)
4439 err = -EINVAL;
4440 else if (IS_ERR(pmu))
4441 err = PTR_ERR(pmu);
4442
4443 if (err) {
4444 if (event->ns)
4445 put_pid_ns(event->ns);
4446 kfree(event);
4447 return ERR_PTR(err);
4448 }
4449
4450 event->pmu = pmu;
4451
4452 if (!event->parent) {
4453 atomic_inc(&nr_events);
4454 if (event->attr.mmap)
4455 atomic_inc(&nr_mmap_events);
4456 if (event->attr.comm)
4457 atomic_inc(&nr_comm_events);
4458 if (event->attr.task)
4459 atomic_inc(&nr_task_events);
4460 }
4461
4462 return event;
4463}
4464
4465static int perf_copy_attr(struct perf_event_attr __user *uattr,
4466 struct perf_event_attr *attr)
4467{
4468 u32 size;
4469 int ret;
4470
4471 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4472 return -EFAULT;
4473
4474 /*
4475 * zero the full structure, so that a short copy will be nice.
4476 */
4477 memset(attr, 0, sizeof(*attr));
4478
4479 ret = get_user(size, &uattr->size);
4480 if (ret)
4481 return ret;
4482
4483 if (size > PAGE_SIZE) /* silly large */
4484 goto err_size;
4485
4486 if (!size) /* abi compat */
4487 size = PERF_ATTR_SIZE_VER0;
4488
4489 if (size < PERF_ATTR_SIZE_VER0)
4490 goto err_size;
4491
4492 /*
4493 * If we're handed a bigger struct than we know of,
4494 * ensure all the unknown bits are 0 - i.e. new
4495 * user-space does not rely on any kernel feature
4496 * extensions we dont know about yet.
4497 */
4498 if (size > sizeof(*attr)) {
4499 unsigned char __user *addr;
4500 unsigned char __user *end;
4501 unsigned char val;
4502
4503 addr = (void __user *)uattr + sizeof(*attr);
4504 end = (void __user *)uattr + size;
4505
4506 for (; addr < end; addr++) {
4507 ret = get_user(val, addr);
4508 if (ret)
4509 return ret;
4510 if (val)
4511 goto err_size;
4512 }
4513 size = sizeof(*attr);
4514 }
4515
4516 ret = copy_from_user(attr, uattr, size);
4517 if (ret)
4518 return -EFAULT;
4519
4520 /*
4521 * If the type exists, the corresponding creation will verify
4522 * the attr->config.
4523 */
4524 if (attr->type >= PERF_TYPE_MAX)
4525 return -EINVAL;
4526
4527 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4528 return -EINVAL;
4529
4530 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4531 return -EINVAL;
4532
4533 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4534 return -EINVAL;
4535
4536out:
4537 return ret;
4538
4539err_size:
4540 put_user(sizeof(*attr), &uattr->size);
4541 ret = -E2BIG;
4542 goto out;
4543}
4544
Li Zefan6fb29152009-10-15 11:21:42 +08004545static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004546{
4547 struct perf_event *output_event = NULL;
4548 struct file *output_file = NULL;
4549 struct perf_event *old_output;
4550 int fput_needed = 0;
4551 int ret = -EINVAL;
4552
4553 if (!output_fd)
4554 goto set;
4555
4556 output_file = fget_light(output_fd, &fput_needed);
4557 if (!output_file)
4558 return -EBADF;
4559
4560 if (output_file->f_op != &perf_fops)
4561 goto out;
4562
4563 output_event = output_file->private_data;
4564
4565 /* Don't chain output fds */
4566 if (output_event->output)
4567 goto out;
4568
4569 /* Don't set an output fd when we already have an output channel */
4570 if (event->data)
4571 goto out;
4572
4573 atomic_long_inc(&output_file->f_count);
4574
4575set:
4576 mutex_lock(&event->mmap_mutex);
4577 old_output = event->output;
4578 rcu_assign_pointer(event->output, output_event);
4579 mutex_unlock(&event->mmap_mutex);
4580
4581 if (old_output) {
4582 /*
4583 * we need to make sure no existing perf_output_*()
4584 * is still referencing this event.
