| Tony Lindgren | 3179a01 | 2005-11-10 14:26:48 +0000 | [diff] [blame] | 1 | /* | 
|  | 2 | *  linux/arch/arm/mach-omap1/clock.c | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 2004 - 2005 Nokia corporation | 
|  | 5 | *  Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> | 
|  | 6 | * | 
|  | 7 | *  Modified to use omap shared clock framework by | 
|  | 8 | *  Tony Lindgren <tony@atomide.com> | 
|  | 9 | * | 
|  | 10 | * This program is free software; you can redistribute it and/or modify | 
|  | 11 | * it under the terms of the GNU General Public License version 2 as | 
|  | 12 | * published by the Free Software Foundation. | 
|  | 13 | */ | 
|  | 14 | #include <linux/module.h> | 
|  | 15 | #include <linux/kernel.h> | 
|  | 16 | #include <linux/list.h> | 
|  | 17 | #include <linux/errno.h> | 
|  | 18 | #include <linux/err.h> | 
| Russell King | f8ce254 | 2006-01-07 16:15:52 +0000 | [diff] [blame] | 19 | #include <linux/clk.h> | 
| Tony Lindgren | 3179a01 | 2005-11-10 14:26:48 +0000 | [diff] [blame] | 20 |  | 
|  | 21 | #include <asm/io.h> | 
| Tony Lindgren | 3179a01 | 2005-11-10 14:26:48 +0000 | [diff] [blame] | 22 |  | 
|  | 23 | #include <asm/arch/usb.h> | 
|  | 24 | #include <asm/arch/clock.h> | 
|  | 25 | #include <asm/arch/sram.h> | 
|  | 26 |  | 
|  | 27 | #include "clock.h" | 
|  | 28 |  | 
|  | 29 | __u32 arm_idlect1_mask; | 
|  | 30 |  | 
|  | 31 | /*------------------------------------------------------------------------- | 
|  | 32 | * Omap1 specific clock functions | 
|  | 33 | *-------------------------------------------------------------------------*/ | 
|  | 34 |  | 
|  | 35 | static void omap1_watchdog_recalc(struct clk * clk) | 
|  | 36 | { | 
|  | 37 | clk->rate = clk->parent->rate / 14; | 
|  | 38 | } | 
|  | 39 |  | 
|  | 40 | static void omap1_uart_recalc(struct clk * clk) | 
|  | 41 | { | 
|  | 42 | unsigned int val = omap_readl(clk->enable_reg); | 
|  | 43 | if (val & clk->enable_bit) | 
|  | 44 | clk->rate = 48000000; | 
|  | 45 | else | 
|  | 46 | clk->rate = 12000000; | 
|  | 47 | } | 
|  | 48 |  | 
|  | 49 | static int omap1_clk_enable_dsp_domain(struct clk *clk) | 
|  | 50 | { | 
|  | 51 | int retval; | 
|  | 52 |  | 
|  | 53 | retval = omap1_clk_use(&api_ck.clk); | 
|  | 54 | if (!retval) { | 
|  | 55 | retval = omap1_clk_enable(clk); | 
|  | 56 | omap1_clk_unuse(&api_ck.clk); | 
|  | 57 | } | 
|  | 58 |  | 
|  | 59 | return retval; | 
|  | 60 | } | 
|  | 61 |  | 
|  | 62 | static void omap1_clk_disable_dsp_domain(struct clk *clk) | 
|  | 63 | { | 
|  | 64 | if (omap1_clk_use(&api_ck.clk) == 0) { | 
|  | 65 | omap1_clk_disable(clk); | 
|  | 66 | omap1_clk_unuse(&api_ck.clk); | 
|  | 67 | } | 
|  | 68 | } | 
|  | 69 |  | 
|  | 70 | static int omap1_clk_enable_uart_functional(struct clk *clk) | 
|  | 71 | { | 
|  | 72 | int ret; | 
|  | 73 | struct uart_clk *uclk; | 
|  | 74 |  | 
|  | 75 | ret = omap1_clk_enable(clk); | 
|  | 76 | if (ret == 0) { | 
|  | 77 | /* Set smart idle acknowledgement mode */ | 
|  | 78 | uclk = (struct uart_clk *)clk; | 
|  | 79 | omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8, | 
|  | 80 | uclk->sysc_addr); | 
|  | 81 | } | 
|  | 82 |  | 
|  | 83 | return ret; | 
|  | 84 | } | 
|  | 85 |  | 
|  | 86 | static void omap1_clk_disable_uart_functional(struct clk *clk) | 
|  | 87 | { | 
|  | 88 | struct uart_clk *uclk; | 
|  | 89 |  | 
|  | 90 | /* Set force idle acknowledgement mode */ | 
|  | 91 | uclk = (struct uart_clk *)clk; | 
|  | 92 | omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr); | 
|  | 93 |  | 
|  | 94 | omap1_clk_disable(clk); | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | static void omap1_clk_allow_idle(struct clk *clk) | 
|  | 98 | { | 
