| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Common time routines among all ppc machines. | 
|  | 3 | * | 
|  | 4 | * Written by Cort Dougan (cort@cs.nmt.edu) to merge | 
|  | 5 | * Paul Mackerras' version and mine for PReP and Pmac. | 
|  | 6 | * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). | 
|  | 7 | * | 
|  | 8 | * First round of bugfixes by Gabriel Paubert (paubert@iram.es) | 
|  | 9 | * to make clock more stable (2.4.0-test5). The only thing | 
|  | 10 | * that this code assumes is that the timebases have been synchronized | 
|  | 11 | * by firmware on SMP and are never stopped (never do sleep | 
|  | 12 | * on SMP then, nap and doze are OK). | 
|  | 13 | * | 
|  | 14 | * TODO (not necessarily in this file): | 
|  | 15 | * - improve precision and reproducibility of timebase frequency | 
|  | 16 | * measurement at boot time. | 
|  | 17 | * - get rid of xtime_lock for gettimeofday (generic kernel problem | 
|  | 18 | * to be implemented on all architectures for SMP scalability and | 
|  | 19 | * eventually implementing gettimeofday without entering the kernel). | 
|  | 20 | * - put all time/clock related variables in a single structure | 
|  | 21 | * to minimize number of cache lines touched by gettimeofday() | 
|  | 22 | * - for astronomical applications: add a new function to get | 
|  | 23 | * non ambiguous timestamps even around leap seconds. This needs | 
|  | 24 | * a new timestamp format and a good name. | 
|  | 25 | * | 
|  | 26 | * | 
|  | 27 | * The following comment is partially obsolete (at least the long wait | 
|  | 28 | * is no more a valid reason): | 
|  | 29 | * Since the MPC8xx has a programmable interrupt timer, I decided to | 
|  | 30 | * use that rather than the decrementer.  Two reasons: 1.) the clock | 
|  | 31 | * frequency is low, causing 2.) a long wait in the timer interrupt | 
|  | 32 | *		while ((d = get_dec()) == dval) | 
|  | 33 | * loop.  The MPC8xx can be driven from a variety of input clocks, | 
|  | 34 | * so a number of assumptions have been made here because the kernel | 
|  | 35 | * parameter HZ is a constant.  We assume (correctly, today :-) that | 
|  | 36 | * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal. | 
|  | 37 | * This is then divided by 4, providing a 8192 Hz clock into the PIT. | 
|  | 38 | * Since it is not possible to get a nice 100 Hz clock out of this, without | 
|  | 39 | * creating a software PLL, I have set HZ to 128.  -- Dan | 
|  | 40 | * | 
|  | 41 | * 1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
|  | 42 | *             "A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | 43 | */ | 
|  | 44 |  | 
|  | 45 | #include <linux/config.h> | 
|  | 46 | #include <linux/errno.h> | 
|  | 47 | #include <linux/sched.h> | 
|  | 48 | #include <linux/kernel.h> | 
|  | 49 | #include <linux/param.h> | 
|  | 50 | #include <linux/string.h> | 
|  | 51 | #include <linux/mm.h> | 
|  | 52 | #include <linux/module.h> | 
|  | 53 | #include <linux/interrupt.h> | 
|  | 54 | #include <linux/timex.h> | 
|  | 55 | #include <linux/kernel_stat.h> | 
|  | 56 | #include <linux/mc146818rtc.h> | 
|  | 57 | #include <linux/time.h> | 
|  | 58 | #include <linux/init.h> | 
|  | 59 | #include <linux/profile.h> | 
|  | 60 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 61 | #include <asm/io.h> | 
|  | 62 | #include <asm/nvram.h> | 
