| Dmitry Shmidt | 66eb9fa | 2011-05-24 11:14:33 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Misc utility routines for accessing chip-specific features | 
 | 3 |  * of the SiliconBackplane-based Broadcom chips. | 
 | 4 |  * | 
 | 5 |  * Copyright (C) 1999-2011, Broadcom Corporation | 
 | 6 |  *  | 
 | 7 |  *         Unless you and Broadcom execute a separate written software license | 
 | 8 |  * agreement governing use of this software, this software is licensed to you | 
 | 9 |  * under the terms of the GNU General Public License version 2 (the "GPL"), | 
 | 10 |  * available at http://www.broadcom.com/licenses/GPLv2.php, with the | 
 | 11 |  * following added to such license: | 
 | 12 |  *  | 
 | 13 |  *      As a special exception, the copyright holders of this software give you | 
 | 14 |  * permission to link this software with independent modules, and to copy and | 
 | 15 |  * distribute the resulting executable under terms of your choice, provided that | 
 | 16 |  * you also meet, for each linked independent module, the terms and conditions of | 
 | 17 |  * the license of that module.  An independent module is a module which is not | 
 | 18 |  * derived from this software.  The special exception does not apply to any | 
 | 19 |  * modifications of the software. | 
 | 20 |  *  | 
 | 21 |  *      Notwithstanding the above, under no circumstances may you combine this | 
 | 22 |  * software in any way with any other Broadcom software provided under a license | 
 | 23 |  * other than the GPL, without Broadcom's express prior written consent. | 
 | 24 |  * | 
 | 25 |  * $Id: sbutils.c,v 1.687.2.1 2010-11-29 20:21:56 Exp $ | 
 | 26 |  */ | 
 | 27 |  | 
 | 28 | #include <typedefs.h> | 
 | 29 | #include <bcmdefs.h> | 
 | 30 | #include <osl.h> | 
 | 31 | #include <bcmutils.h> | 
 | 32 | #include <siutils.h> | 
 | 33 | #include <bcmdevs.h> | 
 | 34 | #include <hndsoc.h> | 
 | 35 | #include <sbchipc.h> | 
 | 36 | #include <pcicfg.h> | 
 | 37 | #include <sbpcmcia.h> | 
 | 38 |  | 
 | 39 | #include "siutils_priv.h" | 
 | 40 |  | 
 | 41 |  | 
 | 42 | /* local prototypes */ | 
 | 43 | static uint _sb_coreidx(si_info_t *sii, uint32 sba); | 
 | 44 | static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, | 
 | 45 |                      uint ncores); | 
 | 46 | static uint32 _sb_coresba(si_info_t *sii); | 
 | 47 | static void *_sb_setcoreidx(si_info_t *sii, uint coreidx); | 
 | 48 |  | 
 | 49 | #define	SET_SBREG(sii, r, mask, val)	\ | 
 | 50 | 		W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val))) | 
 | 51 | #define	REGS2SB(va)	(sbconfig_t*) ((int8*)(va) + SBCONFIGOFF) | 
 | 52 |  | 
 | 53 | /* sonicsrev */ | 
 | 54 | #define	SONICS_2_2	(SBIDL_RV_2_2 >> SBIDL_RV_SHIFT) | 
 | 55 | #define	SONICS_2_3	(SBIDL_RV_2_3 >> SBIDL_RV_SHIFT) | 
 | 56 |  | 
 | 57 | #define	R_SBREG(sii, sbr)	sb_read_sbreg((sii), (sbr)) | 
 | 58 | #define	W_SBREG(sii, sbr, v)	sb_write_sbreg((sii), (sbr), (v)) | 
 | 59 | #define	AND_SBREG(sii, sbr, v)	W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v))) | 
 | 60 | #define	OR_SBREG(sii, sbr, v)	W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v))) | 
 | 61 |  | 
 | 62 | static uint32 | 
 | 63 | sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr) | 
 | 64 | { | 
 | 65 | 	uint8 tmp; | 
 | 66 | 	uint32 val, intr_val = 0; | 
 | 67 |  | 
 | 68 |  | 
 | 69 | 	/* | 
 | 70 | 	 * compact flash only has 11 bits address, while we needs 12 bits address. | 
 | 71 | 	 * MEM_SEG will be OR'd with other 11 bits address in hardware, | 
 | 72 | 	 * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | 
 | 73 | 	 * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | 
 | 74 | 	 */ | 
 | 75 | 	if (PCMCIA(sii)) { | 
 | 76 | 		INTR_OFF(sii, intr_val); | 
 | 77 | 		tmp = 1; | 
 | 78 | 		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
 | 79 | 		sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | 
 | 80 | 	} | 
 | 81 |  | 
 | 82 | 	val = R_REG(sii->osh, sbr); | 
 | 83 |  | 
 | 84 | 	if (PCMCIA(sii)) { | 
 | 85 | 		tmp = 0; | 
 | 86 | 		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
 | 87 | 		INTR_RESTORE(sii, intr_val); | 
 | 88 | 	} | 
 | 89 |  | 
 | 90 | 	return (val); | 
 | 91 | } | 
 | 92 |  | 
 | 93 | static void | 
 | 94 | sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v) | 
 | 95 | { | 
 | 96 | 	uint8 tmp; | 
 | 97 | 	volatile uint32 dummy; | 
 | 98 | 	uint32 intr_val = 0; | 
 | 99 |  | 
 | 100 |  | 
 | 101 | 	/* | 
 | 102 | 	 * compact flash only has 11 bits address, while we needs 12 bits address. | 
