| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * arch/ppc/syslib/todc_time.c | 
 | 3 |  * | 
 | 4 |  * Time of Day Clock support for the M48T35, M48T37, M48T59, and MC146818 | 
 | 5 |  * Real Time Clocks/Timekeepers. | 
 | 6 |  * | 
 | 7 |  * Author: Mark A. Greer | 
 | 8 |  *         mgreer@mvista.com | 
 | 9 |  * | 
 | 10 |  * 2001-2004 (c) MontaVista, Software, Inc.  This file is licensed under | 
 | 11 |  * the terms of the GNU General Public License version 2.  This program | 
 | 12 |  * is licensed "as is" without any warranty of any kind, whether express | 
 | 13 |  * or implied. | 
 | 14 |  */ | 
 | 15 | #include <linux/errno.h> | 
 | 16 | #include <linux/init.h> | 
 | 17 | #include <linux/kernel.h> | 
 | 18 | #include <linux/time.h> | 
 | 19 | #include <linux/timex.h> | 
 | 20 | #include <linux/bcd.h> | 
 | 21 | #include <linux/mc146818rtc.h> | 
 | 22 |  | 
 | 23 | #include <asm/machdep.h> | 
 | 24 | #include <asm/io.h> | 
 | 25 | #include <asm/time.h> | 
 | 26 | #include <asm/todc.h> | 
 | 27 |  | 
 | 28 | /* | 
 | 29 |  * Depending on the hardware on your board and your board design, the | 
 | 30 |  * RTC/NVRAM may be accessed either directly (like normal memory) or via | 
 | 31 |  * address/data registers.  If your board uses the direct method, set | 
 | 32 |  * 'nvram_data' to the base address of your nvram and leave 'nvram_as0' and | 
 | 33 |  * 'nvram_as1' NULL.  If your board uses address/data regs to access nvram, | 
 | 34 |  * set 'nvram_as0' to the address of the lower byte, set 'nvram_as1' to the | 
 | 35 |  * address of the upper byte (leave NULL if using mc146818), and set | 
 | 36 |  * 'nvram_data' to the address of the 8-bit data register. | 
 | 37 |  * | 
 | 38 |  * In order to break the assumption that the RTC and NVRAM are accessed by | 
 | 39 |  * the same mechanism, you need to explicitly set 'ppc_md.rtc_read_val' and | 
 | 40 |  * 'ppc_md.rtc_write_val', otherwise the values of 'ppc_md.rtc_read_val' | 
 | 41 |  * and 'ppc_md.rtc_write_val' will be used. | 
 | 42 |  * | 
 | 43 |  * Note: Even though the documentation for the various RTC chips say that it | 
 | 44 |  * 	 take up to a second before it starts updating once the 'R' bit is | 
 | 45 |  * 	 cleared, they always seem to update even though we bang on it many | 
 | 46 |  * 	 times a second.  This is true, except for the Dallas Semi 1746/1747 | 
 | 47 |  * 	 (possibly others).  Those chips seem to have a real problem whenever | 
 | 48 |  * 	 we set the 'R' bit before reading them, they basically stop counting. | 
 | 49 |  * 	 					--MAG | 
 | 50 |  */ | 
 | 51 |  | 
 | 52 | /* | 
 | 53 |  * 'todc_info' should be initialized in your *_setup.c file to | 
 | 54 |  * point to a fully initialized 'todc_info_t' structure. | 
 | 55 |  * This structure holds all the register offsets for your particular | 