4585 */
4586 synchronize_rcu();
4587 fput(old_output->filp);
4588 }
4589
4590 ret = 0;
4591out:
4592 fput_light(output_file, fput_needed);
4593 return ret;
4594}
4595
4596/**
4597 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4598 *
4599 * @attr_uptr: event_id type attributes for monitoring/sampling
4600 * @pid: target pid
4601 * @cpu: target cpu
4602 * @group_fd: group leader event fd
4603 */
4604SYSCALL_DEFINE5(perf_event_open,
4605 struct perf_event_attr __user *, attr_uptr,
4606 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4607{
4608 struct perf_event *event, *group_leader;
4609 struct perf_event_attr attr;
4610 struct perf_event_context *ctx;
4611 struct file *event_file = NULL;
4612 struct file *group_file = NULL;
4613 int fput_needed = 0;
4614 int fput_needed2 = 0;
4615 int err;
4616
4617 /* for future expandability... */
4618 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4619 return -EINVAL;
4620
4621 err = perf_copy_attr(attr_uptr, &attr);
4622 if (err)
4623 return err;
4624
4625 if (!attr.exclude_kernel) {
4626 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4627 return -EACCES;
4628 }
4629
4630 if (attr.freq) {
4631 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4632 return -EINVAL;
4633 }
4634
4635 /*
4636 * Get the target context (task or percpu):
4637 */
4638 ctx = find_get_context(pid, cpu);
4639 if (IS_ERR(ctx))
4640 return PTR_ERR(ctx);
4641
4642 /*
4643 * Look up the group leader (we will attach this event to it):
4644 */
4645 group_leader = NULL;
4646 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4647 err = -EINVAL;
4648 group_file = fget_light(group_fd, &fput_needed);
4649 if (!group_file)
4650 goto err_put_context;
4651 if (group_file->f_op != &perf_fops)
4652 goto err_put_context;
4653
4654 group_leader = group_file->private_data;
4655 /*
4656 * Do not allow a recursive hierarchy (this new sibling
4657 * becoming part of another group-sibling):
4658 */
4659 if (group_leader->group_leader != group_leader)
4660 goto err_put_context;
4661 /*
4662 * Do not allow to attach to a group in a different
4663 * task or CPU context:
4664 */
4665 if (group_leader->ctx != ctx)
4666 goto err_put_context;
4667 /*
4668 * Only a group leader can be exclusive or pinned
4669 */
4670 if (attr.exclusive || attr.pinned)
4671 goto err_put_context;
4672 }
4673
4674 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004675 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004676 err = PTR_ERR(event);
4677 if (IS_ERR(event))
4678 goto err_put_context;
4679
4680 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4681 if (err < 0)
4682 goto err_free_put_context;
4683
4684 event_file = fget_light(err, &fput_needed2);
4685 if (!event_file)
4686 goto err_free_put_context;
4687
4688 if (flags & PERF_FLAG_FD_OUTPUT) {
4689 err = perf_event_set_output(event, group_fd);
4690 if (err)
4691 goto err_fput_free_put_context;
4692 }
4693
4694 event->filp = event_file;
4695 WARN_ON_ONCE(ctx->parent_ctx);
4696 mutex_lock(&ctx->mutex);
4697 perf_install_in_context(ctx, event, cpu);
4698 ++ctx->generation;
4699 mutex_unlock(&ctx->mutex);
4700
4701 event->owner = current;
4702 get_task_struct(current);
4703 mutex_lock(&current->perf_event_mutex);
4704 list_add_tail(&event->owner_entry, &current->perf_event_list);
4705 mutex_unlock(&current->perf_event_mutex);
4706
4707err_fput_free_put_context:
4708 fput_light(event_file, fput_needed2);
4709
4710err_free_put_context:
4711 if (err < 0)
4712 kfree(event);
4713
4714err_put_context:
4715 if (err < 0)
4716 put_ctx(ctx);
4717
4718 fput_light(group_file, fput_needed);
4719
4720 return err;
4721}
4722
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004723/**
4724 * perf_event_create_kernel_counter
4725 *
4726 * @attr: attributes of the counter to create
4727 * @cpu: cpu in which the counter is bound
4728 * @pid: task to profile
4729 */
4730struct perf_event *
4731perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004732 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004733{
4734 struct perf_event *event;
4735 struct perf_event_context *ctx;
4736 int err;
4737
4738 /*
4739 * Get the target context (task or percpu):
4740 */
4741
4742 ctx = find_get_context(pid, cpu);
4743 if (IS_ERR(ctx))
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004744 return NULL;
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004745
4746 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004747 NULL, callback, GFP_KERNEL);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004748 err = PTR_ERR(event);
4749 if (IS_ERR(event))
4750 goto err_put_context;
4751
4752 event->filp = NULL;
4753 WARN_ON_ONCE(ctx->parent_ctx);
4754 mutex_lock(&ctx->mutex);
