| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Some of the code in this file has been gleaned from the 64 bit  | 
 | 3 |  * discontigmem support code base. | 
 | 4 |  * | 
 | 5 |  * Copyright (C) 2002, IBM Corp. | 
 | 6 |  * | 
 | 7 |  * All rights reserved.           | 
 | 8 |  * | 
 | 9 |  * This program is free software; you can redistribute it and/or modify | 
 | 10 |  * it under the terms of the GNU General Public License as published by | 
 | 11 |  * the Free Software Foundation; either version 2 of the License, or | 
 | 12 |  * (at your option) any later version. | 
 | 13 |  * | 
 | 14 |  * This program is distributed in the hope that it will be useful, but | 
 | 15 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 16 |  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 | 17 |  * NON INFRINGEMENT.  See the GNU General Public License for more | 
 | 18 |  * details. | 
 | 19 |  * | 
 | 20 |  * You should have received a copy of the GNU General Public License | 
 | 21 |  * along with this program; if not, write to the Free Software | 
 | 22 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 | 23 |  * | 
 | 24 |  * Send feedback to Pat Gaughen <gone@us.ibm.com> | 
 | 25 |  */ | 
 | 26 | #include <linux/config.h> | 
 | 27 | #include <linux/mm.h> | 
 | 28 | #include <linux/bootmem.h> | 
 | 29 | #include <linux/mmzone.h> | 
 | 30 | #include <linux/acpi.h> | 
 | 31 | #include <linux/nodemask.h> | 
 | 32 | #include <asm/srat.h> | 
 | 33 | #include <asm/topology.h> | 
 | 34 |  | 
 | 35 | /* | 
 | 36 |  * proximity macros and definitions | 
 | 37 |  */ | 
 | 38 | #define NODE_ARRAY_INDEX(x)	((x) / 8)	/* 8 bits/char */ | 
 | 39 | #define NODE_ARRAY_OFFSET(x)	((x) % 8)	/* 8 bits/char */ | 
 | 40 | #define BMAP_SET(bmap, bit)	((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit)) | 
 | 41 | #define BMAP_TEST(bmap, bit)	((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit))) | 
 | 42 | #define MAX_PXM_DOMAINS		256	/* 1 byte and no promises about values */ | 
 | 43 | /* bitmap length; _PXM is at most 255 */ | 
 | 44 | #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)  | 
 | 45 | static u8 pxm_bitmap[PXM_BITMAP_LEN];	/* bitmap of proximity domains */ | 
 | 46 |  | 
 | 47 | #define MAX_CHUNKS_PER_NODE	4 | 
 | 48 | #define MAXCHUNKS		(MAX_CHUNKS_PER_NODE * MAX_NUMNODES) | 
 | 49 | struct node_memory_chunk_s { | 
 | 50 | 	unsigned long	start_pfn; | 
 | 51 | 	unsigned long	end_pfn; | 
 | 52 | 	u8	pxm;		// proximity domain of node | 
 | 53 | 	u8	nid;		// which cnode contains this chunk? | 
 | 54 | 	u8	bank;		// which mem bank on this node | 
 | 55 | }; | 
 | 56 | static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS]; | 
 | 57 |  | 
 | 58 | static int num_memory_chunks;		/* total number of memory chunks */ | 
 | 59 | static int zholes_size_init; | 
 | 60 | static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES]; | 
 | 61 |  | 
 | 62 | extern void * boot_ioremap(unsigned long, unsigned long); | 
 | 63 |  | 
 | 64 | /* Identify CPU proximity domains */ | 
 | 65 | static void __init parse_cpu_affinity_structure(char *p) | 
 | 66 | { | 
 | 67 | 	struct acpi_table_processor_affinity *cpu_affinity =  | 
 | 68 | 				(struct acpi_table_processor_affinity *) p; | 
 | 69 |  | 
