| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | .file	"wm_sqrt.S" | 
|  | 2 | /*---------------------------------------------------------------------------+ | 
|  | 3 | |  wm_sqrt.S                                                                | | 
|  | 4 | |                                                                           | | 
|  | 5 | | Fixed point arithmetic square root evaluation.                            | | 
|  | 6 | |                                                                           | | 
|  | 7 | | Copyright (C) 1992,1993,1995,1997                                         | | 
|  | 8 | |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | | 
|  | 9 | |                       Australia.  E-mail billm@suburbia.net               | | 
|  | 10 | |                                                                           | | 
|  | 11 | | Call from C as:                                                           | | 
|  | 12 | |    int wm_sqrt(FPU_REG *n, unsigned int control_word)                     | | 
|  | 13 | |                                                                           | | 
|  | 14 | +---------------------------------------------------------------------------*/ | 
|  | 15 |  | 
|  | 16 | /*---------------------------------------------------------------------------+ | 
|  | 17 | |  wm_sqrt(FPU_REG *n, unsigned int control_word)                           | | 
|  | 18 | |    returns the square root of n in n.                                     | | 
|  | 19 | |                                                                           | | 
|  | 20 | |  Use Newton's method to compute the square root of a number, which must   | | 
|  | 21 | |  be in the range  [1.0 .. 4.0),  to 64 bits accuracy.                     | | 
|  | 22 | |  Does not check the sign or tag of the argument.                          | | 
|  | 23 | |  Sets the exponent, but not the sign or tag of the result.                | | 
|  | 24 | |                                                                           | | 
|  | 25 | |  The guess is kept in %esi:%edi                                           | | 
|  | 26 | +---------------------------------------------------------------------------*/ | 
|  | 27 |  | 
|  | 28 | #include "exception.h" | 
|  | 29 | #include "fpu_emu.h" | 
|  | 30 |  | 
|  | 31 |  | 
|  | 32 | #ifndef NON_REENTRANT_FPU | 
|  | 33 | /*	Local storage on the stack: */ | 
|  | 34 | #define FPU_accum_3	-4(%ebp)	/* ms word */ | 
|  | 35 | #define FPU_accum_2	-8(%ebp) | 
|  | 36 | #define FPU_accum_1	-12(%ebp) | 
|  | 37 | #define FPU_accum_0	-16(%ebp) | 
|  | 38 |  | 
|  | 39 | /* | 
|  | 40 | * The de-normalised argument: | 
|  | 41 | *                  sq_2                  sq_1              sq_0 | 
|  | 42 | *        b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0 | 
