| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  arch/mips/kernel/gdb-stub.c | 
 | 3 |  * | 
 | 4 |  *  Originally written by Glenn Engel, Lake Stevens Instrument Division | 
 | 5 |  * | 
 | 6 |  *  Contributed by HP Systems | 
 | 7 |  * | 
 | 8 |  *  Modified for SPARC by Stu Grossman, Cygnus Support. | 
 | 9 |  * | 
 | 10 |  *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse | 
 | 11 |  *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> | 
 | 12 |  * | 
 | 13 |  *  Copyright (C) 1995 Andreas Busse | 
 | 14 |  * | 
 | 15 |  *  Copyright (C) 2003 MontaVista Software Inc. | 
 | 16 |  *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net | 
 | 17 |  */ | 
 | 18 |  | 
 | 19 | /* | 
 | 20 |  *  To enable debugger support, two things need to happen.  One, a | 
 | 21 |  *  call to set_debug_traps() is necessary in order to allow any breakpoints | 
 | 22 |  *  or error conditions to be properly intercepted and reported to gdb. | 
 | 23 |  *  Two, a breakpoint needs to be generated to begin communication.  This | 
 | 24 |  *  is most easily accomplished by a call to breakpoint().  Breakpoint() | 
 | 25 |  *  simulates a breakpoint by executing a BREAK instruction. | 
 | 26 |  * | 
 | 27 |  * | 
 | 28 |  *    The following gdb commands are supported: | 
 | 29 |  * | 
 | 30 |  * command          function                               Return value | 
 | 31 |  * | 
 | 32 |  *    g             return the value of the CPU registers  hex data or ENN | 
 | 33 |  *    G             set the value of the CPU registers     OK or ENN | 
 | 34 |  * | 
 | 35 |  *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN | 
 | 36 |  *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN | 
 | 37 |  * | 
 | 38 |  *    c             Resume at current address              SNN   ( signal NN) | 
 | 39 |  *    cAA..AA       Continue at address AA..AA             SNN | 
 | 40 |  * | 
 | 41 |  *    s             Step one instruction                   SNN | 
 | 42 |  *    sAA..AA       Step one instruction from AA..AA       SNN | 
 | 43 |  * | 
 | 44 |  *    k             kill | 
 | 45 |  * | 
 | 46 |  *    ?             What was the last sigval ?             SNN   (signal NN) | 
 | 47 |  * | 
 | 48 |  *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets | 
 | 49 |  *							   baud rate | 
 | 50 |  * | 
 | 51 |  * All commands and responses are sent with a packet which includes a | 
 | 52 |  * checksum.  A packet consists of | 
 | 53 |  * | 
 | 54 |  * $<packet info>#<checksum>. | 
 | 55 |  * | 
 | 56 |  * where | 
 | 57 |  * <packet info> :: <characters representing the command or response> | 
 | 58 |  * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>> | 
 | 59 |  * | 
 | 60 |  * When a packet is received, it is first acknowledged with either '+' or '-'. | 
 | 61 |  * '+' indicates a successful transfer.  '-' indicates a failed transfer. | 
 | 62 |  * | 
 | 63 |  * Example: | 
 | 64 |  * | 
 | 65 |  * Host:                  Reply: | 
 | 66 |  * $m0,10#2a               +$00010203040506070809101112131415#42 | 
 | 67 |  * | 
 | 68 |  * | 
 | 69 |  *  ============== | 
 | 70 |  *  MORE EXAMPLES: | 
 | 71 |  *  ============== | 
 | 72 |  * | 
 | 73 |  *  For reference -- the following are the steps that one | 
 | 74 |  *  company took (RidgeRun Inc) to get remote gdb debugging | 
 | 75 |  *  going. In this scenario the host machine was a PC and the | 
 | 76 |  *  target platform was a Galileo EVB64120A MIPS evaluation | 
 | 77 |  *  board. | 
 | 78 |  * | 
 | 79 |  *  Step 1: | 
 | 80 |  *  First download gdb-5.0.tar.gz from the internet. | 
 | 81 |  *  and then build/install the package. | 
 | 82 |  * | 
 | 83 |  *  Example: | 
 | 84 |  *    $ tar zxf gdb-5.0.tar.gz | 
 | 85 |  *    $ cd gdb-5.0 | 
 | 86 |  *    $ ./configure --target=mips-linux-elf | 
 | 87 |  *    $ make | 
 | 88 |  *    $ install | 
 | 89 |  *    $ which mips-linux-elf-gdb | 
 | 90 |  *    /usr/local/bin/mips-linux-elf-gdb | 
 | 91 |  * | 
 | 92 |  *  Step 2: | 
 | 93 |  *  Configure linux for remote debugging and build it. | 
 | 94 |  * | 
 | 95 |  *  Example: | 
 | 96 |  *    $ cd ~/linux | 
 | 97 |  *    $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging> | 
 | 98 |  *    $ make | 
 | 99 |  * | 
 | 100 |  *  Step 3: | 
 | 101 |  *  Download the kernel to the remote target and start | 
 | 102 |  *  the kernel running. It will promptly halt and wait | 
 | 103 |  *  for the host gdb session to connect. It does this | 
 | 104 |  *  since the "Kernel Hacking" option has defined | 
 | 105 |  *  CONFIG_KGDB which in turn enables your calls | 
 | 106 |  *  to: | 
 | 107 |  *     set_debug_traps(); | 
 | 108 |  *     breakpoint(); | 
 | 109 |  * | 
 | 110 |  *  Step 4: | 
 | 111 |  *  Start the gdb session on the host. | 
 | 112 |  * | 
 | 113 |  *  Example: | 
 | 114 |  *    $ mips-linux-elf-gdb vmlinux | 
 | 115 |  *    (gdb) set remotebaud 115200 | 
 | 116 |  *    (gdb) target remote /dev/ttyS1 | 