4755 perf_install_in_context(ctx, event, cpu);
4756 ++ctx->generation;
4757 mutex_unlock(&ctx->mutex);
4758
4759 event->owner = current;
4760 get_task_struct(current);
4761 mutex_lock(&current->perf_event_mutex);
4762 list_add_tail(&event->owner_entry, &current->perf_event_list);
4763 mutex_unlock(&current->perf_event_mutex);
4764
4765 return event;
4766
4767err_put_context:
4768 if (err < 0)
4769 put_ctx(ctx);
4770
4771 return NULL;
4772}
4773EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4774
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004775/*
4776 * inherit a event from parent task to child task:
4777 */
4778static struct perf_event *
4779inherit_event(struct perf_event *parent_event,
4780 struct task_struct *parent,
4781 struct perf_event_context *parent_ctx,
4782 struct task_struct *child,
4783 struct perf_event *group_leader,
4784 struct perf_event_context *child_ctx)
4785{
4786 struct perf_event *child_event;
4787
4788 /*
4789 * Instead of creating recursive hierarchies of events,
4790 * we link inherited events back to the original parent,
4791 * which has a filp for sure, which we use as the reference
4792 * count:
4793 */
4794 if (parent_event->parent)
4795 parent_event = parent_event->parent;
4796
4797 child_event = perf_event_alloc(&parent_event->attr,
4798 parent_event->cpu, child_ctx,
4799 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004800 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004801 if (IS_ERR(child_event))
4802 return child_event;
4803 get_ctx(child_ctx);
4804
4805 /*
4806 * Make the child state follow the state of the parent event,
4807 * not its attr.disabled bit. We hold the parent's mutex,
4808 * so we won't race with perf_event_{en, dis}able_family.
4809 */
4810 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4811 child_event->state = PERF_EVENT_STATE_INACTIVE;
4812 else
4813 child_event->state = PERF_EVENT_STATE_OFF;
4814
4815 if (parent_event->attr.freq)
4816 child_event->hw.sample_period = parent_event->hw.sample_period;
4817
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004818 child_event->overflow_handler = parent_event->overflow_handler;
4819
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004820 /*
4821 * Link it up in the child's context:
4822 */
4823 add_event_to_ctx(child_event, child_ctx);
4824
4825 /*
4826 * Get a reference to the parent filp - we will fput it
4827 * when the child event exits. This is safe to do because
4828 * we are in the parent and we know that the filp still
4829 * exists and has a nonzero count:
4830 */
4831 atomic_long_inc(&parent_event->filp->f_count);
4832
4833 /*
4834 * Link this into the parent event's child list
4835 */
4836 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4837 mutex_lock(&parent_event->child_mutex);
4838 list_add_tail(&child_event->child_list, &parent_event->child_list);
4839 mutex_unlock(&parent_event->child_mutex);
4840
4841 return child_event;
4842}
4843
4844static int inherit_group(struct perf_event *parent_event,
4845 struct task_struct *parent,
4846 struct perf_event_context *parent_ctx,
4847 struct task_struct *child,
4848 struct perf_event_context *child_ctx)
4849{
4850 struct perf_event *leader;
4851 struct perf_event *sub;
4852 struct perf_event *child_ctr;
4853
4854 leader = inherit_event(parent_event, parent, parent_ctx,
4855 child, NULL, child_ctx);
4856 if (IS_ERR(leader))
4857 return PTR_ERR(leader);
4858 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4859 child_ctr = inherit_event(sub, parent, parent_ctx,
4860 child, leader, child_ctx);
4861 if (IS_ERR(child_ctr))
4862 return PTR_ERR(child_ctr);
4863 }
4864 return 0;
4865}
4866
4867static void sync_child_event(struct perf_event *child_event,
4868 struct task_struct *child)
4869{
4870 struct perf_event *parent_event = child_event->parent;
4871 u64 child_val;
4872
4873 if (child_event->attr.inherit_stat)
4874 perf_event_read_event(child_event, child);
4875
4876 child_val = atomic64_read(&child_event->count);
4877
4878 /*
4879 * Add back the child's count to the parent's count:
4880 */
4881 atomic64_add(child_val, &parent_event->count);
4882 atomic64_add(child_event->total_time_enabled,
4883 &parent_event->child_total_time_enabled);
4884 atomic64_add(child_event->total_time_running,
4885 &parent_event->child_total_time_running);
4886
4887 /*
4888 * Remove this event from the parent's list
4889 */
4890 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4891 mutex_lock(&parent_event->child_mutex);
4892 list_del_init(&child_event->child_list);
4893 mutex_unlock(&parent_event->child_mutex);
4894
4895 /*
4896 * Release the parent event, if this was the last
4897 * reference to it.