|  | 43 | *           ^ binary point here | 
|  | 44 | */ | 
|  | 45 | #define FPU_fsqrt_arg_2	-20(%ebp)	/* ms word */ | 
|  | 46 | #define FPU_fsqrt_arg_1	-24(%ebp) | 
|  | 47 | #define FPU_fsqrt_arg_0	-28(%ebp)	/* ls word, at most the ms bit is set */ | 
|  | 48 |  | 
|  | 49 | #else | 
|  | 50 | /*	Local storage in a static area: */ | 
|  | 51 | .data | 
|  | 52 | .align 4,0 | 
|  | 53 | FPU_accum_3: | 
|  | 54 | .long	0		/* ms word */ | 
|  | 55 | FPU_accum_2: | 
|  | 56 | .long	0 | 
|  | 57 | FPU_accum_1: | 
|  | 58 | .long	0 | 
|  | 59 | FPU_accum_0: | 
|  | 60 | .long	0 | 
|  | 61 |  | 
|  | 62 | /* The de-normalised argument: | 
|  | 63 | sq_2                  sq_1              sq_0 | 
|  | 64 | b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0 | 
|  | 65 | ^ binary point here | 
|  | 66 | */ | 
|  | 67 | FPU_fsqrt_arg_2: | 
|  | 68 | .long	0		/* ms word */ | 
|  | 69 | FPU_fsqrt_arg_1: | 
|  | 70 | .long	0 | 
|  | 71 | FPU_fsqrt_arg_0: | 
|  | 72 | .long	0		/* ls word, at most the ms bit is set */ | 
|  | 73 | #endif /* NON_REENTRANT_FPU */ | 
|  | 74 |  | 
|  | 75 |  | 
|  | 76 | .text | 
|  | 77 | ENTRY(wm_sqrt) | 
|  | 78 | pushl	%ebp | 
|  | 79 | movl	%esp,%ebp | 
|  | 80 | #ifndef NON_REENTRANT_FPU | 
|  | 81 | subl	$28,%esp | 
|  | 82 | #endif /* NON_REENTRANT_FPU */ | 
|  | 83 | pushl	%esi | 
|  | 84 | pushl	%edi | 
|  | 85 | pushl	%ebx | 
|  | 86 |  | 
|  | 87 | movl	PARAM1,%esi | 
|  | 88 |  | 
|  | 89 | movl	SIGH(%esi),%eax | 
|  | 90 | movl	SIGL(%esi),%ecx | 
|  | 91 | xorl	%edx,%edx | 
|  | 92 |  | 
|  | 93 | /* We use a rough linear estimate for the first guess.. */ | 
|  | 94 |  | 
|  | 95 | cmpw	EXP_BIAS,EXP(%esi) | 
|  | 96 | jnz	sqrt_arg_ge_2 | 
|  | 97 |  | 
|  | 98 | shrl	$1,%eax			/* arg is in the range  [1.0 .. 2.0) */ | 
|  | 99 | rcrl	$1,%ecx | 
|  | 100 | rcrl	$1,%edx | 
|  | 101 |  | 
|  | 102 | sqrt_arg_ge_2: | 
|  | 103 | /* From here on, n is never accessed directly again until it is | 
|  | 104 | replaced by the answer. */ | 
|  | 105 |  | 
|  | 106 | movl	%eax,FPU_fsqrt_arg_2		/* ms word of n */ | 
|  | 107 | movl	%ecx,FPU_fsqrt_arg_1 | 
|  | 108 | movl	%edx,FPU_fsqrt_arg_0 | 
|  | 109 |  | 
|  | 110 | /* Make a linear first estimate */ | 
|  | 111 | shrl	$1,%eax | 
|  | 112 | addl	$0x40000000,%eax | 
|  | 113 | movl	$0xaaaaaaaa,%ecx | 
|  | 114 | mull	%ecx | 
|  | 115 | shll	%edx			/* max result was 7fff... */ | 
|  | 116 | testl	$0x80000000,%edx	/* but min was 3fff... */ | 
|  | 117 | jnz	sqrt_prelim_no_adjust | 
|  | 118 |  | 
|  | 119 | movl	$0x80000000,%edx	/* round up */ | 
|  | 120 |  | 
|  | 121 | sqrt_prelim_no_adjust: | 
|  | 122 | movl	%edx,%esi	/* Our first guess */ | 
|  | 123 |  | 
|  | 124 | /* We have now computed (approx)   (2 + x) / 3, which forms the basis | 
|  | 125 | for a few iterations of Newton's method */ | 
|  | 126 |  | 
