blob: f4793a609443eca52ded350777ea0f0967deb130 [file] [log] [blame]
Zhu Yib481de92007-09-25 17:54:57 -07001/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
Reinette Chatreeb7ae892008-03-11 16:17:17 -07008 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
Zhu Yib481de92007-09-25 17:54:57 -07009 *
10 * This program is free software; you can redistribute it and/or modify
Ian Schram01ebd062007-10-25 17:15:22 +080011 * it under the terms of version 2 of the GNU General Public License as
Zhu Yib481de92007-09-25 17:54:57 -070012 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
Reinette Chatreeb7ae892008-03-11 16:17:17 -070033 * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
Zhu Yib481de92007-09-25 17:54:57 -070034 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
Ben Cahillfcd427b2007-11-29 11:10:00 +080063/*
64 * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
Tomas Winkler5a36ba02008-04-24 11:55:37 -070065 * Use iwl-commands.h for uCode API definitions.
Tomas Winkler3e0d4cb2008-04-24 11:55:38 -070066 * Use iwl-dev.h for driver implementation definitions.
Ben Cahillfcd427b2007-11-29 11:10:00 +080067 */
Zhu Yib481de92007-09-25 17:54:57 -070068
69#ifndef __iwl_4965_hw_h__
70#define __iwl_4965_hw_h__
71
Emmanuel Grumbach4b52c392008-04-23 17:15:07 -070072#include "iwl-fh.h"
73
Tomas Winkler073d3f52008-04-21 15:41:52 -070074/* EERPROM */
75#define IWL4965_EEPROM_IMG_SIZE 1024
76
Ben Cahill1fea8e82007-11-29 11:09:52 +080077/*
78 * uCode queue management definitions ...
79 * Queue #4 is the command queue for 3945 and 4965; map it to Tx FIFO chnl 4.
80 * The first queue used for block-ack aggregation is #7 (4965 only).
81 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
82 */
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080083#define IWL_CMD_QUEUE_NUM 4
84#define IWL_CMD_FIFO_NUM 4
Ron Rindjunsky7f3e4bb2008-06-12 09:46:55 +080085#define IWL49_FIRST_AMPDU_QUEUE 7
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080086
87/* Tx rates */
88#define IWL_CCK_RATES 4
89#define IWL_OFDM_RATES 8
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080090#define IWL_HT_RATES 16
Christoph Hellwig5d08cd12007-10-25 17:15:50 +080091#define IWL_MAX_RATES (IWL_CCK_RATES+IWL_OFDM_RATES+IWL_HT_RATES)
92
93/* Time constants */
94#define SHORT_SLOT_TIME 9
95#define LONG_SLOT_TIME 20
96
97/* RSSI to dBm */
98#define IWL_RSSI_OFFSET 44
99
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800100
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800101
Tomas Winkler8f061892008-05-29 16:34:56 +0800102/* PCI registers */
Tomas Winklere7b63582008-09-03 11:26:49 +0800103#define PCI_CFG_RETRY_TIMEOUT 0x041
104#define PCI_CFG_POWER_SOURCE 0x0C8
105#define PCI_REG_WUM8 0x0E8
106#define PCI_CFG_LINK_CTRL 0x0F0
Tomas Winkler8f061892008-05-29 16:34:56 +0800107
108/* PCI register values */
Tomas Winklere7b63582008-09-03 11:26:49 +0800109#define PCI_CFG_LINK_CTRL_VAL_L0S_EN 0x01
110#define PCI_CFG_LINK_CTRL_VAL_L1_EN 0x02
111#define PCI_CFG_CMD_REG_INT_DIS_MSK 0x04
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800112#define PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT (0x80000000)
113
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800114#define TFD_QUEUE_SIZE_MAX (256)
115
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800116#define IWL_NUM_SCAN_RATES (2)
117
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800118#define IWL_DEFAULT_TX_RETRY 15
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800119
120#define RX_QUEUE_SIZE 256
121#define RX_QUEUE_MASK 255
122#define RX_QUEUE_SIZE_LOG 8
123
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800124#define TFD_TX_CMD_SLOTS 256
125#define TFD_CMD_SLOTS 32
126
Christoph Hellwig5d08cd12007-10-25 17:15:50 +0800127/*
128 * RX related structures and functions
129 */
130#define RX_FREE_BUFFERS 64
131#define RX_LOW_WATERMARK 8
132
Ben Cahillfcd427b2007-11-29 11:10:00 +0800133/* Size of one Rx buffer in host DRAM */
Ron Rindjunsky9ee1ba42007-11-26 16:14:42 +0200134#define IWL_RX_BUF_SIZE_4K (4 * 1024)
135#define IWL_RX_BUF_SIZE_8K (8 * 1024)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800136
137/* Sizes and addresses for instruction and data memory (SRAM) in
138 * 4965's embedded processor. Driver access is via HBUS_TARG_MEM_* regs. */
139#define RTC_INST_LOWER_BOUND (0x000000)
Tomas Winkler12a81f62008-04-03 16:05:20 -0700140#define IWL49_RTC_INST_UPPER_BOUND (0x018000)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800141
142#define RTC_DATA_LOWER_BOUND (0x800000)
Tomas Winkler12a81f62008-04-03 16:05:20 -0700143#define IWL49_RTC_DATA_UPPER_BOUND (0x80A000)
Ben Cahillfcd427b2007-11-29 11:10:00 +0800144
Ron Rindjunsky099b40b2008-04-21 15:41:53 -0700145#define IWL49_RTC_INST_SIZE (IWL49_RTC_INST_UPPER_BOUND - RTC_INST_LOWER_BOUND)
146#define IWL49_RTC_DATA_SIZE (IWL49_RTC_DATA_UPPER_BOUND - RTC_DATA_LOWER_BOUND)
Zhu Yib481de92007-09-25 17:54:57 -0700147
Tomas Winkler12a81f62008-04-03 16:05:20 -0700148#define IWL_MAX_INST_SIZE IWL49_RTC_INST_SIZE
149#define IWL_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
Zhu Yib481de92007-09-25 17:54:57 -0700150
Ben Cahillfcd427b2007-11-29 11:10:00 +0800151/* Size of uCode instruction memory in bootstrap state machine */
152#define IWL_MAX_BSM_SIZE BSM_SRAM_SIZE
153
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800154static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
Zhu Yib481de92007-09-25 17:54:57 -0700155{
156 return (addr >= RTC_DATA_LOWER_BOUND) &&
Tomas Winkler12a81f62008-04-03 16:05:20 -0700157 (addr < IWL49_RTC_DATA_UPPER_BOUND);
Zhu Yib481de92007-09-25 17:54:57 -0700158}
159
Ben Cahill5991b412007-11-29 11:10:01 +0800160/********************* START TEMPERATURE *************************************/
161
Ben Cahill0c434c52007-11-29 11:10:02 +0800162/**
Ben Cahill5991b412007-11-29 11:10:01 +0800163 * 4965 temperature calculation.