 | 70 | 	if (!cpu_affinity->flags.enabled) | 
 | 71 | 		return;		/* empty entry */ | 
 | 72 |  | 
 | 73 | 	/* mark this node as "seen" in node bitmap */ | 
 | 74 | 	BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain); | 
 | 75 |  | 
 | 76 | 	printk("CPU 0x%02X in proximity domain 0x%02X\n", | 
 | 77 | 		cpu_affinity->apic_id, cpu_affinity->proximity_domain); | 
 | 78 | } | 
 | 79 |  | 
 | 80 | /* | 
 | 81 |  * Identify memory proximity domains and hot-remove capabilities. | 
 | 82 |  * Fill node memory chunk list structure. | 
 | 83 |  */ | 
 | 84 | static void __init parse_memory_affinity_structure (char *sratp) | 
 | 85 | { | 
 | 86 | 	unsigned long long paddr, size; | 
 | 87 | 	unsigned long start_pfn, end_pfn;  | 
 | 88 | 	u8 pxm; | 
 | 89 | 	struct node_memory_chunk_s *p, *q, *pend; | 
 | 90 | 	struct acpi_table_memory_affinity *memory_affinity = | 
 | 91 | 			(struct acpi_table_memory_affinity *) sratp; | 
 | 92 |  | 
 | 93 | 	if (!memory_affinity->flags.enabled) | 
 | 94 | 		return;		/* empty entry */ | 
 | 95 |  | 
 | 96 | 	/* mark this node as "seen" in node bitmap */ | 
 | 97 | 	BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain); | 
 | 98 |  | 
 | 99 | 	/* calculate info for memory chunk structure */ | 
 | 100 | 	paddr = memory_affinity->base_addr_hi; | 
 | 101 | 	paddr = (paddr << 32) | memory_affinity->base_addr_lo; | 
 | 102 | 	size = memory_affinity->length_hi; | 
 | 103 | 	size = (size << 32) | memory_affinity->length_lo; | 
 | 104 | 	 | 
 | 105 | 	start_pfn = paddr >> PAGE_SHIFT; | 
 | 106 | 	end_pfn = (paddr + size) >> PAGE_SHIFT; | 
 | 107 | 	 | 
 | 108 | 	pxm = memory_affinity->proximity_domain; | 
 | 109 |  | 
 | 110 | 	if (num_memory_chunks >= MAXCHUNKS) { | 
 | 111 | 		printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n", | 
 | 112 | 			size/(1024*1024), paddr); | 
 | 113 | 		return; | 
 | 114 | 	} | 
 | 115 |  | 
 | 116 | 	/* Insertion sort based on base address */ | 
 | 117 | 	pend = &node_memory_chunk[num_memory_chunks]; | 
 | 118 | 	for (p = &node_memory_chunk[0]; p < pend; p++) { | 
 | 119 | 		if (start_pfn < p->start_pfn) | 
 | 120 | 			break; | 
 | 121 | 	} | 
 | 122 | 	if (p < pend) { | 
 | 123 | 		for (q = pend; q >= p; q--) | 
 | 124 | 			*(q + 1) = *q; | 
 | 125 | 	} | 
 | 126 | 	p->start_pfn = start_pfn; | 
 | 127 | 	p->end_pfn = end_pfn; | 
 | 128 | 	p->pxm = pxm; | 
 | 129 |  | 
 | 130 | 	num_memory_chunks++; | 
 | 131 |  | 
 | 132 | 	printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n", | 
 | 133 | 		start_pfn, end_pfn, | 
 | 134 | 		memory_affinity->memory_type, | 
 | 135 | 		memory_affinity->proximity_domain, | 
 | 136 | 		(memory_affinity->flags.hot_pluggable ? | 
 | 137 | 		 "enabled and removable" : "enabled" ) ); | 
 | 138 | } | 
 | 139 |  | 
| Andi Kleen | fed6441 | 2005-11-05 17:25:53 +0100 | [diff] [blame] | 140 | #if MAX_NR_ZONES != 4 | 
 | 141 | #error "MAX_NR_ZONES != 4, chunk_to_zone requires review" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 142 | #endif | 
 | 143 | /* Take a chunk of pages from page frame cstart to cend and count the number | 
 | 144 |  * of pages in each zone, returned via zones[]. | 
 | 145 |  */ | 
 | 146 | static __init void chunk_to_zones(unsigned long cstart, unsigned long cend,  | 