 | 117 |  *    ...at this point you are connected to | 
 | 118 |  *       the remote target and can use gdb | 
 | 119 |  *       in the normal fasion. Setting | 
 | 120 |  *       breakpoints, single stepping, | 
 | 121 |  *       printing variables, etc. | 
 | 122 |  */ | 
 | 123 | #include <linux/config.h> | 
 | 124 | #include <linux/string.h> | 
 | 125 | #include <linux/kernel.h> | 
 | 126 | #include <linux/signal.h> | 
 | 127 | #include <linux/sched.h> | 
 | 128 | #include <linux/mm.h> | 
 | 129 | #include <linux/console.h> | 
 | 130 | #include <linux/init.h> | 
 | 131 | #include <linux/smp.h> | 
 | 132 | #include <linux/spinlock.h> | 
 | 133 | #include <linux/slab.h> | 
 | 134 | #include <linux/reboot.h> | 
 | 135 |  | 
 | 136 | #include <asm/asm.h> | 
 | 137 | #include <asm/cacheflush.h> | 
 | 138 | #include <asm/mipsregs.h> | 
 | 139 | #include <asm/pgtable.h> | 
 | 140 | #include <asm/system.h> | 
 | 141 | #include <asm/gdb-stub.h> | 
 | 142 | #include <asm/inst.h> | 
 | 143 |  | 
 | 144 | /* | 
 | 145 |  * external low-level support routines | 
 | 146 |  */ | 
 | 147 |  | 
 | 148 | extern int putDebugChar(char c);    /* write a single character      */ | 
 | 149 | extern char getDebugChar(void);     /* read and return a single char */ | 
 | 150 | extern void trap_low(void); | 
 | 151 |  | 
 | 152 | /* | 
 | 153 |  * breakpoint and test functions | 
 | 154 |  */ | 
 | 155 | extern void breakpoint(void); | 
 | 156 | extern void breakinst(void); | 
 | 157 | extern void async_breakpoint(void); | 
 | 158 | extern void async_breakinst(void); | 
 | 159 | extern void adel(void); | 
 | 160 |  | 
 | 161 | /* | 
 | 162 |  * local prototypes | 
 | 163 |  */ | 
 | 164 |  | 
 | 165 | static void getpacket(char *buffer); | 
 | 166 | static void putpacket(char *buffer); | 
 | 167 | static int computeSignal(int tt); | 
 | 168 | static int hex(unsigned char ch); | 
 | 169 | static int hexToInt(char **ptr, int *intValue); | 
 | 170 | static int hexToLong(char **ptr, long *longValue); | 
 | 171 | static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault); | 
 | 172 | void handle_exception(struct gdb_regs *regs); | 
 | 173 |  | 
 | 174 | int kgdb_enabled; | 
 | 175 |  | 
 | 176 | /* | 
 | 177 |  * spin locks for smp case | 
 | 178 |  */ | 
| Ralf Baechle | 57468af | 2005-10-03 13:40:26 +0100 | [diff] [blame] | 179 | static DEFINE_SPINLOCK(kgdb_lock); | 
 | 180 | static raw_spinlock_t kgdb_cpulock[NR_CPUS] = { | 
 | 181 | 	[0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED; | 
 | 182 | }; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 183 |  | 
 | 184 | /* | 
 | 185 |  * BUFMAX defines the maximum number of characters in inbound/outbound buffers | 
 | 186 |  * at least NUMREGBYTES*2 are needed for register packets | 
 | 187 |  */ | 
 | 188 | #define BUFMAX 2048 | 
 | 189 |  | 
 | 190 | static char input_buffer[BUFMAX]; | 
 | 191 | static char output_buffer[BUFMAX]; | 
 | 192 | static int initialized;	/* !0 means we've been initialized */ | 
 | 193 | static int kgdb_started; | 
 | 194 | static const char hexchars[]="0123456789abcdef"; | 
 | 195 |  | 
 | 196 | /* Used to prevent crashes in memory access.  Note that they'll crash anyway if | 
 | 197 |    we haven't set up fault handlers yet... */ | 
 | 198 | int kgdb_read_byte(unsigned char *address, unsigned char *dest); | 
 | 199 | int kgdb_write_byte(unsigned char val, unsigned char *dest); | 
 | 200 |  | 
 | 201 | /* | 
 | 202 |  * Convert ch from a hex digit to an int | 
 | 203 |  */ | 
 | 204 | static int hex(unsigned char ch) | 
 | 205 | { | 
 | 206 | 	if (ch >= 'a' && ch <= 'f') | 
 | 207 | 		return ch-'a'+10; | 
 | 208 | 	if (ch >= '0' && ch <= '9') | 
 | 209 | 		return ch-'0'; | 
 | 210 | 	if (ch >= 'A' && ch <= 'F') | 
 | 211 | 		return ch-'A'+10; | 
 | 212 | 	return -1; | 
 | 213 | } | 
 | 214 |  | 
 | 215 | /* | 
 | 216 |  * scan for the sequence $<data>#<checksum> | 
 | 217 |  */ | 
 | 218 | static void getpacket(char *buffer) | 
 | 219 | { | 
 | 220 | 	unsigned char checksum; | 
 | 221 | 	unsigned char xmitcsum; | 
 | 222 | 	int i; | 
 | 223 | 	int count; | 
 | 224 | 	unsigned char ch; | 
 | 225 |  | 
 | 226 | 	do { | 
 | 227 | 		/* | 
 | 228 | 		 * wait around for the start character, | 
 | 229 | 		 * ignore all other characters | 
 | 230 | 		 */ | 
 | 231 | 		while ((ch = (getDebugChar() & 0x7f)) != '$') ; | 
 | 232 |  | 
 | 233 | 		checksum = 0; | 
 | 234 | 		xmitcsum = -1; | 
 | 235 | 		count = 0; | 
 | 236 |  | 
 | 237 | 		/* | 
 | 238 | 		 * now, read until a # or end of buffer is found | 
 | 239 | 		 */ | 
 | 240 | 		while (count < BUFMAX) { | 
 | 241 | 			ch = getDebugChar(); | 
 | 242 | 			if (ch == '#') | 
 | 243 | 				break; | 
 | 244 | 			checksum = checksum + ch; | 
 | 245 | 			buffer[count] = ch; | 
 | 246 | 			count = count + 1; | 
 | 247 | 		} | 
 | 248 |  | 
 | 249 | 		if (count >= BUFMAX) | 
 | 250 | 			continue; | 
 | 251 |  | 
