| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | 
|  | 3 | * August 2002: added remote node KVA remap - Martin J. Bligh | 
|  | 4 | * | 
|  | 5 | * Copyright (C) 2002, IBM Corp. | 
|  | 6 | * | 
|  | 7 | * All rights reserved. | 
|  | 8 | * | 
|  | 9 | * This program is free software; you can redistribute it and/or modify | 
|  | 10 | * it under the terms of the GNU General Public License as published by | 
|  | 11 | * the Free Software Foundation; either version 2 of the License, or | 
|  | 12 | * (at your option) any later version. | 
|  | 13 | * | 
|  | 14 | * This program is distributed in the hope that it will be useful, but | 
|  | 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 16 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | 17 | * NON INFRINGEMENT.  See the GNU General Public License for more | 
|  | 18 | * details. | 
|  | 19 | * | 
|  | 20 | * You should have received a copy of the GNU General Public License | 
|  | 21 | * along with this program; if not, write to the Free Software | 
|  | 22 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | 23 | */ | 
|  | 24 |  | 
|  | 25 | #include <linux/config.h> | 
|  | 26 | #include <linux/mm.h> | 
|  | 27 | #include <linux/bootmem.h> | 
|  | 28 | #include <linux/mmzone.h> | 
|  | 29 | #include <linux/highmem.h> | 
|  | 30 | #include <linux/initrd.h> | 
|  | 31 | #include <linux/nodemask.h> | 
|  | 32 | #include <asm/e820.h> | 
|  | 33 | #include <asm/setup.h> | 
|  | 34 | #include <asm/mmzone.h> | 
|  | 35 | #include <bios_ebda.h> | 
|  | 36 |  | 
|  | 37 | struct pglist_data *node_data[MAX_NUMNODES]; | 
|  | 38 | bootmem_data_t node0_bdata; | 
|  | 39 |  | 
|  | 40 | /* | 
|  | 41 | * numa interface - we expect the numa architecture specfic code to have | 
|  | 42 | *                  populated the following initialisation. | 
|  | 43 | * | 
|  | 44 | * 1) node_online_map  - the map of all nodes configured (online) in the system | 
|  | 45 | * 2) physnode_map     - the mapping between a pfn and owning node | 
|  | 46 | * 3) node_start_pfn   - the starting page frame number for a node | 
|  | 47 | * 3) node_end_pfn     - the ending page fram number for a node | 
|  | 48 | */ | 
|  | 49 |  | 
|  | 50 | /* | 
|  | 51 | * physnode_map keeps track of the physical memory layout of a generic | 
|  | 52 | * numa node on a 256Mb break (each element of the array will | 
|  | 53 | * represent 256Mb of memory and will be marked by the node id.  so, | 
|  | 54 | * if the first gig is on node 0, and the second gig is on node 1 | 
|  | 55 | * physnode_map will contain: | 
|  | 56 | * | 
|  | 57 | *     physnode_map[0-3] = 0; | 
|  | 58 | *     physnode_map[4-7] = 1; | 
|  | 59 | *     physnode_map[8- ] = -1; | 
|  | 60 | */ | 
|  | 61 | s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1}; | 
|  | 62 |  | 
|  | 63 | void memory_present(int nid, unsigned long start, unsigned long end) | 
|  | 64 | { | 
|  | 65 | unsigned long pfn; | 
|  | 66 |  | 
|  | 67 | printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", | 
|  | 68 | nid, start, end); | 
|  | 69 | printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid); | 
|  | 70 | printk(KERN_DEBUG "  "); | 