 | 147 | 		unsigned long *zones) | 
 | 148 | { | 
 | 149 | 	unsigned long max_dma; | 
 | 150 | 	extern unsigned long max_low_pfn; | 
 | 151 |  | 
 | 152 | 	int z; | 
 | 153 | 	unsigned long rend; | 
 | 154 |  | 
 | 155 | 	/* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide | 
 | 156 | 	 * similarly scoped information and should be handled in a consistant | 
 | 157 | 	 * manner. | 
 | 158 | 	 */ | 
 | 159 | 	max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
 | 160 |  | 
 | 161 | 	/* Split the hole into the zones in which it falls.  Repeatedly | 
 | 162 | 	 * take the segment in which the remaining hole starts, round it | 
 | 163 | 	 * to the end of that zone. | 
 | 164 | 	 */ | 
 | 165 | 	memset(zones, 0, MAX_NR_ZONES * sizeof(long)); | 
 | 166 | 	while (cstart < cend) { | 
 | 167 | 		if (cstart < max_dma) { | 
 | 168 | 			z = ZONE_DMA; | 
 | 169 | 			rend = (cend < max_dma)? cend : max_dma; | 
 | 170 |  | 
 | 171 | 		} else if (cstart < max_low_pfn) { | 
 | 172 | 			z = ZONE_NORMAL; | 
 | 173 | 			rend = (cend < max_low_pfn)? cend : max_low_pfn; | 
 | 174 |  | 
 | 175 | 		} else { | 
 | 176 | 			z = ZONE_HIGHMEM; | 
 | 177 | 			rend = cend; | 
 | 178 | 		} | 
 | 179 | 		zones[z] += rend - cstart; | 
 | 180 | 		cstart = rend; | 
 | 181 | 	} | 
 | 182 | } | 
 | 183 |  | 
 | 184 | /* | 
 | 185 |  * The SRAT table always lists ascending addresses, so can always | 
 | 186 |  * assume that the first "start" address that you see is the real | 
 | 187 |  * start of the node, and that the current "end" address is after | 
 | 188 |  * the previous one. | 
 | 189 |  */ | 
 | 190 | static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk) | 
 | 191 | { | 
 | 192 | 	/* | 
 | 193 | 	 * Only add present memory as told by the e820. | 
 | 194 | 	 * There is no guarantee from the SRAT that the memory it | 
 | 195 | 	 * enumerates is present at boot time because it represents | 
 | 196 | 	 * *possible* memory hotplug areas the same as normal RAM. | 
 | 197 | 	 */ | 
 | 198 | 	if (memory_chunk->start_pfn >= max_pfn) { | 
 | 199 | 		printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n", | 
 | 200 | 			memory_chunk->start_pfn, memory_chunk->end_pfn); | 
 | 201 | 		return; | 
 | 202 | 	} | 
 | 203 | 	if (memory_chunk->nid != nid) | 
 | 204 | 		return; | 
 | 205 |  | 
 | 206 | 	if (!node_has_online_mem(nid)) | 
 | 207 | 		node_start_pfn[nid] = memory_chunk->start_pfn; | 
 | 208 |  | 
 | 209 | 	if (node_start_pfn[nid] > memory_chunk->start_pfn) | 
 | 210 | 		node_start_pfn[nid] = memory_chunk->start_pfn; | 
 | 211 |  | 
 | 212 | 	if (node_end_pfn[nid] < memory_chunk->end_pfn) | 
 | 213 | 		node_end_pfn[nid] = memory_chunk->end_pfn; | 
 | 214 | } | 
 | 215 |  | 
| Andi Kleen | 69e1a33 | 2005-09-12 18:49:24 +0200 | [diff] [blame] | 216 | static u8 pxm_to_nid_map[MAX_PXM_DOMAINS];/* _PXM to logical node ID map */ | 
 | 217 |  | 
 | 218 | int pxm_to_node(int pxm) | 
 | 219 | { | 
 | 220 | 	return pxm_to_nid_map[pxm]; | 
 | 221 | } | 
 | 222 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 223 | /* Parse the ACPI Static Resource Affinity Table */ | 
 | 224 | static int __init acpi20_parse_srat(struct acpi_table_srat *sratp) | 
 | 225 | { | 
 | 226 | 	u8 *start, *end, *p; | 