|  | 99 | struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; | 
|  | 100 |  | 
|  | 101 | if (!(clk->flags & CLOCK_IDLE_CONTROL)) | 
|  | 102 | return; | 
|  | 103 |  | 
|  | 104 | if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count)) | 
|  | 105 | arm_idlect1_mask |= 1 << iclk->idlect_shift; | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | static void omap1_clk_deny_idle(struct clk *clk) | 
|  | 109 | { | 
|  | 110 | struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; | 
|  | 111 |  | 
|  | 112 | if (!(clk->flags & CLOCK_IDLE_CONTROL)) | 
|  | 113 | return; | 
|  | 114 |  | 
|  | 115 | if (iclk->no_idle_count++ == 0) | 
|  | 116 | arm_idlect1_mask &= ~(1 << iclk->idlect_shift); | 
|  | 117 | } | 
|  | 118 |  | 
|  | 119 | static __u16 verify_ckctl_value(__u16 newval) | 
|  | 120 | { | 
|  | 121 | /* This function checks for following limitations set | 
|  | 122 | * by the hardware (all conditions must be true): | 
|  | 123 | * DSPMMU_CK == DSP_CK  or  DSPMMU_CK == DSP_CK/2 | 
|  | 124 | * ARM_CK >= TC_CK | 
|  | 125 | * DSP_CK >= TC_CK | 
|  | 126 | * DSPMMU_CK >= TC_CK | 
|  | 127 | * | 
|  | 128 | * In addition following rules are enforced: | 
|  | 129 | * LCD_CK <= TC_CK | 
|  | 130 | * ARMPER_CK <= TC_CK | 
|  | 131 | * | 
|  | 132 | * However, maximum frequencies are not checked for! | 
|  | 133 | */ | 
|  | 134 | __u8 per_exp; | 
|  | 135 | __u8 lcd_exp; | 
|  | 136 | __u8 arm_exp; | 
|  | 137 | __u8 dsp_exp; | 
|  | 138 | __u8 tc_exp; | 
|  | 139 | __u8 dspmmu_exp; | 
|  | 140 |  | 
|  | 141 | per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3; | 
|  | 142 | lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3; | 
|  | 143 | arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3; | 
|  | 144 | dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3; | 
|  | 145 | tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3; | 
|  | 146 | dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3; | 
|  | 147 |  | 
|  | 148 | if (dspmmu_exp < dsp_exp) | 
|  | 149 | dspmmu_exp = dsp_exp; | 
|  | 150 | if (dspmmu_exp > dsp_exp+1) | 
|  | 151 | dspmmu_exp = dsp_exp+1; | 
|  | 152 | if (tc_exp < arm_exp) | 
|  | 153 | tc_exp = arm_exp; | 
|  | 154 | if (tc_exp < dspmmu_exp) | 
|  | 155 | tc_exp = dspmmu_exp; | 
|  | 156 | if (tc_exp > lcd_exp) | 
|  | 157 | lcd_exp = tc_exp; | 
|  | 158 | if (tc_exp > per_exp) | 
|  | 159 | per_exp = tc_exp; | 
|  | 160 |  | 
|  | 161 | newval &= 0xf000; | 
|  | 162 | newval |= per_exp << CKCTL_PERDIV_OFFSET; | 
|  | 163 | newval |= lcd_exp << CKCTL_LCDDIV_OFFSET; | 
|  | 164 | newval |= arm_exp << CKCTL_ARMDIV_OFFSET; | 
|  | 165 | newval |= dsp_exp << CKCTL_DSPDIV_OFFSET; | 
|  | 166 | newval |= tc_exp << CKCTL_TCDIV_OFFSET; | 
|  | 167 | newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET; | 
|  | 168 |  | 
|  | 169 | return newval; | 
|  | 170 | } | 
|  | 171 |  | 
|  | 172 | static int calc_dsor_exp(struct clk *clk, unsigned long rate) | 
|  | 173 | { | 
|  | 174 | /* Note: If target frequency is too low, this function will return 4, | 
|  | 175 | * which is invalid value. Caller must check for this value and act | 
|  | 176 | * accordingly. | 
|  | 177 | * | 
|  | 178 | * Note: This function does not check for following limitations set | 
|  | 179 | * by the hardware (all conditions must be true): | 
|  | 180 | * DSPMMU_CK == DSP_CK  or  DSPMMU_CK == DSP_CK/2 | 
|  | 181 | * ARM_CK >= TC_CK | 
|  | 182 | * DSP_CK >= TC_CK | 
|  | 183 | * DSPMMU_CK >= TC_CK | 
|  | 184 | */ | 
|  | 185 | unsigned long realrate; | 
|  | 186 | struct clk * parent; | 
|  | 187 | unsigned  dsor_exp; | 
|  | 188 |  | 
|  | 189 | if (unlikely(!(clk->flags & RATE_CKCTL))) | 
|  | 190 | return -EINVAL; | 