164 *
165 * The driver must calculate the device temperature before calculating
166 * a txpower setting (amplifier gain is temperature dependent). The
167 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
168 * values used for the life of the driver, and one of which (R4) is the
169 * real-time temperature indicator.
170 *
171 * uCode provides all 4 values to the driver via the "initialize alive"
172 * notification (see struct iwl4965_init_alive_resp). After the runtime uCode
173 * image loads, uCode updates the R4 value via statistics notifications
174 * (see STATISTICS_NOTIFICATION), which occur after each received beacon
175 * when associated, or can be requested via REPLY_STATISTICS_CMD.
176 *
177 * NOTE: uCode provides the R4 value as a 23-bit signed value. Driver
178 * must sign-extend to 32 bits before applying formula below.
179 *
180 * Formula:
181 *
182 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
183 *
184 * NOTE: The basic formula is 259 * (R4-R2) / (R3-R1). The 97/100 is
185 * an additional correction, which should be centered around 0 degrees
186 * Celsius (273 degrees Kelvin). The 8 (3 percent of 273) compensates for
187 * centering the 97/100 correction around 0 degrees K.
188 *
189 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
190 * temperature with factory-measured temperatures when calculating txpower
191 * settings.
192 */
193#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
194#define TEMPERATURE_CALIB_A_VAL 259
195
196/* Limit range of calculated temperature to be between these Kelvin values */
197#define IWL_TX_POWER_TEMPERATURE_MIN (263)
198#define IWL_TX_POWER_TEMPERATURE_MAX (410)
199
200#define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
201 (((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
202 ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
203
204/********************* END TEMPERATURE ***************************************/
205
Zhu Yib481de92007-09-25 17:54:57 -0700206/********************* START TXPOWER *****************************************/
Zhu Yib481de92007-09-25 17:54:57 -0700207
Ben Cahill0c434c52007-11-29 11:10:02 +0800208/**
209 * 4965 txpower calculations rely on information from three sources:
210 *
211 * 1) EEPROM
212 * 2) "initialize" alive notification
213 * 3) statistics notifications
214 *
215 * EEPROM data consists of:
216 *
217 * 1) Regulatory information (max txpower and channel usage flags) is provided
218 * separately for each channel that can possibly supported by 4965.
219 * 40 MHz wide (.11n fat) channels are listed separately from 20 MHz
220 * (legacy) channels.
221 *
222 * See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
223 * for locations in EEPROM.
224 *
225 * 2) Factory txpower calibration information is provided separately for
226 * sub-bands of contiguous channels. 2.4GHz has just one sub-band,
227 * but 5 GHz has several sub-bands.
228 *
229 * In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
230 *
231 * See struct iwl4965_eeprom_calib_info (and the tree of structures
232 * contained within it) for format, and struct iwl4965_eeprom for
233 * locations in EEPROM.
234 *
235 * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
236 * consists of:
237 *
238 * 1) Temperature calculation parameters.
239 *
240 * 2) Power supply voltage measurement.
241 *
242 * 3) Tx gain compensation to balance 2 transmitters for MIMO use.
243 *
244 * Statistics notifications deliver:
245 *
246 * 1) Current values for temperature param R4.
247 */
248
249/**
250 * To calculate a txpower setting for a given desired target txpower, channel,
251 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
252 * support MIMO and transmit diversity), driver must do the following:
253 *
254 * 1) Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
255 * Do not exceed regulatory limit; reduce target txpower if necessary.
256 *
257 * If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
258 * 2 transmitters will be used simultaneously; driver must reduce the
259 * regulatory limit by 3 dB (half-power) for each transmitter, so the
260 * combined total output of the 2 transmitters is within regulatory limits.
261 *
262 *
263 * 2) Compare target txpower vs. (EEPROM) saturation txpower *reduced by
264 * backoff for this bit rate*. Do not exceed (saturation - backoff[rate]);
265 * reduce target txpower if necessary.