4898 */
4899 fput(parent_event->filp);
4900}
4901
4902static void
4903__perf_event_exit_task(struct perf_event *child_event,
4904 struct perf_event_context *child_ctx,
4905 struct task_struct *child)
4906{
4907 struct perf_event *parent_event;
4908
4909 update_event_times(child_event);
4910 perf_event_remove_from_context(child_event);
4911
4912 parent_event = child_event->parent;
4913 /*
4914 * It can happen that parent exits first, and has events
4915 * that are still around due to the child reference. These
4916 * events need to be zapped - but otherwise linger.
4917 */
4918 if (parent_event) {
4919 sync_child_event(child_event, child);
4920 free_event(child_event);
4921 }
4922}
4923
4924/*
4925 * When a child task exits, feed back event values to parent events.
4926 */
4927void perf_event_exit_task(struct task_struct *child)
4928{
4929 struct perf_event *child_event, *tmp;
4930 struct perf_event_context *child_ctx;
4931 unsigned long flags;
4932
4933 if (likely(!child->perf_event_ctxp)) {
4934 perf_event_task(child, NULL, 0);
4935 return;
4936 }
4937
4938 local_irq_save(flags);
4939 /*
4940 * We can't reschedule here because interrupts are disabled,
4941 * and either child is current or it is a task that can't be
4942 * scheduled, so we are now safe from rescheduling changing
4943 * our context.
4944 */
4945 child_ctx = child->perf_event_ctxp;
4946 __perf_event_task_sched_out(child_ctx);
4947
4948 /*
4949 * Take the context lock here so that if find_get_context is
4950 * reading child->perf_event_ctxp, we wait until it has
4951 * incremented the context's refcount before we do put_ctx below.
4952 */
4953 spin_lock(&child_ctx->lock);
4954 child->perf_event_ctxp = NULL;
4955 /*
4956 * If this context is a clone; unclone it so it can't get
4957 * swapped to another process while we're removing all
4958 * the events from it.
4959 */
4960 unclone_ctx(child_ctx);
4961 spin_unlock_irqrestore(&child_ctx->lock, flags);
4962
4963 /*
4964 * Report the task dead after unscheduling the events so that we
4965 * won't get any samples after PERF_RECORD_EXIT. We can however still
4966 * get a few PERF_RECORD_READ events.
4967 */
4968 perf_event_task(child, child_ctx, 0);
4969
4970 /*
4971 * We can recurse on the same lock type through:
4972 *
4973 * __perf_event_exit_task()
4974 * sync_child_event()
4975 * fput(parent_event->filp)
4976 * perf_release()
4977 * mutex_lock(&ctx->mutex)
4978 *
4979 * But since its the parent context it won't be the same instance.
4980 */
4981 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4982
4983again:
4984 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4985 group_entry)
4986 __perf_event_exit_task(child_event, child_ctx, child);
4987
4988 /*
4989 * If the last event was a group event, it will have appended all
4990 * its siblings to the list, but we obtained 'tmp' before that which
4991 * will still point to the list head terminating the iteration.
4992 */
4993 if (!list_empty(&child_ctx->group_list))
4994 goto again;
4995
4996 mutex_unlock(&child_ctx->mutex);
4997
4998 put_ctx(child_ctx);
4999}
5000
5001/*
5002 * free an unexposed, unused context as created by inheritance by
5003 * init_task below, used by fork() in case of fail.