|  | 191 |  | 
|  | 192 | parent = clk->parent; | 
|  | 193 | if (unlikely(parent == 0)) | 
|  | 194 | return -EIO; | 
|  | 195 |  | 
|  | 196 | realrate = parent->rate; | 
|  | 197 | for (dsor_exp=0; dsor_exp<4; dsor_exp++) { | 
|  | 198 | if (realrate <= rate) | 
|  | 199 | break; | 
|  | 200 |  | 
|  | 201 | realrate /= 2; | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | return dsor_exp; | 
|  | 205 | } | 
|  | 206 |  | 
|  | 207 | static void omap1_ckctl_recalc(struct clk * clk) | 
|  | 208 | { | 
|  | 209 | int dsor; | 
|  | 210 |  | 
|  | 211 | /* Calculate divisor encoded as 2-bit exponent */ | 
|  | 212 | dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset)); | 
|  | 213 |  | 
|  | 214 | if (unlikely(clk->rate == clk->parent->rate / dsor)) | 
|  | 215 | return; /* No change, quick exit */ | 
|  | 216 | clk->rate = clk->parent->rate / dsor; | 
|  | 217 |  | 
|  | 218 | if (unlikely(clk->flags & RATE_PROPAGATES)) | 
|  | 219 | propagate_rate(clk); | 
|  | 220 | } | 
|  | 221 |  | 
|  | 222 | static void omap1_ckctl_recalc_dsp_domain(struct clk * clk) | 
|  | 223 | { | 
|  | 224 | int dsor; | 
|  | 225 |  | 
|  | 226 | /* Calculate divisor encoded as 2-bit exponent | 
|  | 227 | * | 
|  | 228 | * The clock control bits are in DSP domain, | 
|  | 229 | * so api_ck is needed for access. | 
|  | 230 | * Note that DSP_CKCTL virt addr = phys addr, so | 
|  | 231 | * we must use __raw_readw() instead of omap_readw(). | 
|  | 232 | */ | 
|  | 233 | omap1_clk_use(&api_ck.clk); | 
|  | 234 | dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset)); | 
|  | 235 | omap1_clk_unuse(&api_ck.clk); | 
|  | 236 |  | 
|  | 237 | if (unlikely(clk->rate == clk->parent->rate / dsor)) | 
|  | 238 | return; /* No change, quick exit */ | 
|  | 239 | clk->rate = clk->parent->rate / dsor; | 
|  | 240 |  | 
|  | 241 | if (unlikely(clk->flags & RATE_PROPAGATES)) | 
|  | 242 | propagate_rate(clk); | 
|  | 243 | } | 
|  | 244 |  | 
|  | 245 | /* MPU virtual clock functions */ | 
|  | 246 | static int omap1_select_table_rate(struct clk * clk, unsigned long rate) | 
|  | 247 | { | 
|  | 248 | /* Find the highest supported frequency <= rate and switch to it */ | 
|  | 249 | struct mpu_rate * ptr; | 
|  | 250 |  | 
|  | 251 | if (clk != &virtual_ck_mpu) | 
|  | 252 | return -EINVAL; | 
|  | 253 |  | 
|  | 254 | for (ptr = rate_table; ptr->rate; ptr++) { | 
|  | 255 | if (ptr->xtal != ck_ref.rate) | 
|  | 256 | continue; | 
|  | 257 |  | 
|  | 258 | /* DPLL1 cannot be reprogrammed without risking system crash */ | 
|  | 259 | if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate) | 
|  | 260 | continue; | 
|  | 261 |  | 
|  | 262 | /* Can check only after xtal frequency check */ | 
|  | 263 | if (ptr->rate <= rate) | 
|  | 264 | break; | 
|  | 265 | } | 
|  | 266 |  | 
|  | 267 | if (!ptr->rate) | 
|  | 268 | return -EINVAL; | 
|  | 269 |  | 
|  | 270 | /* | 
|  | 271 | * In most cases we should not need to reprogram DPLL. | 
|  | 272 | * Reprogramming the DPLL is tricky, it must be done from SRAM. | 
|  | 273 | */ | 
|  | 274 | omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val); | 
|  | 275 |  | 
|  | 276 | ck_dpll1.rate = ptr->pll_rate; | 
|  | 277 | propagate_rate(&ck_dpll1); | 
|  | 278 | return 0; | 
|  | 279 | } | 
|  | 280 |  | 
|  | 281 | static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate) | 
|  | 282 | { | 
|  | 283 | int  ret = -EINVAL; | 
|  | 284 | int  dsor_exp; | 
|  | 285 | __u16  regval; | 
|  | 286 |  | 
|  | 287 | if (clk->flags & RATE_CKCTL) { | 
|  | 288 | dsor_exp = calc_dsor_exp(clk, rate); | 
|  | 289 | if (dsor_exp > 3) | 
|  | 290 | dsor_exp = -EINVAL; | 
|  | 291 | if (dsor_exp < 0) | 
|  | 292 | return dsor_exp; | 