266 *
267 * Backoff values below are in 1/2 dB units (equivalent to steps in
268 * txpower gain tables):
269 *
270 * OFDM 6 - 36 MBit: 10 steps (5 dB)
271 * OFDM 48 MBit: 15 steps (7.5 dB)
272 * OFDM 54 MBit: 17 steps (8.5 dB)
273 * OFDM 60 MBit: 20 steps (10 dB)
274 * CCK all rates: 10 steps (5 dB)
275 *
276 * Backoff values apply to saturation txpower on a per-transmitter basis;
277 * when using MIMO (2 transmitters), each transmitter uses the same
278 * saturation level provided in EEPROM, and the same backoff values;
279 * no reduction (such as with regulatory txpower limits) is required.
280 *
281 * Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
282 * widths and 40 Mhz (.11n fat) channel widths; there is no separate
283 * factory measurement for fat channels.
284 *
285 * The result of this step is the final target txpower. The rest of
286 * the steps figure out the proper settings for the device to achieve
287 * that target txpower.
288 *
289 *
290 * 3) Determine (EEPROM) calibration subband for the target channel, by
291 * comparing against first and last channels in each subband
292 * (see struct iwl4965_eeprom_calib_subband_info).
293 *
294 *
295 * 4) Linearly interpolate (EEPROM) factory calibration measurement sets,
296 * referencing the 2 factory-measured (sample) channels within the subband.
297 *
298 * Interpolation is based on difference between target channel's frequency
299 * and the sample channels' frequencies. Since channel numbers are based
300 * on frequency (5 MHz between each channel number), this is equivalent
301 * to interpolating based on channel number differences.
302 *
303 * Note that the sample channels may or may not be the channels at the
304 * edges of the subband. The target channel may be "outside" of the
305 * span of the sampled channels.
306 *
307 * Driver may choose the pair (for 2 Tx chains) of measurements (see
308 * struct iwl4965_eeprom_calib_ch_info) for which the actual measured
309 * txpower comes closest to the desired txpower. Usually, though,
310 * the middle set of measurements is closest to the regulatory limits,
311 * and is therefore a good choice for all txpower calculations (this
312 * assumes that high accuracy is needed for maximizing legal txpower,
313 * while lower txpower configurations do not need as much accuracy).
314 *
315 * Driver should interpolate both members of the chosen measurement pair,
316 * i.e. for both Tx chains (radio transmitters), unless the driver knows
317 * that only one of the chains will be used (e.g. only one tx antenna
318 * connected, but this should be unusual). The rate scaling algorithm
319 * switches antennas to find best performance, so both Tx chains will
320 * be used (although only one at a time) even for non-MIMO transmissions.
321 *
322 * Driver should interpolate factory values for temperature, gain table
323 * index, and actual power. The power amplifier detector values are
324 * not used by the driver.
325 *
326 * Sanity check: If the target channel happens to be one of the sample
327 * channels, the results should agree with the sample channel's
328 * measurements!
329 *
330 *
331 * 5) Find difference between desired txpower and (interpolated)
332 * factory-measured txpower. Using (interpolated) factory gain table index
333 * (shown elsewhere) as a starting point, adjust this index lower to
334 * increase txpower, or higher to decrease txpower, until the target
335 * txpower is reached. Each step in the gain table is 1/2 dB.
336 *
337 * For example, if factory measured txpower is 16 dBm, and target txpower
338 * is 13 dBm, add 6 steps to the factory gain index to reduce txpower
339 * by 3 dB.
340 *
341 *
342 * 6) Find difference between current device temperature and (interpolated)
343 * factory-measured temperature for sub-band. Factory values are in
344 * degrees Celsius. To calculate current temperature, see comments for
345 * "4965 temperature calculation".
346 *
347 * If current temperature is higher than factory temperature, driver must
348 * increase gain (lower gain table index), and vice versa.
349 *
350 * Temperature affects gain differently for different channels:
351 *
352 * 2.4 GHz all channels: 3.5 degrees per half-dB step
353 * 5 GHz channels 34-43: 4.5 degrees per half-dB step
354 * 5 GHz channels >= 44: 4.0 degrees per half-dB step
355 *
356 * NOTE: Temperature can increase rapidly when transmitting, especially
357 * with heavy traffic at high txpowers. Driver should update
358 * temperature calculations often under these conditions to
359 * maintain strong txpower in the face of rising temperature.
360 *
361 *
362 * 7) Find difference between current power supply voltage indicator
363 * (from "initialize alive") and factory-measured power supply voltage
364 * indicator (EEPROM).
365 *
366 * If the current voltage is higher (indicator is lower) than factory
367 * voltage, gain should be reduced (gain table index increased) by:
368 *
369 * (eeprom - current) / 7
370 *
371 * If the current voltage is lower (indicator is higher) than factory
372 * voltage, gain should be increased (gain table index decreased) by:
373 *
374 * 2 * (current - eeprom) / 7
375 *
376 * If number of index steps in either direction turns out to be > 2,
377 * something is wrong ... just use 0.
378 *
379 * NOTE: Voltage compensation is independent of band/channel.
380 *
381 * NOTE: "Initialize" uCode measures current voltage, which is assumed
382 * to be constant after this initial measurement. Voltage
383 * compensation for txpower (number of steps in gain table)
384 * may be calculated once and used until the next uCode bootload.
