| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |   Madge Horizon ATM Adapter driver. | 
 | 3 |   Copyright (C) 1995-1999  Madge Networks Ltd. | 
 | 4 |    | 
 | 5 |   This program is free software; you can redistribute it and/or modify | 
 | 6 |   it under the terms of the GNU General Public License as published by | 
 | 7 |   the Free Software Foundation; either version 2 of the License, or | 
 | 8 |   (at your option) any later version. | 
 | 9 |    | 
 | 10 |   This program is distributed in the hope that it will be useful, | 
 | 11 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 12 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 13 |   GNU General Public License for more details. | 
 | 14 |    | 
 | 15 |   You should have received a copy of the GNU General Public License | 
 | 16 |   along with this program; if not, write to the Free Software | 
 | 17 |   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 | 18 |    | 
 | 19 |   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian | 
 | 20 |   system and in the file COPYING in the Linux kernel source. | 
 | 21 | */ | 
 | 22 |  | 
 | 23 | /* | 
 | 24 |   IMPORTANT NOTE: Madge Networks no longer makes the adapters | 
 | 25 |   supported by this driver and makes no commitment to maintain it. | 
 | 26 | */ | 
 | 27 |  | 
 | 28 | #include <linux/module.h> | 
 | 29 | #include <linux/kernel.h> | 
 | 30 | #include <linux/mm.h> | 
 | 31 | #include <linux/pci.h> | 
 | 32 | #include <linux/errno.h> | 
 | 33 | #include <linux/atm.h> | 
 | 34 | #include <linux/atmdev.h> | 
 | 35 | #include <linux/sonet.h> | 
 | 36 | #include <linux/skbuff.h> | 
 | 37 | #include <linux/time.h> | 
 | 38 | #include <linux/delay.h> | 
 | 39 | #include <linux/uio.h> | 
 | 40 | #include <linux/init.h> | 
 | 41 | #include <linux/ioport.h> | 
 | 42 | #include <linux/wait.h> | 
 | 43 |  | 
 | 44 | #include <asm/system.h> | 
 | 45 | #include <asm/io.h> | 
 | 46 | #include <asm/atomic.h> | 
 | 47 | #include <asm/uaccess.h> | 
 | 48 | #include <asm/string.h> | 
 | 49 | #include <asm/byteorder.h> | 
 | 50 |  | 
 | 51 | #include "horizon.h" | 
 | 52 |  | 
 | 53 | #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" | 
 | 54 | #define description_string "Madge ATM Horizon [Ultra] driver" | 
 | 55 | #define version_string "1.2.1" | 
 | 56 |  | 
 | 57 | static inline void __init show_version (void) { | 
 | 58 |   printk ("%s version %s\n", description_string, version_string); | 
 | 59 | } | 
 | 60 |  | 
 | 61 | /* | 
 | 62 |    | 
 | 63 |   CREDITS | 
 | 64 |    | 
 | 65 |   Driver and documentation by: | 
 | 66 |    | 
 | 67 |   Chris Aston        Madge Networks | 
 | 68 |   Giuliano Procida   Madge Networks | 
 | 69 |   Simon Benham       Madge Networks | 
 | 70 |   Simon Johnson      Madge Networks | 
 | 71 |   Various Others     Madge Networks | 
 | 72 |    | 
 | 73 |   Some inspiration taken from other drivers by: | 
 | 74 |    | 
 | 75 |   Alexandru Cucos    UTBv | 
 | 76 |   Kari Mettinen      University of Helsinki | 
 | 77 |   Werner Almesberger EPFL LRC | 
 | 78 |    | 
 | 79 |   Theory of Operation | 
 | 80 |    | 
 | 81 |   I Hardware, detection, initialisation and shutdown. | 
 | 82 |    | 
 | 83 |   1. Supported Hardware | 
 | 84 |    | 
 | 85 |   This driver should handle all variants of the PCI Madge ATM adapters | 
 | 86 |   with the Horizon chipset. These are all PCI cards supporting PIO, BM | 
 | 87 |   DMA and a form of MMIO (registers only, not internal RAM). | 
 | 88 |    | 
 | 89 |   The driver is only known to work with SONET and UTP Horizon Ultra | 
 | 90 |   cards at 155Mb/s. However, code is in place to deal with both the | 
 | 91 |   original Horizon and 25Mb/s operation. | 
 | 92 |    | 
 | 93 |   There are two revisions of the Horizon ASIC: the original and the | 
 | 94 |   Ultra. Details of hardware bugs are in section III. | 
 | 95 |    | 
 | 96 |   The ASIC version can be distinguished by chip markings but is NOT | 
 | 97 |   indicated by the PCI revision (all adapters seem to have PCI rev 1). | 
 | 98 |    | 
 | 99 |   I believe that: | 