 | 56 |  * TODC/RTC chip. | 
 | 57 |  * TODC_ALLOC()/TODC_INIT() will allocate and initialize this table for you. | 
 | 58 |  */ | 
 | 59 |  | 
 | 60 | #ifdef	RTC_FREQ_SELECT | 
 | 61 | #undef	RTC_FREQ_SELECT | 
 | 62 | #define	RTC_FREQ_SELECT		control_b	/* Register A */ | 
 | 63 | #endif | 
 | 64 |  | 
 | 65 | #ifdef	RTC_CONTROL | 
 | 66 | #undef	RTC_CONTROL | 
 | 67 | #define	RTC_CONTROL		control_a	/* Register B */ | 
 | 68 | #endif | 
 | 69 |  | 
 | 70 | #ifdef	RTC_INTR_FLAGS | 
 | 71 | #undef	RTC_INTR_FLAGS | 
 | 72 | #define	RTC_INTR_FLAGS		watchdog	/* Register C */ | 
 | 73 | #endif | 
 | 74 |  | 
 | 75 | #ifdef	RTC_VALID | 
 | 76 | #undef	RTC_VALID | 
 | 77 | #define	RTC_VALID		interrupts	/* Register D */ | 
 | 78 | #endif | 
 | 79 |  | 
 | 80 | /* Access routines when RTC accessed directly (like normal memory) */ | 
 | 81 | u_char | 
 | 82 | todc_direct_read_val(int addr) | 
 | 83 | { | 
 | 84 | 	return readb((void __iomem *)(todc_info->nvram_data + addr)); | 
 | 85 | } | 
 | 86 |  | 
 | 87 | void | 
 | 88 | todc_direct_write_val(int addr, unsigned char val) | 
 | 89 | { | 
 | 90 | 	writeb(val, (void __iomem *)(todc_info->nvram_data + addr)); | 
 | 91 | 	return; | 
 | 92 | } | 
 | 93 |  | 
 | 94 | /* Access routines for accessing m48txx type chips via addr/data regs */ | 
 | 95 | u_char | 
 | 96 | todc_m48txx_read_val(int addr) | 
 | 97 | { | 
 | 98 | 	outb(addr, todc_info->nvram_as0); | 
 | 99 | 	outb(addr>>todc_info->as0_bits, todc_info->nvram_as1); | 
 | 100 | 	return inb(todc_info->nvram_data); | 
 | 101 | } | 
 | 102 |  | 
 | 103 | void | 
 | 104 | todc_m48txx_write_val(int addr, unsigned char val) | 
 | 105 | { | 
 | 106 | 	outb(addr, todc_info->nvram_as0); | 
 | 107 | 	outb(addr>>todc_info->as0_bits, todc_info->nvram_as1); | 
 | 108 |    	outb(val, todc_info->nvram_data); | 
 | 109 | 	return; | 
 | 110 | } | 
 | 111 |  | 
 | 112 | /* Access routines for accessing mc146818 type chips via addr/data regs */ | 
 | 113 | u_char | 
 | 114 | todc_mc146818_read_val(int addr) | 
 | 115 | { | 
 | 116 | 	outb_p(addr, todc_info->nvram_as0); | 
 | 117 | 	return inb_p(todc_info->nvram_data); | 
 | 118 | } | 
 | 119 |  | 
 | 120 | void | 
 | 121 | todc_mc146818_write_val(int addr, unsigned char val) | 
 | 122 | { | 
 | 123 | 	outb_p(addr, todc_info->nvram_as0); | 
 | 124 |    	outb_p(val, todc_info->nvram_data); | 
 | 125 | } | 
 | 126 |  | 
 | 127 |  | 
 | 128 | /* | 
 | 129 |  * Routines to make RTC chips with NVRAM buried behind an addr/data pair | 
 | 130 |  * have the NVRAM and clock regs appear at the same level. | 
 | 131 |  * The NVRAM will appear to start at addr 0 and the clock regs will appear | 
 | 132 |  * to start immediately after the NVRAM (actually, start at offset | 
 | 133 |  * todc_info->nvram_size). | 
 | 134 |  */ | 
 | 135 | static inline u_char | 
 | 136 | todc_read_val(int addr) | 