385 *
386 *
387 * 8) If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
388 * adjust txpower for each transmitter chain, so txpower is balanced
389 * between the two chains. There are 5 pairs of tx_atten[group][chain]
390 * values in "initialize alive", one pair for each of 5 channel ranges:
391 *
392 * Group 0: 5 GHz channel 34-43
393 * Group 1: 5 GHz channel 44-70
394 * Group 2: 5 GHz channel 71-124
395 * Group 3: 5 GHz channel 125-200
396 * Group 4: 2.4 GHz all channels
397 *
398 * Add the tx_atten[group][chain] value to the index for the target chain.
399 * The values are signed, but are in pairs of 0 and a non-negative number,
400 * so as to reduce gain (if necessary) of the "hotter" channel. This
401 * avoids any need to double-check for regulatory compliance after
402 * this step.
403 *
404 *
405 * 9) If setting up for a CCK rate, lower the gain by adding a CCK compensation
406 * value to the index:
407 *
408 * Hardware rev B: 9 steps (4.5 dB)
409 * Hardware rev C: 5 steps (2.5 dB)
410 *
411 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
412 * bits [3:2], 1 = B, 2 = C.
413 *
414 * NOTE: This compensation is in addition to any saturation backoff that
415 * might have been applied in an earlier step.
416 *
417 *
418 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
419 *
420 * Limit the adjusted index to stay within the table!
421 *
422 *
423 * 11) Read gain table entries for DSP and radio gain, place into appropriate
424 * location(s) in command (struct iwl4965_txpowertable_cmd).
425 */
426
427/* Limit range of txpower output target to be between these values */
428#define IWL_TX_POWER_TARGET_POWER_MIN (0) /* 0 dBm = 1 milliwatt */
429#define IWL_TX_POWER_TARGET_POWER_MAX (16) /* 16 dBm */
430
431/**
432 * When MIMO is used (2 transmitters operating simultaneously), driver should
433 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
434 * for the device. That is, use half power for each transmitter, so total
435 * txpower is within regulatory limits.
436 *
437 * The value "6" represents number of steps in gain table to reduce power 3 dB.
438 * Each step is 1/2 dB.
439 */
440#define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
441
442/**
443 * CCK gain compensation.
444 *
445 * When calculating txpowers for CCK, after making sure that the target power
446 * is within regulatory and saturation limits, driver must additionally
447 * back off gain by adding these values to the gain table index.
448 *
449 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
450 * bits [3:2], 1 = B, 2 = C.
451 */
452#define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
453#define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
454
455/*
456 * 4965 power supply voltage compensation for txpower
457 */
458#define TX_POWER_IWL_VOLTAGE_CODES_PER_03V (7)
459
460/**
461 * Gain tables.
462 *
463 * The following tables contain pair of values for setting txpower, i.e.
464 * gain settings for the output of the device's digital signal processor (DSP),
465 * and for the analog gain structure of the transmitter.
466 *
467 * Each entry in the gain tables represents a step of 1/2 dB. Note that these
468 * are *relative* steps, not indications of absolute output power. Output
469 * power varies with temperature, voltage, and channel frequency, and also
470 * requires consideration of average power (to satisfy regulatory constraints),
471 * and peak power (to avoid distortion of the output signal).
472 *
473 * Each entry contains two values:
474 * 1) DSP gain (or sometimes called DSP attenuation). This is a fine-grained
475 * linear value that multiplies the output of the digital signal processor,
476 * before being sent to the analog radio.
477 * 2) Radio gain. This sets the analog gain of the radio Tx path.
478 * It is a coarser setting, and behaves in a logarithmic (dB) fashion.
479 *
480 * EEPROM contains factory calibration data for txpower. This maps actual
481 * measured txpower levels to gain settings in the "well known" tables
482 * below ("well-known" means here that both factory calibration *and* the
483 * driver work with the same table).
484 *
485 * There are separate tables for 2.4 GHz and 5 GHz bands. The 5 GHz table
486 * has an extension (into negative indexes), in case the driver needs to
487 * boost power setting for high device temperatures (higher than would be
488 * present during factory calibration). A 5 Ghz EEPROM index of "40"
489 * corresponds to the 49th entry in the table used by the driver.