|  | 63 | #include <asm/cache.h> | 
|  | 64 | #include <asm/8xx_immap.h> | 
|  | 65 | #include <asm/machdep.h> | 
|  | 66 |  | 
|  | 67 | #include <asm/time.h> | 
|  | 68 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 69 | unsigned long disarm_decr[NR_CPUS]; | 
|  | 70 |  | 
|  | 71 | extern struct timezone sys_tz; | 
|  | 72 |  | 
|  | 73 | /* keep track of when we need to update the rtc */ | 
|  | 74 | time_t last_rtc_update; | 
|  | 75 |  | 
|  | 76 | /* The decrementer counts down by 128 every 128ns on a 601. */ | 
|  | 77 | #define DECREMENTER_COUNT_601	(1000000000 / HZ) | 
|  | 78 |  | 
|  | 79 | unsigned tb_ticks_per_jiffy; | 
|  | 80 | unsigned tb_to_us; | 
|  | 81 | unsigned tb_last_stamp; | 
|  | 82 | unsigned long tb_to_ns_scale; | 
|  | 83 |  | 
|  | 84 | extern unsigned long wall_jiffies; | 
|  | 85 |  | 
| john stultz | f326d22 | 2005-07-05 18:54:44 -0700 | [diff] [blame] | 86 | /* used for timezone offset */ | 
|  | 87 | static long timezone_offset; | 
|  | 88 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 89 | DEFINE_SPINLOCK(rtc_lock); | 
|  | 90 |  | 
|  | 91 | EXPORT_SYMBOL(rtc_lock); | 
|  | 92 |  | 
|  | 93 | /* Timer interrupt helper function */ | 
|  | 94 | static inline int tb_delta(unsigned *jiffy_stamp) { | 
|  | 95 | int delta; | 
|  | 96 | if (__USE_RTC()) { | 
|  | 97 | delta = get_rtcl(); | 
|  | 98 | if (delta < *jiffy_stamp) *jiffy_stamp -= 1000000000; | 
|  | 99 | delta -= *jiffy_stamp; | 
|  | 100 | } else { | 
|  | 101 | delta = get_tbl() - *jiffy_stamp; | 
|  | 102 | } | 
|  | 103 | return delta; | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | #ifdef CONFIG_SMP | 
|  | 107 | unsigned long profile_pc(struct pt_regs *regs) | 
|  | 108 | { | 
|  | 109 | unsigned long pc = instruction_pointer(regs); | 
|  | 110 |  | 
|  | 111 | if (in_lock_functions(pc)) | 
|  | 112 | return regs->link; | 
|  | 113 |  | 
|  | 114 | return pc; | 
|  | 115 | } | 
|  | 116 | EXPORT_SYMBOL(profile_pc); | 
|  | 117 | #endif | 
|  | 118 |  | 
| Paul Mackerras | f2783c1 | 2005-10-20 09:23:26 +1000 | [diff] [blame] | 119 | void wakeup_decrementer(void) | 
|  | 120 | { | 
|  | 121 | set_dec(tb_ticks_per_jiffy); | 
|  | 122 | /* No currently-supported powerbook has a 601, | 
|  | 123 | * so use get_tbl, not native | 
|  | 124 | */ | 
|  | 125 | last_jiffy_stamp(0) = tb_last_stamp = get_tbl(); | 
|  | 126 | } | 
|  | 127 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 128 | /* | 
|  | 129 | * timer_interrupt - gets called when the decrementer overflows, | 
|  | 130 | * with interrupts disabled. | 
|  | 131 | * We set it up to overflow again in 1/HZ seconds. | 
|  | 132 | */ | 
|  | 133 | void timer_interrupt(struct pt_regs * regs) | 
|  | 134 | { | 
|  | 135 | int next_dec; | 
|  | 136 | unsigned long cpu = smp_processor_id(); | 
|  | 137 | unsigned jiffy_stamp = last_jiffy_stamp(cpu); | 
|  | 138 | extern void do_IRQ(struct pt_regs *); | 
|  | 139 |  | 
|  | 140 | if (atomic_read(&ppc_n_lost_interrupts) != 0) | 
|  | 141 | do_IRQ(regs); | 
|  | 142 |  | 
|  | 143 | irq_enter(); | 
|  | 144 |  | 
|  | 145 | while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) { | 
|  | 146 | jiffy_stamp += tb_ticks_per_jiffy; | 
|  | 147 |  | 
|  | 148 | profile_tick(CPU_PROFILING, regs); | 
|  | 149 | update_process_times(user_mode(regs)); | 
|  | 150 |  | 
|  | 151 | if (smp_processor_id()) | 