|  | 71 | for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { | 
|  | 72 | physnode_map[pfn / PAGES_PER_ELEMENT] = nid; | 
|  | 73 | printk("%ld ", pfn); | 
|  | 74 | } | 
|  | 75 | printk("\n"); | 
|  | 76 | } | 
|  | 77 |  | 
|  | 78 | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | 
|  | 79 | unsigned long end_pfn) | 
|  | 80 | { | 
|  | 81 | unsigned long nr_pages = end_pfn - start_pfn; | 
|  | 82 |  | 
|  | 83 | if (!nr_pages) | 
|  | 84 | return 0; | 
|  | 85 |  | 
|  | 86 | return (nr_pages + 1) * sizeof(struct page); | 
|  | 87 | } | 
|  | 88 |  | 
|  | 89 | unsigned long node_start_pfn[MAX_NUMNODES]; | 
|  | 90 | unsigned long node_end_pfn[MAX_NUMNODES]; | 
|  | 91 |  | 
|  | 92 | extern unsigned long find_max_low_pfn(void); | 
|  | 93 | extern void find_max_pfn(void); | 
|  | 94 | extern void one_highpage_init(struct page *, int, int); | 
|  | 95 |  | 
|  | 96 | extern struct e820map e820; | 
|  | 97 | extern unsigned long init_pg_tables_end; | 
|  | 98 | extern unsigned long highend_pfn, highstart_pfn; | 
|  | 99 | extern unsigned long max_low_pfn; | 
|  | 100 | extern unsigned long totalram_pages; | 
|  | 101 | extern unsigned long totalhigh_pages; | 
|  | 102 |  | 
|  | 103 | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | 
|  | 104 |  | 
|  | 105 | unsigned long node_remap_start_pfn[MAX_NUMNODES]; | 
|  | 106 | unsigned long node_remap_size[MAX_NUMNODES]; | 
|  | 107 | unsigned long node_remap_offset[MAX_NUMNODES]; | 
|  | 108 | void *node_remap_start_vaddr[MAX_NUMNODES]; | 
|  | 109 | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | 
|  | 110 |  | 
|  | 111 | /* | 
|  | 112 | * FLAT - support for basic PC memory model with discontig enabled, essentially | 
|  | 113 | *        a single node with all available processors in it with a flat | 
|  | 114 | *        memory map. | 
|  | 115 | */ | 
|  | 116 | int __init get_memcfg_numa_flat(void) | 
|  | 117 | { | 
|  | 118 | printk("NUMA - single node, flat memory mode\n"); | 
|  | 119 |  | 
|  | 120 | /* Run the memory configuration and find the top of memory. */ | 
|  | 121 | find_max_pfn(); | 
|  | 122 | node_start_pfn[0] = 0; | 
|  | 123 | node_end_pfn[0] = max_pfn; | 
|  | 124 | memory_present(0, 0, max_pfn); | 
|  | 125 |  | 
|  | 126 | /* Indicate there is one node available. */ | 
|  | 127 | nodes_clear(node_online_map); | 
|  | 128 | node_set_online(0); | 
|  | 129 | return 1; | 
|  | 130 | } | 
|  | 131 |  | 
|  | 132 | /* | 
|  | 133 | * Find the highest page frame number we have available for the node | 
|  | 134 | */ | 
|  | 135 | static void __init find_max_pfn_node(int nid) | 
|  | 136 | { | 
|  | 137 | if (node_end_pfn[nid] > max_pfn) | 
|  | 138 | node_end_pfn[nid] = max_pfn; | 
|  | 139 | /* | 
|  | 140 | * if a user has given mem=XXXX, then we need to make sure | 
|  | 141 | * that the node _starts_ before that, too, not just ends | 
|  | 142 | */ | 
|  | 143 | if (node_start_pfn[nid] > max_pfn) | 
|  | 144 | node_start_pfn[nid] = max_pfn; | 
|  | 145 | if (node_start_pfn[nid] > node_end_pfn[nid]) | 
|  | 146 | BUG(); | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | /* | 
|  | 150 | * Allocate memory for the pg_data_t for this node via a crude pre-bootmem | 