 | 103 | 	 * MEM_SEG will be OR'd with other 11 bits address in hardware, | 
 | 104 | 	 * so we program MEM_SEG with 12th bit when necessary(access sb regsiters). | 
 | 105 | 	 * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special | 
 | 106 | 	 */ | 
 | 107 | 	if (PCMCIA(sii)) { | 
 | 108 | 		INTR_OFF(sii, intr_val); | 
 | 109 | 		tmp = 1; | 
 | 110 | 		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
 | 111 | 		sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */ | 
 | 112 | 	} | 
 | 113 |  | 
 | 114 | 	if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) { | 
 | 115 | 		dummy = R_REG(sii->osh, sbr); | 
 | 116 | 		W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff)); | 
 | 117 | 		dummy = R_REG(sii->osh, sbr); | 
 | 118 | 		W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff)); | 
 | 119 | 	} else | 
 | 120 | 		W_REG(sii->osh, sbr, v); | 
 | 121 |  | 
 | 122 | 	if (PCMCIA(sii)) { | 
 | 123 | 		tmp = 0; | 
 | 124 | 		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1); | 
 | 125 | 		INTR_RESTORE(sii, intr_val); | 
 | 126 | 	} | 
 | 127 | } | 
 | 128 |  | 
 | 129 | uint | 
 | 130 | sb_coreid(si_t *sih) | 
 | 131 | { | 
 | 132 | 	si_info_t *sii; | 
 | 133 | 	sbconfig_t *sb; | 
 | 134 |  | 
 | 135 | 	sii = SI_INFO(sih); | 
 | 136 | 	sb = REGS2SB(sii->curmap); | 
 | 137 |  | 
 | 138 | 	return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT); | 
 | 139 | } | 
 | 140 |  | 
 | 141 | uint | 
 | 142 | sb_intflag(si_t *sih) | 
 | 143 | { | 
 | 144 | 	si_info_t *sii; | 
 | 145 | 	void *corereg; | 
 | 146 | 	sbconfig_t *sb; | 
 | 147 | 	uint origidx, intflag, intr_val = 0; | 
 | 148 |  | 
 | 149 | 	sii = SI_INFO(sih); | 
 | 150 |  | 
 | 151 | 	INTR_OFF(sii, intr_val); | 
 | 152 | 	origidx = si_coreidx(sih); | 
 | 153 | 	corereg = si_setcore(sih, CC_CORE_ID, 0); | 
 | 154 | 	ASSERT(corereg != NULL); | 
 | 155 | 	sb = REGS2SB(corereg); | 
 | 156 | 	intflag = R_SBREG(sii, &sb->sbflagst); | 
 | 157 | 	sb_setcoreidx(sih, origidx); | 
 | 158 | 	INTR_RESTORE(sii, intr_val); | 
 | 159 |  | 
 | 160 | 	return intflag; | 
 | 161 | } | 
 | 162 |  | 
 | 163 | uint | 
 | 164 | sb_flag(si_t *sih) | 
 | 165 | { | 
 | 166 | 	si_info_t *sii; | 
 | 167 | 	sbconfig_t *sb; | 
 | 168 |  | 
 | 169 | 	sii = SI_INFO(sih); | 
 | 170 | 	sb = REGS2SB(sii->curmap); | 
 | 171 |  | 
 | 172 | 	return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK; | 
 | 173 | } | 
 | 174 |  | 
 | 175 | void | 
 | 176 | sb_setint(si_t *sih, int siflag) | 
 | 177 | { | 
 | 178 | 	si_info_t *sii; | 
 | 179 | 	sbconfig_t *sb; | 
 | 180 | 	uint32 vec; | 
 | 181 |  | 
 | 182 | 	sii = SI_INFO(sih); | 
 | 183 | 	sb = REGS2SB(sii->curmap); | 
 | 184 |  | 
 | 185 | 	if (siflag == -1) | 
 | 186 | 		vec = 0; | 
 | 187 | 	else | 
 | 188 | 		vec = 1 << siflag; | 
 | 189 | 	W_SBREG(sii, &sb->sbintvec, vec); | 
 | 190 | } | 
 | 191 |  | 
 | 192 | /* return core index of the core with address 'sba' */ | 
 | 193 | static uint | 
 | 194 | _sb_coreidx(si_info_t *sii, uint32 sba) | 
 | 195 | { | 
 | 196 | 	uint i; | 
 | 197 |  | 
 | 198 | 	for (i = 0; i < sii->numcores; i ++) | 
 | 199 | 		if (sba == sii->coresba[i]) | 
 | 200 | 			return i; | 
 | 201 | 	return BADIDX; | 
 | 202 | } | 
 | 203 |  | 
 | 204 | /* return core address of the current core */ | 
 | 205 | static uint32 | 
 | 206 | _sb_coresba(si_info_t *sii) | 
 | 207 | { | 
 | 208 | 	uint32 sbaddr; | 
 | 209 |  | 
 | 210 |  | 
 | 211 | 	switch (BUSTYPE(sii->pub.bustype)) { | 
 | 212 | 	case SI_BUS: { | 
 | 213 | 		sbconfig_t *sb = REGS2SB(sii->curmap); | 
 | 214 | 		sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0)); | 
 | 215 | 		break; | 
 | 216 | 	} | 
 | 217 |  | 
 | 218 | 	case PCI_BUS: | 
 | 219 | 		sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32)); | 
 | 220 | 		break; | 
 | 221 |  | 
 | 222 | 	case PCMCIA_BUS: { | 
 | 223 | 		uint8 tmp = 0; | 
 | 224 | 		OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | 
 | 225 | 		sbaddr  = (uint32)tmp << 12; | 
 | 226 | 		OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | 
 | 227 | 		sbaddr |= (uint32)tmp << 16; | 
 | 228 | 		OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | 
 | 229 | 		sbaddr |= (uint32)tmp << 24; | 
 | 230 | 		break; | 
 | 231 | 	} | 
 | 232 |  | 
 | 233 | 	case SPI_BUS: | 
 | 234 | 	case SDIO_BUS: | 
 | 235 | 		sbaddr = (uint32)(uintptr)sii->curmap; | 
 | 236 | 		break; | 
 | 237 |  | 
 | 238 |  | 
 | 239 | 	default: | 
 | 240 | 		sbaddr = BADCOREADDR; | 