 | 252 | 		buffer[count] = 0; | 
 | 253 |  | 
 | 254 | 		if (ch == '#') { | 
 | 255 | 			xmitcsum = hex(getDebugChar() & 0x7f) << 4; | 
 | 256 | 			xmitcsum |= hex(getDebugChar() & 0x7f); | 
 | 257 |  | 
 | 258 | 			if (checksum != xmitcsum) | 
 | 259 | 				putDebugChar('-');	/* failed checksum */ | 
 | 260 | 			else { | 
 | 261 | 				putDebugChar('+'); /* successful transfer */ | 
 | 262 |  | 
 | 263 | 				/* | 
 | 264 | 				 * if a sequence char is present, | 
 | 265 | 				 * reply the sequence ID | 
 | 266 | 				 */ | 
 | 267 | 				if (buffer[2] == ':') { | 
 | 268 | 					putDebugChar(buffer[0]); | 
 | 269 | 					putDebugChar(buffer[1]); | 
 | 270 |  | 
 | 271 | 					/* | 
 | 272 | 					 * remove sequence chars from buffer | 
 | 273 | 					 */ | 
 | 274 | 					count = strlen(buffer); | 
 | 275 | 					for (i=3; i <= count; i++) | 
 | 276 | 						buffer[i-3] = buffer[i]; | 
 | 277 | 				} | 
 | 278 | 			} | 
 | 279 | 		} | 
 | 280 | 	} | 
 | 281 | 	while (checksum != xmitcsum); | 
 | 282 | } | 
 | 283 |  | 
 | 284 | /* | 
 | 285 |  * send the packet in buffer. | 
 | 286 |  */ | 
 | 287 | static void putpacket(char *buffer) | 
 | 288 | { | 
 | 289 | 	unsigned char checksum; | 
 | 290 | 	int count; | 
 | 291 | 	unsigned char ch; | 
 | 292 |  | 
 | 293 | 	/* | 
 | 294 | 	 * $<packet info>#<checksum>. | 
 | 295 | 	 */ | 
 | 296 |  | 
 | 297 | 	do { | 
 | 298 | 		putDebugChar('$'); | 
 | 299 | 		checksum = 0; | 
 | 300 | 		count = 0; | 
 | 301 |  | 
 | 302 | 		while ((ch = buffer[count]) != 0) { | 
 | 303 | 			if (!(putDebugChar(ch))) | 
 | 304 | 				return; | 
 | 305 | 			checksum += ch; | 
 | 306 | 			count += 1; | 
 | 307 | 		} | 
 | 308 |  | 
 | 309 | 		putDebugChar('#'); | 
 | 310 | 		putDebugChar(hexchars[checksum >> 4]); | 
 | 311 | 		putDebugChar(hexchars[checksum & 0xf]); | 
 | 312 |  | 
 | 313 | 	} | 
 | 314 | 	while ((getDebugChar() & 0x7f) != '+'); | 
 | 315 | } | 
 | 316 |  | 
 | 317 |  | 
 | 318 | /* | 
 | 319 |  * Convert the memory pointed to by mem into hex, placing result in buf. | 
 | 320 |  * Return a pointer to the last char put in buf (null), in case of mem fault, | 
 | 321 |  * return 0. | 
 | 322 |  * may_fault is non-zero if we are reading from arbitrary memory, but is currently | 
 | 323 |  * not used. | 
 | 324 |  */ | 
 | 325 | static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault) | 
 | 326 | { | 
 | 327 | 	unsigned char ch; | 
 | 328 |  | 
 | 329 | 	while (count-- > 0) { | 
 | 330 | 		if (kgdb_read_byte(mem++, &ch) != 0) | 
 | 331 | 			return 0; | 
 | 332 | 		*buf++ = hexchars[ch >> 4]; | 
 | 333 | 		*buf++ = hexchars[ch & 0xf]; | 
 | 334 | 	} | 
 | 335 |  | 
 | 336 | 	*buf = 0; | 
 | 337 |  | 
 | 338 | 	return buf; | 
 | 339 | } | 
 | 340 |  | 
 | 341 | /* | 
 | 342 |  * convert the hex array pointed to by buf into binary to be placed in mem | 
 | 343 |  * return a pointer to the character AFTER the last byte written | 
 | 344 |  * may_fault is non-zero if we are reading from arbitrary memory, but is currently | 
 | 345 |  * not used. | 
 | 346 |  */ | 
 | 347 | static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault) | 
 | 348 | { | 
 | 349 | 	int i; | 
 | 350 | 	unsigned char ch; | 
 | 351 |  | 
 | 352 | 	for (i=0; i<count; i++) | 
 | 353 | 	{ | 
 | 354 | 		if (binary) { | 
 | 355 | 			ch = *buf++; | 
 | 356 | 			if (ch == 0x7d) | 
 | 357 | 				ch = 0x20 ^ *buf++; | 
 | 358 | 		} | 
 | 359 | 		else { | 
 | 360 | 			ch = hex(*buf++) << 4; | 
 | 361 | 			ch |= hex(*buf++); | 
 | 362 | 		} | 
 | 363 | 		if (kgdb_write_byte(ch, mem++) != 0) | 
 | 364 | 			return 0; | 
 | 365 | 	} | 
 | 366 |  | 
 | 367 | 	return mem; | 
 | 368 | } | 
 | 369 |  | 
 | 370 | /* | 
 | 371 |  * This table contains the mapping between SPARC hardware trap types, and | 
 | 372 |  * signals, which are primarily what GDB understands.  It also indicates | 
 | 373 |  * which hardware traps we need to commandeer when initializing the stub. | 
 | 374 |  */ | 
 | 375 | static struct hard_trap_info { | 
 | 376 | 	unsigned char tt;		/* Trap type code for MIPS R3xxx and R4xxx */ | 
 | 377 | 	unsigned char signo;		/* Signal that we map this trap into */ | 
 | 378 | } hard_trap_info[] = { | 
 | 379 | 	{ 6, SIGBUS },			/* instruction bus error */ | 
 | 380 | 	{ 7, SIGBUS },			/* data bus error */ | 
 | 381 | 	{ 9, SIGTRAP },			/* break */ | 
 | 382 | 	{ 10, SIGILL },			/* reserved instruction */ | 
 | 383 | /*	{ 11, SIGILL },		*/	/* CPU unusable */ | 
 | 384 | 	{ 12, SIGFPE },			/* overflow */ | 
 | 385 | 	{ 13, SIGTRAP },		/* trap */ | 
 | 386 | 	{ 14, SIGSEGV },		/* virtual instruction cache coherency */ | 
 | 387 | 	{ 15, SIGFPE },			/* floating point exception */ | 
 | 388 | 	{ 23, SIGSEGV },		/* watch */ | 
 | 389 | 	{ 31, SIGSEGV },		/* virtual data cache coherency */ | 
 | 390 | 	{ 0, 0}				/* Must be last */ | 
 | 391 | }; | 
 | 392 |  | 
 | 393 | /* Save the normal trap handlers for user-mode traps. */ | 
 | 394 | void *saved_vectors[32]; | 