 | 100 |    | 
 | 101 |   Horizon       => Collage  25 PCI Adapter (UTP and STP) | 
 | 102 |   Horizon Ultra => Collage 155 PCI Client (UTP or SONET) | 
 | 103 |   Ambassador x  => Collage 155 PCI Server (completely different) | 
 | 104 |    | 
 | 105 |   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to | 
 | 106 |   have a Madge B154 plus glue logic serializer. I have also found a | 
 | 107 |   really ancient version of this with slightly different glue. It | 
 | 108 |   comes with the revision 0 (140-025-01) ASIC. | 
 | 109 |    | 
 | 110 |   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink | 
 | 111 |   output (UTP) or an HP HFBR 5205 output (SONET). It has either | 
 | 112 |   Madge's SAMBA framer or a SUNI-lite device (early versions). It | 
 | 113 |   comes with the revision 1 (140-027-01) ASIC. | 
 | 114 |    | 
 | 115 |   2. Detection | 
 | 116 |    | 
 | 117 |   All Horizon-based cards present with the same PCI Vendor and Device | 
 | 118 |   IDs. The standard Linux 2.2 PCI API is used to locate any cards and | 
 | 119 |   to enable bus-mastering (with appropriate latency). | 
 | 120 |    | 
 | 121 |   ATM_LAYER_STATUS in the control register distinguishes between the | 
 | 122 |   two possible physical layers (25 and 155). It is not clear whether | 
 | 123 |   the 155 cards can also operate at 25Mbps. We rely on the fact that a | 
 | 124 |   card operates at 155 if and only if it has the newer Horizon Ultra | 
 | 125 |   ASIC. | 
 | 126 |    | 
 | 127 |   For 155 cards the two possible framers are probed for and then set | 
 | 128 |   up for loop-timing. | 
 | 129 |    | 
 | 130 |   3. Initialisation | 
 | 131 |    | 
 | 132 |   The card is reset and then put into a known state. The physical | 
 | 133 |   layer is configured for normal operation at the appropriate speed; | 
 | 134 |   in the case of the 155 cards, the framer is initialised with | 
 | 135 |   line-based timing; the internal RAM is zeroed and the allocation of | 
 | 136 |   buffers for RX and TX is made; the Burnt In Address is read and | 
 | 137 |   copied to the ATM ESI; various policy settings for RX (VPI bits, | 
 | 138 |   unknown VCs, oam cells) are made. Ideally all policy items should be | 
 | 139 |   configurable at module load (if not actually on-demand), however, | 
 | 140 |   only the vpi vs vci bit allocation can be specified at insmod. | 
 | 141 |    | 
 | 142 |   4. Shutdown | 
 | 143 |    | 
 | 144 |   This is in response to module_cleaup. No VCs are in use and the card | 
 | 145 |   should be idle; it is reset. | 
 | 146 |    | 
 | 147 |   II Driver software (as it should be) | 
 | 148 |    | 
 | 149 |   0. Traffic Parameters | 
 | 150 |    | 
 | 151 |   The traffic classes (not an enumeration) are currently: ATM_NONE (no | 
 | 152 |   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS | 
 | 153 |   (compatible with everything). Together with (perhaps only some of) | 
 | 154 |   the following items they make up the traffic specification. | 
 | 155 |    | 
 | 156 |   struct atm_trafprm { | 
 | 157 |     unsigned char traffic_class; traffic class (ATM_UBR, ...) | 
 | 158 |     int           max_pcr;       maximum PCR in cells per second | 
 | 159 |     int           pcr;           desired PCR in cells per second | 
 | 160 |     int           min_pcr;       minimum PCR in cells per second | 
 | 161 |     int           max_cdv;       maximum CDV in microseconds | 
 | 162 |     int           max_sdu;       maximum SDU in bytes | 
 | 163 |   }; | 
 | 164 |    | 
 | 165 |   Note that these denote bandwidth available not bandwidth used; the | 
 | 166 |   possibilities according to ATMF are: | 
 | 167 |    | 
 | 168 |   Real Time (cdv and max CDT given) | 
 | 169 |    | 
 | 170 |   CBR(pcr)             pcr bandwidth always available | 
 | 171 |   rtVBR(pcr,scr,mbs)   scr bandwidth always available, upto pcr at mbs too | 
 | 172 |    | 
 | 173 |   Non Real Time | 
 | 174 |    | 
 | 175 |   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, upto pcr at mbs too | 
 | 176 |   UBR() | 