 | 137 | { | 
 | 138 | 	u_char	val; | 
 | 139 |  | 
 | 140 | 	if (todc_info->sw_flags & TODC_FLAG_2_LEVEL_NVRAM) { | 
 | 141 | 		if (addr < todc_info->nvram_size) { /* NVRAM */ | 
 | 142 | 			ppc_md.rtc_write_val(todc_info->nvram_addr_reg, addr); | 
 | 143 | 			val = ppc_md.rtc_read_val(todc_info->nvram_data_reg); | 
 | 144 | 		} | 
 | 145 | 		else { /* Clock Reg */ | 
 | 146 | 			addr -= todc_info->nvram_size; | 
 | 147 | 			val = ppc_md.rtc_read_val(addr); | 
 | 148 | 		} | 
 | 149 | 	} | 
 | 150 | 	else { | 
 | 151 | 		val = ppc_md.rtc_read_val(addr); | 
 | 152 | 	} | 
 | 153 |  | 
 | 154 | 	return val; | 
 | 155 | } | 
 | 156 |  | 
 | 157 | static inline void | 
 | 158 | todc_write_val(int addr, u_char val) | 
 | 159 | { | 
 | 160 | 	if (todc_info->sw_flags & TODC_FLAG_2_LEVEL_NVRAM) { | 
 | 161 | 		if (addr < todc_info->nvram_size) { /* NVRAM */ | 
 | 162 | 			ppc_md.rtc_write_val(todc_info->nvram_addr_reg, addr); | 
 | 163 | 			ppc_md.rtc_write_val(todc_info->nvram_data_reg, val); | 
 | 164 | 		} | 
 | 165 | 		else { /* Clock Reg */ | 
 | 166 | 			addr -= todc_info->nvram_size; | 
 | 167 | 			ppc_md.rtc_write_val(addr, val); | 
 | 168 | 		} | 
 | 169 | 	} | 
 | 170 | 	else { | 
 | 171 | 		ppc_md.rtc_write_val(addr, val); | 
 | 172 | 	} | 
 | 173 | } | 
 | 174 |  | 
 | 175 | /* | 
 | 176 |  * TODC routines | 
 | 177 |  * | 
 | 178 |  * There is some ugly stuff in that there are assumptions for the mc146818. | 
 | 179 |  * | 
 | 180 |  * Assumptions: | 
 | 181 |  *	- todc_info->control_a has the offset as mc146818 Register B reg | 
 | 182 |  *	- todc_info->control_b has the offset as mc146818 Register A reg | 
 | 183 |  *	- m48txx control reg's write enable or 'W' bit is same as | 
 | 184 |  *	  mc146818 Register B 'SET' bit (i.e., 0x80) | 
 | 185 |  * | 
 | 186 |  * These assumptions were made to make the code simpler. | 
 | 187 |  */ | 
 | 188 | long __init | 
 | 189 | todc_time_init(void) | 
 | 190 | { | 
 | 191 | 	u_char	cntl_b; | 
 | 192 |  | 
 | 193 | 	if (!ppc_md.rtc_read_val) | 
 | 194 | 		ppc_md.rtc_read_val = ppc_md.nvram_read_val; | 
 | 195 | 	if (!ppc_md.rtc_write_val) | 
 | 196 | 		ppc_md.rtc_write_val = ppc_md.nvram_write_val; | 
 | 197 | 	 | 
 | 198 | 	cntl_b = todc_read_val(todc_info->control_b); | 
 | 199 |  | 
 | 200 | 	if (todc_info->rtc_type == TODC_TYPE_MC146818) { | 
 | 201 | 		if ((cntl_b & 0x70) != 0x20) { | 
 | 202 | 			printk(KERN_INFO "TODC %s %s\n", | 
 | 203 | 				"real-time-clock was stopped.", | 
 | 204 | 				"Now starting..."); | 
 | 205 | 			cntl_b &= ~0x70; | 
 | 206 | 			cntl_b |= 0x20; | 
 | 207 | 		} | 
 | 208 |  | 
 | 209 | 		todc_write_val(todc_info->control_b, cntl_b); | 
 | 210 | 	} else if (todc_info->rtc_type == TODC_TYPE_DS17285) { | 
 | 211 | 		u_char mode; | 
 | 212 |  | 
 | 213 | 		mode = todc_read_val(TODC_TYPE_DS17285_CNTL_A); | 