 | 395 |  | 
 | 396 | /* | 
 | 397 |  * Set up exception handlers for tracing and breakpoints | 
 | 398 |  */ | 
 | 399 | void set_debug_traps(void) | 
 | 400 | { | 
 | 401 | 	struct hard_trap_info *ht; | 
 | 402 | 	unsigned long flags; | 
 | 403 | 	unsigned char c; | 
 | 404 |  | 
 | 405 | 	local_irq_save(flags); | 
 | 406 | 	for (ht = hard_trap_info; ht->tt && ht->signo; ht++) | 
 | 407 | 		saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low); | 
 | 408 |  | 
 | 409 | 	putDebugChar('+'); /* 'hello world' */ | 
 | 410 | 	/* | 
 | 411 | 	 * In case GDB is started before us, ack any packets | 
 | 412 | 	 * (presumably "$?#xx") sitting there. | 
 | 413 | 	 */ | 
 | 414 | 	while((c = getDebugChar()) != '$'); | 
 | 415 | 	while((c = getDebugChar()) != '#'); | 
 | 416 | 	c = getDebugChar(); /* eat first csum byte */ | 
 | 417 | 	c = getDebugChar(); /* eat second csum byte */ | 
 | 418 | 	putDebugChar('+'); /* ack it */ | 
 | 419 |  | 
 | 420 | 	initialized = 1; | 
 | 421 | 	local_irq_restore(flags); | 
 | 422 | } | 
 | 423 |  | 
 | 424 | void restore_debug_traps(void) | 
 | 425 | { | 
 | 426 | 	struct hard_trap_info *ht; | 
 | 427 | 	unsigned long flags; | 
 | 428 |  | 
 | 429 | 	local_irq_save(flags); | 
 | 430 | 	for (ht = hard_trap_info; ht->tt && ht->signo; ht++) | 
 | 431 | 		set_except_vector(ht->tt, saved_vectors[ht->tt]); | 
 | 432 | 	local_irq_restore(flags); | 
 | 433 | } | 
 | 434 |  | 
 | 435 | /* | 
 | 436 |  * Convert the MIPS hardware trap type code to a Unix signal number. | 
 | 437 |  */ | 
 | 438 | static int computeSignal(int tt) | 
 | 439 | { | 
 | 440 | 	struct hard_trap_info *ht; | 
 | 441 |  | 
 | 442 | 	for (ht = hard_trap_info; ht->tt && ht->signo; ht++) | 
 | 443 | 		if (ht->tt == tt) | 
 | 444 | 			return ht->signo; | 
 | 445 |  | 
 | 446 | 	return SIGHUP;		/* default for things we don't know about */ | 
 | 447 | } | 
 | 448 |  | 
 | 449 | /* | 
 | 450 |  * While we find nice hex chars, build an int. | 
 | 451 |  * Return number of chars processed. | 
 | 452 |  */ | 
 | 453 | static int hexToInt(char **ptr, int *intValue) | 
 | 454 | { | 
 | 455 | 	int numChars = 0; | 
 | 456 | 	int hexValue; | 
 | 457 |  | 
 | 458 | 	*intValue = 0; | 
 | 459 |  | 
 | 460 | 	while (**ptr) { | 
 | 461 | 		hexValue = hex(**ptr); | 
 | 462 | 		if (hexValue < 0) | 
 | 463 | 			break; | 
 | 464 |  | 
 | 465 | 		*intValue = (*intValue << 4) | hexValue; | 
 | 466 | 		numChars ++; | 
 | 467 |  | 
 | 468 | 		(*ptr)++; | 
 | 469 | 	} | 
 | 470 |  | 
 | 471 | 	return (numChars); | 
 | 472 | } | 
 | 473 |  | 
 | 474 | static int hexToLong(char **ptr, long *longValue) | 
 | 475 | { | 
 | 476 | 	int numChars = 0; | 
 | 477 | 	int hexValue; | 
 | 478 |  | 
 | 479 | 	*longValue = 0; | 
 | 480 |  | 
 | 481 | 	while (**ptr) { | 
 | 482 | 		hexValue = hex(**ptr); | 
 | 483 | 		if (hexValue < 0) | 
 | 484 | 			break; | 
 | 485 |  | 
 | 486 | 		*longValue = (*longValue << 4) | hexValue; | 
 | 487 | 		numChars ++; | 
 | 488 |  | 
 | 489 | 		(*ptr)++; | 
 | 490 | 	} | 
 | 491 |  | 
 | 492 | 	return numChars; | 
 | 493 | } | 
 | 494 |  | 
 | 495 |  | 
 | 496 | #if 0 | 
 | 497 | /* | 
 | 498 |  * Print registers (on target console) | 
 | 499 |  * Used only to debug the stub... | 
 | 500 |  */ | 
 | 501 | void show_gdbregs(struct gdb_regs * regs) | 
 | 502 | { | 
 | 503 | 	/* | 
 | 504 | 	 * Saved main processor registers | 
 | 505 | 	 */ | 
 | 506 | 	printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", | 
 | 507 | 	       regs->reg0, regs->reg1, regs->reg2, regs->reg3, | 
 | 508 |                regs->reg4, regs->reg5, regs->reg6, regs->reg7); | 
 | 509 | 	printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", | 
 | 510 | 	       regs->reg8, regs->reg9, regs->reg10, regs->reg11, | 
 | 511 |                regs->reg12, regs->reg13, regs->reg14, regs->reg15); | 
 | 512 | 	printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", | 
 | 513 | 	       regs->reg16, regs->reg17, regs->reg18, regs->reg19, | 
 | 514 |                regs->reg20, regs->reg21, regs->reg22, regs->reg23); | 
 | 515 | 	printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", | 
 | 516 | 	       regs->reg24, regs->reg25, regs->reg26, regs->reg27, | 
 | 517 | 	       regs->reg28, regs->reg29, regs->reg30, regs->reg31); | 
 | 518 |  | 
 | 519 | 	/* | 
 | 520 | 	 * Saved cp0 registers | 
 | 521 | 	 */ | 
 | 522 | 	printk("epc  : %08lx\nStatus: %08lx\nCause : %08lx\n", | 
 | 523 | 	       regs->cp0_epc, regs->cp0_status, regs->cp0_cause); | 
 | 524 | } | 
 | 525 | #endif /* dead code */ | 
 | 526 |  | 
 | 527 | /* | 
 | 528 |  * We single-step by setting breakpoints. When an exception | 
 | 529 |  * is handled, we need to restore the instructions hoisted | 
 | 530 |  * when the breakpoints were set. | 
 | 531 |  * | 
 | 532 |  * This is where we save the original instructions. | 
 | 533 |  */ | 
 | 534 | static struct gdb_bp_save { | 
 | 535 | 	unsigned long addr; | 