|  | 293 |  | 
|  | 294 | regval = __raw_readw(DSP_CKCTL); | 
|  | 295 | regval &= ~(3 << clk->rate_offset); | 
|  | 296 | regval |= dsor_exp << clk->rate_offset; | 
|  | 297 | __raw_writew(regval, DSP_CKCTL); | 
|  | 298 | clk->rate = clk->parent->rate / (1 << dsor_exp); | 
|  | 299 | ret = 0; | 
|  | 300 | } | 
|  | 301 |  | 
|  | 302 | if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) | 
|  | 303 | propagate_rate(clk); | 
|  | 304 |  | 
|  | 305 | return ret; | 
|  | 306 | } | 
|  | 307 |  | 
|  | 308 | static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate) | 
|  | 309 | { | 
|  | 310 | /* Find the highest supported frequency <= rate */ | 
|  | 311 | struct mpu_rate * ptr; | 
|  | 312 | long  highest_rate; | 
|  | 313 |  | 
|  | 314 | if (clk != &virtual_ck_mpu) | 
|  | 315 | return -EINVAL; | 
|  | 316 |  | 
|  | 317 | highest_rate = -EINVAL; | 
|  | 318 |  | 
|  | 319 | for (ptr = rate_table; ptr->rate; ptr++) { | 
|  | 320 | if (ptr->xtal != ck_ref.rate) | 
|  | 321 | continue; | 
|  | 322 |  | 
|  | 323 | highest_rate = ptr->rate; | 
|  | 324 |  | 
|  | 325 | /* Can check only after xtal frequency check */ | 
|  | 326 | if (ptr->rate <= rate) | 
|  | 327 | break; | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | return highest_rate; | 
|  | 331 | } | 
|  | 332 |  | 
|  | 333 | static unsigned calc_ext_dsor(unsigned long rate) | 
|  | 334 | { | 
|  | 335 | unsigned dsor; | 
|  | 336 |  | 
|  | 337 | /* MCLK and BCLK divisor selection is not linear: | 
|  | 338 | * freq = 96MHz / dsor | 
|  | 339 | * | 
|  | 340 | * RATIO_SEL range: dsor <-> RATIO_SEL | 
|  | 341 | * 0..6: (RATIO_SEL+2) <-> (dsor-2) | 
|  | 342 | * 6..48:  (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6) | 
|  | 343 | * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9 | 
|  | 344 | * can not be used. | 
|  | 345 | */ | 
|  | 346 | for (dsor = 2; dsor < 96; ++dsor) { | 
|  | 347 | if ((dsor & 1) && dsor > 8) | 
|  | 348 | continue; | 
|  | 349 | if (rate >= 96000000 / dsor) | 
|  | 350 | break; | 
|  | 351 | } | 
|  | 352 | return dsor; | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | /* Only needed on 1510 */ | 
|  | 356 | static int omap1_set_uart_rate(struct clk * clk, unsigned long rate) | 
|  | 357 | { | 
|  | 358 | unsigned int val; | 
|  | 359 |  | 
|  | 360 | val = omap_readl(clk->enable_reg); | 
|  | 361 | if (rate == 12000000) | 
|  | 362 | val &= ~(1 << clk->enable_bit); | 
|  | 363 | else if (rate == 48000000) | 
|  | 364 | val |= (1 << clk->enable_bit); | 
|  | 365 | else | 
|  | 366 | return -EINVAL; | 
|  | 367 | omap_writel(val, clk->enable_reg); | 
|  | 368 | clk->rate = rate; | 
|  | 369 |  | 
|  | 370 | return 0; | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | /* External clock (MCLK & BCLK) functions */ | 
|  | 374 | static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate) | 
|  | 375 | { | 
|  | 376 | unsigned dsor; | 
|  | 377 | __u16 ratio_bits; | 
|  | 378 |  | 
|  | 379 | dsor = calc_ext_dsor(rate); | 
|  | 380 | clk->rate = 96000000 / dsor; | 
|  | 381 | if (dsor > 8) | 
|  | 382 | ratio_bits = ((dsor - 8) / 2 + 6) << 2; | 
|  | 383 | else | 
|  | 384 | ratio_bits = (dsor - 2) << 2; | 
|  | 385 |  | 
|  | 386 | ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd; | 
|  | 387 | omap_writew(ratio_bits, clk->enable_reg); | 
|  | 388 |  | 
|  | 389 | return 0; | 
|  | 390 | } | 
|  | 391 |  | 
|  | 392 | static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate) | 
|  | 393 | { | 
|  | 394 | return 96000000 / calc_ext_dsor(rate); | 
|  | 395 | } | 
|  | 396 |  | 
|  | 397 | static void omap1_init_ext_clk(struct clk * clk) | 
|  | 398 | { | 
|  | 399 | unsigned dsor; | 
|  | 400 | __u16 ratio_bits; | 