 | 177 |   ABR(mcr,pcr)         mcr bandwidth always available, upto pcr (depending) too | 
 | 178 |    | 
 | 179 |   mbs is max burst size (bucket) | 
 | 180 |   pcr and scr have associated cdvt values | 
 | 181 |   mcr is like scr but has no cdtv | 
 | 182 |   cdtv may differ at each hop | 
 | 183 |    | 
 | 184 |   Some of the above items are qos items (as opposed to traffic | 
 | 185 |   parameters). We have nothing to do with qos. All except ABR can have | 
 | 186 |   their traffic parameters converted to GCRA parameters. The GCRA may | 
 | 187 |   be implemented as a (real-number) leaky bucket. The GCRA can be used | 
 | 188 |   in complicated ways by switches and in simpler ways by end-stations. | 
 | 189 |   It can be used both to filter incoming cells and shape out-going | 
 | 190 |   cells. | 
 | 191 |    | 
 | 192 |   ATM Linux actually supports: | 
 | 193 |    | 
 | 194 |   ATM_NONE() (no traffic in this direction) | 
 | 195 |   ATM_UBR(max_frame_size) | 
 | 196 |   ATM_CBR(max/min_pcr, max_cdv, max_frame_size) | 
 | 197 |    | 
 | 198 |   0 or ATM_MAX_PCR are used to indicate maximum available PCR | 
 | 199 |    | 
 | 200 |   A traffic specification consists of the AAL type and separate | 
 | 201 |   traffic specifications for either direction. In ATM Linux it is: | 
 | 202 |    | 
 | 203 |   struct atm_qos { | 
 | 204 |   struct atm_trafprm txtp; | 
 | 205 |   struct atm_trafprm rxtp; | 
 | 206 |   unsigned char aal; | 
 | 207 |   }; | 
 | 208 |    | 
 | 209 |   AAL types are: | 
 | 210 |    | 
 | 211 |   ATM_NO_AAL    AAL not specified | 
 | 212 |   ATM_AAL0      "raw" ATM cells | 
 | 213 |   ATM_AAL1      AAL1 (CBR) | 
 | 214 |   ATM_AAL2      AAL2 (VBR) | 
 | 215 |   ATM_AAL34     AAL3/4 (data) | 
 | 216 |   ATM_AAL5      AAL5 (data) | 
 | 217 |   ATM_SAAL      signaling AAL | 
 | 218 |    | 
 | 219 |   The Horizon has support for AAL frame types: 0, 3/4 and 5. However, | 
 | 220 |   it does not implement AAL 3/4 SAR and it has a different notion of | 
 | 221 |   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are | 
 | 222 |   supported by this driver. | 
 | 223 |    | 
 | 224 |   The Horizon has limited support for ABR (including UBR), VBR and | 
 | 225 |   CBR. Each TX channel has a bucket (containing up to 31 cell units) | 
 | 226 |   and two timers (PCR and SCR) associated with it that can be used to | 
 | 227 |   govern cell emissions and host notification (in the case of ABR this | 
 | 228 |   is presumably so that RM cells may be emitted at appropriate times). | 
 | 229 |   The timers may either be disabled or may be set to any of 240 values | 
 | 230 |   (determined by the clock crystal, a fixed (?) per-device divider, a | 
 | 231 |   configurable divider and a configurable timer preload value). | 
 | 232 |    | 
 | 233 |   At the moment only UBR and CBR are supported by the driver. VBR will | 
 | 234 |   be supported as soon as ATM for Linux supports it. ABR support is | 
 | 235 |   very unlikely as RM cell handling is completely up to the driver. | 
 | 236 |    | 
 | 237 |   1. TX (TX channel setup and TX transfer) | 
 | 238 |    | 
 | 239 |   The TX half of the driver owns the TX Horizon registers. The TX | 
 | 240 |   component in the IRQ handler is the BM completion handler. This can | 
 | 241 |   only be entered when tx_busy is true (enforced by hardware). The | 
 | 242 |   other TX component can only be entered when tx_busy is false | 
 | 243 |   (enforced by driver). So TX is single-threaded. | 
 | 244 |    | 
 | 245 |   Apart from a minor optimisation to not re-select the last channel, | 
 | 246 |   the TX send component works as follows: | 
 | 247 |    | 
 | 248 |   Atomic test and set tx_busy until we succeed; we should implement | 
 | 249 |   some sort of timeout so that tx_busy will never be stuck at true. | 
 | 250 |    | 
 | 251 |   If no TX channel is set up for this VC we wait for an idle one (if | 
 | 252 |   necessary) and set it up. | 
 | 253 |    | 
 | 254 |   At this point we have a TX channel ready for use. We wait for enough | 
 | 255 |   buffers to become available then start a TX transmit (set the TX | 