|  | 152 | continue; | 
|  | 153 |  | 
|  | 154 | /* We are in an interrupt, no need to save/restore flags */ | 
|  | 155 | write_seqlock(&xtime_lock); | 
|  | 156 | tb_last_stamp = jiffy_stamp; | 
|  | 157 | do_timer(regs); | 
|  | 158 |  | 
|  | 159 | /* | 
|  | 160 | * update the rtc when needed, this should be performed on the | 
|  | 161 | * right fraction of a second. Half or full second ? | 
|  | 162 | * Full second works on mk48t59 clocks, others need testing. | 
|  | 163 | * Note that this update is basically only used through | 
|  | 164 | * the adjtimex system calls. Setting the HW clock in | 
|  | 165 | * any other way is a /dev/rtc and userland business. | 
|  | 166 | * This is still wrong by -0.5/+1.5 jiffies because of the | 
|  | 167 | * timer interrupt resolution and possible delay, but here we | 
|  | 168 | * hit a quantization limit which can only be solved by higher | 
|  | 169 | * resolution timers and decoupling time management from timer | 
|  | 170 | * interrupts. This is also wrong on the clocks | 
|  | 171 | * which require being written at the half second boundary. | 
|  | 172 | * We should have an rtc call that only sets the minutes and | 
|  | 173 | * seconds like on Intel to avoid problems with non UTC clocks. | 
|  | 174 | */ | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 175 | if ( ppc_md.set_rtc_time && ntp_synced() && | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 176 | xtime.tv_sec - last_rtc_update >= 659 && | 
|  | 177 | abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ && | 
|  | 178 | jiffies - wall_jiffies == 1) { | 
| john stultz | f326d22 | 2005-07-05 18:54:44 -0700 | [diff] [blame] | 179 | if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 180 | last_rtc_update = xtime.tv_sec+1; | 
|  | 181 | else | 
|  | 182 | /* Try again one minute later */ | 
|  | 183 | last_rtc_update += 60; | 
|  | 184 | } | 
|  | 185 | write_sequnlock(&xtime_lock); | 
|  | 186 | } | 
|  | 187 | if ( !disarm_decr[smp_processor_id()] ) | 
|  | 188 | set_dec(next_dec); | 
|  | 189 | last_jiffy_stamp(cpu) = jiffy_stamp; | 
|  | 190 |  | 
|  | 191 | if (ppc_md.heartbeat && !ppc_md.heartbeat_count--) | 
|  | 192 | ppc_md.heartbeat(); | 
|  | 193 |  | 
|  | 194 | irq_exit(); | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 | /* | 
|  | 198 | * This version of gettimeofday has microsecond resolution. | 
|  | 199 | */ | 
|  | 200 | void do_gettimeofday(struct timeval *tv) | 
|  | 201 | { | 
|  | 202 | unsigned long flags; | 
|  | 203 | unsigned long seq; | 
|  | 204 | unsigned delta, lost_ticks, usec, sec; | 
|  | 205 |  | 
|  | 206 | do { | 
|  | 207 | seq = read_seqbegin_irqsave(&xtime_lock, flags); | 
|  | 208 | sec = xtime.tv_sec; | 
|  | 209 | usec = (xtime.tv_nsec / 1000); | 
|  | 210 | delta = tb_ticks_since(tb_last_stamp); | 
|  | 211 | #ifdef CONFIG_SMP | 
|  | 212 | /* As long as timebases are not in sync, gettimeofday can only | 
|  | 213 | * have jiffy resolution on SMP. | 
|  | 214 | */ | 
|  | 215 | if (!smp_tb_synchronized) | 
|  | 216 | delta = 0; | 
|  | 217 | #endif /* CONFIG_SMP */ | 
|  | 218 | lost_ticks = jiffies - wall_jiffies; | 
|  | 219 | } while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | 
|  | 220 |  | 
|  | 221 | usec += mulhwu(tb_to_us, tb_ticks_per_jiffy * lost_ticks + delta); | 
|  | 222 | while (usec >= 1000000) { | 