|  | 401 |  | 
|  | 402 | /* Determine current rate and ensure clock is based on 96MHz APLL */ | 
|  | 403 | ratio_bits = omap_readw(clk->enable_reg) & ~1; | 
|  | 404 | omap_writew(ratio_bits, clk->enable_reg); | 
|  | 405 |  | 
|  | 406 | ratio_bits = (ratio_bits & 0xfc) >> 2; | 
|  | 407 | if (ratio_bits > 6) | 
|  | 408 | dsor = (ratio_bits - 6) * 2 + 8; | 
|  | 409 | else | 
|  | 410 | dsor = ratio_bits + 2; | 
|  | 411 |  | 
|  | 412 | clk-> rate = 96000000 / dsor; | 
|  | 413 | } | 
|  | 414 |  | 
|  | 415 | static int omap1_clk_use(struct clk *clk) | 
|  | 416 | { | 
|  | 417 | int ret = 0; | 
|  | 418 | if (clk->usecount++ == 0) { | 
|  | 419 | if (likely(clk->parent)) { | 
|  | 420 | ret = omap1_clk_use(clk->parent); | 
|  | 421 |  | 
|  | 422 | if (unlikely(ret != 0)) { | 
|  | 423 | clk->usecount--; | 
|  | 424 | return ret; | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | if (clk->flags & CLOCK_NO_IDLE_PARENT) | 
|  | 428 | if (!cpu_is_omap24xx()) | 
|  | 429 | omap1_clk_deny_idle(clk->parent); | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | ret = clk->enable(clk); | 
|  | 433 |  | 
|  | 434 | if (unlikely(ret != 0) && clk->parent) { | 
|  | 435 | omap1_clk_unuse(clk->parent); | 
|  | 436 | clk->usecount--; | 
|  | 437 | } | 
|  | 438 | } | 
|  | 439 |  | 
|  | 440 | return ret; | 
|  | 441 | } | 
|  | 442 |  | 
|  | 443 | static void omap1_clk_unuse(struct clk *clk) | 
|  | 444 | { | 
|  | 445 | if (clk->usecount > 0 && !(--clk->usecount)) { | 
|  | 446 | clk->disable(clk); | 
|  | 447 | if (likely(clk->parent)) { | 
|  | 448 | omap1_clk_unuse(clk->parent); | 
|  | 449 | if (clk->flags & CLOCK_NO_IDLE_PARENT) | 
|  | 450 | if (!cpu_is_omap24xx()) | 
|  | 451 | omap1_clk_allow_idle(clk->parent); | 
|  | 452 | } | 
|  | 453 | } | 
|  | 454 | } | 
|  | 455 |  | 
|  | 456 | static int omap1_clk_enable(struct clk *clk) | 
|  | 457 | { | 
|  | 458 | __u16 regval16; | 
|  | 459 | __u32 regval32; | 
|  | 460 |  | 
|  | 461 | if (clk->flags & ALWAYS_ENABLED) | 
|  | 462 | return 0; | 
|  | 463 |  | 
|  | 464 | if (unlikely(clk->enable_reg == 0)) { | 
|  | 465 | printk(KERN_ERR "clock.c: Enable for %s without enable code\n", | 
|  | 466 | clk->name); | 
|  | 467 | return 0; | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | if (clk->flags & ENABLE_REG_32BIT) { | 
|  | 471 | if (clk->flags & VIRTUAL_IO_ADDRESS) { | 
|  | 472 | regval32 = __raw_readl(clk->enable_reg); | 
|  | 473 | regval32 |= (1 << clk->enable_bit); | 
|  | 474 | __raw_writel(regval32, clk->enable_reg); | 
|  | 475 | } else { | 
|  | 476 | regval32 = omap_readl(clk->enable_reg); | 
|  | 477 | regval32 |= (1 << clk->enable_bit); | 
|  | 478 | omap_writel(regval32, clk->enable_reg); | 
|  | 479 | } | 
|  | 480 | } else { | 
|  | 481 | if (clk->flags & VIRTUAL_IO_ADDRESS) { | 
|  | 482 | regval16 = __raw_readw(clk->enable_reg); | 
|  | 483 | regval16 |= (1 << clk->enable_bit); | 
|  | 484 | __raw_writew(regval16, clk->enable_reg); | 
|  | 485 | } else { | 
|  | 486 | regval16 = omap_readw(clk->enable_reg); | 
|  | 487 | regval16 |= (1 << clk->enable_bit); | 
|  | 488 | omap_writew(regval16, clk->enable_reg); | 
|  | 489 | } | 
|  | 490 | } | 
|  | 491 |  | 
|  | 492 | return 0; | 
|  | 493 | } | 
|  | 494 |  | 
|  | 495 | static void omap1_clk_disable(struct clk *clk) | 
|  | 496 | { | 
|  | 497 | __u16 regval16; | 
|  | 498 | __u32 regval32; | 
|  | 499 |  | 
|  | 500 | if (clk->enable_reg == 0) | 
|  | 501 | return; | 
|  | 502 |  | 
|  | 503 | if (clk->flags & ENABLE_REG_32BIT) { | 
|  | 504 | if (clk->flags & VIRTUAL_IO_ADDRESS) { | 
|  | 505 | regval32 = __raw_readl(clk->enable_reg); | 
|  | 506 | regval32 &= ~(1 << clk->enable_bit); | 