 | 256 |   descriptor, schedule transfer, exit). | 
 | 257 |    | 
 | 258 |   The IRQ component handles TX completion (stats, free buffer, tx_busy | 
 | 259 |   unset, exit). We also re-schedule further transfers for the same | 
 | 260 |   frame if needed. | 
 | 261 |    | 
 | 262 |   TX setup in more detail: | 
 | 263 |    | 
 | 264 |   TX open is a nop, the relevant information is held in the hrz_vcc | 
 | 265 |   (vcc->dev_data) structure and is "cached" on the card. | 
 | 266 |    | 
 | 267 |   TX close gets the TX lock and clears the channel from the "cache". | 
 | 268 |    | 
 | 269 |   2. RX (Data Available and RX transfer) | 
 | 270 |    | 
 | 271 |   The RX half of the driver owns the RX registers. There are two RX | 
 | 272 |   components in the IRQ handler: the data available handler deals with | 
 | 273 |   fresh data that has arrived on the card, the BM completion handler | 
 | 274 |   is very similar to the TX completion handler. The data available | 
 | 275 |   handler grabs the rx_lock and it is only released once the data has | 
 | 276 |   been discarded or completely transferred to the host. The BM | 
 | 277 |   completion handler only runs when the lock is held; the data | 
 | 278 |   available handler is locked out over the same period. | 
 | 279 |    | 
 | 280 |   Data available on the card triggers an interrupt. If the data is not | 
 | 281 |   suitable for our existing RX channels or we cannot allocate a buffer | 
 | 282 |   it is flushed. Otherwise an RX receive is scheduled. Multiple RX | 
 | 283 |   transfers may be scheduled for the same frame. | 
 | 284 |    | 
 | 285 |   RX setup in more detail: | 
 | 286 |    | 
 | 287 |   RX open... | 
 | 288 |   RX close... | 
 | 289 |    | 
 | 290 |   III Hardware Bugs | 
 | 291 |    | 
 | 292 |   0. Byte vs Word addressing of adapter RAM. | 
 | 293 |    | 
 | 294 |   A design feature; see the .h file (especially the memory map). | 
 | 295 |    | 
 | 296 |   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) | 
 | 297 |    | 
 | 298 |   The host must not start a transmit direction transfer at a | 
 | 299 |   non-four-byte boundary in host memory. Instead the host should | 
 | 300 |   perform a byte, or a two byte, or one byte followed by two byte | 
 | 301 |   transfer in order to start the rest of the transfer on a four byte | 
 | 302 |   boundary. RX is OK. | 
 | 303 |    | 
 | 304 |   Simultaneous transmit and receive direction bus master transfers are | 
 | 305 |   not allowed. | 
 | 306 |    | 
 | 307 |   The simplest solution to these two is to always do PIO (never DMA) | 
 | 308 |   in the TX direction on the original Horizon. More complicated | 
 | 309 |   solutions are likely to hurt my brain. | 
 | 310 |    | 
 | 311 |   2. Loss of buffer on close VC | 
 | 312 |    | 
 | 313 |   When a VC is being closed, the buffer associated with it is not | 
 | 314 |   returned to the pool. The host must store the reference to this | 
 | 315 |   buffer and when opening a new VC then give it to that new VC. | 
 | 316 |    | 
 | 317 |   The host intervention currently consists of stacking such a buffer | 
 | 318 |   pointer at VC close and checking the stack at VC open. | 
 | 319 |    | 
 | 320 |   3. Failure to close a VC | 
 | 321 |    | 
 | 322 |   If a VC is currently receiving a frame then closing the VC may fail | 
 | 323 |   and the frame continues to be received. | 
 | 324 |    | 
 | 325 |   The solution is to make sure any received frames are flushed when | 
 | 326 |   ready. This is currently done just before the solution to 2. | 
 | 327 |    | 
 | 328 |   4. PCI bus (original Horizon only, fixed in Ultra) | 
 | 329 |    | 
 | 330 |   Reading from the data port prior to initialisation will hang the PCI | 
 | 331 |   bus. Just don't do that then! We don't. | 
 | 332 |    | 
 | 333 |   IV To Do List | 
 | 334 |    | 
 | 335 |   . Timer code may be broken. | 
 | 336 |    | 
 | 337 |   . Allow users to specify buffer allocation split for TX and RX. | 
 | 338 |    | 
 | 339 |   . Deal once and for all with buggy VC close. | 