490 */
491#define MIN_TX_GAIN_INDEX (0) /* highest gain, lowest idx, 2.4 */
492#define MIN_TX_GAIN_INDEX_52GHZ_EXT (-9) /* highest gain, lowest idx, 5 */
493
494/**
495 * 2.4 GHz gain table
496 *
497 * Index Dsp gain Radio gain
498 * 0 110 0x3f (highest gain)
499 * 1 104 0x3f
500 * 2 98 0x3f
501 * 3 110 0x3e
502 * 4 104 0x3e
503 * 5 98 0x3e
504 * 6 110 0x3d
505 * 7 104 0x3d
506 * 8 98 0x3d
507 * 9 110 0x3c
508 * 10 104 0x3c
509 * 11 98 0x3c
510 * 12 110 0x3b
511 * 13 104 0x3b
512 * 14 98 0x3b
513 * 15 110 0x3a
514 * 16 104 0x3a
515 * 17 98 0x3a
516 * 18 110 0x39
517 * 19 104 0x39
518 * 20 98 0x39
519 * 21 110 0x38
520 * 22 104 0x38
521 * 23 98 0x38
522 * 24 110 0x37
523 * 25 104 0x37
524 * 26 98 0x37
525 * 27 110 0x36
526 * 28 104 0x36
527 * 29 98 0x36
528 * 30 110 0x35
529 * 31 104 0x35
530 * 32 98 0x35
531 * 33 110 0x34
532 * 34 104 0x34
533 * 35 98 0x34
534 * 36 110 0x33
535 * 37 104 0x33
536 * 38 98 0x33
537 * 39 110 0x32
538 * 40 104 0x32
539 * 41 98 0x32
540 * 42 110 0x31
541 * 43 104 0x31
542 * 44 98 0x31
543 * 45 110 0x30
544 * 46 104 0x30
545 * 47 98 0x30
546 * 48 110 0x6
547 * 49 104 0x6
548 * 50 98 0x6
549 * 51 110 0x5
550 * 52 104 0x5
551 * 53 98 0x5
552 * 54 110 0x4
553 * 55 104 0x4
554 * 56 98 0x4
555 * 57 110 0x3
556 * 58 104 0x3
557 * 59 98 0x3
558 * 60 110 0x2
559 * 61 104 0x2
560 * 62 98 0x2
561 * 63 110 0x1
562 * 64 104 0x1
563 * 65 98 0x1
564 * 66 110 0x0
565 * 67 104 0x0
566 * 68 98 0x0
567 * 69 97 0
568 * 70 96 0
569 * 71 95 0
570 * 72 94 0
571 * 73 93 0
572 * 74 92 0
573 * 75 91 0
574 * 76 90 0
575 * 77 89 0
576 * 78 88 0
577 * 79 87 0
578 * 80 86 0
579 * 81 85 0
580 * 82 84 0
581 * 83 83 0
582 * 84 82 0
583 * 85 81 0
584 * 86 80 0
585 * 87 79 0
586 * 88 78 0
587 * 89 77 0
588 * 90 76 0
589 * 91 75 0
590 * 92 74 0
591 * 93 73 0
592 * 94 72 0
593 * 95 71 0
594 * 96 70 0
595 * 97 69 0
596 * 98 68 0
597 */
598
599/**
600 * 5 GHz gain table
601 *
602 * Index Dsp gain Radio gain
603 * -9 123 0x3F (highest gain)
604 * -8 117 0x3F
605 * -7 110 0x3F
606 * -6 104 0x3F
607 * -5 98 0x3F
608 * -4 110 0x3E
609 * -3 104 0x3E
610 * -2 98 0x3E
611 * -1 110 0x3D
612 * 0 104 0x3D
613 * 1 98 0x3D
614 * 2 110 0x3C
615 * 3 104 0x3C
616 * 4 98 0x3C
617 * 5 110 0x3B
618 * 6 104 0x3B
619 * 7 98 0x3B
620 * 8 110 0x3A
621 * 9 104 0x3A
622 * 10 98 0x3A
623 * 11 110 0x39
624 * 12 104 0x39
625 * 13 98 0x39
626 * 14 110 0x38
627 * 15 104 0x38
628 * 16 98 0x38
629 * 17 110 0x37
630 * 18 104 0x37
631 * 19 98 0x37
632 * 20 110 0x36
633 * 21 104 0x36
634 * 22 98 0x36
635 * 23 110 0x35
636 * 24 104 0x35
637 * 25 98 0x35
638 * 26 110 0x34
639 * 27 104 0x34
640 * 28 98 0x34
641 * 29 110 0x33
642 * 30 104 0x33
643 * 31 98 0x33
644 * 32 110 0x32
645 * 33 104 0x32
646 * 34 98 0x32
647 * 35 110 0x31
648 * 36 104 0x31
649 * 37 98 0x31
650 * 38 110 0x30
651 * 39 104 0x30
652 * 40 98 0x30
653 * 41 110 0x25
654 * 42 104 0x25
655 * 43 98 0x25
656 * 44 110 0x24
657 * 45 104 0x24
658 * 46 98 0x24
659 * 47 110 0x23
660 * 48 104 0x23
661 * 49 98 0x23
662 * 50 110 0x22
663 * 51 104 0x18
664 * 52 98 0x18
665 * 53 110 0x17
666 * 54 104 0x17
667 * 55 98 0x17
668 * 56 110 0x16
669 * 57 104 0x16
670 * 58 98 0x16
671 * 59 110 0x15
672 * 60 104 0x15
673 * 61 98 0x15
674 * 62 110 0x14
675 * 63 104 0x14
676 * 64 98 0x14
677 * 65 110 0x13
678 * 66 104 0x13
679 * 67 98 0x13
680 * 68 110 0x12
681 * 69 104 0x08
682 * 70 98 0x08
683 * 71 110 0x07
684 * 72 104 0x07
685 * 73 98 0x07
686 * 74 110 0x06
687 * 75 104 0x06
688 * 76 98 0x06
689 * 77 110 0x05
690 * 78 104 0x05
691 * 79 98 0x05
692 * 80 110 0x04
693 * 81 104 0x04
694 * 82 98 0x04
695 * 83 110 0x03
696 * 84 104 0x03
697 * 85 98 0x03
698 * 86 110 0x02
699 * 87 104 0x02
700 * 88 98 0x02
701 * 89 110 0x01
702 * 90 104 0x01
703 * 91 98 0x01
704 * 92 110 0x00
705 * 93 104 0x00
706 * 94 98 0x00
707 * 95 93 0x00
708 * 96 88 0x00
709 * 97 83 0x00
710 * 98 78 0x00
711 */
712
713
714/**
715 * Sanity checks and default values for EEPROM regulatory levels.
716 * If EEPROM values fall outside MIN/MAX range, use default values.