|  | 507 | __raw_writel(regval32, clk->enable_reg); | 
|  | 508 | } else { | 
|  | 509 | regval32 = omap_readl(clk->enable_reg); | 
|  | 510 | regval32 &= ~(1 << clk->enable_bit); | 
|  | 511 | omap_writel(regval32, clk->enable_reg); | 
|  | 512 | } | 
|  | 513 | } else { | 
|  | 514 | if (clk->flags & VIRTUAL_IO_ADDRESS) { | 
|  | 515 | regval16 = __raw_readw(clk->enable_reg); | 
|  | 516 | regval16 &= ~(1 << clk->enable_bit); | 
|  | 517 | __raw_writew(regval16, clk->enable_reg); | 
|  | 518 | } else { | 
|  | 519 | regval16 = omap_readw(clk->enable_reg); | 
|  | 520 | regval16 &= ~(1 << clk->enable_bit); | 
|  | 521 | omap_writew(regval16, clk->enable_reg); | 
|  | 522 | } | 
|  | 523 | } | 
|  | 524 | } | 
|  | 525 |  | 
|  | 526 | static long omap1_clk_round_rate(struct clk *clk, unsigned long rate) | 
|  | 527 | { | 
|  | 528 | int dsor_exp; | 
|  | 529 |  | 
|  | 530 | if (clk->flags & RATE_FIXED) | 
|  | 531 | return clk->rate; | 
|  | 532 |  | 
|  | 533 | if (clk->flags & RATE_CKCTL) { | 
|  | 534 | dsor_exp = calc_dsor_exp(clk, rate); | 
|  | 535 | if (dsor_exp < 0) | 
|  | 536 | return dsor_exp; | 
|  | 537 | if (dsor_exp > 3) | 
|  | 538 | dsor_exp = 3; | 
|  | 539 | return clk->parent->rate / (1 << dsor_exp); | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | if(clk->round_rate != 0) | 
|  | 543 | return clk->round_rate(clk, rate); | 
|  | 544 |  | 
|  | 545 | return clk->rate; | 
|  | 546 | } | 
|  | 547 |  | 
|  | 548 | static int omap1_clk_set_rate(struct clk *clk, unsigned long rate) | 
|  | 549 | { | 
|  | 550 | int  ret = -EINVAL; | 
|  | 551 | int  dsor_exp; | 
|  | 552 | __u16  regval; | 
|  | 553 |  | 
|  | 554 | if (clk->set_rate) | 
|  | 555 | ret = clk->set_rate(clk, rate); | 
|  | 556 | else if (clk->flags & RATE_CKCTL) { | 
|  | 557 | dsor_exp = calc_dsor_exp(clk, rate); | 
|  | 558 | if (dsor_exp > 3) | 
|  | 559 | dsor_exp = -EINVAL; | 
|  | 560 | if (dsor_exp < 0) | 
|  | 561 | return dsor_exp; | 
|  | 562 |  | 
|  | 563 | regval = omap_readw(ARM_CKCTL); | 
|  | 564 | regval &= ~(3 << clk->rate_offset); | 
|  | 565 | regval |= dsor_exp << clk->rate_offset; | 
|  | 566 | regval = verify_ckctl_value(regval); | 
|  | 567 | omap_writew(regval, ARM_CKCTL); | 
|  | 568 | clk->rate = clk->parent->rate / (1 << dsor_exp); | 
|  | 569 | ret = 0; | 
|  | 570 | } | 
|  | 571 |  | 
|  | 572 | if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) | 
|  | 573 | propagate_rate(clk); | 
|  | 574 |  | 
|  | 575 | return ret; | 
|  | 576 | } | 
|  | 577 |  | 
|  | 578 | /*------------------------------------------------------------------------- | 
|  | 579 | * Omap1 clock reset and init functions | 
|  | 580 | *-------------------------------------------------------------------------*/ | 
|  | 581 |  | 
|  | 582 | #ifdef CONFIG_OMAP_RESET_CLOCKS | 
|  | 583 | /* | 
|  | 584 | * Resets some clocks that may be left on from bootloader, | 
|  | 585 | * but leaves serial clocks on. See also omap_late_clk_reset(). | 
|  | 586 | */ | 
|  | 587 | static inline void omap1_early_clk_reset(void) | 
|  | 588 | { | 
|  | 589 | //omap_writel(0x3 << 29, MOD_CONF_CTRL_0); | 
|  | 590 | } | 
|  | 591 |  | 
|  | 592 | static int __init omap1_late_clk_reset(void) | 
|  | 593 | { | 
|  | 594 | /* Turn off all unused clocks */ | 
|  | 595 | struct clk *p; | 
|  | 596 | __u32 regval32; | 
|  | 597 |  | 
|  | 598 | /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */ | 
|  | 599 | regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4); | 
|  | 600 | omap_writew(regval32, SOFT_REQ_REG); | 
|  | 601 | omap_writew(0, SOFT_REQ_REG2); | 
|  | 602 |  | 
|  | 603 | list_for_each_entry(p, &clocks, node) { | 
|  | 604 | if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) || | 