 | 241 | 		break; | 
 | 242 | 	} | 
 | 243 |  | 
 | 244 | 	return sbaddr; | 
 | 245 | } | 
 | 246 |  | 
 | 247 | uint | 
 | 248 | sb_corevendor(si_t *sih) | 
 | 249 | { | 
 | 250 | 	si_info_t *sii; | 
 | 251 | 	sbconfig_t *sb; | 
 | 252 |  | 
 | 253 | 	sii = SI_INFO(sih); | 
 | 254 | 	sb = REGS2SB(sii->curmap); | 
 | 255 |  | 
 | 256 | 	return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT); | 
 | 257 | } | 
 | 258 |  | 
 | 259 | uint | 
 | 260 | sb_corerev(si_t *sih) | 
 | 261 | { | 
 | 262 | 	si_info_t *sii; | 
 | 263 | 	sbconfig_t *sb; | 
 | 264 | 	uint sbidh; | 
 | 265 |  | 
 | 266 | 	sii = SI_INFO(sih); | 
 | 267 | 	sb = REGS2SB(sii->curmap); | 
 | 268 | 	sbidh = R_SBREG(sii, &sb->sbidhigh); | 
 | 269 |  | 
 | 270 | 	return (SBCOREREV(sbidh)); | 
 | 271 | } | 
 | 272 |  | 
 | 273 | /* set core-specific control flags */ | 
 | 274 | void | 
 | 275 | sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) | 
 | 276 | { | 
 | 277 | 	si_info_t *sii; | 
 | 278 | 	sbconfig_t *sb; | 
 | 279 | 	uint32 w; | 
 | 280 |  | 
 | 281 | 	sii = SI_INFO(sih); | 
 | 282 | 	sb = REGS2SB(sii->curmap); | 
 | 283 |  | 
 | 284 | 	ASSERT((val & ~mask) == 0); | 
 | 285 |  | 
 | 286 | 	/* mask and set */ | 
 | 287 | 	w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | 
 | 288 | 	        (val << SBTML_SICF_SHIFT); | 
 | 289 | 	W_SBREG(sii, &sb->sbtmstatelow, w); | 
 | 290 | } | 
 | 291 |  | 
 | 292 | /* set/clear core-specific control flags */ | 
 | 293 | uint32 | 
 | 294 | sb_core_cflags(si_t *sih, uint32 mask, uint32 val) | 
 | 295 | { | 
 | 296 | 	si_info_t *sii; | 
 | 297 | 	sbconfig_t *sb; | 
 | 298 | 	uint32 w; | 
 | 299 |  | 
 | 300 | 	sii = SI_INFO(sih); | 
 | 301 | 	sb = REGS2SB(sii->curmap); | 
 | 302 |  | 
 | 303 | 	ASSERT((val & ~mask) == 0); | 
 | 304 |  | 
 | 305 | 	/* mask and set */ | 
 | 306 | 	if (mask || val) { | 
 | 307 | 		w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) | | 
 | 308 | 		        (val << SBTML_SICF_SHIFT); | 
 | 309 | 		W_SBREG(sii, &sb->sbtmstatelow, w); | 
 | 310 | 	} | 
 | 311 |  | 
 | 312 | 	/* return the new value | 
 | 313 | 	 * for write operation, the following readback ensures the completion of write opration. | 
 | 314 | 	 */ | 
 | 315 | 	return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT); | 
 | 316 | } | 
 | 317 |  | 
 | 318 | /* set/clear core-specific status flags */ | 
 | 319 | uint32 | 
 | 320 | sb_core_sflags(si_t *sih, uint32 mask, uint32 val) | 
 | 321 | { | 
 | 322 | 	si_info_t *sii; | 
 | 323 | 	sbconfig_t *sb; | 
 | 324 | 	uint32 w; | 
 | 325 |  | 
 | 326 | 	sii = SI_INFO(sih); | 
 | 327 | 	sb = REGS2SB(sii->curmap); | 
 | 328 |  | 
 | 329 | 	ASSERT((val & ~mask) == 0); | 
 | 330 | 	ASSERT((mask & ~SISF_CORE_BITS) == 0); | 
 | 331 |  | 
 | 332 | 	/* mask and set */ | 
 | 333 | 	if (mask || val) { | 
 | 334 | 		w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) | | 
 | 335 | 		        (val << SBTMH_SISF_SHIFT); | 
 | 336 | 		W_SBREG(sii, &sb->sbtmstatehigh, w); | 
 | 337 | 	} | 
 | 338 |  | 
 | 339 | 	/* return the new value */ | 
 | 340 | 	return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT); | 
 | 341 | } | 
 | 342 |  | 
 | 343 | bool | 
 | 344 | sb_iscoreup(si_t *sih) | 
 | 345 | { | 
 | 346 | 	si_info_t *sii; | 
 | 347 | 	sbconfig_t *sb; | 
 | 348 |  | 
 | 349 | 	sii = SI_INFO(sih); | 
 | 350 | 	sb = REGS2SB(sii->curmap); | 
 | 351 |  | 
 | 352 | 	return ((R_SBREG(sii, &sb->sbtmstatelow) & | 
 | 353 | 	         (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) == | 
 | 354 | 	        (SICF_CLOCK_EN << SBTML_SICF_SHIFT)); | 
 | 355 | } | 
 | 356 |  | 
 | 357 | /* | 
 | 358 |  * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, | 
 | 359 |  * switch back to the original core, and return the new value. | 
 | 360 |  * | 
 | 361 |  * When using the silicon backplane, no fidleing with interrupts or core switches are needed. | 
 | 362 |  * | 
 | 363 |  * Also, when using pci/pcie, we can optimize away the core switching for pci registers | 
 | 364 |  * and (on newer pci cores) chipcommon registers. | 
 | 365 |  */ | 
 | 366 | uint | 
 | 367 | sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) | 
 | 368 | { | 
 | 369 | 	uint origidx = 0; | 
 | 370 | 	uint32 *r = NULL; | 
 | 371 | 	uint w; | 
 | 372 | 	uint intr_val = 0; | 
 | 373 | 	bool fast = FALSE; | 
 | 374 | 	si_info_t *sii; | 
 | 375 |  | 
 | 376 | 	sii = SI_INFO(sih); | 
 | 377 |  | 
 | 378 | 	ASSERT(GOODIDX(coreidx)); | 
 | 379 | 	ASSERT(regoff < SI_CORE_SIZE); | 