|  | 127 | movl	FPU_fsqrt_arg_2,%ecx	/* ms word */ | 
|  | 128 |  | 
|  | 129 | /* | 
|  | 130 | * From our initial estimate, three iterations are enough to get us | 
|  | 131 | * to 30 bits or so. This will then allow two iterations at better | 
|  | 132 | * precision to complete the process. | 
|  | 133 | */ | 
|  | 134 |  | 
|  | 135 | /* Compute  (g + n/g)/2  at each iteration (g is the guess). */ | 
|  | 136 | shrl	%ecx		/* Doing this first will prevent a divide */ | 
|  | 137 | /* overflow later. */ | 
|  | 138 |  | 
|  | 139 | movl	%ecx,%edx	/* msw of the arg / 2 */ | 
|  | 140 | divl	%esi		/* current estimate */ | 
|  | 141 | shrl	%esi		/* divide by 2 */ | 
|  | 142 | addl	%eax,%esi	/* the new estimate */ | 
|  | 143 |  | 
|  | 144 | movl	%ecx,%edx | 
|  | 145 | divl	%esi | 
|  | 146 | shrl	%esi | 
|  | 147 | addl	%eax,%esi | 
|  | 148 |  | 
|  | 149 | movl	%ecx,%edx | 
|  | 150 | divl	%esi | 
|  | 151 | shrl	%esi | 
|  | 152 | addl	%eax,%esi | 
|  | 153 |  | 
|  | 154 | /* | 
|  | 155 | * Now that an estimate accurate to about 30 bits has been obtained (in %esi), | 
|  | 156 | * we improve it to 60 bits or so. | 
|  | 157 | * | 
|  | 158 | * The strategy from now on is to compute new estimates from | 
|  | 159 | *      guess := guess + (n - guess^2) / (2 * guess) | 
|  | 160 | */ | 
|  | 161 |  | 
|  | 162 | /* First, find the square of the guess */ | 
|  | 163 | movl	%esi,%eax | 
|  | 164 | mull	%esi | 
|  | 165 | /* guess^2 now in %edx:%eax */ | 
|  | 166 |  | 
|  | 167 | movl	FPU_fsqrt_arg_1,%ecx | 
|  | 168 | subl	%ecx,%eax | 
|  | 169 | movl	FPU_fsqrt_arg_2,%ecx	/* ms word of normalized n */ | 
|  | 170 | sbbl	%ecx,%edx | 
|  | 171 | jnc	sqrt_stage_2_positive | 
|  | 172 |  | 
|  | 173 | /* Subtraction gives a negative result, | 
|  | 174 | negate the result before division. */ | 
|  | 175 | notl	%edx | 
|  | 176 | notl	%eax | 
|  | 177 | addl	$1,%eax | 
|  | 178 | adcl	$0,%edx | 
|  | 179 |  | 
|  | 180 | divl	%esi | 
|  | 181 | movl	%eax,%ecx | 
|  | 182 |  | 
|  | 183 | movl	%edx,%eax | 
|  | 184 | divl	%esi | 
|  | 185 | jmp	sqrt_stage_2_finish | 
|  | 186 |  | 
|  | 187 | sqrt_stage_2_positive: | 
|  | 188 | divl	%esi | 
|  | 189 | movl	%eax,%ecx | 
|  | 190 |  | 
|  | 191 | movl	%edx,%eax | 
|  | 192 | divl	%esi | 
|  | 193 |  | 
|  | 194 | notl	%ecx | 
|  | 195 | notl	%eax | 
|  | 196 | addl	$1,%eax | 
|  | 197 | adcl	$0,%ecx | 
|  | 198 |  | 
|  | 199 | sqrt_stage_2_finish: | 
|  | 200 | sarl	$1,%ecx		/* divide by 2 */ | 
|  | 201 | rcrl	$1,%eax | 
|  | 202 |  | 
|  | 203 | /* Form the new estimate in %esi:%edi */ | 
|  | 204 | movl	%eax,%edi | 
|  | 205 | addl	%ecx,%esi | 
|  | 206 |  | 
|  | 207 | jnz	sqrt_stage_2_done	/* result should be [1..2) */ | 
|  | 208 |  | 
|  | 209 | #ifdef PARANOID | 
|  | 210 | /* It should be possible to get here only if the arg is ffff....ffff */ | 