|  | 605 | p->enable_reg == 0) | 
|  | 606 | continue; | 
|  | 607 |  | 
|  | 608 | /* Clocks in the DSP domain need api_ck. Just assume bootloader | 
|  | 609 | * has not enabled any DSP clocks */ | 
|  | 610 | if ((u32)p->enable_reg == DSP_IDLECT2) { | 
|  | 611 | printk(KERN_INFO "Skipping reset check for DSP domain " | 
|  | 612 | "clock \"%s\"\n", p->name); | 
|  | 613 | continue; | 
|  | 614 | } | 
|  | 615 |  | 
|  | 616 | /* Is the clock already disabled? */ | 
|  | 617 | if (p->flags & ENABLE_REG_32BIT) { | 
|  | 618 | if (p->flags & VIRTUAL_IO_ADDRESS) | 
|  | 619 | regval32 = __raw_readl(p->enable_reg); | 
|  | 620 | else | 
|  | 621 | regval32 = omap_readl(p->enable_reg); | 
|  | 622 | } else { | 
|  | 623 | if (p->flags & VIRTUAL_IO_ADDRESS) | 
|  | 624 | regval32 = __raw_readw(p->enable_reg); | 
|  | 625 | else | 
|  | 626 | regval32 = omap_readw(p->enable_reg); | 
|  | 627 | } | 
|  | 628 |  | 
|  | 629 | if ((regval32 & (1 << p->enable_bit)) == 0) | 
|  | 630 | continue; | 
|  | 631 |  | 
|  | 632 | /* FIXME: This clock seems to be necessary but no-one | 
|  | 633 | * has asked for its activation. */ | 
|  | 634 | if (p == &tc2_ck         // FIX: pm.c (SRAM), CCP, Camera | 
|  | 635 | || p == &ck_dpll1out.clk // FIX: SoSSI, SSR | 
|  | 636 | || p == &arm_gpio_ck // FIX: GPIO code for 1510 | 
|  | 637 | ) { | 
|  | 638 | printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n", | 
|  | 639 | p->name); | 
|  | 640 | continue; | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name); | 
|  | 644 | p->disable(p); | 
|  | 645 | printk(" done\n"); | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | return 0; | 
|  | 649 | } | 
|  | 650 | late_initcall(omap1_late_clk_reset); | 
|  | 651 |  | 
|  | 652 | #else | 
|  | 653 | #define omap1_early_clk_reset()	{} | 
|  | 654 | #endif | 
|  | 655 |  | 
|  | 656 | static struct clk_functions omap1_clk_functions = { | 
|  | 657 | .clk_use		= omap1_clk_use, | 
|  | 658 | .clk_unuse		= omap1_clk_unuse, | 
|  | 659 | .clk_round_rate		= omap1_clk_round_rate, | 
|  | 660 | .clk_set_rate		= omap1_clk_set_rate, | 
|  | 661 | }; | 
|  | 662 |  | 
|  | 663 | int __init omap1_clk_init(void) | 
|  | 664 | { | 
|  | 665 | struct clk ** clkp; | 
|  | 666 | const struct omap_clock_config *info; | 
|  | 667 | int crystal_type = 0; /* Default 12 MHz */ | 
|  | 668 |  | 
|  | 669 | omap1_early_clk_reset(); | 
|  | 670 | clk_init(&omap1_clk_functions); | 
|  | 671 |  | 
|  | 672 | /* By default all idlect1 clocks are allowed to idle */ | 
|  | 673 | arm_idlect1_mask = ~0; | 
|  | 674 |  | 
|  | 675 | for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) { | 
|  | 676 | if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) { | 
|  | 677 | clk_register(*clkp); | 
|  | 678 | continue; | 
|  | 679 | } | 
|  | 680 |  | 
|  | 681 | if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) { | 
|  | 682 | clk_register(*clkp); | 
|  | 683 | continue; | 
|  | 684 | } | 
|  | 685 |  | 
|  | 686 | if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) { | 
|  | 687 | clk_register(*clkp); | 
|  | 688 | continue; | 
|  | 689 | } | 
|  | 690 | } | 
|  | 691 |  | 
|  | 692 | info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config); | 
|  | 693 | if (info != NULL) { | 
|  | 694 | if (!cpu_is_omap1510()) | 
|  | 695 | crystal_type = info->system_clock_type; | 
|  | 696 | } | 
|  | 697 |  | 
|  | 698 | #if defined(CONFIG_ARCH_OMAP730) | 
|  | 699 | ck_ref.rate = 13000000; | 
|  | 700 | #elif defined(CONFIG_ARCH_OMAP16XX) | 
|  | 701 | if (crystal_type == 2) | 
|  | 702 | ck_ref.rate = 19200000; | 
|  | 703 | #endif | 
|  | 704 |  | 
|  | 705 | printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n", | 