 | 214 | 		/* Make sure countdown clear is not set */ | 
 | 215 | 		mode &= ~0x40; | 
 | 216 | 		/* Enable oscillator, extended register set */ | 
 | 217 | 		mode |= 0x30; | 
 | 218 | 		todc_write_val(TODC_TYPE_DS17285_CNTL_A, mode); | 
 | 219 |  | 
 | 220 | 	} else if (todc_info->rtc_type == TODC_TYPE_DS1501) { | 
 | 221 | 		u_char	month; | 
 | 222 |  | 
 | 223 | 		todc_info->enable_read = TODC_DS1501_CNTL_B_TE; | 
 | 224 | 		todc_info->enable_write = TODC_DS1501_CNTL_B_TE; | 
 | 225 |  | 
 | 226 | 		month = todc_read_val(todc_info->month); | 
 | 227 |  | 
 | 228 | 		if ((month & 0x80) == 0x80) { | 
 | 229 | 			printk(KERN_INFO "TODC %s %s\n", | 
 | 230 | 				"real-time-clock was stopped.", | 
 | 231 | 				"Now starting..."); | 
 | 232 | 			month &= ~0x80; | 
 | 233 | 			todc_write_val(todc_info->month, month); | 
 | 234 | 		} | 
 | 235 |  | 
 | 236 | 		cntl_b &= ~TODC_DS1501_CNTL_B_TE; | 
 | 237 | 		todc_write_val(todc_info->control_b, cntl_b); | 
 | 238 | 	} else { /* must be a m48txx type */ | 
 | 239 | 		u_char	cntl_a; | 
 | 240 |  | 
 | 241 | 		todc_info->enable_read = TODC_MK48TXX_CNTL_A_R; | 
 | 242 | 		todc_info->enable_write = TODC_MK48TXX_CNTL_A_W; | 
 | 243 |  | 
 | 244 | 		cntl_a = todc_read_val(todc_info->control_a); | 
 | 245 |  | 
 | 246 | 		/* Check & clear STOP bit in control B register */ | 
 | 247 | 		if (cntl_b & TODC_MK48TXX_DAY_CB) { | 
 | 248 | 			printk(KERN_INFO "TODC %s %s\n", | 
 | 249 | 				"real-time-clock was stopped.", | 
 | 250 | 				"Now starting..."); | 
 | 251 |  | 
 | 252 | 			cntl_a |= todc_info->enable_write; | 
 | 253 | 			cntl_b &= ~TODC_MK48TXX_DAY_CB;/* Start Oscil */ | 
 | 254 |  | 
 | 255 | 			todc_write_val(todc_info->control_a, cntl_a); | 
 | 256 | 			todc_write_val(todc_info->control_b, cntl_b); | 
 | 257 | 		} | 
 | 258 |  | 
 | 259 | 		/* Make sure READ & WRITE bits are cleared. */ | 
 | 260 | 		cntl_a &= ~(todc_info->enable_write | | 
 | 261 | 			    todc_info->enable_read); | 
 | 262 | 		todc_write_val(todc_info->control_a, cntl_a); | 
 | 263 | 	} | 
 | 264 |  | 
 | 265 | 	return 0; | 
 | 266 | } | 
 | 267 |  | 
 | 268 | /* | 
 | 269 |  * There is some ugly stuff in that there are assumptions that for a mc146818, | 
 | 270 |  * the todc_info->control_a has the offset of the mc146818 Register B reg and | 
 | 271 |  * that the register'ss 'SET' bit is the same as the m48txx's write enable | 
 | 272 |  * bit in the control register of the m48txx (i.e., 0x80). | 
 | 273 |  * | 
 | 274 |  * It was done to make the code look simpler. | 
 | 275 |  */ | 
 | 276 | ulong | 
 | 277 | todc_get_rtc_time(void) | 
 | 278 | { | 
 | 279 | 	uint	year = 0, mon = 0, day = 0, hour = 0, min = 0, sec = 0; | 
 | 280 | 	uint	limit, i; | 
 | 281 | 	u_char	save_control, uip = 0; | 
 | 282 |  | 
 | 283 | 	spin_lock(&rtc_lock); | 
 | 284 | 	save_control = todc_read_val(todc_info->control_a); | 