 | 536 | 	unsigned int val; | 
 | 537 | } step_bp[2]; | 
 | 538 |  | 
 | 539 | #define BP 0x0000000d  /* break opcode */ | 
 | 540 |  | 
 | 541 | /* | 
 | 542 |  * Set breakpoint instructions for single stepping. | 
 | 543 |  */ | 
 | 544 | static void single_step(struct gdb_regs *regs) | 
 | 545 | { | 
 | 546 | 	union mips_instruction insn; | 
 | 547 | 	unsigned long targ; | 
 | 548 | 	int is_branch, is_cond, i; | 
 | 549 |  | 
 | 550 | 	targ = regs->cp0_epc; | 
 | 551 | 	insn.word = *(unsigned int *)targ; | 
 | 552 | 	is_branch = is_cond = 0; | 
 | 553 |  | 
 | 554 | 	switch (insn.i_format.opcode) { | 
 | 555 | 	/* | 
 | 556 | 	 * jr and jalr are in r_format format. | 
 | 557 | 	 */ | 
 | 558 | 	case spec_op: | 
 | 559 | 		switch (insn.r_format.func) { | 
 | 560 | 		case jalr_op: | 
 | 561 | 		case jr_op: | 
 | 562 | 			targ = *(®s->reg0 + insn.r_format.rs); | 
 | 563 | 			is_branch = 1; | 
 | 564 | 			break; | 
 | 565 | 		} | 
 | 566 | 		break; | 
 | 567 |  | 
 | 568 | 	/* | 
 | 569 | 	 * This group contains: | 
 | 570 | 	 * bltz_op, bgez_op, bltzl_op, bgezl_op, | 
 | 571 | 	 * bltzal_op, bgezal_op, bltzall_op, bgezall_op. | 
 | 572 | 	 */ | 
 | 573 | 	case bcond_op: | 
 | 574 | 		is_branch = is_cond = 1; | 
 | 575 | 		targ += 4 + (insn.i_format.simmediate << 2); | 
 | 576 | 		break; | 
 | 577 |  | 
 | 578 | 	/* | 
 | 579 | 	 * These are unconditional and in j_format. | 
 | 580 | 	 */ | 
 | 581 | 	case jal_op: | 
 | 582 | 	case j_op: | 
 | 583 | 		is_branch = 1; | 
 | 584 | 		targ += 4; | 
 | 585 | 		targ >>= 28; | 
 | 586 | 		targ <<= 28; | 
 | 587 | 		targ |= (insn.j_format.target << 2); | 
 | 588 | 		break; | 
 | 589 |  | 
 | 590 | 	/* | 
 | 591 | 	 * These are conditional. | 
 | 592 | 	 */ | 
 | 593 | 	case beq_op: | 
 | 594 | 	case beql_op: | 
 | 595 | 	case bne_op: | 
 | 596 | 	case bnel_op: | 
 | 597 | 	case blez_op: | 
 | 598 | 	case blezl_op: | 
 | 599 | 	case bgtz_op: | 
 | 600 | 	case bgtzl_op: | 
 | 601 | 	case cop0_op: | 
 | 602 | 	case cop1_op: | 
 | 603 | 	case cop2_op: | 
 | 604 | 	case cop1x_op: | 
 | 605 | 		is_branch = is_cond = 1; | 
 | 606 | 		targ += 4 + (insn.i_format.simmediate << 2); | 
 | 607 | 		break; | 
 | 608 | 	} | 
 | 609 |  | 
 | 610 | 	if (is_branch) { | 
 | 611 | 		i = 0; | 
 | 612 | 		if (is_cond && targ != (regs->cp0_epc + 8)) { | 
 | 613 | 			step_bp[i].addr = regs->cp0_epc + 8; | 
 | 614 | 			step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8); | 
 | 615 | 			*(unsigned *)(regs->cp0_epc + 8) = BP; | 
 | 616 | 		} | 
 | 617 | 		step_bp[i].addr = targ; | 
 | 618 | 		step_bp[i].val  = *(unsigned *)targ; | 
 | 619 | 		*(unsigned *)targ = BP; | 
 | 620 | 	} else { | 
 | 621 | 		step_bp[0].addr = regs->cp0_epc + 4; | 
 | 622 | 		step_bp[0].val  = *(unsigned *)(regs->cp0_epc + 4); | 
 | 623 | 		*(unsigned *)(regs->cp0_epc + 4) = BP; | 
 | 624 | 	} | 
 | 625 | } | 
 | 626 |  | 
 | 627 | /* | 
 | 628 |  *  If asynchronously interrupted by gdb, then we need to set a breakpoint | 
 | 629 |  *  at the interrupted instruction so that we wind up stopped with a | 
 | 630 |  *  reasonable stack frame. | 
 | 631 |  */ | 
 | 632 | static struct gdb_bp_save async_bp; | 
 | 633 |  | 
 | 634 | /* | 
 | 635 |  * Swap the interrupted EPC with our asynchronous breakpoint routine. | 
 | 636 |  * This is safer than stuffing the breakpoint in-place, since no cache | 
 | 637 |  * flushes (or resulting smp_call_functions) are required.  The | 
 | 638 |  * assumption is that only one CPU will be handling asynchronous bp's, | 
 | 639 |  * and only one can be active at a time. | 
 | 640 |  */ | 
 | 641 | extern spinlock_t smp_call_lock; | 
| Ralf Baechle | b188ffe | 2004-12-28 07:49:43 +0000 | [diff] [blame] | 642 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 643 | void set_async_breakpoint(unsigned long *epc) | 
 | 644 | { | 
 | 645 | 	/* skip breaking into userland */ | 
 | 646 | 	if ((*epc & 0x80000000) == 0) | 
 | 647 | 		return; | 
 | 648 |  | 
| Ralf Baechle | b188ffe | 2004-12-28 07:49:43 +0000 | [diff] [blame] | 649 | #ifdef CONFIG_SMP | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 650 | 	/* avoid deadlock if someone is make IPC */ | 
 | 651 | 	if (spin_is_locked(&smp_call_lock)) | 
 | 652 | 		return; | 
| Ralf Baechle | b188ffe | 2004-12-28 07:49:43 +0000 | [diff] [blame] | 653 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 654 |  | 
 | 655 | 	async_bp.addr = *epc; | 
 | 656 | 	*epc = (unsigned long)async_breakpoint; | 
 | 657 | } | 
 | 658 |  | 
| Ralf Baechle | f8bb3af | 2005-10-03 13:30:57 +0100 | [diff] [blame] | 659 | static void kgdb_wait(void *arg) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 660 | { | 
 | 661 | 	unsigned flags; | 
 | 662 | 	int cpu = smp_processor_id(); | 
 | 663 |  | 
 | 664 | 	local_irq_save(flags); | 
 | 665 |  | 
| Ralf Baechle | 57468af | 2005-10-03 13:40:26 +0100 | [diff] [blame] | 666 | 	__raw_spin_lock(&kgdb_cpulock[cpu]); | 