 | 227 | 	int i, j, nid; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 228 | 	u8 nid_to_pxm_map[MAX_NUMNODES];/* logical node ID to _PXM map */ | 
 | 229 |  | 
 | 230 | 	start = (u8 *)(&(sratp->reserved) + 1);	/* skip header */ | 
 | 231 | 	p = start; | 
 | 232 | 	end = (u8 *)sratp + sratp->header.length; | 
 | 233 |  | 
 | 234 | 	memset(pxm_bitmap, 0, sizeof(pxm_bitmap));	/* init proximity domain bitmap */ | 
 | 235 | 	memset(node_memory_chunk, 0, sizeof(node_memory_chunk)); | 
 | 236 | 	memset(zholes_size, 0, sizeof(zholes_size)); | 
 | 237 |  | 
 | 238 | 	/* -1 in these maps means not available */ | 
 | 239 | 	memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map)); | 
 | 240 | 	memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map)); | 
 | 241 |  | 
 | 242 | 	num_memory_chunks = 0; | 
 | 243 | 	while (p < end) { | 
 | 244 | 		switch (*p) { | 
 | 245 | 		case ACPI_SRAT_PROCESSOR_AFFINITY: | 
 | 246 | 			parse_cpu_affinity_structure(p); | 
 | 247 | 			break; | 
 | 248 | 		case ACPI_SRAT_MEMORY_AFFINITY: | 
 | 249 | 			parse_memory_affinity_structure(p); | 
 | 250 | 			break; | 
 | 251 | 		default: | 
 | 252 | 			printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]); | 
 | 253 | 			break; | 
 | 254 | 		} | 
 | 255 | 		p += p[1]; | 
 | 256 | 		if (p[1] == 0) { | 
 | 257 | 			printk("acpi20_parse_srat: Entry length value is zero;" | 
 | 258 | 				" can't parse any further!\n"); | 
 | 259 | 			break; | 
 | 260 | 		} | 
 | 261 | 	} | 
 | 262 |  | 
 | 263 | 	if (num_memory_chunks == 0) { | 
 | 264 | 		printk("could not finy any ACPI SRAT memory areas.\n"); | 
 | 265 | 		goto out_fail; | 
 | 266 | 	} | 
 | 267 |  | 
 | 268 | 	/* Calculate total number of nodes in system from PXM bitmap and create | 
 | 269 | 	 * a set of sequential node IDs starting at zero.  (ACPI doesn't seem | 
 | 270 | 	 * to specify the range of _PXM values.) | 
 | 271 | 	 */ | 
 | 272 | 	/* | 
 | 273 | 	 * MCD - we no longer HAVE to number nodes sequentially.  PXM domain | 
 | 274 | 	 * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically | 
 | 275 | 	 * 32, so we will continue numbering them in this manner until MAX_NUMNODES | 
 | 276 | 	 * approaches MAX_PXM_DOMAINS for i386. | 
 | 277 | 	 */ | 
 | 278 | 	nodes_clear(node_online_map); | 
 | 279 | 	for (i = 0; i < MAX_PXM_DOMAINS; i++) { | 
 | 280 | 		if (BMAP_TEST(pxm_bitmap, i)) { | 
 | 281 | 			nid = num_online_nodes(); | 
 | 282 | 			pxm_to_nid_map[i] = nid; | 
 | 283 | 			nid_to_pxm_map[nid] = i; | 
 | 284 | 			node_set_online(nid); | 
 | 285 | 		} | 
 | 286 | 	} | 
 | 287 | 	BUG_ON(num_online_nodes() == 0); | 
 | 288 |  | 
 | 289 | 	/* set cnode id in memory chunk structure */ | 
 | 290 | 	for (i = 0; i < num_memory_chunks; i++) | 
 | 291 | 		node_memory_chunk[i].nid = pxm_to_nid_map[node_memory_chunk[i].pxm]; | 
 | 292 |  | 
 | 293 | 	printk("pxm bitmap: "); | 
 | 294 | 	for (i = 0; i < sizeof(pxm_bitmap); i++) { | 
 | 295 | 		printk("%02X ", pxm_bitmap[i]); | 
 | 296 | 	} | 
 | 297 | 	printk("\n"); | 
 | 298 | 	printk("Number of logical nodes in system = %d\n", num_online_nodes()); | 
 | 299 | 	printk("Number of memory chunks in system = %d\n", num_memory_chunks); | 
 | 300 |  | 
 | 301 | 	for (j = 0; j < num_memory_chunks; j++){ | 
 | 302 | 		struct node_memory_chunk_s * chunk = &node_memory_chunk[j]; | 