|  | 151 | * method.  For node zero take this from the bottom of memory, for | 
|  | 152 | * subsequent nodes place them at node_remap_start_vaddr which contains | 
|  | 153 | * node local data in physically node local memory.  See setup_memory() | 
|  | 154 | * for details. | 
|  | 155 | */ | 
|  | 156 | static void __init allocate_pgdat(int nid) | 
|  | 157 | { | 
|  | 158 | if (nid && node_has_online_mem(nid)) | 
|  | 159 | NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; | 
|  | 160 | else { | 
|  | 161 | NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT)); | 
|  | 162 | min_low_pfn += PFN_UP(sizeof(pg_data_t)); | 
|  | 163 | } | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | void __init remap_numa_kva(void) | 
|  | 167 | { | 
|  | 168 | void *vaddr; | 
|  | 169 | unsigned long pfn; | 
|  | 170 | int node; | 
|  | 171 |  | 
|  | 172 | for_each_online_node(node) { | 
|  | 173 | if (node == 0) | 
|  | 174 | continue; | 
|  | 175 | for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { | 
|  | 176 | vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); | 
|  | 177 | set_pmd_pfn((ulong) vaddr, | 
|  | 178 | node_remap_start_pfn[node] + pfn, | 
|  | 179 | PAGE_KERNEL_LARGE); | 
|  | 180 | } | 
|  | 181 | } | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | static unsigned long calculate_numa_remap_pages(void) | 
|  | 185 | { | 
|  | 186 | int nid; | 
|  | 187 | unsigned long size, reserve_pages = 0; | 
|  | 188 |  | 
|  | 189 | for_each_online_node(nid) { | 
|  | 190 | if (nid == 0) | 
|  | 191 | continue; | 
|  | 192 | if (!node_remap_size[nid]) | 
|  | 193 | continue; | 
|  | 194 |  | 
|  | 195 | /* | 
|  | 196 | * The acpi/srat node info can show hot-add memroy zones | 
|  | 197 | * where memory could be added but not currently present. | 
|  | 198 | */ | 
|  | 199 | if (node_start_pfn[nid] > max_pfn) | 
|  | 200 | continue; | 
|  | 201 | if (node_end_pfn[nid] > max_pfn) | 
|  | 202 | node_end_pfn[nid] = max_pfn; | 
|  | 203 |  | 
|  | 204 | /* ensure the remap includes space for the pgdat. */ | 
|  | 205 | size = node_remap_size[nid] + sizeof(pg_data_t); | 
|  | 206 |  | 
|  | 207 | /* convert size to large (pmd size) pages, rounding up */ | 
|  | 208 | size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; | 
|  | 209 | /* now the roundup is correct, convert to PAGE_SIZE pages */ | 
|  | 210 | size = size * PTRS_PER_PTE; | 
|  | 211 | printk("Reserving %ld pages of KVA for lmem_map of node %d\n", | 
|  | 212 | size, nid); | 
|  | 213 | node_remap_size[nid] = size; | 
|  | 214 | reserve_pages += size; | 
|  | 215 | node_remap_offset[nid] = reserve_pages; | 
|  | 216 | printk("Shrinking node %d from %ld pages to %ld pages\n", | 
|  | 217 | nid, node_end_pfn[nid], node_end_pfn[nid] - size); | 
|  | 218 | node_end_pfn[nid] -= size; | 
|  | 219 | node_remap_start_pfn[nid] = node_end_pfn[nid]; | 
|  | 220 | } | 
|  | 221 | printk("Reserving total of %ld pages for numa KVA remap\n", | 
|  | 222 | reserve_pages); | 
|  | 223 | return reserve_pages; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | extern void setup_bootmem_allocator(void); | 
|  | 227 | unsigned long __init setup_memory(void) | 
|  | 228 | { | 
|  | 229 | int nid; | 