|  | 223 | sec++; | 
|  | 224 | usec -= 1000000; | 
|  | 225 | } | 
|  | 226 | tv->tv_sec = sec; | 
|  | 227 | tv->tv_usec = usec; | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | EXPORT_SYMBOL(do_gettimeofday); | 
|  | 231 |  | 
|  | 232 | int do_settimeofday(struct timespec *tv) | 
|  | 233 | { | 
|  | 234 | time_t wtm_sec, new_sec = tv->tv_sec; | 
|  | 235 | long wtm_nsec, new_nsec = tv->tv_nsec; | 
|  | 236 | unsigned long flags; | 
|  | 237 | int tb_delta; | 
|  | 238 |  | 
|  | 239 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
|  | 240 | return -EINVAL; | 
|  | 241 |  | 
|  | 242 | write_seqlock_irqsave(&xtime_lock, flags); | 
|  | 243 | /* Updating the RTC is not the job of this code. If the time is | 
|  | 244 | * stepped under NTP, the RTC will be update after STA_UNSYNC | 
|  | 245 | * is cleared. Tool like clock/hwclock either copy the RTC | 
|  | 246 | * to the system time, in which case there is no point in writing | 
|  | 247 | * to the RTC again, or write to the RTC but then they don't call | 
|  | 248 | * settimeofday to perform this operation. Note also that | 
|  | 249 | * we don't touch the decrementer since: | 
|  | 250 | * a) it would lose timer interrupt synchronization on SMP | 
|  | 251 | * (if it is working one day) | 
|  | 252 | * b) it could make one jiffy spuriously shorter or longer | 
|  | 253 | * which would introduce another source of uncertainty potentially | 
|  | 254 | * harmful to relatively short timers. | 
|  | 255 | */ | 
|  | 256 |  | 
|  | 257 | /* This works perfectly on SMP only if the tb are in sync but | 
|  | 258 | * guarantees an error < 1 jiffy even if they are off by eons, | 
|  | 259 | * still reasonable when gettimeofday resolution is 1 jiffy. | 
|  | 260 | */ | 
|  | 261 | tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id())); | 
|  | 262 | tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; | 
|  | 263 |  | 
|  | 264 | new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta); | 
|  | 265 |  | 
|  | 266 | wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); | 
|  | 267 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); | 
|  | 268 |  | 
|  | 269 | set_normalized_timespec(&xtime, new_sec, new_nsec); | 
|  | 270 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
|  | 271 |  | 
|  | 272 | /* In case of a large backwards jump in time with NTP, we want the | 
|  | 273 | * clock to be updated as soon as the PLL is again in lock. | 
|  | 274 | */ | 
|  | 275 | last_rtc_update = new_sec - 658; | 
|  | 276 |  | 
| john stultz | b149ee2 | 2005-09-06 15:17:46 -0700 | [diff] [blame] | 277 | ntp_clear(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 278 | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  | 279 | clock_was_set(); | 
|  | 280 | return 0; | 
|  | 281 | } | 
|  | 282 |  | 
|  | 283 | EXPORT_SYMBOL(do_settimeofday); | 
|  | 284 |  | 
|  | 285 | /* This function is only called on the boot processor */ | 
|  | 286 | void __init time_init(void) | 
|  | 287 | { | 
|  | 288 | time_t sec, old_sec; | 
|  | 289 | unsigned old_stamp, stamp, elapsed; | 
|  | 290 |  | 
|  | 291 | if (ppc_md.time_init != NULL) | 
| john stultz | f326d22 | 2005-07-05 18:54:44 -0700 | [diff] [blame] | 292 | timezone_offset = ppc_md.time_init(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 293 |  | 
|  | 294 | if (__USE_RTC()) { | 