 | 667 | 	__raw_spin_unlock(&kgdb_cpulock[cpu]); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 668 |  | 
 | 669 | 	local_irq_restore(flags); | 
 | 670 | } | 
 | 671 |  | 
 | 672 |  | 
 | 673 | /* | 
 | 674 |  * This function does all command processing for interfacing to gdb.  It | 
 | 675 |  * returns 1 if you should skip the instruction at the trap address, 0 | 
 | 676 |  * otherwise. | 
 | 677 |  */ | 
 | 678 | void handle_exception (struct gdb_regs *regs) | 
 | 679 | { | 
 | 680 | 	int trap;			/* Trap type */ | 
 | 681 | 	int sigval; | 
 | 682 | 	long addr; | 
 | 683 | 	int length; | 
 | 684 | 	char *ptr; | 
 | 685 | 	unsigned long *stack; | 
 | 686 | 	int i; | 
 | 687 | 	int bflag = 0; | 
 | 688 |  | 
 | 689 | 	kgdb_started = 1; | 
 | 690 |  | 
 | 691 | 	/* | 
 | 692 | 	 * acquire the big kgdb spinlock | 
 | 693 | 	 */ | 
 | 694 | 	if (!spin_trylock(&kgdb_lock)) { | 
| Ralf Baechle | 42a3b4f | 2005-09-03 15:56:17 -0700 | [diff] [blame] | 695 | 		/* | 
 | 696 | 		 * some other CPU has the lock, we should go back to | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 697 | 		 * receive the gdb_wait IPC | 
 | 698 | 		 */ | 
 | 699 | 		return; | 
 | 700 | 	} | 
 | 701 |  | 
 | 702 | 	/* | 
 | 703 | 	 * If we're in async_breakpoint(), restore the real EPC from | 
 | 704 | 	 * the breakpoint. | 
 | 705 | 	 */ | 
 | 706 | 	if (regs->cp0_epc == (unsigned long)async_breakinst) { | 
 | 707 | 		regs->cp0_epc = async_bp.addr; | 
 | 708 | 		async_bp.addr = 0; | 
 | 709 | 	} | 
 | 710 |  | 
| Ralf Baechle | 42a3b4f | 2005-09-03 15:56:17 -0700 | [diff] [blame] | 711 | 	/* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 712 | 	 * acquire the CPU spinlocks | 
 | 713 | 	 */ | 
 | 714 | 	for (i = num_online_cpus()-1; i >= 0; i--) | 
| Ralf Baechle | 57468af | 2005-10-03 13:40:26 +0100 | [diff] [blame] | 715 | 		if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 716 | 			panic("kgdb: couldn't get cpulock %d\n", i); | 
 | 717 |  | 
 | 718 | 	/* | 
 | 719 | 	 * force other cpus to enter kgdb | 
 | 720 | 	 */ | 
 | 721 | 	smp_call_function(kgdb_wait, NULL, 0, 0); | 
 | 722 |  | 
 | 723 | 	/* | 
 | 724 | 	 * If we're in breakpoint() increment the PC | 
 | 725 | 	 */ | 
 | 726 | 	trap = (regs->cp0_cause & 0x7c) >> 2; | 
 | 727 | 	if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst) | 
 | 728 | 		regs->cp0_epc += 4; | 
 | 729 |  | 
 | 730 | 	/* | 
 | 731 | 	 * If we were single_stepping, restore the opcodes hoisted | 
 | 732 | 	 * for the breakpoint[s]. | 
 | 733 | 	 */ | 
 | 734 | 	if (step_bp[0].addr) { | 
 | 735 | 		*(unsigned *)step_bp[0].addr = step_bp[0].val; | 
 | 736 | 		step_bp[0].addr = 0; | 
 | 737 |  | 
 | 738 | 		if (step_bp[1].addr) { | 
 | 739 | 			*(unsigned *)step_bp[1].addr = step_bp[1].val; | 
 | 740 | 			step_bp[1].addr = 0; | 
 | 741 | 		} | 
 | 742 | 	} | 
 | 743 |  | 
 | 744 | 	stack = (long *)regs->reg29;			/* stack ptr */ | 
 | 745 | 	sigval = computeSignal(trap); | 
 | 746 |  | 
 | 747 | 	/* | 
 | 748 | 	 * reply to host that an exception has occurred | 
 | 749 | 	 */ | 
 | 750 | 	ptr = output_buffer; | 
 | 751 |  | 
 | 752 | 	/* | 
 | 753 | 	 * Send trap type (converted to signal) | 
 | 754 | 	 */ | 
 | 755 | 	*ptr++ = 'T'; | 
 | 756 | 	*ptr++ = hexchars[sigval >> 4]; | 
 | 757 | 	*ptr++ = hexchars[sigval & 0xf]; | 
 | 758 |  | 
 | 759 | 	/* | 
 | 760 | 	 * Send Error PC | 
 | 761 | 	 */ | 
 | 762 | 	*ptr++ = hexchars[REG_EPC >> 4]; | 
 | 763 | 	*ptr++ = hexchars[REG_EPC & 0xf]; | 
 | 764 | 	*ptr++ = ':'; | 
 | 765 | 	ptr = mem2hex((char *)®s->cp0_epc, ptr, sizeof(long), 0); | 
 | 766 | 	*ptr++ = ';'; | 
 | 767 |  | 
 | 768 | 	/* | 
 | 769 | 	 * Send frame pointer | 
 | 770 | 	 */ | 
 | 771 | 	*ptr++ = hexchars[REG_FP >> 4]; | 
 | 772 | 	*ptr++ = hexchars[REG_FP & 0xf]; | 
 | 773 | 	*ptr++ = ':'; | 
 | 774 | 	ptr = mem2hex((char *)®s->reg30, ptr, sizeof(long), 0); | 
 | 775 | 	*ptr++ = ';'; | 
 | 776 |  | 
 | 777 | 	/* | 
 | 778 | 	 * Send stack pointer | 
 | 779 | 	 */ | 
 | 780 | 	*ptr++ = hexchars[REG_SP >> 4]; | 
 | 781 | 	*ptr++ = hexchars[REG_SP & 0xf]; | 
 | 782 | 	*ptr++ = ':'; | 
 | 783 | 	ptr = mem2hex((char *)®s->reg29, ptr, sizeof(long), 0); | 
 | 784 | 	*ptr++ = ';'; | 
 | 785 |  | 
 | 786 | 	*ptr++ = 0; | 
 | 787 | 	putpacket(output_buffer);	/* send it off... */ | 
 | 788 |  | 
 | 789 | 	/* | 
 | 790 | 	 * Wait for input from remote GDB | 
 | 791 | 	 */ | 
 | 792 | 	while (1) { | 
 | 793 | 		output_buffer[0] = 0; | 
 | 794 | 		getpacket(input_buffer); | 
 | 795 |  | 
 | 796 | 		switch (input_buffer[0]) | 
 | 797 | 		{ | 
 | 798 | 		case '?': | 
 | 799 | 			output_buffer[0] = 'S'; | 
 | 800 | 			output_buffer[1] = hexchars[sigval >> 4]; | 
 | 801 | 			output_buffer[2] = hexchars[sigval & 0xf]; | 
 | 802 | 			output_buffer[3] = 0; | 
 | 803 | 			break; | 
 | 804 |  | 
 | 805 | 		/* | 
 | 806 | 		 * Detach debugger; let CPU run | 
 | 807 | 		 */ | 
 | 808 | 		case 'D': | 
 | 809 | 			putpacket(output_buffer); | 
 | 810 | 			goto finish_kgdb; | 