5004 */
5005void perf_event_free_task(struct task_struct *task)
5006{
5007 struct perf_event_context *ctx = task->perf_event_ctxp;
5008 struct perf_event *event, *tmp;
5009
5010 if (!ctx)
5011 return;
5012
5013 mutex_lock(&ctx->mutex);
5014again:
5015 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5016 struct perf_event *parent = event->parent;
5017
5018 if (WARN_ON_ONCE(!parent))
5019 continue;
5020
5021 mutex_lock(&parent->child_mutex);
5022 list_del_init(&event->child_list);
5023 mutex_unlock(&parent->child_mutex);
5024
5025 fput(parent->filp);
5026
5027 list_del_event(event, ctx);
5028 free_event(event);
5029 }
5030
5031 if (!list_empty(&ctx->group_list))
5032 goto again;
5033
5034 mutex_unlock(&ctx->mutex);
5035
5036 put_ctx(ctx);
5037}
5038
5039/*
5040 * Initialize the perf_event context in task_struct
5041 */
5042int perf_event_init_task(struct task_struct *child)
5043{
5044 struct perf_event_context *child_ctx, *parent_ctx;
5045 struct perf_event_context *cloned_ctx;
5046 struct perf_event *event;
5047 struct task_struct *parent = current;
5048 int inherited_all = 1;
5049 int ret = 0;
5050
5051 child->perf_event_ctxp = NULL;
5052
5053 mutex_init(&child->perf_event_mutex);
5054 INIT_LIST_HEAD(&child->perf_event_list);
5055
5056 if (likely(!parent->perf_event_ctxp))
5057 return 0;
5058
5059 /*
5060 * This is executed from the parent task context, so inherit
5061 * events that have been marked for cloning.
5062 * First allocate and initialize a context for the child.
5063 */
5064
5065 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5066 if (!child_ctx)
5067 return -ENOMEM;
5068
5069 __perf_event_init_context(child_ctx, child);
5070 child->perf_event_ctxp = child_ctx;
5071 get_task_struct(child);
5072
5073 /*
5074 * If the parent's context is a clone, pin it so it won't get
5075 * swapped under us.
5076 */
5077 parent_ctx = perf_pin_task_context(parent);
5078
5079 /*
5080 * No need to check if parent_ctx != NULL here; since we saw
5081 * it non-NULL earlier, the only reason for it to become NULL
5082 * is if we exit, and since we're currently in the middle of
5083 * a fork we can't be exiting at the same time.
5084 */
5085
5086 /*
5087 * Lock the parent list. No need to lock the child - not PID
5088 * hashed yet and not running, so nobody can access it.
5089 */
5090 mutex_lock(&parent_ctx->mutex);
5091
5092 /*
5093 * We dont have to disable NMIs - we are only looking at
5094 * the list, not manipulating it:
5095 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005096 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005097
5098 if (!event->attr.inherit) {
5099 inherited_all = 0;
5100 continue;
5101 }
5102
5103 ret = inherit_group(event, parent, parent_ctx,
5104 child, child_ctx);
5105 if (ret) {
5106 inherited_all = 0;
5107 break;
5108 }
5109 }
5110
5111 if (inherited_all) {
5112 /*
5113 * Mark the child context as a clone of the parent
5114 * context, or of whatever the parent is a clone of.
5115 * Note that if the parent is a clone, it could get
5116 * uncloned at any point, but that doesn't matter
5117 * because the list of events and the generation
5118 * count can't have changed since we took the mutex.