|  | 295 | /* 601 processor: dec counts down by 128 every 128ns */ | 
|  | 296 | tb_ticks_per_jiffy = DECREMENTER_COUNT_601; | 
|  | 297 | /* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */ | 
|  | 298 | tb_to_us = 0x418937; | 
|  | 299 | } else { | 
|  | 300 | ppc_md.calibrate_decr(); | 
|  | 301 | tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10); | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | /* Now that the decrementer is calibrated, it can be used in case the | 
|  | 305 | * clock is stuck, but the fact that we have to handle the 601 | 
|  | 306 | * makes things more complex. Repeatedly read the RTC until the | 
|  | 307 | * next second boundary to try to achieve some precision.  If there | 
|  | 308 | * is no RTC, we still need to set tb_last_stamp and | 
|  | 309 | * last_jiffy_stamp(cpu 0) to the current stamp. | 
|  | 310 | */ | 
|  | 311 | stamp = get_native_tbl(); | 
|  | 312 | if (ppc_md.get_rtc_time) { | 
|  | 313 | sec = ppc_md.get_rtc_time(); | 
|  | 314 | elapsed = 0; | 
|  | 315 | do { | 
|  | 316 | old_stamp = stamp; | 
|  | 317 | old_sec = sec; | 
|  | 318 | stamp = get_native_tbl(); | 
|  | 319 | if (__USE_RTC() && stamp < old_stamp) | 
|  | 320 | old_stamp -= 1000000000; | 
|  | 321 | elapsed += stamp - old_stamp; | 
|  | 322 | sec = ppc_md.get_rtc_time(); | 
|  | 323 | } while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy); | 
|  | 324 | if (sec==old_sec) | 
|  | 325 | printk("Warning: real time clock seems stuck!\n"); | 
|  | 326 | xtime.tv_sec = sec; | 
|  | 327 | xtime.tv_nsec = 0; | 
|  | 328 | /* No update now, we just read the time from the RTC ! */ | 
|  | 329 | last_rtc_update = xtime.tv_sec; | 
|  | 330 | } | 
|  | 331 | last_jiffy_stamp(0) = tb_last_stamp = stamp; | 
|  | 332 |  | 
|  | 333 | /* Not exact, but the timer interrupt takes care of this */ | 
|  | 334 | set_dec(tb_ticks_per_jiffy); | 
|  | 335 |  | 
|  | 336 | /* If platform provided a timezone (pmac), we correct the time */ | 
| john stultz | f326d22 | 2005-07-05 18:54:44 -0700 | [diff] [blame] | 337 | if (timezone_offset) { | 
|  | 338 | sys_tz.tz_minuteswest = -timezone_offset / 60; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 339 | sys_tz.tz_dsttime = 0; | 
| john stultz | f326d22 | 2005-07-05 18:54:44 -0700 | [diff] [blame] | 340 | xtime.tv_sec -= timezone_offset; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 341 | } | 
|  | 342 | set_normalized_timespec(&wall_to_monotonic, | 
|  | 343 | -xtime.tv_sec, -xtime.tv_nsec); | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | #define FEBRUARY		2 | 
|  | 347 | #define	STARTOFTIME		1970 | 
|  | 348 | #define SECDAY			86400L | 
|  | 349 | #define SECYR			(SECDAY * 365) | 
|  | 350 |  | 
|  | 351 | /* | 
|  | 352 | * Note: this is wrong for 2100, but our signed 32-bit time_t will | 
|  | 353 | * have overflowed long before that, so who cares.  -- paulus | 
|  | 354 | */ | 
|  | 355 | #define	leapyear(year)		((year) % 4 == 0) | 
|  | 356 | #define	days_in_year(a) 	(leapyear(a) ? 366 : 365) | 
|  | 357 | #define	days_in_month(a) 	(month_days[(a) - 1]) | 
|  | 358 |  | 
|  | 359 | static int month_days[12] = { | 
|  | 360 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | 
|  | 361 | }; | 
|  | 362 |  | 
|  | 363 | void to_tm(int tim, struct rtc_time * tm) | 
|  | 364 | { | 
|  | 365 | register int i; | 