 | 811 | 			break; | 
 | 812 |  | 
 | 813 | 		case 'd': | 
 | 814 | 			/* toggle debug flag */ | 
 | 815 | 			break; | 
 | 816 |  | 
 | 817 | 		/* | 
 | 818 | 		 * Return the value of the CPU registers | 
 | 819 | 		 */ | 
 | 820 | 		case 'g': | 
 | 821 | 			ptr = output_buffer; | 
 | 822 | 			ptr = mem2hex((char *)®s->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */ | 
 | 823 | 			ptr = mem2hex((char *)®s->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */ | 
 | 824 | 			ptr = mem2hex((char *)®s->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */ | 
 | 825 | 			ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */ | 
 | 826 | 			ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */ | 
 | 827 | 			ptr = mem2hex((char *)®s->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */ | 
 | 828 | 			break; | 
 | 829 |  | 
 | 830 | 		/* | 
 | 831 | 		 * set the value of the CPU registers - return OK | 
 | 832 | 		 */ | 
 | 833 | 		case 'G': | 
 | 834 | 		{ | 
 | 835 | 			ptr = &input_buffer[1]; | 
 | 836 | 			hex2mem(ptr, (char *)®s->reg0, 32*sizeof(long), 0, 0); | 
 | 837 | 			ptr += 32*(2*sizeof(long)); | 
 | 838 | 			hex2mem(ptr, (char *)®s->cp0_status, 6*sizeof(long), 0, 0); | 
 | 839 | 			ptr += 6*(2*sizeof(long)); | 
 | 840 | 			hex2mem(ptr, (char *)®s->fpr0, 32*sizeof(long), 0, 0); | 
 | 841 | 			ptr += 32*(2*sizeof(long)); | 
 | 842 | 			hex2mem(ptr, (char *)®s->cp1_fsr, 2*sizeof(long), 0, 0); | 
 | 843 | 			ptr += 2*(2*sizeof(long)); | 
 | 844 | 			hex2mem(ptr, (char *)®s->frame_ptr, 2*sizeof(long), 0, 0); | 
 | 845 | 			ptr += 2*(2*sizeof(long)); | 
 | 846 | 			hex2mem(ptr, (char *)®s->cp0_index, 16*sizeof(long), 0, 0); | 
 | 847 | 			strcpy(output_buffer,"OK"); | 
 | 848 | 		 } | 
 | 849 | 		break; | 
 | 850 |  | 
 | 851 | 		/* | 
 | 852 | 		 * mAA..AA,LLLL  Read LLLL bytes at address AA..AA | 
 | 853 | 		 */ | 
 | 854 | 		case 'm': | 
 | 855 | 			ptr = &input_buffer[1]; | 
 | 856 |  | 
 | 857 | 			if (hexToLong(&ptr, &addr) | 
 | 858 | 				&& *ptr++ == ',' | 
 | 859 | 				&& hexToInt(&ptr, &length)) { | 
 | 860 | 				if (mem2hex((char *)addr, output_buffer, length, 1)) | 
 | 861 | 					break; | 
 | 862 | 				strcpy (output_buffer, "E03"); | 
 | 863 | 			} else | 
 | 864 | 				strcpy(output_buffer,"E01"); | 
 | 865 | 			break; | 
 | 866 |  | 
 | 867 | 		/* | 
 | 868 | 		 * XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA | 
 | 869 | 		 */ | 
 | 870 | 		case 'X': | 
 | 871 | 			bflag = 1; | 
 | 872 | 			/* fall through */ | 
 | 873 |  | 
 | 874 | 		/* | 
 | 875 | 		 * MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK | 
 | 876 | 		 */ | 
 | 877 | 		case 'M': | 
 | 878 | 			ptr = &input_buffer[1]; | 
 | 879 |  | 
 | 880 | 			if (hexToLong(&ptr, &addr) | 
 | 881 | 				&& *ptr++ == ',' | 
 | 882 | 				&& hexToInt(&ptr, &length) | 
 | 883 | 				&& *ptr++ == ':') { | 
 | 884 | 				if (hex2mem(ptr, (char *)addr, length, bflag, 1)) | 
 | 885 | 					strcpy(output_buffer, "OK"); | 
 | 886 | 				else | 
 | 887 | 					strcpy(output_buffer, "E03"); | 
 | 888 | 			} | 
 | 889 | 			else | 
 | 890 | 				strcpy(output_buffer, "E02"); | 
 | 891 | 			break; | 
 | 892 |  | 
 | 893 | 		/* | 
 | 894 | 		 * cAA..AA    Continue at address AA..AA(optional) | 
 | 895 | 		 */ | 
 | 896 | 		case 'c': | 
 | 897 | 			/* try to read optional parameter, pc unchanged if no parm */ | 
 | 898 |  | 
 | 899 | 			ptr = &input_buffer[1]; | 
 | 900 | 			if (hexToLong(&ptr, &addr)) | 
 | 901 | 				regs->cp0_epc = addr; | 
| Ralf Baechle | 42a3b4f | 2005-09-03 15:56:17 -0700 | [diff] [blame] | 902 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 903 | 			goto exit_kgdb_exception; | 
 | 904 | 			break; | 
 | 905 |  | 
 | 906 | 		/* | 
 | 907 | 		 * kill the program; let us try to restart the machine | 
 | 908 | 		 * Reset the whole machine. | 
 | 909 | 		 */ | 
 | 910 | 		case 'k': | 
 | 911 | 		case 'r': | 
 | 912 | 			machine_restart("kgdb restarts machine"); | 
 | 913 | 			break; | 
 | 914 |  | 
 | 915 | 		/* | 
 | 916 | 		 * Step to next instruction | 
 | 917 | 		 */ | 
 | 918 | 		case 's': | 
 | 919 | 			/* | 
 | 920 | 			 * There is no single step insn in the MIPS ISA, so we | 
 | 921 | 			 * use breakpoints and continue, instead. | 
 | 922 | 			 */ | 
 | 923 | 			single_step(regs); | 
 | 924 | 			goto exit_kgdb_exception; | 
 | 925 | 			/* NOTREACHED */ | 
 | 926 | 			break; | 
 | 927 |  | 
 | 928 | 		/* | 
 | 929 | 		 * Set baud rate (bBB) | 
 | 930 | 		 * FIXME: Needs to be written | 
 | 931 | 		 */ | 
 | 932 | 		case 'b': | 
 | 933 | 		{ | 
 | 934 | #if 0 | 
 | 935 | 			int baudrate; | 
 | 936 | 			extern void set_timer_3(); | 
 | 937 |  | 
 | 938 | 			ptr = &input_buffer[1]; | 
 | 939 | 			if (!hexToInt(&ptr, &baudrate)) | 
 | 940 | 			{ | 
 | 941 | 				strcpy(output_buffer,"B01"); | 
 | 942 | 				break; | 
 | 943 | 			} | 
 | 944 |  | 
 | 945 | 			/* Convert baud rate to uart clock divider */ | 
 | 946 |  | 
 | 947 | 			switch (baudrate) | 