 | 380 | 	ASSERT((val & ~mask) == 0); | 
 | 381 |  | 
 | 382 | 	if (coreidx >= SI_MAXCORES) | 
 | 383 | 		return 0; | 
 | 384 |  | 
 | 385 | 	if (BUSTYPE(sii->pub.bustype) == SI_BUS) { | 
 | 386 | 		/* If internal bus, we can always get at everything */ | 
 | 387 | 		fast = TRUE; | 
 | 388 | 		/* map if does not exist */ | 
 | 389 | 		if (!sii->regs[coreidx]) { | 
 | 390 | 			sii->regs[coreidx] = REG_MAP(sii->coresba[coreidx], | 
 | 391 | 			                            SI_CORE_SIZE); | 
 | 392 | 			ASSERT(GOODREGS(sii->regs[coreidx])); | 
 | 393 | 		} | 
 | 394 | 		r = (uint32 *)((uchar *)sii->regs[coreidx] + regoff); | 
 | 395 | 	} else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) { | 
 | 396 | 		/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ | 
 | 397 |  | 
 | 398 | 		if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { | 
 | 399 | 			/* Chipc registers are mapped at 12KB */ | 
 | 400 |  | 
 | 401 | 			fast = TRUE; | 
 | 402 | 			r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); | 
 | 403 | 		} else if (sii->pub.buscoreidx == coreidx) { | 
 | 404 | 			/* pci registers are at either in the last 2KB of an 8KB window | 
 | 405 | 			 * or, in pcie and pci rev 13 at 8KB | 
 | 406 | 			 */ | 
 | 407 | 			fast = TRUE; | 
 | 408 | 			if (SI_FAST(sii)) | 
 | 409 | 				r = (uint32 *)((char *)sii->curmap + | 
 | 410 | 				               PCI_16KB0_PCIREGS_OFFSET + regoff); | 
 | 411 | 			else | 
 | 412 | 				r = (uint32 *)((char *)sii->curmap + | 
 | 413 | 				               ((regoff >= SBCONFIGOFF) ? | 
 | 414 | 				                PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + | 
 | 415 | 				               regoff); | 
 | 416 | 		} | 
 | 417 | 	} | 
 | 418 |  | 
 | 419 | 	if (!fast) { | 
 | 420 | 		INTR_OFF(sii, intr_val); | 
 | 421 |  | 
 | 422 | 		/* save current core index */ | 
 | 423 | 		origidx = si_coreidx(&sii->pub); | 
 | 424 |  | 
 | 425 | 		/* switch core */ | 
 | 426 | 		r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff); | 
 | 427 | 	} | 
 | 428 | 	ASSERT(r != NULL); | 
 | 429 |  | 
 | 430 | 	/* mask and set */ | 
 | 431 | 	if (mask || val) { | 
 | 432 | 		if (regoff >= SBCONFIGOFF) { | 
 | 433 | 			w = (R_SBREG(sii, r) & ~mask) | val; | 
 | 434 | 			W_SBREG(sii, r, w); | 
 | 435 | 		} else { | 
 | 436 | 			w = (R_REG(sii->osh, r) & ~mask) | val; | 
 | 437 | 			W_REG(sii->osh, r, w); | 
 | 438 | 		} | 
 | 439 | 	} | 
 | 440 |  | 
 | 441 | 	/* readback */ | 
 | 442 | 	if (regoff >= SBCONFIGOFF) | 
 | 443 | 		w = R_SBREG(sii, r); | 
 | 444 | 	else { | 
 | 445 | 		if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) && | 
 | 446 | 		    (coreidx == SI_CC_IDX) && | 
 | 447 | 		    (regoff == OFFSETOF(chipcregs_t, watchdog))) { | 
 | 448 | 			w = val; | 
 | 449 | 		} else | 
 | 450 | 			w = R_REG(sii->osh, r); | 
 | 451 | 	} | 
 | 452 |  | 
 | 453 | 	if (!fast) { | 
 | 454 | 		/* restore core index */ | 
 | 455 | 		if (origidx != coreidx) | 
 | 456 | 			sb_setcoreidx(&sii->pub, origidx); | 
 | 457 |  | 
 | 458 | 		INTR_RESTORE(sii, intr_val); | 
 | 459 | 	} | 
 | 460 |  | 
 | 461 | 	return (w); | 
 | 462 | } | 
 | 463 |  | 
 | 464 | /* Scan the enumeration space to find all cores starting from the given | 
 | 465 |  * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba' | 
 | 466 |  * is the default core address at chip POR time and 'regs' is the virtual | 
 | 467 |  * address that the default core is mapped at. 'ncores' is the number of | 
 | 468 |  * cores expected on bus 'sbba'. It returns the total number of cores | 
 | 469 |  * starting from bus 'sbba', inclusive. | 
 | 470 |  */ | 
 | 471 | #define SB_MAXBUSES	2 | 
 | 472 | static uint | 
 | 473 | _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores) | 
 | 474 | { | 
 | 475 | 	uint next; | 
 | 476 | 	uint ncc = 0; | 
 | 477 | 	uint i; | 
 | 478 |  | 
 | 479 | 	if (bus >= SB_MAXBUSES) { | 
 | 480 | 		SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus)); | 
 | 481 | 		return 0; | 
 | 482 | 	} | 
 | 483 | 	SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores)); | 
 | 484 |  | 
 | 485 | 	/* Scan all cores on the bus starting from core 0. | 
 | 486 | 	 * Core addresses must be contiguous on each bus. | 
 | 487 | 	 */ | 
 | 488 | 	for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) { | 
 | 489 | 		sii->coresba[next] = sbba + (i * SI_CORE_SIZE); | 
 | 490 |  | 
 | 491 | 		/* keep and reuse the initial register mapping */ | 
 | 492 | 		if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && (sii->coresba[next] == sba)) { | 