717 *
718 * Regulatory limits refer to the maximum average txpower allowed by
719 * regulatory agencies in the geographies in which the device is meant
720 * to be operated. These limits are SKU-specific (i.e. geography-specific),
721 * and channel-specific; each channel has an individual regulatory limit
722 * listed in the EEPROM.
723 *
724 * Units are in half-dBm (i.e. "34" means 17 dBm).
725 */
726#define IWL_TX_POWER_DEFAULT_REGULATORY_24 (34)
727#define IWL_TX_POWER_DEFAULT_REGULATORY_52 (34)
728#define IWL_TX_POWER_REGULATORY_MIN (0)
729#define IWL_TX_POWER_REGULATORY_MAX (34)
730
731/**
732 * Sanity checks and default values for EEPROM saturation levels.
733 * If EEPROM values fall outside MIN/MAX range, use default values.
734 *
735 * Saturation is the highest level that the output power amplifier can produce
736 * without significant clipping distortion. This is a "peak" power level.
737 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
738 * require differing amounts of backoff, relative to their average power output,
739 * in order to avoid clipping distortion.
740 *
741 * Driver must make sure that it is violating neither the saturation limit,
742 * nor the regulatory limit, when calculating Tx power settings for various
743 * rates.
744 *
745 * Units are in half-dBm (i.e. "38" means 19 dBm).
746 */
747#define IWL_TX_POWER_DEFAULT_SATURATION_24 (38)
748#define IWL_TX_POWER_DEFAULT_SATURATION_52 (38)
749#define IWL_TX_POWER_SATURATION_MIN (20)
750#define IWL_TX_POWER_SATURATION_MAX (50)
751
752/**
753 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
754 * and thermal Txpower calibration.
755 *
756 * When calculating txpower, driver must compensate for current device
757 * temperature; higher temperature requires higher gain. Driver must calculate
758 * current temperature (see "4965 temperature calculation"), then compare vs.
759 * factory calibration temperature in EEPROM; if current temperature is higher
760 * than factory temperature, driver must *increase* gain by proportions shown
761 * in table below. If current temperature is lower than factory, driver must
762 * *decrease* gain.
763 *
764 * Different frequency ranges require different compensation, as shown below.
765 */
766/* Group 0, 5.2 GHz ch 34-43: 4.5 degrees per 1/2 dB. */
767#define CALIB_IWL_TX_ATTEN_GR1_FCH 34
768#define CALIB_IWL_TX_ATTEN_GR1_LCH 43
769
770/* Group 1, 5.3 GHz ch 44-70: 4.0 degrees per 1/2 dB. */
771#define CALIB_IWL_TX_ATTEN_GR2_FCH 44
772#define CALIB_IWL_TX_ATTEN_GR2_LCH 70
773
774/* Group 2, 5.5 GHz ch 71-124: 4.0 degrees per 1/2 dB. */
775#define CALIB_IWL_TX_ATTEN_GR3_FCH 71
776#define CALIB_IWL_TX_ATTEN_GR3_LCH 124
777
778/* Group 3, 5.7 GHz ch 125-200: 4.0 degrees per 1/2 dB. */
779#define CALIB_IWL_TX_ATTEN_GR4_FCH 125
780#define CALIB_IWL_TX_ATTEN_GR4_LCH 200
781
782/* Group 4, 2.4 GHz all channels: 3.5 degrees per 1/2 dB. */
783#define CALIB_IWL_TX_ATTEN_GR5_FCH 1
784#define CALIB_IWL_TX_ATTEN_GR5_LCH 20
785
Zhu Yib481de92007-09-25 17:54:57 -0700786enum {
787 CALIB_CH_GROUP_1 = 0,
788 CALIB_CH_GROUP_2 = 1,
789 CALIB_CH_GROUP_3 = 2,
790 CALIB_CH_GROUP_4 = 3,
791 CALIB_CH_GROUP_5 = 4,
792 CALIB_CH_GROUP_MAX
793};
794
Zhu Yib481de92007-09-25 17:54:57 -0700795/********************* END TXPOWER *****************************************/
796
Ben Cahill5d5456f2007-11-29 11:10:06 +0800797
798/**
799 * Tx/Rx Queues
800 *
801 * Most communication between driver and 4965 is via queues of data buffers.
802 * For example, all commands that the driver issues to device's embedded
803 * controller (uCode) are via the command queue (one of the Tx queues). All
804 * uCode command responses/replies/notifications, including Rx frames, are
805 * conveyed from uCode to driver via the Rx queue.
806 *
807 * Most support for these queues, including handshake support, resides in
808 * structures in host DRAM, shared between the driver and the device. When
809 * allocating this memory, the driver must make sure that data written by
810 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
811 * cache memory), so DRAM and cache are consistent, and the device can
812 * immediately see changes made by the driver.
813 *
814 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
815 * up to 7 DMA channels (FIFOs). Each Tx queue is supported by a circular array
816 * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
817 */
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700818#define IWL49_MAX_WIN_SIZE 64
819#define IWL49_QUEUE_SIZE 256
820#define IWL49_NUM_FIFOS 7
821#define IWL49_CMD_FIFO_NUM 4
822#define IWL49_NUM_QUEUES 16
Tomas Winkler9f17b312008-07-11 11:53:35 +0800823#define IWL49_NUM_AMPDU_QUEUES 8
Ben Cahill5d5456f2007-11-29 11:10:06 +0800824
825/**
Ron Rindjunsky1053d352008-05-05 10:22:43 +0800826 * struct iwl_tfd_frame_data
Ben Cahill5d5456f2007-11-29 11:10:06 +0800827 *
828 * Describes up to 2 buffers containing (contiguous) portions of a Tx frame.