 | 285 |  | 
 | 286 | 	if (todc_info->rtc_type != TODC_TYPE_MC146818) { | 
 | 287 | 		limit = 1; | 
 | 288 |  | 
 | 289 | 		switch (todc_info->rtc_type) { | 
 | 290 | 			case TODC_TYPE_DS1553: | 
 | 291 | 			case TODC_TYPE_DS1557: | 
 | 292 | 			case TODC_TYPE_DS1743: | 
 | 293 | 			case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */ | 
 | 294 | 			case TODC_TYPE_DS1747: | 
 | 295 | 			case TODC_TYPE_DS17285: | 
 | 296 | 				break; | 
 | 297 | 			default: | 
 | 298 | 				todc_write_val(todc_info->control_a, | 
 | 299 | 				       (save_control | todc_info->enable_read)); | 
 | 300 | 		} | 
 | 301 | 	} | 
 | 302 | 	else { | 
 | 303 | 		limit = 100000000; | 
 | 304 | 	} | 
 | 305 |  | 
 | 306 | 	for (i=0; i<limit; i++) { | 
 | 307 | 		if (todc_info->rtc_type == TODC_TYPE_MC146818) { | 
 | 308 | 			uip = todc_read_val(todc_info->RTC_FREQ_SELECT); | 
 | 309 | 		} | 
 | 310 |  | 
 | 311 | 		sec = todc_read_val(todc_info->seconds) & 0x7f; | 
 | 312 | 		min = todc_read_val(todc_info->minutes) & 0x7f; | 
 | 313 | 		hour = todc_read_val(todc_info->hours) & 0x3f; | 
 | 314 | 		day = todc_read_val(todc_info->day_of_month) & 0x3f; | 
 | 315 | 		mon = todc_read_val(todc_info->month) & 0x1f; | 
 | 316 | 		year = todc_read_val(todc_info->year) & 0xff; | 
 | 317 |  | 
 | 318 | 		if (todc_info->rtc_type == TODC_TYPE_MC146818) { | 
 | 319 | 			uip |= todc_read_val(todc_info->RTC_FREQ_SELECT); | 
 | 320 | 			if ((uip & RTC_UIP) == 0) break; | 
 | 321 | 		} | 
 | 322 | 	} | 
 | 323 |  | 
 | 324 | 	if (todc_info->rtc_type != TODC_TYPE_MC146818) { | 
 | 325 | 		switch (todc_info->rtc_type) { | 
 | 326 | 			case TODC_TYPE_DS1553: | 
 | 327 | 			case TODC_TYPE_DS1557: | 
 | 328 | 			case TODC_TYPE_DS1743: | 
 | 329 | 			case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */ | 
 | 330 | 			case TODC_TYPE_DS1747: | 
 | 331 | 			case TODC_TYPE_DS17285: | 
 | 332 | 				break; | 
 | 333 | 			default: | 
 | 334 | 				save_control &= ~(todc_info->enable_read); | 
 | 335 | 				todc_write_val(todc_info->control_a, | 
 | 336 | 						       save_control); | 
 | 337 | 		} | 
 | 338 | 	} | 
 | 339 | 	spin_unlock(&rtc_lock); | 
 | 340 |  | 
 | 341 | 	if ((todc_info->rtc_type != TODC_TYPE_MC146818) || | 
 | 342 | 	    ((save_control & RTC_DM_BINARY) == 0) || | 
 | 343 | 	    RTC_ALWAYS_BCD) { | 
 | 344 |  | 
 | 345 | 		BCD_TO_BIN(sec); | 
 | 346 | 		BCD_TO_BIN(min); | 
 | 347 | 		BCD_TO_BIN(hour); | 
 | 348 | 		BCD_TO_BIN(day); | 
 | 349 | 		BCD_TO_BIN(mon); | 
 | 350 | 		BCD_TO_BIN(year); | 
 | 351 | 	} | 
 | 352 |  | 
 | 353 | 	year = year + 1900; | 
 | 354 | 	if (year < 1970) { | 
 | 355 | 		year += 100; | 
 | 356 | 	} | 
 | 357 |  | 
 | 358 | 	return mktime(year, mon, day, hour, min, sec); | 
 | 359 | } | 
 | 360 |  | 
 | 361 | int | 
 | 362 | todc_set_rtc_time(unsigned long nowtime) | 