 | 493 | 			SI_VMSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next)); | 
 | 494 | 			sii->regs[next] = regs; | 
 | 495 | 		} | 
 | 496 |  | 
 | 497 | 		/* change core to 'next' and read its coreid */ | 
 | 498 | 		sii->curmap = _sb_setcoreidx(sii, next); | 
 | 499 | 		sii->curidx = next; | 
 | 500 |  | 
 | 501 | 		sii->coreid[next] = sb_coreid(&sii->pub); | 
 | 502 |  | 
 | 503 | 		/* core specific processing... */ | 
 | 504 | 		/* chipc provides # cores */ | 
 | 505 | 		if (sii->coreid[next] == CC_CORE_ID) { | 
 | 506 | 			chipcregs_t *cc = (chipcregs_t *)sii->curmap; | 
 | 507 | 			uint32 ccrev = sb_corerev(&sii->pub); | 
 | 508 |  | 
 | 509 | 			/* determine numcores - this is the total # cores in the chip */ | 
 | 510 | 			if (((ccrev == 4) || (ccrev >= 6))) | 
 | 511 | 				numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >> | 
 | 512 | 				        CID_CC_SHIFT; | 
 | 513 | 			else { | 
 | 514 | 				/* Older chips */ | 
 | 515 | 				uint chip = CHIPID(sii->pub.chip); | 
 | 516 |  | 
 | 517 | 				if (chip == BCM4306_CHIP_ID)	/* < 4306c0 */ | 
 | 518 | 					numcores = 6; | 
 | 519 | 				else if (chip == BCM4704_CHIP_ID) | 
 | 520 | 					numcores = 9; | 
 | 521 | 				else if (chip == BCM5365_CHIP_ID) | 
 | 522 | 					numcores = 7; | 
 | 523 | 				else { | 
 | 524 | 					SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", | 
 | 525 | 					          chip)); | 
 | 526 | 					ASSERT(0); | 
 | 527 | 					numcores = 1; | 
 | 528 | 				} | 
 | 529 | 			} | 
 | 530 | 			SI_VMSG(("_sb_scan: there are %u cores in the chip %s\n", numcores, | 
 | 531 | 				sii->pub.issim ? "QT" : "")); | 
 | 532 | 		} | 
 | 533 | 		/* scan bridged SB(s) and add results to the end of the list */ | 
 | 534 | 		else if (sii->coreid[next] == OCP_CORE_ID) { | 
 | 535 | 			sbconfig_t *sb = REGS2SB(sii->curmap); | 
 | 536 | 			uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1); | 
 | 537 | 			uint nsbcc; | 
 | 538 |  | 
 | 539 | 			sii->numcores = next + 1; | 
 | 540 |  | 
 | 541 | 			if ((nsbba & 0xfff00000) != SI_ENUM_BASE) | 
 | 542 | 				continue; | 
 | 543 | 			nsbba &= 0xfffff000; | 
 | 544 | 			if (_sb_coreidx(sii, nsbba) != BADIDX) | 
 | 545 | 				continue; | 
 | 546 |  | 
 | 547 | 			nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16; | 
 | 548 | 			nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc); | 
 | 549 | 			if (sbba == SI_ENUM_BASE) | 
 | 550 | 				numcores -= nsbcc; | 
 | 551 | 			ncc += nsbcc; | 
 | 552 | 		} | 
 | 553 | 	} | 
 | 554 |  | 
 | 555 | 	SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba)); | 
 | 556 |  | 
 | 557 | 	sii->numcores = i + ncc; | 
 | 558 | 	return sii->numcores; | 
 | 559 | } | 
 | 560 |  | 
 | 561 | /* scan the sb enumerated space to identify all cores */ | 
 | 562 | void | 
 | 563 | sb_scan(si_t *sih, void *regs, uint devid) | 
 | 564 | { | 
 | 565 | 	si_info_t *sii; | 
 | 566 | 	uint32 origsba; | 
 | 567 | 	sbconfig_t *sb; | 
 | 568 |  | 
 | 569 | 	sii = SI_INFO(sih); | 
 | 570 | 	sb = REGS2SB(sii->curmap); | 
 | 571 |  | 
 | 572 | 	sii->pub.socirev = (R_SBREG(sii, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT; | 
 | 573 |  | 
 | 574 | 	/* Save the current core info and validate it later till we know | 
 | 575 | 	 * for sure what is good and what is bad. | 
 | 576 | 	 */ | 
 | 577 | 	origsba = _sb_coresba(sii); | 
 | 578 |  | 
 | 579 | 	/* scan all SB(s) starting from SI_ENUM_BASE */ | 
 | 580 | 	sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1); | 
 | 581 | } | 
 | 582 |  | 
 | 583 | /* | 
 | 584 |  * This function changes logical "focus" to the indicated core; | 
 | 585 |  * must be called with interrupts off. | 
 | 586 |  * Moreover, callers should keep interrupts off during switching out of and back to d11 core | 
 | 587 |  */ | 
 | 588 | void * | 
 | 589 | sb_setcoreidx(si_t *sih, uint coreidx) | 
 | 590 | { | 
 | 591 | 	si_info_t *sii; | 
 | 592 |  | 
 | 593 | 	sii = SI_INFO(sih); | 
 | 594 |  | 
 | 595 | 	if (coreidx >= sii->numcores) | 
 | 596 | 		return (NULL); | 
 | 597 |  | 
 | 598 | 	/* | 
 | 599 | 	 * If the user has provided an interrupt mask enabled function, | 
 | 600 | 	 * then assert interrupts are disabled before switching the core. | 
 | 601 | 	 */ | 
 | 602 | 	ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); | 
 | 603 |  | 
 | 604 | 	sii->curmap = _sb_setcoreidx(sii, coreidx); | 
 | 605 | 	sii->curidx = coreidx; | 
 | 606 |  | 
 | 607 | 	return (sii->curmap); | 
 | 608 | } | 
 | 609 |  | 