829 * Each buffer must be on dword boundary.
830 * Up to 10 iwl_tfd_frame_data structures, describing up to 20 buffers,
831 * may be filled within a TFD (iwl_tfd_frame).
832 *
833 * Bit fields in tb1_addr:
834 * 31- 0: Tx buffer 1 address bits [31:0]
835 *
836 * Bit fields in val1:
837 * 31-16: Tx buffer 2 address bits [15:0]
838 * 15- 4: Tx buffer 1 length (bytes)
839 * 3- 0: Tx buffer 1 address bits [32:32]
840 *
841 * Bit fields in val2:
842 * 31-20: Tx buffer 2 length (bytes)
843 * 19- 0: Tx buffer 2 address bits [35:16]
844 */
Ron Rindjunsky1053d352008-05-05 10:22:43 +0800845struct iwl_tfd_frame_data {
Zhu Yib481de92007-09-25 17:54:57 -0700846 __le32 tb1_addr;
847
848 __le32 val1;
849 /* __le32 ptb1_32_35:4; */
850#define IWL_tb1_addr_hi_POS 0
851#define IWL_tb1_addr_hi_LEN 4
852#define IWL_tb1_addr_hi_SYM val1
853 /* __le32 tb_len1:12; */
854#define IWL_tb1_len_POS 4
855#define IWL_tb1_len_LEN 12
856#define IWL_tb1_len_SYM val1
857 /* __le32 ptb2_0_15:16; */
858#define IWL_tb2_addr_lo16_POS 16
859#define IWL_tb2_addr_lo16_LEN 16
860#define IWL_tb2_addr_lo16_SYM val1
861
862 __le32 val2;
863 /* __le32 ptb2_16_35:20; */
864#define IWL_tb2_addr_hi20_POS 0
865#define IWL_tb2_addr_hi20_LEN 20
866#define IWL_tb2_addr_hi20_SYM val2
867 /* __le32 tb_len2:12; */
868#define IWL_tb2_len_POS 20
869#define IWL_tb2_len_LEN 12
870#define IWL_tb2_len_SYM val2
871} __attribute__ ((packed));
872
Ben Cahill5d5456f2007-11-29 11:10:06 +0800873
874/**
Ron Rindjunsky1053d352008-05-05 10:22:43 +0800875 * struct iwl_tfd_frame
Ben Cahill5d5456f2007-11-29 11:10:06 +0800876 *
877 * Transmit Frame Descriptor (TFD)
878 *
879 * 4965 supports up to 16 Tx queues resident in host DRAM.
880 * Each Tx queue uses a circular buffer of 256 TFDs stored in host DRAM.
881 * Both driver and device share these circular buffers, each of which must be
882 * contiguous 256 TFDs x 128 bytes-per-TFD = 32 KBytes for 4965.
883 *
884 * Driver must indicate the physical address of the base of each
885 * circular buffer via the 4965's FH_MEM_CBBC_QUEUE registers.
886 *
887 * Each TFD contains pointer/size information for up to 20 data buffers
888 * in host DRAM. These buffers collectively contain the (one) frame described
889 * by the TFD. Each buffer must be a single contiguous block of memory within
890 * itself, but buffers may be scattered in host DRAM. Each buffer has max size
891 * of (4K - 4). The 4965 concatenates all of a TFD's buffers into a single
892 * Tx frame, up to 8 KBytes in size.
893 *
894 * Bit fields in the control dword (val0):
895 * 31-30: # dwords (0-3) of padding required at end of frame for 16-byte bound
896 * 29: reserved
897 * 28-24: # Transmit Buffer Descriptors in TFD
898 * 23- 0: reserved
899 *
900 * A maximum of 255 (not 256!) TFDs may be on a queue waiting for Tx.
901 */
Ron Rindjunsky1053d352008-05-05 10:22:43 +0800902struct iwl_tfd_frame {
Zhu Yib481de92007-09-25 17:54:57 -0700903 __le32 val0;
904 /* __le32 rsvd1:24; */
905 /* __le32 num_tbs:5; */
906#define IWL_num_tbs_POS 24
907#define IWL_num_tbs_LEN 5
908#define IWL_num_tbs_SYM val0
909 /* __le32 rsvd2:1; */
910 /* __le32 padding:2; */
Ron Rindjunsky1053d352008-05-05 10:22:43 +0800911 struct iwl_tfd_frame_data pa[10];
Zhu Yib481de92007-09-25 17:54:57 -0700912 __le32 reserved;
913} __attribute__ ((packed));
914
Zhu Yib481de92007-09-25 17:54:57 -0700915
Ben Cahill5d5456f2007-11-29 11:10:06 +0800916/**
917 * struct iwl4965_queue_byte_cnt_entry
918 *
919 * Byte Count Table Entry
920 *
921 * Bit fields:
922 * 15-12: reserved
923 * 11- 0: total to-be-transmitted byte count of frame (does not include command)
924 */
Zhu Yib481de92007-09-25 17:54:57 -0700925struct iwl4965_queue_byte_cnt_entry {
926 __le16 val;
927 /* __le16 byte_cnt:12; */
928#define IWL_byte_cnt_POS 0
929#define IWL_byte_cnt_LEN 12
930#define IWL_byte_cnt_SYM val
931 /* __le16 rsvd:4; */
932} __attribute__ ((packed));
933
Ben Cahill5d5456f2007-11-29 11:10:06 +0800934
935/**
936 * struct iwl4965_sched_queue_byte_cnt_tbl
937 *
938 * Byte Count table
939 *
940 * Each Tx queue uses a byte-count table containing 320 entries:
941 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
942 * duplicate the first 64 entries (to avoid wrap-around within a Tx window;
943 * max Tx window is 64 TFDs).