|  | 230 | unsigned long system_start_pfn, system_max_low_pfn; | 
|  | 231 | unsigned long reserve_pages; | 
|  | 232 |  | 
|  | 233 | /* | 
|  | 234 | * When mapping a NUMA machine we allocate the node_mem_map arrays | 
|  | 235 | * from node local memory.  They are then mapped directly into KVA | 
|  | 236 | * between zone normal and vmalloc space.  Calculate the size of | 
|  | 237 | * this space and use it to adjust the boundry between ZONE_NORMAL | 
|  | 238 | * and ZONE_HIGHMEM. | 
|  | 239 | */ | 
|  | 240 | find_max_pfn(); | 
|  | 241 | get_memcfg_numa(); | 
|  | 242 |  | 
|  | 243 | reserve_pages = calculate_numa_remap_pages(); | 
|  | 244 |  | 
|  | 245 | /* partially used pages are not usable - thus round upwards */ | 
|  | 246 | system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); | 
|  | 247 |  | 
|  | 248 | system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages; | 
|  | 249 | printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n", | 
|  | 250 | reserve_pages, max_low_pfn + reserve_pages); | 
|  | 251 | printk("max_pfn = %ld\n", max_pfn); | 
|  | 252 | #ifdef CONFIG_HIGHMEM | 
|  | 253 | highstart_pfn = highend_pfn = max_pfn; | 
|  | 254 | if (max_pfn > system_max_low_pfn) | 
|  | 255 | highstart_pfn = system_max_low_pfn; | 
|  | 256 | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | 
|  | 257 | pages_to_mb(highend_pfn - highstart_pfn)); | 
|  | 258 | #endif | 
|  | 259 | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | 
|  | 260 | pages_to_mb(system_max_low_pfn)); | 
|  | 261 | printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", | 
|  | 262 | min_low_pfn, max_low_pfn, highstart_pfn); | 
|  | 263 |  | 
|  | 264 | printk("Low memory ends at vaddr %08lx\n", | 
|  | 265 | (ulong) pfn_to_kaddr(max_low_pfn)); | 
|  | 266 | for_each_online_node(nid) { | 
|  | 267 | node_remap_start_vaddr[nid] = pfn_to_kaddr( | 
|  | 268 | (highstart_pfn + reserve_pages) - node_remap_offset[nid]); | 
|  | 269 | allocate_pgdat(nid); | 
|  | 270 | printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, | 
|  | 271 | (ulong) node_remap_start_vaddr[nid], | 
|  | 272 | (ulong) pfn_to_kaddr(highstart_pfn + reserve_pages | 
|  | 273 | - node_remap_offset[nid] + node_remap_size[nid])); | 
|  | 274 | } | 
|  | 275 | printk("High memory starts at vaddr %08lx\n", | 
|  | 276 | (ulong) pfn_to_kaddr(highstart_pfn)); | 
|  | 277 | vmalloc_earlyreserve = reserve_pages * PAGE_SIZE; | 
|  | 278 | for_each_online_node(nid) | 
|  | 279 | find_max_pfn_node(nid); | 
|  | 280 |  | 
|  | 281 | memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); | 
|  | 282 | NODE_DATA(0)->bdata = &node0_bdata; | 
|  | 283 | setup_bootmem_allocator(); | 
|  | 284 | return max_low_pfn; | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | void __init zone_sizes_init(void) | 
|  | 288 | { | 
|  | 289 | int nid; | 
|  | 290 |  | 
|  | 291 | /* | 
|  | 292 | * Insert nodes into pgdat_list backward so they appear in order. | 
|  | 293 | * Clobber node 0's links and NULL out pgdat_list before starting. | 
|  | 294 | */ | 
|  | 295 | pgdat_list = NULL; | 
|  | 296 | for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) { | 
|  | 297 | if (!node_online(nid)) | 