 | 610 | /* This function changes the logical "focus" to the indicated core. | 
 | 611 |  * Return the current core's virtual address. | 
 | 612 |  */ | 
 | 613 | static void * | 
 | 614 | _sb_setcoreidx(si_info_t *sii, uint coreidx) | 
 | 615 | { | 
 | 616 | 	uint32 sbaddr = sii->coresba[coreidx]; | 
 | 617 | 	void *regs; | 
 | 618 |  | 
 | 619 | 	switch (BUSTYPE(sii->pub.bustype)) { | 
 | 620 | 	case SI_BUS: | 
 | 621 | 		/* map new one */ | 
 | 622 | 		if (!sii->regs[coreidx]) { | 
 | 623 | 			sii->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE); | 
 | 624 | 			ASSERT(GOODREGS(sii->regs[coreidx])); | 
 | 625 | 		} | 
 | 626 | 		regs = sii->regs[coreidx]; | 
 | 627 | 		break; | 
 | 628 |  | 
 | 629 | 	case PCI_BUS: | 
 | 630 | 		/* point bar0 window */ | 
 | 631 | 		OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr); | 
 | 632 | 		regs = sii->curmap; | 
 | 633 | 		break; | 
 | 634 |  | 
 | 635 | 	case PCMCIA_BUS: { | 
 | 636 | 		uint8 tmp = (sbaddr >> 12) & 0x0f; | 
 | 637 | 		OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1); | 
 | 638 | 		tmp = (sbaddr >> 16) & 0xff; | 
 | 639 | 		OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1); | 
 | 640 | 		tmp = (sbaddr >> 24) & 0xff; | 
 | 641 | 		OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1); | 
 | 642 | 		regs = sii->curmap; | 
 | 643 | 		break; | 
 | 644 | 	} | 
 | 645 | 	case SPI_BUS: | 
 | 646 | 	case SDIO_BUS: | 
 | 647 | 		/* map new one */ | 
 | 648 | 		if (!sii->regs[coreidx]) { | 
 | 649 | 			sii->regs[coreidx] = (void *)(uintptr)sbaddr; | 
 | 650 | 			ASSERT(GOODREGS(sii->regs[coreidx])); | 
 | 651 | 		} | 
 | 652 | 		regs = sii->regs[coreidx]; | 
 | 653 | 		break; | 
 | 654 |  | 
 | 655 |  | 
 | 656 | 	default: | 
 | 657 | 		ASSERT(0); | 
 | 658 | 		regs = NULL; | 
 | 659 | 		break; | 
 | 660 | 	} | 
 | 661 |  | 
 | 662 | 	return regs; | 
 | 663 | } | 
 | 664 |  | 
 | 665 | /* Return the address of sbadmatch0/1/2/3 register */ | 
 | 666 | static volatile uint32 * | 
 | 667 | sb_admatch(si_info_t *sii, uint asidx) | 
 | 668 | { | 
 | 669 | 	sbconfig_t *sb; | 
 | 670 | 	volatile uint32 *addrm; | 
 | 671 |  | 
 | 672 | 	sb = REGS2SB(sii->curmap); | 
 | 673 |  | 
 | 674 | 	switch (asidx) { | 
 | 675 | 	case 0: | 
 | 676 | 		addrm =  &sb->sbadmatch0; | 
 | 677 | 		break; | 
 | 678 |  | 
 | 679 | 	case 1: | 
 | 680 | 		addrm =  &sb->sbadmatch1; | 
 | 681 | 		break; | 
 | 682 |  | 
 | 683 | 	case 2: | 
 | 684 | 		addrm =  &sb->sbadmatch2; | 
 | 685 | 		break; | 
 | 686 |  | 
 | 687 | 	case 3: | 
 | 688 | 		addrm =  &sb->sbadmatch3; | 
 | 689 | 		break; | 
 | 690 |  | 
 | 691 | 	default: | 
 | 692 | 		SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx)); | 
 | 693 | 		return 0; | 
 | 694 | 	} | 
 | 695 |  | 
 | 696 | 	return (addrm); | 
 | 697 | } | 
 | 698 |  | 
 | 699 | /* Return the number of address spaces in current core */ | 
 | 700 | int | 
 | 701 | sb_numaddrspaces(si_t *sih) | 
 | 702 | { | 
 | 703 | 	si_info_t *sii; | 
 | 704 | 	sbconfig_t *sb; | 
 | 705 |  | 
 | 706 | 	sii = SI_INFO(sih); | 
 | 707 | 	sb = REGS2SB(sii->curmap); | 
 | 708 |  | 
 | 709 | 	/* + 1 because of enumeration space */ | 
 | 710 | 	return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1; | 
 | 711 | } | 
 | 712 |  | 
 | 713 | /* Return the address of the nth address space in the current core */ | 
 | 714 | uint32 | 
 | 715 | sb_addrspace(si_t *sih, uint asidx) | 
 | 716 | { | 
 | 717 | 	si_info_t *sii; | 
 | 718 |  | 
 | 719 | 	sii = SI_INFO(sih); | 
 | 720 |  | 
 | 721 | 	return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx)))); | 
 | 722 | } | 
 | 723 |  | 
 | 724 | /* Return the size of the nth address space in the current core */ | 
 | 725 | uint32 | 
 | 726 | sb_addrspacesize(si_t *sih, uint asidx) | 
 | 727 | { | 
 | 728 | 	si_info_t *sii; | 
 | 729 |  | 
 | 730 | 	sii = SI_INFO(sih); | 
 | 731 |  | 
 | 732 | 	return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx)))); | 
 | 733 | } | 
 | 734 |  | 
 | 735 |  | 
 | 736 | /* do buffered registers update */ | 
 | 737 | void | 
 | 738 | sb_commit(si_t *sih) | 
 | 739 | { | 
 | 740 | 	si_info_t *sii; | 
 | 741 | 	uint origidx; | 
 | 742 | 	uint intr_val = 0; | 
 | 743 |  | 
 | 744 | 	sii = SI_INFO(sih); | 
 | 745 |  | 
 | 746 | 	origidx = sii->curidx; | 
 | 747 | 	ASSERT(GOODIDX(origidx)); | 
 | 748 |  | 
 | 749 | 	INTR_OFF(sii, intr_val); | 
 | 750 |  | 
 | 751 | 	/* switch over to chipcommon core if there is one, else use pci */ | 
 | 752 | 	if (sii->pub.ccrev != NOREV) { | 