5119 */
5120 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5121 if (cloned_ctx) {
5122 child_ctx->parent_ctx = cloned_ctx;
5123 child_ctx->parent_gen = parent_ctx->parent_gen;
5124 } else {
5125 child_ctx->parent_ctx = parent_ctx;
5126 child_ctx->parent_gen = parent_ctx->generation;
5127 }
5128 get_ctx(child_ctx->parent_ctx);
5129 }
5130
5131 mutex_unlock(&parent_ctx->mutex);
5132
5133 perf_unpin_context(parent_ctx);
5134
5135 return ret;
5136}
5137
5138static void __cpuinit perf_event_init_cpu(int cpu)
5139{
5140 struct perf_cpu_context *cpuctx;
5141
5142 cpuctx = &per_cpu(perf_cpu_context, cpu);
5143 __perf_event_init_context(&cpuctx->ctx, NULL);
5144
5145 spin_lock(&perf_resource_lock);
5146 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5147 spin_unlock(&perf_resource_lock);
5148
5149 hw_perf_event_setup(cpu);
5150}
5151
5152#ifdef CONFIG_HOTPLUG_CPU
5153static void __perf_event_exit_cpu(void *info)
5154{
5155 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5156 struct perf_event_context *ctx = &cpuctx->ctx;
5157 struct perf_event *event, *tmp;
5158
5159 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5160 __perf_event_remove_from_context(event);
5161}
5162static void perf_event_exit_cpu(int cpu)
5163{
5164 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5165 struct perf_event_context *ctx = &cpuctx->ctx;
5166
5167 mutex_lock(&ctx->mutex);
5168 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5169 mutex_unlock(&ctx->mutex);
5170}
5171#else
5172static inline void perf_event_exit_cpu(int cpu) { }
5173#endif
5174
5175static int __cpuinit
5176perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5177{
5178 unsigned int cpu = (long)hcpu;
5179
5180 switch (action) {
5181
5182 case CPU_UP_PREPARE:
5183 case CPU_UP_PREPARE_FROZEN:
5184 perf_event_init_cpu(cpu);
5185 break;
5186
5187 case CPU_ONLINE:
5188 case CPU_ONLINE_FROZEN:
5189 hw_perf_event_setup_online(cpu);
5190 break;
5191
5192 case CPU_DOWN_PREPARE:
5193 case CPU_DOWN_PREPARE_FROZEN:
5194 perf_event_exit_cpu(cpu);
5195 break;
5196
5197 default:
5198 break;
5199 }
5200
5201 return NOTIFY_OK;
5202}
5203
5204/*
5205 * This has to have a higher priority than migration_notifier in sched.c.
5206 */
5207static struct notifier_block __cpuinitdata perf_cpu_nb = {
5208 .notifier_call = perf_cpu_notify,
5209 .priority = 20,
5210};
5211
5212void __init perf_event_init(void)
5213{
5214 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5215 (void *)(long)smp_processor_id());
5216 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5217 (void *)(long)smp_processor_id());
5218 register_cpu_notifier(&perf_cpu_nb);
5219}
5220
5221static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5222{
5223 return sprintf(buf, "%d\n", perf_reserved_percpu);
5224}
5225
5226static ssize_t
5227perf_set_reserve_percpu(struct sysdev_class *class,
5228 const char *buf,
5229 size_t count)
5230{
5231 struct perf_cpu_context *cpuctx;
5232 unsigned long val;
5233 int err, cpu, mpt;
5234
5235 err = strict_strtoul(buf, 10, &val);
5236 if (err)
5237 return err;
5238 if (val > perf_max_events)
5239 return -EINVAL;
5240
5241 spin_lock(&perf_resource_lock);
5242 perf_reserved_percpu = val;
5243 for_each_online_cpu(cpu) {
5244 cpuctx = &per_cpu(perf_cpu_context, cpu);
5245 spin_lock_irq(&cpuctx->ctx.lock);
5246 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5247 perf_max_events - perf_reserved_percpu);
5248 cpuctx->max_pertask = mpt;
5249 spin_unlock_irq(&cpuctx->ctx.lock);
5250 }
5251 spin_unlock(&perf_resource_lock);
5252
5253 return count;
5254}
5255
5256static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5257{
5258 return sprintf(buf, "%d\n", perf_overcommit);
5259}
5260
5261static ssize_t
5262perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5263{
5264 unsigned long val;
5265 int err;
5266
5267 err = strict_strtoul(buf, 10, &val);
5268 if (err)
5269 return err;
5270 if (val > 1)
5271 return -EINVAL;
5272
5273 spin_lock(&perf_resource_lock);
5274 perf_overcommit = val;
5275 spin_unlock(&perf_resource_lock);
5276
5277 return count;
5278}
5279
5280static SYSDEV_CLASS_ATTR(
5281 reserve_percpu,
5282 0644,
5283 perf_show_reserve_percpu,
5284 perf_set_reserve_percpu
5285 );
5286
5287static SYSDEV_CLASS_ATTR(
5288 overcommit,
5289 0644,
5290 perf_show_overcommit,
5291 perf_set_overcommit
5292 );
5293
5294static struct attribute *perfclass_attrs[] = {
5295 &attr_reserve_percpu.attr,
5296 &attr_overcommit.attr,
5297 NULL
5298};
5299
5300static struct attribute_group perfclass_attr_group = {
5301 .attrs = perfclass_attrs,
5302 .name = "perf_events",
5303};
5304
5305static int __init perf_event_sysfs_init(void)
5306{
5307 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5308 &perfclass_attr_group);
5309}
5310device_initcall(perf_event_sysfs_init);