 | 948 | 			{ | 
 | 949 | 				case 38400: | 
 | 950 | 					baudrate = 16; | 
 | 951 | 					break; | 
 | 952 | 				case 19200: | 
 | 953 | 					baudrate = 33; | 
 | 954 | 					break; | 
 | 955 | 				case 9600: | 
 | 956 | 					baudrate = 65; | 
 | 957 | 					break; | 
 | 958 | 				default: | 
 | 959 | 					baudrate = 0; | 
 | 960 | 					strcpy(output_buffer,"B02"); | 
 | 961 | 					goto x1; | 
 | 962 | 			} | 
 | 963 |  | 
 | 964 | 			if (baudrate) { | 
 | 965 | 				putpacket("OK");	/* Ack before changing speed */ | 
 | 966 | 				set_timer_3(baudrate); /* Set it */ | 
 | 967 | 			} | 
 | 968 | #endif | 
 | 969 | 		} | 
 | 970 | 		break; | 
 | 971 |  | 
 | 972 | 		}			/* switch */ | 
 | 973 |  | 
 | 974 | 		/* | 
 | 975 | 		 * reply to the request | 
 | 976 | 		 */ | 
 | 977 |  | 
 | 978 | 		putpacket(output_buffer); | 
 | 979 |  | 
 | 980 | 	} /* while */ | 
 | 981 |  | 
 | 982 | 	return; | 
 | 983 |  | 
 | 984 | finish_kgdb: | 
 | 985 | 	restore_debug_traps(); | 
 | 986 |  | 
 | 987 | exit_kgdb_exception: | 
 | 988 | 	/* release locks so other CPUs can go */ | 
 | 989 | 	for (i = num_online_cpus()-1; i >= 0; i--) | 
| Ralf Baechle | 57468af | 2005-10-03 13:40:26 +0100 | [diff] [blame] | 990 | 		__raw_spin_unlock(&kgdb_cpulock[i]); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 991 | 	spin_unlock(&kgdb_lock); | 
 | 992 |  | 
 | 993 | 	__flush_cache_all(); | 
 | 994 | 	return; | 
 | 995 | } | 
 | 996 |  | 
 | 997 | /* | 
 | 998 |  * This function will generate a breakpoint exception.  It is used at the | 
 | 999 |  * beginning of a program to sync up with a debugger and can be used | 
 | 1000 |  * otherwise as a quick means to stop program execution and "break" into | 
 | 1001 |  * the debugger. | 
 | 1002 |  */ | 
 | 1003 | void breakpoint(void) | 
 | 1004 | { | 
 | 1005 | 	if (!initialized) | 
 | 1006 | 		return; | 
 | 1007 |  | 
 | 1008 | 	__asm__ __volatile__( | 
| Ralf Baechle | 42a3b4f | 2005-09-03 15:56:17 -0700 | [diff] [blame] | 1009 | 			".globl	breakinst\n\t" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1010 | 			".set\tnoreorder\n\t" | 
 | 1011 | 			"nop\n" | 
 | 1012 | 			"breakinst:\tbreak\n\t" | 
 | 1013 | 			"nop\n\t" | 
 | 1014 | 			".set\treorder" | 
 | 1015 | 			); | 
 | 1016 | } | 
 | 1017 |  | 
 | 1018 | /* Nothing but the break; don't pollute any registers */ | 
 | 1019 | void async_breakpoint(void) | 
 | 1020 | { | 
 | 1021 | 	__asm__ __volatile__( | 
| Ralf Baechle | 42a3b4f | 2005-09-03 15:56:17 -0700 | [diff] [blame] | 1022 | 			".globl	async_breakinst\n\t" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1023 | 			".set\tnoreorder\n\t" | 
 | 1024 | 			"nop\n" | 
 | 1025 | 			"async_breakinst:\tbreak\n\t" | 
 | 1026 | 			"nop\n\t" | 
 | 1027 | 			".set\treorder" | 
 | 1028 | 			); | 
 | 1029 | } | 
 | 1030 |  | 
 | 1031 | void adel(void) | 
 | 1032 | { | 
 | 1033 | 	__asm__ __volatile__( | 
 | 1034 | 			".globl\tadel\n\t" | 
 | 1035 | 			"lui\t$8,0x8000\n\t" | 
 | 1036 | 			"lw\t$9,1($8)\n\t" | 
 | 1037 | 			); | 
 | 1038 | } | 
 | 1039 |  | 
 | 1040 | /* | 
 | 1041 |  * malloc is needed by gdb client in "call func()", even a private one | 
 | 1042 |  * will make gdb happy | 
 | 1043 |  */ | 
| Ralf Baechle | a0c3a5b | 2005-07-14 07:39:46 +0000 | [diff] [blame] | 1044 | static void * __attribute_used__ malloc(size_t size) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1045 | { | 
 | 1046 | 	return kmalloc(size, GFP_ATOMIC); | 
 | 1047 | } | 
 | 1048 |  | 
| Ralf Baechle | a0c3a5b | 2005-07-14 07:39:46 +0000 | [diff] [blame] | 1049 | static void __attribute_used__ free (void *where) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1050 | { | 
 | 1051 | 	kfree(where); | 
 | 1052 | } | 
 | 1053 |  | 
 | 1054 | #ifdef CONFIG_GDB_CONSOLE | 
 | 1055 |  | 
 | 1056 | void gdb_putsn(const char *str, int l) | 
 | 1057 | { | 
 | 1058 | 	char outbuf[18]; | 
 | 1059 |  | 
 | 1060 | 	if (!kgdb_started) | 
 | 1061 | 		return; | 
 | 1062 |  | 
 | 1063 | 	outbuf[0]='O'; | 
 | 1064 |  | 
 | 1065 | 	while(l) { | 
 | 1066 | 		int i = (l>8)?8:l; | 
 | 1067 | 		mem2hex((char *)str, &outbuf[1], i, 0); | 
 | 1068 | 		outbuf[(i*2)+1]=0; | 
 | 1069 | 		putpacket(outbuf); | 
 | 1070 | 		str += i; | 
 | 1071 | 		l -= i; | 
 | 1072 | 	} | 
 | 1073 | } | 
 | 1074 |  | 
 | 1075 | static void gdb_console_write(struct console *con, const char *s, unsigned n) | 
 | 1076 | { | 
 | 1077 | 	gdb_putsn(s, n); | 
 | 1078 | } | 
 | 1079 |  | 
 | 1080 | static struct console gdb_console = { | 
 | 1081 | 	.name	= "gdb", | 
 | 1082 | 	.write	= gdb_console_write, | 
 | 1083 | 	.flags	= CON_PRINTBUFFER, | 
 | 1084 | 	.index	= -1 | 
 | 1085 | }; | 
 | 1086 |  | 
 | 1087 | static int __init register_gdb_console(void) | 
 | 1088 | { | 
 | 1089 | 	register_console(&gdb_console); | 
 | 1090 |  | 
 | 1091 | 	return 0; | 
 | 1092 | } | 
 | 1093 |  | 
 | 1094 | console_initcall(register_gdb_console); | 
 | 1095 |  | 
 | 1096 | #endif |