 | 753 | 		chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0); | 
 | 754 | 		ASSERT(ccregs != NULL); | 
 | 755 |  | 
 | 756 | 		/* do the buffer registers update */ | 
 | 757 | 		W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT); | 
 | 758 | 		W_REG(sii->osh, &ccregs->broadcastdata, 0x0); | 
 | 759 | 	} else | 
 | 760 | 		ASSERT(0); | 
 | 761 |  | 
 | 762 | 	/* restore core index */ | 
 | 763 | 	sb_setcoreidx(sih, origidx); | 
 | 764 | 	INTR_RESTORE(sii, intr_val); | 
 | 765 | } | 
 | 766 |  | 
 | 767 | void | 
 | 768 | sb_core_disable(si_t *sih, uint32 bits) | 
 | 769 | { | 
 | 770 | 	si_info_t *sii; | 
 | 771 | 	volatile uint32 dummy; | 
 | 772 | 	sbconfig_t *sb; | 
 | 773 |  | 
 | 774 | 	sii = SI_INFO(sih); | 
 | 775 |  | 
 | 776 | 	ASSERT(GOODREGS(sii->curmap)); | 
 | 777 | 	sb = REGS2SB(sii->curmap); | 
 | 778 |  | 
 | 779 | 	/* if core is already in reset, just return */ | 
 | 780 | 	if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET) | 
 | 781 | 		return; | 
 | 782 |  | 
 | 783 | 	/* if clocks are not enabled, put into reset and return */ | 
 | 784 | 	if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0) | 
 | 785 | 		goto disable; | 
 | 786 |  | 
 | 787 | 	/* set target reject and spin until busy is clear (preserve core-specific bits) */ | 
 | 788 | 	OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ); | 
 | 789 | 	dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
 | 790 | 	OSL_DELAY(1); | 
 | 791 | 	SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000); | 
 | 792 | 	if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY) | 
 | 793 | 		SI_ERROR(("%s: target state still busy\n", __FUNCTION__)); | 
 | 794 |  | 
 | 795 | 	if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) { | 
 | 796 | 		OR_SBREG(sii, &sb->sbimstate, SBIM_RJ); | 
 | 797 | 		dummy = R_SBREG(sii, &sb->sbimstate); | 
 | 798 | 		OSL_DELAY(1); | 
 | 799 | 		SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000); | 
 | 800 | 	} | 
 | 801 |  | 
 | 802 | 	/* set reset and reject while enabling the clocks */ | 
 | 803 | 	W_SBREG(sii, &sb->sbtmstatelow, | 
 | 804 | 	        (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | 
 | 805 | 	         SBTML_REJ | SBTML_RESET)); | 
 | 806 | 	dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
 | 807 | 	OSL_DELAY(10); | 
 | 808 |  | 
 | 809 | 	/* don't forget to clear the initiator reject bit */ | 
 | 810 | 	if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) | 
 | 811 | 		AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ); | 
 | 812 |  | 
 | 813 | disable: | 
 | 814 | 	/* leave reset and reject asserted */ | 
 | 815 | 	W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET)); | 
 | 816 | 	OSL_DELAY(1); | 
 | 817 | } | 
 | 818 |  | 
 | 819 | /* reset and re-enable a core | 
 | 820 |  * inputs: | 
 | 821 |  * bits - core specific bits that are set during and after reset sequence | 
 | 822 |  * resetbits - core specific bits that are set only during reset sequence | 
 | 823 |  */ | 
 | 824 | void | 
 | 825 | sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits) | 
 | 826 | { | 
 | 827 | 	si_info_t *sii; | 
 | 828 | 	sbconfig_t *sb; | 
 | 829 | 	volatile uint32 dummy; | 
 | 830 |  | 
 | 831 | 	sii = SI_INFO(sih); | 
 | 832 | 	ASSERT(GOODREGS(sii->curmap)); | 
 | 833 | 	sb = REGS2SB(sii->curmap); | 
 | 834 |  | 
 | 835 | 	/* | 
 | 836 | 	 * Must do the disable sequence first to work for arbitrary current core state. | 
 | 837 | 	 */ | 
 | 838 | 	sb_core_disable(sih, (bits | resetbits)); | 
 | 839 |  | 
 | 840 | 	/* | 
 | 841 | 	 * Now do the initialization sequence. | 
 | 842 | 	 */ | 
 | 843 |  | 
 | 844 | 	/* set reset while enabling the clock and forcing them on throughout the core */ | 
 | 845 | 	W_SBREG(sii, &sb->sbtmstatelow, | 
 | 846 | 	        (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) | | 
 | 847 | 	         SBTML_RESET)); | 
 | 848 | 	dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
 | 849 | 	OSL_DELAY(1); | 
 | 850 |  | 
 | 851 | 	if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) { | 
 | 852 | 		W_SBREG(sii, &sb->sbtmstatehigh, 0); | 
 | 853 | 	} | 
 | 854 | 	if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) { | 
 | 855 | 		AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO)); | 
 | 856 | 	} | 
 | 857 |  | 
 | 858 | 	/* clear reset and allow it to propagate throughout the core */ | 
 | 859 | 	W_SBREG(sii, &sb->sbtmstatelow, | 
 | 860 | 	        ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | 