 | 363 | { | 
 | 364 | 	struct rtc_time	tm; | 
 | 365 | 	u_char		save_control, save_freq_select = 0; | 
 | 366 |  | 
 | 367 | 	spin_lock(&rtc_lock); | 
 | 368 | 	to_tm(nowtime, &tm); | 
 | 369 |  | 
 | 370 | 	save_control = todc_read_val(todc_info->control_a); | 
 | 371 |  | 
 | 372 | 	/* Assuming MK48T59_RTC_CA_WRITE & RTC_SET are equal */ | 
 | 373 | 	todc_write_val(todc_info->control_a, | 
 | 374 | 			       (save_control | todc_info->enable_write)); | 
 | 375 | 	save_control &= ~(todc_info->enable_write); /* in case it was set */ | 
 | 376 |  | 
 | 377 | 	if (todc_info->rtc_type == TODC_TYPE_MC146818) { | 
 | 378 | 		save_freq_select = todc_read_val(todc_info->RTC_FREQ_SELECT); | 
 | 379 | 		todc_write_val(todc_info->RTC_FREQ_SELECT, | 
 | 380 | 				       save_freq_select | RTC_DIV_RESET2); | 
 | 381 | 	} | 
 | 382 |  | 
 | 383 |  | 
 | 384 |         tm.tm_year = (tm.tm_year - 1900) % 100; | 
 | 385 |  | 
 | 386 | 	if ((todc_info->rtc_type != TODC_TYPE_MC146818) || | 
 | 387 | 	    ((save_control & RTC_DM_BINARY) == 0) || | 
 | 388 | 	    RTC_ALWAYS_BCD) { | 
 | 389 |  | 
 | 390 | 		BIN_TO_BCD(tm.tm_sec); | 
 | 391 | 		BIN_TO_BCD(tm.tm_min); | 
 | 392 | 		BIN_TO_BCD(tm.tm_hour); | 
 | 393 | 		BIN_TO_BCD(tm.tm_mon); | 
 | 394 | 		BIN_TO_BCD(tm.tm_mday); | 
 | 395 | 		BIN_TO_BCD(tm.tm_year); | 
 | 396 | 	} | 
 | 397 |  | 
 | 398 | 	todc_write_val(todc_info->seconds,      tm.tm_sec); | 
 | 399 | 	todc_write_val(todc_info->minutes,      tm.tm_min); | 
 | 400 | 	todc_write_val(todc_info->hours,        tm.tm_hour); | 
 | 401 | 	todc_write_val(todc_info->month,        tm.tm_mon); | 
 | 402 | 	todc_write_val(todc_info->day_of_month, tm.tm_mday); | 
 | 403 | 	todc_write_val(todc_info->year,         tm.tm_year); | 
 | 404 |  | 
 | 405 | 	todc_write_val(todc_info->control_a, save_control); | 
 | 406 |  | 
 | 407 | 	if (todc_info->rtc_type == TODC_TYPE_MC146818) { | 
 | 408 | 		todc_write_val(todc_info->RTC_FREQ_SELECT, save_freq_select); | 
 | 409 | 	} | 
 | 410 | 	spin_unlock(&rtc_lock); | 
 | 411 |  | 
 | 412 | 	return 0; | 
 | 413 | } | 
 | 414 |  | 
 | 415 | /* | 
 | 416 |  * Manipulates read bit to reliably read seconds at a high rate. | 
 | 417 |  */ | 
 | 418 | static unsigned char __init todc_read_timereg(int addr) | 
 | 419 | { | 
 | 420 | 	unsigned char save_control = 0, val; | 
 | 421 |  | 
 | 422 | 	switch (todc_info->rtc_type) { | 
 | 423 | 		case TODC_TYPE_DS1553: | 
 | 424 | 		case TODC_TYPE_DS1557: | 
 | 425 | 		case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */ | 
 | 426 | 		case TODC_TYPE_DS1747: | 
 | 427 | 		case TODC_TYPE_DS17285: | 
 | 428 | 		case TODC_TYPE_MC146818: | 
 | 429 | 			break; | 
 | 430 | 		default: | 
 | 431 | 			save_control = todc_read_val(todc_info->control_a); | 
 | 432 | 			todc_write_val(todc_info->control_a, | 
 | 433 | 				       (save_control | todc_info->enable_read)); | 