|  | 211 | cmp	$0xffffffff,FPU_fsqrt_arg_1 | 
|  | 212 | jnz	sqrt_stage_2_error | 
|  | 213 | #endif /* PARANOID */ | 
|  | 214 |  | 
|  | 215 | /* The best rounded result. */ | 
|  | 216 | xorl	%eax,%eax | 
|  | 217 | decl	%eax | 
|  | 218 | movl	%eax,%edi | 
|  | 219 | movl	%eax,%esi | 
|  | 220 | movl	$0x7fffffff,%eax | 
|  | 221 | jmp	sqrt_round_result | 
|  | 222 |  | 
|  | 223 | #ifdef PARANOID | 
|  | 224 | sqrt_stage_2_error: | 
|  | 225 | pushl	EX_INTERNAL|0x213 | 
|  | 226 | call	EXCEPTION | 
|  | 227 | #endif /* PARANOID */ | 
|  | 228 |  | 
|  | 229 | sqrt_stage_2_done: | 
|  | 230 |  | 
|  | 231 | /* Now the square root has been computed to better than 60 bits. */ | 
|  | 232 |  | 
|  | 233 | /* Find the square of the guess. */ | 
|  | 234 | movl	%edi,%eax		/* ls word of guess */ | 
|  | 235 | mull	%edi | 
|  | 236 | movl	%edx,FPU_accum_1 | 
|  | 237 |  | 
|  | 238 | movl	%esi,%eax | 
|  | 239 | mull	%esi | 
|  | 240 | movl	%edx,FPU_accum_3 | 
|  | 241 | movl	%eax,FPU_accum_2 | 
|  | 242 |  | 
|  | 243 | movl	%edi,%eax | 
|  | 244 | mull	%esi | 
|  | 245 | addl	%eax,FPU_accum_1 | 
|  | 246 | adcl	%edx,FPU_accum_2 | 
|  | 247 | adcl	$0,FPU_accum_3 | 
|  | 248 |  | 
|  | 249 | /*	movl	%esi,%eax */ | 
|  | 250 | /*	mull	%edi */ | 
|  | 251 | addl	%eax,FPU_accum_1 | 
|  | 252 | adcl	%edx,FPU_accum_2 | 
|  | 253 | adcl	$0,FPU_accum_3 | 
|  | 254 |  | 
|  | 255 | /* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */ | 
|  | 256 |  | 
|  | 257 | movl	FPU_fsqrt_arg_0,%eax		/* get normalized n */ | 
|  | 258 | subl	%eax,FPU_accum_1 | 
|  | 259 | movl	FPU_fsqrt_arg_1,%eax | 
|  | 260 | sbbl	%eax,FPU_accum_2 | 
|  | 261 | movl	FPU_fsqrt_arg_2,%eax		/* ms word of normalized n */ | 
|  | 262 | sbbl	%eax,FPU_accum_3 | 
|  | 263 | jnc	sqrt_stage_3_positive | 
|  | 264 |  | 
|  | 265 | /* Subtraction gives a negative result, | 
|  | 266 | negate the result before division */ | 
|  | 267 | notl	FPU_accum_1 | 
|  | 268 | notl	FPU_accum_2 | 
|  | 269 | notl	FPU_accum_3 | 
|  | 270 | addl	$1,FPU_accum_1 | 
|  | 271 | adcl	$0,FPU_accum_2 | 
|  | 272 |  | 
|  | 273 | #ifdef PARANOID | 
|  | 274 | adcl	$0,FPU_accum_3	/* This must be zero */ | 
|  | 275 | jz	sqrt_stage_3_no_error | 
|  | 276 |  | 
|  | 277 | sqrt_stage_3_error: | 
|  | 278 | pushl	EX_INTERNAL|0x207 | 
|  | 279 | call	EXCEPTION | 
|  | 280 |  | 
|  | 281 | sqrt_stage_3_no_error: | 
|  | 282 | #endif /* PARANOID */ | 
|  | 283 |  | 
|  | 284 | movl	FPU_accum_2,%edx | 
|  | 285 | movl	FPU_accum_1,%eax | 
|  | 286 | divl	%esi | 
|  | 287 | movl	%eax,%ecx | 
|  | 288 |  | 
|  | 289 | movl	%edx,%eax | 
|  | 290 | divl	%esi | 
|  | 291 |  | 
|  | 292 | sarl	$1,%ecx		/* divide by 2 */ | 
|  | 293 | rcrl	$1,%eax | 
|  | 294 |  | 
|  | 295 | /* prepare to round the result */ | 
|  | 296 |  | 
|  | 297 | addl	%ecx,%edi | 
|  | 298 | adcl	$0,%esi | 