 | 861 | 	dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
 | 862 | 	OSL_DELAY(1); | 
 | 863 |  | 
 | 864 | 	/* leave clock enabled */ | 
 | 865 | 	W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT)); | 
 | 866 | 	dummy = R_SBREG(sii, &sb->sbtmstatelow); | 
 | 867 | 	OSL_DELAY(1); | 
 | 868 | } | 
 | 869 |  | 
 | 870 | /* | 
 | 871 |  * Set the initiator timeout for the "master core". | 
 | 872 |  * The master core is defined to be the core in control | 
 | 873 |  * of the chip and so it issues accesses to non-memory | 
 | 874 |  * locations (Because of dma *any* core can access memeory). | 
 | 875 |  * | 
 | 876 |  * The routine uses the bus to decide who is the master: | 
 | 877 |  *	SI_BUS => mips | 
 | 878 |  *	JTAG_BUS => chipc | 
 | 879 |  *	PCI_BUS => pci or pcie | 
 | 880 |  *	PCMCIA_BUS => pcmcia | 
 | 881 |  *	SDIO_BUS => pcmcia | 
 | 882 |  * | 
 | 883 |  * This routine exists so callers can disable initiator | 
 | 884 |  * timeouts so accesses to very slow devices like otp | 
 | 885 |  * won't cause an abort. The routine allows arbitrary | 
 | 886 |  * settings of the service and request timeouts, though. | 
 | 887 |  * | 
 | 888 |  * Returns the timeout state before changing it or -1 | 
 | 889 |  * on error. | 
 | 890 |  */ | 
 | 891 |  | 
 | 892 | #define	TO_MASK	(SBIMCL_RTO_MASK | SBIMCL_STO_MASK) | 
 | 893 |  | 
 | 894 | uint32 | 
 | 895 | sb_set_initiator_to(si_t *sih, uint32 to, uint idx) | 
 | 896 | { | 
 | 897 | 	si_info_t *sii; | 
 | 898 | 	uint origidx; | 
 | 899 | 	uint intr_val = 0; | 
 | 900 | 	uint32 tmp, ret = 0xffffffff; | 
 | 901 | 	sbconfig_t *sb; | 
 | 902 |  | 
 | 903 | 	sii = SI_INFO(sih); | 
 | 904 |  | 
 | 905 | 	if ((to & ~TO_MASK) != 0) | 
 | 906 | 		return ret; | 
 | 907 |  | 
 | 908 | 	/* Figure out the master core */ | 
 | 909 | 	if (idx == BADIDX) { | 
 | 910 | 		switch (BUSTYPE(sii->pub.bustype)) { | 
 | 911 | 		case PCI_BUS: | 
 | 912 | 			idx = sii->pub.buscoreidx; | 
 | 913 | 			break; | 
 | 914 | 		case JTAG_BUS: | 
 | 915 | 			idx = SI_CC_IDX; | 
 | 916 | 			break; | 
 | 917 | 		case PCMCIA_BUS: | 
 | 918 | 		case SDIO_BUS: | 
 | 919 | 			idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0); | 
 | 920 | 			break; | 
 | 921 | 		case SI_BUS: | 
 | 922 | 			idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0); | 
 | 923 | 			break; | 
 | 924 | 		default: | 
 | 925 | 			ASSERT(0); | 
 | 926 | 		} | 
 | 927 | 		if (idx == BADIDX) | 
 | 928 | 			return ret; | 
 | 929 | 	} | 
 | 930 |  | 
 | 931 | 	INTR_OFF(sii, intr_val); | 
 | 932 | 	origidx = si_coreidx(sih); | 
 | 933 |  | 
 | 934 | 	sb = REGS2SB(sb_setcoreidx(sih, idx)); | 
 | 935 |  | 
 | 936 | 	tmp = R_SBREG(sii, &sb->sbimconfiglow); | 
 | 937 | 	ret = tmp & TO_MASK; | 
 | 938 | 	W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to); | 
 | 939 |  | 
 | 940 | 	sb_commit(sih); | 
 | 941 | 	sb_setcoreidx(sih, origidx); | 
 | 942 | 	INTR_RESTORE(sii, intr_val); | 
 | 943 | 	return ret; | 
 | 944 | } | 
 | 945 |  | 
 | 946 | uint32 | 
 | 947 | sb_base(uint32 admatch) | 
 | 948 | { | 
 | 949 | 	uint32 base; | 
 | 950 | 	uint type; | 
 | 951 |  | 
 | 952 | 	type = admatch & SBAM_TYPE_MASK; | 
 | 953 | 	ASSERT(type < 3); | 
 | 954 |  | 
 | 955 | 	base = 0; | 
 | 956 |  | 
 | 957 | 	if (type == 0) { | 
 | 958 | 		base = admatch & SBAM_BASE0_MASK; | 
 | 959 | 	} else if (type == 1) { | 
 | 960 | 		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
 | 961 | 		base = admatch & SBAM_BASE1_MASK; | 
 | 962 | 	} else if (type == 2) { | 
 | 963 | 		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
 | 964 | 		base = admatch & SBAM_BASE2_MASK; | 
 | 965 | 	} | 
 | 966 |  | 
 | 967 | 	return (base); | 
 | 968 | } | 
 | 969 |  | 
 | 970 | uint32 | 
 | 971 | sb_size(uint32 admatch) | 
 | 972 | { | 
 | 973 | 	uint32 size; | 
 | 974 | 	uint type; | 
 | 975 |  | 
 | 976 | 	type = admatch & SBAM_TYPE_MASK; | 
 | 977 | 	ASSERT(type < 3); | 
 | 978 |  | 
 | 979 | 	size = 0; | 
 | 980 |  | 
 | 981 | 	if (type == 0) { | 
 | 982 | 		size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1); | 
 | 983 | 	} else if (type == 1) { | 
 | 984 | 		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
 | 985 | 		size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1); | 
 | 986 | 	} else if (type == 2) { | 
 | 987 | 		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */ | 
 | 988 | 		size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1); | 
 | 989 | 	} | 
 | 990 |  | 
 | 991 | 	return (size); | 
 | 992 | } |