 | 434 | 	} | 
 | 435 | 	val = todc_read_val(addr); | 
 | 436 |  | 
 | 437 | 	switch (todc_info->rtc_type) { | 
 | 438 | 		case TODC_TYPE_DS1553: | 
 | 439 | 		case TODC_TYPE_DS1557: | 
 | 440 | 		case TODC_TYPE_DS1746:	/* XXXX BAD HACK -> FIX */ | 
 | 441 | 		case TODC_TYPE_DS1747: | 
 | 442 | 		case TODC_TYPE_DS17285: | 
 | 443 | 		case TODC_TYPE_MC146818: | 
 | 444 | 			break; | 
 | 445 | 		default: | 
 | 446 | 			save_control &= ~(todc_info->enable_read); | 
 | 447 | 			todc_write_val(todc_info->control_a, save_control); | 
 | 448 | 	} | 
 | 449 |  | 
 | 450 | 	return val; | 
 | 451 | } | 
 | 452 |  | 
 | 453 | /* | 
 | 454 |  * This was taken from prep_setup.c | 
 | 455 |  * Use the NVRAM RTC to time a second to calibrate the decrementer. | 
 | 456 |  */ | 
 | 457 | void __init | 
 | 458 | todc_calibrate_decr(void) | 
 | 459 | { | 
 | 460 | 	ulong	freq; | 
 | 461 | 	ulong	tbl, tbu; | 
 | 462 |         long	i, loop_count; | 
 | 463 |         u_char	sec; | 
 | 464 |  | 
 | 465 | 	todc_time_init(); | 
 | 466 |  | 
 | 467 | 	/* | 
 | 468 | 	 * Actually this is bad for precision, we should have a loop in | 
 | 469 | 	 * which we only read the seconds counter. todc_read_val writes | 
 | 470 | 	 * the address bytes on every call and this takes a lot of time. | 
 | 471 | 	 * Perhaps an nvram_wait_change method returning a time | 
 | 472 | 	 * stamp with a loop count as parameter would be the solution. | 
 | 473 | 	 */ | 
 | 474 | 	/* | 
 | 475 | 	 * Need to make sure the tbl doesn't roll over so if tbu increments | 
 | 476 | 	 * during this test, we need to do it again. | 
 | 477 | 	 */ | 
 | 478 | 	loop_count = 0; | 
 | 479 |  | 
 | 480 | 	sec = todc_read_timereg(todc_info->seconds) & 0x7f; | 
 | 481 |  | 
 | 482 | 	do { | 
 | 483 | 		tbu = get_tbu(); | 
 | 484 |  | 
 | 485 | 		for (i = 0 ; i < 10000000 ; i++) {/* may take up to 1 second */ | 
 | 486 | 		   tbl = get_tbl(); | 
 | 487 |  | 
 | 488 | 		   if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) { | 
 | 489 | 		      break; | 
 | 490 | 		   } | 
 | 491 | 		} | 
 | 492 |  | 
 | 493 | 		sec = todc_read_timereg(todc_info->seconds) & 0x7f; | 
 | 494 |  | 
 | 495 | 		for (i = 0 ; i < 10000000 ; i++) { /* Should take 1 second */ | 
 | 496 | 		   freq = get_tbl(); | 
 | 497 |  | 
 | 498 | 		   if ((todc_read_timereg(todc_info->seconds) & 0x7f) != sec) { | 
 | 499 | 		      break; | 
 | 500 | 		   } | 
 | 501 | 		} | 
 | 502 |  | 
 | 503 | 		freq -= tbl; | 
 | 504 | 	} while ((get_tbu() != tbu) && (++loop_count < 2)); | 
 | 505 |  | 
 | 506 | 	printk("time_init: decrementer frequency = %lu.%.6lu MHz\n", | 
 | 507 | 	       freq/1000000, freq%1000000); | 
 | 508 |  | 
 | 509 | 	tb_ticks_per_jiffy = freq / HZ; | 
 | 510 | 	tb_to_us = mulhwu_scale_factor(freq, 1000000); | 
 | 511 |  | 
 | 512 | 	return; | 
 | 513 | } |