|  | 366 | register long hms, day, gday; | 
|  | 367 |  | 
|  | 368 | gday = day = tim / SECDAY; | 
|  | 369 | hms = tim % SECDAY; | 
|  | 370 |  | 
|  | 371 | /* Hours, minutes, seconds are easy */ | 
|  | 372 | tm->tm_hour = hms / 3600; | 
|  | 373 | tm->tm_min = (hms % 3600) / 60; | 
|  | 374 | tm->tm_sec = (hms % 3600) % 60; | 
|  | 375 |  | 
|  | 376 | /* Number of years in days */ | 
|  | 377 | for (i = STARTOFTIME; day >= days_in_year(i); i++) | 
|  | 378 | day -= days_in_year(i); | 
|  | 379 | tm->tm_year = i; | 
|  | 380 |  | 
|  | 381 | /* Number of months in days left */ | 
|  | 382 | if (leapyear(tm->tm_year)) | 
|  | 383 | days_in_month(FEBRUARY) = 29; | 
|  | 384 | for (i = 1; day >= days_in_month(i); i++) | 
|  | 385 | day -= days_in_month(i); | 
|  | 386 | days_in_month(FEBRUARY) = 28; | 
|  | 387 | tm->tm_mon = i; | 
|  | 388 |  | 
|  | 389 | /* Days are what is left over (+1) from all that. */ | 
|  | 390 | tm->tm_mday = day + 1; | 
|  | 391 |  | 
|  | 392 | /* | 
|  | 393 | * Determine the day of week. Jan. 1, 1970 was a Thursday. | 
|  | 394 | */ | 
|  | 395 | tm->tm_wday = (gday + 4) % 7; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | /* Auxiliary function to compute scaling factors */ | 
|  | 399 | /* Actually the choice of a timebase running at 1/4 the of the bus | 
|  | 400 | * frequency giving resolution of a few tens of nanoseconds is quite nice. | 
|  | 401 | * It makes this computation very precise (27-28 bits typically) which | 
|  | 402 | * is optimistic considering the stability of most processor clock | 
|  | 403 | * oscillators and the precision with which the timebase frequency | 
|  | 404 | * is measured but does not harm. | 
|  | 405 | */ | 
|  | 406 | unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) { | 
|  | 407 | unsigned mlt=0, tmp, err; | 
|  | 408 | /* No concern for performance, it's done once: use a stupid | 
|  | 409 | * but safe and compact method to find the multiplier. | 
|  | 410 | */ | 
|  | 411 | for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { | 
|  | 412 | if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp; | 
|  | 413 | } | 
|  | 414 | /* We might still be off by 1 for the best approximation. | 
|  | 415 | * A side effect of this is that if outscale is too large | 
|  | 416 | * the returned value will be zero. | 
|  | 417 | * Many corner cases have been checked and seem to work, | 
|  | 418 | * some might have been forgotten in the test however. | 
|  | 419 | */ | 
|  | 420 | err = inscale*(mlt+1); | 
|  | 421 | if (err <= inscale/2) mlt++; | 
|  | 422 | return mlt; | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | unsigned long long sched_clock(void) | 
|  | 426 | { | 
|  | 427 | unsigned long lo, hi, hi2; | 
|  | 428 | unsigned long long tb; | 
|  | 429 |  | 
|  | 430 | if (!__USE_RTC()) { | 
|  | 431 | do { | 
|  | 432 | hi = get_tbu(); | 
|  | 433 | lo = get_tbl(); | 
|  | 434 | hi2 = get_tbu(); | 
|  | 435 | } while (hi2 != hi); | 
|  | 436 | tb = ((unsigned long long) hi << 32) | lo; | 
|  | 437 | tb = (tb * tb_to_ns_scale) >> 10; | 
|  | 438 | } else { | 
|  | 439 | do { | 
|  | 440 | hi = get_rtcu(); | 
|  | 441 | lo = get_rtcl(); | 
|  | 442 | hi2 = get_rtcu(); | 
|  | 443 | } while (hi2 != hi); | 
|  | 444 | tb = ((unsigned long long) hi) * 1000000000 + lo; | 
|  | 445 | } | 
|  | 446 | return tb; | 
|  | 447 | } |