|  | 299 |  | 
|  | 300 | jmp	sqrt_stage_3_finished | 
|  | 301 |  | 
|  | 302 | sqrt_stage_3_positive: | 
|  | 303 | movl	FPU_accum_2,%edx | 
|  | 304 | movl	FPU_accum_1,%eax | 
|  | 305 | divl	%esi | 
|  | 306 | movl	%eax,%ecx | 
|  | 307 |  | 
|  | 308 | movl	%edx,%eax | 
|  | 309 | divl	%esi | 
|  | 310 |  | 
|  | 311 | sarl	$1,%ecx		/* divide by 2 */ | 
|  | 312 | rcrl	$1,%eax | 
|  | 313 |  | 
|  | 314 | /* prepare to round the result */ | 
|  | 315 |  | 
|  | 316 | notl	%eax		/* Negate the correction term */ | 
|  | 317 | notl	%ecx | 
|  | 318 | addl	$1,%eax | 
|  | 319 | adcl	$0,%ecx		/* carry here ==> correction == 0 */ | 
|  | 320 | adcl	$0xffffffff,%esi | 
|  | 321 |  | 
|  | 322 | addl	%ecx,%edi | 
|  | 323 | adcl	$0,%esi | 
|  | 324 |  | 
|  | 325 | sqrt_stage_3_finished: | 
|  | 326 |  | 
|  | 327 | /* | 
|  | 328 | * The result in %esi:%edi:%esi should be good to about 90 bits here, | 
|  | 329 | * and the rounding information here does not have sufficient accuracy | 
|  | 330 | * in a few rare cases. | 
|  | 331 | */ | 
|  | 332 | cmpl	$0xffffffe0,%eax | 
|  | 333 | ja	sqrt_near_exact_x | 
|  | 334 |  | 
|  | 335 | cmpl	$0x00000020,%eax | 
|  | 336 | jb	sqrt_near_exact | 
|  | 337 |  | 
|  | 338 | cmpl	$0x7fffffe0,%eax | 
|  | 339 | jb	sqrt_round_result | 
|  | 340 |  | 
|  | 341 | cmpl	$0x80000020,%eax | 
|  | 342 | jb	sqrt_get_more_precision | 
|  | 343 |  | 
|  | 344 | sqrt_round_result: | 
|  | 345 | /* Set up for rounding operations */ | 
|  | 346 | movl	%eax,%edx | 
|  | 347 | movl	%esi,%eax | 
|  | 348 | movl	%edi,%ebx | 
|  | 349 | movl	PARAM1,%edi | 
|  | 350 | movw	EXP_BIAS,EXP(%edi)	/* Result is in  [1.0 .. 2.0) */ | 
|  | 351 | jmp	fpu_reg_round | 
|  | 352 |  | 
|  | 353 |  | 
|  | 354 | sqrt_near_exact_x: | 
|  | 355 | /* First, the estimate must be rounded up. */ | 
|  | 356 | addl	$1,%edi | 
|  | 357 | adcl	$0,%esi | 
|  | 358 |  | 
|  | 359 | sqrt_near_exact: | 
|  | 360 | /* | 
|  | 361 | * This is an easy case because x^1/2 is monotonic. | 
|  | 362 | * We need just find the square of our estimate, compare it | 
|  | 363 | * with the argument, and deduce whether our estimate is | 
|  | 364 | * above, below, or exact. We use the fact that the estimate | 
|  | 365 | * is known to be accurate to about 90 bits. | 
|  | 366 | */ | 
|  | 367 | movl	%edi,%eax		/* ls word of guess */ | 
|  | 368 | mull	%edi | 
|  | 369 | movl	%edx,%ebx		/* 2nd ls word of square */ | 
|  | 370 | movl	%eax,%ecx		/* ls word of square */ | 
|  | 371 |  | 
|  | 372 | movl	%edi,%eax | 
|  | 373 | mull	%esi | 
|  | 374 | addl	%eax,%ebx | 
|  | 375 | addl	%eax,%ebx | 
|  | 376 |  | 
|  | 377 | #ifdef PARANOID | 
|  | 378 | cmp	$0xffffffb0,%ebx | 
|  | 379 | jb	sqrt_near_exact_ok | 
|  | 380 |  | 
|  | 381 | cmp	$0x00000050,%ebx | 
|  | 382 | ja	sqrt_near_exact_ok | 
|  | 383 |  | 
|  | 384 | pushl	EX_INTERNAL|0x214 | 