|  | 298 | continue; | 
|  | 299 | NODE_DATA(nid)->pgdat_next = pgdat_list; | 
|  | 300 | pgdat_list = NODE_DATA(nid); | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | for_each_online_node(nid) { | 
|  | 304 | unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; | 
|  | 305 | unsigned long *zholes_size; | 
|  | 306 | unsigned int max_dma; | 
|  | 307 |  | 
|  | 308 | unsigned long low = max_low_pfn; | 
|  | 309 | unsigned long start = node_start_pfn[nid]; | 
|  | 310 | unsigned long high = node_end_pfn[nid]; | 
|  | 311 |  | 
|  | 312 | max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  | 313 |  | 
|  | 314 | if (node_has_online_mem(nid)){ | 
|  | 315 | if (start > low) { | 
|  | 316 | #ifdef CONFIG_HIGHMEM | 
|  | 317 | BUG_ON(start > high); | 
|  | 318 | zones_size[ZONE_HIGHMEM] = high - start; | 
|  | 319 | #endif | 
|  | 320 | } else { | 
|  | 321 | if (low < max_dma) | 
|  | 322 | zones_size[ZONE_DMA] = low; | 
|  | 323 | else { | 
|  | 324 | BUG_ON(max_dma > low); | 
|  | 325 | BUG_ON(low > high); | 
|  | 326 | zones_size[ZONE_DMA] = max_dma; | 
|  | 327 | zones_size[ZONE_NORMAL] = low - max_dma; | 
|  | 328 | #ifdef CONFIG_HIGHMEM | 
|  | 329 | zones_size[ZONE_HIGHMEM] = high - low; | 
|  | 330 | #endif | 
|  | 331 | } | 
|  | 332 | } | 
|  | 333 | } | 
|  | 334 |  | 
|  | 335 | zholes_size = get_zholes_size(nid); | 
|  | 336 | /* | 
|  | 337 | * We let the lmem_map for node 0 be allocated from the | 
|  | 338 | * normal bootmem allocator, but other nodes come from the | 
|  | 339 | * remapped KVA area - mbligh | 
|  | 340 | */ | 
|  | 341 | if (!nid) | 
|  | 342 | free_area_init_node(nid, NODE_DATA(nid), | 
|  | 343 | zones_size, start, zholes_size); | 
|  | 344 | else { | 
|  | 345 | unsigned long lmem_map; | 
|  | 346 | lmem_map = (unsigned long)node_remap_start_vaddr[nid]; | 
|  | 347 | lmem_map += sizeof(pg_data_t) + PAGE_SIZE - 1; | 
|  | 348 | lmem_map &= PAGE_MASK; | 
|  | 349 | NODE_DATA(nid)->node_mem_map = (struct page *)lmem_map; | 
|  | 350 | free_area_init_node(nid, NODE_DATA(nid), zones_size, | 
|  | 351 | start, zholes_size); | 
|  | 352 | } | 
|  | 353 | } | 
|  | 354 | return; | 
|  | 355 | } | 
|  | 356 |  | 
|  | 357 | void __init set_highmem_pages_init(int bad_ppro) | 
|  | 358 | { | 
|  | 359 | #ifdef CONFIG_HIGHMEM | 
|  | 360 | struct zone *zone; | 
|  | 361 |  | 
|  | 362 | for_each_zone(zone) { | 
|  | 363 | unsigned long node_pfn, node_high_size, zone_start_pfn; | 
|  | 364 | struct page * zone_mem_map; | 
|  | 365 |  | 
|  | 366 | if (!is_highmem(zone)) | 
|  | 367 | continue; | 
|  | 368 |  | 
|  | 369 | printk("Initializing %s for node %d\n", zone->name, | 
|  | 370 | zone->zone_pgdat->node_id); | 
|  | 371 |  | 
|  | 372 | node_high_size = zone->spanned_pages; | 
|  | 373 | zone_mem_map = zone->zone_mem_map; | 
|  | 374 | zone_start_pfn = zone->zone_start_pfn; | 
|  | 375 |  | 
|  | 376 | for (node_pfn = 0; node_pfn < node_high_size; node_pfn++) { | 
|  | 377 | one_highpage_init((struct page *)(zone_mem_map + node_pfn), | 
|  | 378 | zone_start_pfn + node_pfn, bad_ppro); | 
|  | 379 | } | 
|  | 380 | } | 
|  | 381 | totalram_pages += totalhigh_pages; | 
|  | 382 | #endif | 
|  | 383 | } |