 | 303 | 		printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n", | 
 | 304 | 		       j, chunk->nid, chunk->start_pfn, chunk->end_pfn); | 
 | 305 | 		node_read_chunk(chunk->nid, chunk); | 
 | 306 | 	} | 
 | 307 |   | 
 | 308 | 	for_each_online_node(nid) { | 
 | 309 | 		unsigned long start = node_start_pfn[nid]; | 
 | 310 | 		unsigned long end = node_end_pfn[nid]; | 
 | 311 |  | 
 | 312 | 		memory_present(nid, start, end); | 
 | 313 | 		node_remap_size[nid] = node_memmap_size_bytes(nid, start, end); | 
 | 314 | 	} | 
 | 315 | 	return 1; | 
 | 316 | out_fail: | 
 | 317 | 	return 0; | 
 | 318 | } | 
 | 319 |  | 
 | 320 | int __init get_memcfg_from_srat(void) | 
 | 321 | { | 
 | 322 | 	struct acpi_table_header *header = NULL; | 
 | 323 | 	struct acpi_table_rsdp *rsdp = NULL; | 
 | 324 | 	struct acpi_table_rsdt *rsdt = NULL; | 
 | 325 | 	struct acpi_pointer *rsdp_address = NULL; | 
 | 326 | 	struct acpi_table_rsdt saved_rsdt; | 
 | 327 | 	int tables = 0; | 
 | 328 | 	int i = 0; | 
 | 329 |  | 
| Magnus Damm | 5d35704 | 2005-10-30 14:59:48 -0800 | [diff] [blame] | 330 | 	if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING, | 
 | 331 | 						rsdp_address))) { | 
 | 332 | 		printk("%s: System description tables not found\n", | 
 | 333 | 		       __FUNCTION__); | 
 | 334 | 		goto out_err; | 
 | 335 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 336 |  | 
 | 337 | 	if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) { | 
 | 338 | 		printk("%s: assigning address to rsdp\n", __FUNCTION__); | 
 | 339 | 		rsdp = (struct acpi_table_rsdp *) | 
 | 340 | 				(u32)rsdp_address->pointer.physical; | 
 | 341 | 	} else { | 
 | 342 | 		printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__); | 
 | 343 | 		goto out_err; | 
 | 344 | 	} | 
 | 345 | 	if (!rsdp) { | 
 | 346 | 		printk("%s: Didn't find ACPI root!\n", __FUNCTION__); | 
 | 347 | 		goto out_err; | 
 | 348 | 	} | 
 | 349 |  | 
 | 350 | 	printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision, | 
 | 351 | 		rsdp->oem_id); | 
 | 352 |  | 
 | 353 | 	if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) { | 
 | 354 | 		printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__); | 
 | 355 | 		goto out_err; | 
 | 356 | 	} | 
 | 357 |  | 
 | 358 | 	rsdt = (struct acpi_table_rsdt *) | 
 | 359 | 	    boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt)); | 
 | 360 |  | 
 | 361 | 	if (!rsdt) { | 
 | 362 | 		printk(KERN_WARNING | 
 | 363 | 		       "%s: ACPI: Invalid root system description tables (RSDT)\n", | 
 | 364 | 		       __FUNCTION__); | 
 | 365 | 		goto out_err; | 
 | 366 | 	} | 
 | 367 |  | 
 | 368 | 	header = & rsdt->header; | 
 | 369 |  | 
 | 370 | 	if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) { | 
 | 371 | 		printk(KERN_WARNING "ACPI: RSDT signature incorrect\n"); | 
 | 372 | 		goto out_err; | 
 | 373 | 	} | 
 | 374 |  | 
 | 375 | 	/*  | 
 | 376 | 	 * The number of tables is computed by taking the  | 
 | 377 | 	 * size of all entries (header size minus total  | 
 | 378 | 	 * size of RSDT) divided by the size of each entry | 
 | 379 | 	 * (4-byte table pointers). | 
 | 380 | 	 */ | 
 | 381 | 	tables = (header->length - sizeof(struct acpi_table_header)) / 4; | 
 | 382 |  | 