|  | 385 | call	EXCEPTION | 
|  | 386 |  | 
|  | 387 | sqrt_near_exact_ok: | 
|  | 388 | #endif /* PARANOID */ | 
|  | 389 |  | 
|  | 390 | or	%ebx,%ebx | 
|  | 391 | js	sqrt_near_exact_small | 
|  | 392 |  | 
|  | 393 | jnz	sqrt_near_exact_large | 
|  | 394 |  | 
|  | 395 | or	%ebx,%edx | 
|  | 396 | jnz	sqrt_near_exact_large | 
|  | 397 |  | 
|  | 398 | /* Our estimate is exactly the right answer */ | 
|  | 399 | xorl	%eax,%eax | 
|  | 400 | jmp	sqrt_round_result | 
|  | 401 |  | 
|  | 402 | sqrt_near_exact_small: | 
|  | 403 | /* Our estimate is too small */ | 
|  | 404 | movl	$0x000000ff,%eax | 
|  | 405 | jmp	sqrt_round_result | 
|  | 406 |  | 
|  | 407 | sqrt_near_exact_large: | 
|  | 408 | /* Our estimate is too large, we need to decrement it */ | 
|  | 409 | subl	$1,%edi | 
|  | 410 | sbbl	$0,%esi | 
|  | 411 | movl	$0xffffff00,%eax | 
|  | 412 | jmp	sqrt_round_result | 
|  | 413 |  | 
|  | 414 |  | 
|  | 415 | sqrt_get_more_precision: | 
|  | 416 | /* This case is almost the same as the above, except we start | 
|  | 417 | with an extra bit of precision in the estimate. */ | 
|  | 418 | stc			/* The extra bit. */ | 
|  | 419 | rcll	$1,%edi		/* Shift the estimate left one bit */ | 
|  | 420 | rcll	$1,%esi | 
|  | 421 |  | 
|  | 422 | movl	%edi,%eax		/* ls word of guess */ | 
|  | 423 | mull	%edi | 
|  | 424 | movl	%edx,%ebx		/* 2nd ls word of square */ | 
|  | 425 | movl	%eax,%ecx		/* ls word of square */ | 
|  | 426 |  | 
|  | 427 | movl	%edi,%eax | 
|  | 428 | mull	%esi | 
|  | 429 | addl	%eax,%ebx | 
|  | 430 | addl	%eax,%ebx | 
|  | 431 |  | 
|  | 432 | /* Put our estimate back to its original value */ | 
|  | 433 | stc			/* The ms bit. */ | 
|  | 434 | rcrl	$1,%esi		/* Shift the estimate left one bit */ | 
|  | 435 | rcrl	$1,%edi | 
|  | 436 |  | 
|  | 437 | #ifdef PARANOID | 
|  | 438 | cmp	$0xffffff60,%ebx | 
|  | 439 | jb	sqrt_more_prec_ok | 
|  | 440 |  | 
|  | 441 | cmp	$0x000000a0,%ebx | 
|  | 442 | ja	sqrt_more_prec_ok | 
|  | 443 |  | 
|  | 444 | pushl	EX_INTERNAL|0x215 | 
|  | 445 | call	EXCEPTION | 
|  | 446 |  | 
|  | 447 | sqrt_more_prec_ok: | 
|  | 448 | #endif /* PARANOID */ | 
|  | 449 |  | 
|  | 450 | or	%ebx,%ebx | 
|  | 451 | js	sqrt_more_prec_small | 
|  | 452 |  | 
|  | 453 | jnz	sqrt_more_prec_large | 
|  | 454 |  | 
|  | 455 | or	%ebx,%ecx | 
|  | 456 | jnz	sqrt_more_prec_large | 
|  | 457 |  | 
|  | 458 | /* Our estimate is exactly the right answer */ | 
|  | 459 | movl	$0x80000000,%eax | 
|  | 460 | jmp	sqrt_round_result | 
|  | 461 |  | 
|  | 462 | sqrt_more_prec_small: | 
|  | 463 | /* Our estimate is too small */ | 
|  | 464 | movl	$0x800000ff,%eax | 
|  | 465 | jmp	sqrt_round_result | 
|  | 466 |  | 
|  | 467 | sqrt_more_prec_large: | 
|  | 468 | /* Our estimate is too large */ | 
|  | 469 | movl	$0x7fffff00,%eax | 
|  | 470 | jmp	sqrt_round_result |