|  | 706 | omap_readw(ARM_SYSST), omap_readw(DPLL_CTL), | 
|  | 707 | omap_readw(ARM_CKCTL)); | 
|  | 708 |  | 
|  | 709 | /* We want to be in syncronous scalable mode */ | 
|  | 710 | omap_writew(0x1000, ARM_SYSST); | 
|  | 711 |  | 
|  | 712 | #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER | 
|  | 713 | /* Use values set by bootloader. Determine PLL rate and recalculate | 
|  | 714 | * dependent clocks as if kernel had changed PLL or divisors. | 
|  | 715 | */ | 
|  | 716 | { | 
|  | 717 | unsigned pll_ctl_val = omap_readw(DPLL_CTL); | 
|  | 718 |  | 
|  | 719 | ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */ | 
|  | 720 | if (pll_ctl_val & 0x10) { | 
|  | 721 | /* PLL enabled, apply multiplier and divisor */ | 
|  | 722 | if (pll_ctl_val & 0xf80) | 
|  | 723 | ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7; | 
|  | 724 | ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1; | 
|  | 725 | } else { | 
|  | 726 | /* PLL disabled, apply bypass divisor */ | 
|  | 727 | switch (pll_ctl_val & 0xc) { | 
|  | 728 | case 0: | 
|  | 729 | break; | 
|  | 730 | case 0x4: | 
|  | 731 | ck_dpll1.rate /= 2; | 
|  | 732 | break; | 
|  | 733 | default: | 
|  | 734 | ck_dpll1.rate /= 4; | 
|  | 735 | break; | 
|  | 736 | } | 
|  | 737 | } | 
|  | 738 | } | 
|  | 739 | propagate_rate(&ck_dpll1); | 
|  | 740 | #else | 
|  | 741 | /* Find the highest supported frequency and enable it */ | 
|  | 742 | if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) { | 
|  | 743 | printk(KERN_ERR "System frequencies not set. Check your config.\n"); | 
|  | 744 | /* Guess sane values (60MHz) */ | 
|  | 745 | omap_writew(0x2290, DPLL_CTL); | 
|  | 746 | omap_writew(0x1005, ARM_CKCTL); | 
|  | 747 | ck_dpll1.rate = 60000000; | 
|  | 748 | propagate_rate(&ck_dpll1); | 
|  | 749 | } | 
|  | 750 | #endif | 
|  | 751 | /* Cache rates for clocks connected to ck_ref (not dpll1) */ | 
|  | 752 | propagate_rate(&ck_ref); | 
|  | 753 | printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): " | 
|  | 754 | "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n", | 
|  | 755 | ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10, | 
|  | 756 | ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10, | 
|  | 757 | arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10); | 
|  | 758 |  | 
|  | 759 | #ifdef CONFIG_MACH_OMAP_PERSEUS2 | 
|  | 760 | /* Select slicer output as OMAP input clock */ | 
|  | 761 | omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL); | 
|  | 762 | #endif | 
|  | 763 |  | 
|  | 764 | /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */ | 
|  | 765 | omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL); | 
|  | 766 |  | 
|  | 767 | /* Put DSP/MPUI into reset until needed */ | 
|  | 768 | omap_writew(0, ARM_RSTCT1); | 
|  | 769 | omap_writew(1, ARM_RSTCT2); | 
|  | 770 | omap_writew(0x400, ARM_IDLECT1); | 
|  | 771 |  | 
|  | 772 | /* | 
|  | 773 | * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8) | 
|  | 774 | * of the ARM_IDLECT2 register must be set to zero. The power-on | 
|  | 775 | * default value of this bit is one. | 
|  | 776 | */ | 
|  | 777 | omap_writew(0x0000, ARM_IDLECT2);	/* Turn LCD clock off also */ | 
|  | 778 |  | 
|  | 779 | /* | 
|  | 780 | * Only enable those clocks we will need, let the drivers | 
|  | 781 | * enable other clocks as necessary | 
|  | 782 | */ | 
|  | 783 | clk_use(&armper_ck.clk); | 
|  | 784 | clk_use(&armxor_ck.clk); | 
|  | 785 | clk_use(&armtim_ck.clk); /* This should be done by timer code */ | 
|  | 786 |  | 
|  | 787 | if (cpu_is_omap1510()) | 
|  | 788 | clk_enable(&arm_gpio_ck); | 
|  | 789 |  | 
|  | 790 | return 0; | 
|  | 791 | } | 
|  | 792 |  |