 | 383 | 	if (!tables) | 
 | 384 | 		goto out_err; | 
 | 385 |  | 
 | 386 | 	memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt)); | 
 | 387 |  | 
 | 388 | 	if (saved_rsdt.header.length > sizeof(saved_rsdt)) { | 
 | 389 | 		printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n", | 
 | 390 | 		       saved_rsdt.header.length); | 
 | 391 | 		goto out_err; | 
 | 392 | 	} | 
 | 393 |  | 
 | 394 | 	printk("Begin SRAT table scan....\n"); | 
 | 395 |  | 
 | 396 | 	for (i = 0; i < tables; i++) { | 
 | 397 | 		/* Map in header, then map in full table length. */ | 
 | 398 | 		header = (struct acpi_table_header *) | 
 | 399 | 			boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header)); | 
 | 400 | 		if (!header) | 
 | 401 | 			break; | 
 | 402 | 		header = (struct acpi_table_header *) | 
 | 403 | 			boot_ioremap(saved_rsdt.entry[i], header->length); | 
 | 404 | 		if (!header) | 
 | 405 | 			break; | 
 | 406 |  | 
 | 407 | 		if (strncmp((char *) &header->signature, "SRAT", 4)) | 
 | 408 | 			continue; | 
 | 409 |  | 
 | 410 | 		/* we've found the srat table. don't need to look at any more tables */ | 
 | 411 | 		return acpi20_parse_srat((struct acpi_table_srat *)header); | 
 | 412 | 	} | 
 | 413 | out_err: | 
 | 414 | 	printk("failed to get NUMA memory information from SRAT table\n"); | 
 | 415 | 	return 0; | 
 | 416 | } | 
 | 417 |  | 
 | 418 | /* For each node run the memory list to determine whether there are | 
 | 419 |  * any memory holes.  For each hole determine which ZONE they fall | 
 | 420 |  * into. | 
 | 421 |  * | 
 | 422 |  * NOTE#1: this requires knowledge of the zone boundries and so | 
 | 423 |  * _cannot_ be performed before those are calculated in setup_memory. | 
 | 424 |  *  | 
 | 425 |  * NOTE#2: we rely on the fact that the memory chunks are ordered by | 
 | 426 |  * start pfn number during setup. | 
 | 427 |  */ | 
 | 428 | static void __init get_zholes_init(void) | 
 | 429 | { | 
 | 430 | 	int nid; | 
 | 431 | 	int c; | 
 | 432 | 	int first; | 
 | 433 | 	unsigned long end = 0; | 
 | 434 |  | 
 | 435 | 	for_each_online_node(nid) { | 
 | 436 | 		first = 1; | 
 | 437 | 		for (c = 0; c < num_memory_chunks; c++){ | 
 | 438 | 			if (node_memory_chunk[c].nid == nid) { | 
 | 439 | 				if (first) { | 
 | 440 | 					end = node_memory_chunk[c].end_pfn; | 
 | 441 | 					first = 0; | 
 | 442 |  | 
 | 443 | 				} else { | 
 | 444 | 					/* Record any gap between this chunk | 
 | 445 | 					 * and the previous chunk on this node | 
 | 446 | 					 * against the zones it spans. | 
 | 447 | 					 */ | 
 | 448 | 					chunk_to_zones(end, | 
 | 449 | 						node_memory_chunk[c].start_pfn, | 
 | 450 | 						&zholes_size[nid * MAX_NR_ZONES]); | 
 | 451 | 				} | 
 | 452 | 			} | 
 | 453 | 		} | 
 | 454 | 	} | 
 | 455 | } | 
 | 456 |  | 
 | 457 | unsigned long * __init get_zholes_size(int nid) | 
 | 458 | { | 
 | 459 | 	if (!zholes_size_init) { | 
 | 460 | 		zholes_size_init++; | 
 | 461 | 		get_zholes_init(); | 
 | 462 | 	} | 
 | 463 | 	if (nid >= MAX_NUMNODES || !node_online(nid)) | 
 | 464 | 		printk("%s: nid = %d is invalid/offline. num_online_nodes = %d", | 
 | 465 | 		       __FUNCTION__, nid, num_online_nodes()); | 
 | 466 | 	return &zholes_size[nid * MAX_NR_ZONES]; | 
 | 467 | } |