944 *
945 * When driver sets up a new TFD, it must also enter the total byte count
946 * of the frame to be transmitted into the corresponding entry in the byte
947 * count table for the chosen Tx queue. If the TFD index is 0-63, the driver
948 * must duplicate the byte count entry in corresponding index 256-319.
949 *
950 * "dont_care" padding puts each byte count table on a 1024-byte boundary;
951 * 4965 assumes tables are separated by 1024 bytes.
952 */
Zhu Yib481de92007-09-25 17:54:57 -0700953struct iwl4965_sched_queue_byte_cnt_tbl {
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700954 struct iwl4965_queue_byte_cnt_entry tfd_offset[IWL49_QUEUE_SIZE +
955 IWL49_MAX_WIN_SIZE];
Zhu Yib481de92007-09-25 17:54:57 -0700956 u8 dont_care[1024 -
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700957 (IWL49_QUEUE_SIZE + IWL49_MAX_WIN_SIZE) *
Zhu Yib481de92007-09-25 17:54:57 -0700958 sizeof(__le16)];
959} __attribute__ ((packed));
960
Ben Cahill5d5456f2007-11-29 11:10:06 +0800961
962/**
963 * struct iwl4965_shared - handshake area for Tx and Rx
964 *
965 * For convenience in allocating memory, this structure combines 2 areas of
966 * DRAM which must be shared between driver and 4965. These do not need to
967 * be combined, if better allocation would result from keeping them separate:
968 *
969 * 1) The Tx byte count tables occupy 1024 bytes each (16 KBytes total for
970 * 16 queues). Driver uses SCD_DRAM_BASE_ADDR to tell 4965 where to find
971 * the first of these tables. 4965 assumes tables are 1024 bytes apart.
972 *
973 * 2) The Rx status (val0 and val1) occupies only 8 bytes. Driver uses
974 * FH_RSCSR_CHNL0_STTS_WPTR_REG to tell 4965 where to find this area.
975 * Driver reads val0 to determine the latest Receive Buffer Descriptor (RBD)
976 * that has been filled by the 4965.
977 *
978 * Bit fields val0:
979 * 31-12: Not used
980 * 11- 0: Index of last filled Rx buffer descriptor (4965 writes, driver reads)
981 *
982 * Bit fields val1:
983 * 31- 0: Not used
984 */
Christoph Hellwigbb8c0932008-01-27 16:41:47 -0800985struct iwl4965_shared {
Zhu Yib481de92007-09-25 17:54:57 -0700986 struct iwl4965_sched_queue_byte_cnt_tbl
Emmanuel Grumbach038669e2008-04-23 17:15:04 -0700987 queues_byte_cnt_tbls[IWL49_NUM_QUEUES];
Tomas Winkler059ff822008-04-14 21:16:14 -0700988 __le32 rb_closed;
Zhu Yib481de92007-09-25 17:54:57 -0700989
990 /* __le32 rb_closed_stts_rb_num:12; */
991#define IWL_rb_closed_stts_rb_num_POS 0
992#define IWL_rb_closed_stts_rb_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -0700993#define IWL_rb_closed_stts_rb_num_SYM rb_closed
Zhu Yib481de92007-09-25 17:54:57 -0700994 /* __le32 rsrv1:4; */
995 /* __le32 rb_closed_stts_rx_frame_num:12; */
996#define IWL_rb_closed_stts_rx_frame_num_POS 16
997#define IWL_rb_closed_stts_rx_frame_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -0700998#define IWL_rb_closed_stts_rx_frame_num_SYM rb_closed
Zhu Yib481de92007-09-25 17:54:57 -0700999 /* __le32 rsrv2:4; */
1000
Tomas Winkler059ff822008-04-14 21:16:14 -07001001 __le32 frm_finished;
Zhu Yib481de92007-09-25 17:54:57 -07001002 /* __le32 frame_finished_stts_rb_num:12; */
1003#define IWL_frame_finished_stts_rb_num_POS 0
1004#define IWL_frame_finished_stts_rb_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -07001005#define IWL_frame_finished_stts_rb_num_SYM frm_finished
Zhu Yib481de92007-09-25 17:54:57 -07001006 /* __le32 rsrv3:4; */
1007 /* __le32 frame_finished_stts_rx_frame_num:12; */
1008#define IWL_frame_finished_stts_rx_frame_num_POS 16
1009#define IWL_frame_finished_stts_rx_frame_num_LEN 12
Tomas Winkler059ff822008-04-14 21:16:14 -07001010#define IWL_frame_finished_stts_rx_frame_num_SYM frm_finished
Zhu Yib481de92007-09-25 17:54:57 -07001011 /* __le32 rsrv4:4; */
1012
1013 __le32 padding1; /* so that allocation will be aligned to 16B */
1014 __le32 padding2;
1015} __attribute__ ((packed));
1016
Christoph Hellwigbb8c0932008-01-27 16:41:47 -08001017#endif /* __iwl4965_4965_hw_h__ */