 | 340 |    | 
 | 341 |   . Handle interrupted and/or non-blocking operations. | 
 | 342 |    | 
 | 343 |   . Change some macros to functions and move from .h to .c. | 
 | 344 |    | 
 | 345 |   . Try to limit the number of TX frames each VC may have queued, in | 
 | 346 |     order to reduce the chances of TX buffer exhaustion. | 
 | 347 |    | 
 | 348 |   . Implement VBR (bucket and timers not understood) and ABR (need to | 
 | 349 |     do RM cells manually); also no Linux support for either. | 
 | 350 |    | 
 | 351 |   . Implement QoS changes on open VCs (involves extracting parts of VC open | 
 | 352 |     and close into separate functions and using them to make changes). | 
 | 353 |    | 
 | 354 | */ | 
 | 355 |  | 
 | 356 | /********** globals **********/ | 
 | 357 |  | 
 | 358 | static void do_housekeeping (unsigned long arg); | 
 | 359 |  | 
 | 360 | static unsigned short debug = 0; | 
 | 361 | static unsigned short vpi_bits = 0; | 
 | 362 | static int max_tx_size = 9000; | 
 | 363 | static int max_rx_size = 9000; | 
 | 364 | static unsigned char pci_lat = 0; | 
 | 365 |  | 
 | 366 | /********** access functions **********/ | 
 | 367 |  | 
 | 368 | /* Read / Write Horizon registers */ | 
 | 369 | static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { | 
 | 370 |   outl (cpu_to_le32 (data), dev->iobase + reg); | 
 | 371 | } | 
 | 372 |  | 
 | 373 | static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { | 
 | 374 |   return le32_to_cpu (inl (dev->iobase + reg)); | 
 | 375 | } | 
 | 376 |  | 
 | 377 | static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { | 
 | 378 |   outw (cpu_to_le16 (data), dev->iobase + reg); | 
 | 379 | } | 
 | 380 |  | 
 | 381 | static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { | 
 | 382 |   return le16_to_cpu (inw (dev->iobase + reg)); | 
 | 383 | } | 
 | 384 |  | 
 | 385 | static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | 
 | 386 |   outsb (dev->iobase + reg, addr, len); | 
 | 387 | } | 
 | 388 |  | 
 | 389 | static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { | 
 | 390 |   insb (dev->iobase + reg, addr, len); | 
 | 391 | } | 
 | 392 |  | 
 | 393 | /* Read / Write to a given address in Horizon buffer memory. | 
 | 394 |    Interrupts must be disabled between the address register and data | 
 | 395 |    port accesses as these must form an atomic operation. */ | 
 | 396 | static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { | 
 | 397 |   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); | 
 | 398 |   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | 
 | 399 |   wr_regl (dev, MEMORY_PORT_OFF, data); | 
 | 400 | } | 
 | 401 |  | 
 | 402 | static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { | 
 | 403 |   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); | 
 | 404 |   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); | 
 | 405 |   return rd_regl (dev, MEMORY_PORT_OFF); | 
 | 406 | } | 
 | 407 |  | 
 | 408 | static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { | 
 | 409 |   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); | 
 | 410 |   wr_regl (dev, MEMORY_PORT_OFF, data); | 
 | 411 | } | 
 | 412 |  | 
 | 413 | static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { | 
 | 414 |   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); | 
 | 415 |   return rd_regl (dev, MEMORY_PORT_OFF); | 
 | 416 | } | 
 | 417 |  | 
 | 418 | /********** specialised access functions **********/ | 
 | 419 |  | 
 | 420 | /* RX */ | 
 | 421 |  | 
 | 422 | static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { | 
 | 423 |   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); | 
 | 424 |   return; | 
 | 425 | } | 
 | 426 |  | 
 | 427 | static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { | 
 | 428 |   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) | 
 | 429 |     ; | 
 | 430 |   return; | 
 | 431 | } | 
 | 432 |  | 
 | 433 | static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { | 
 | 434 |   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); | 
 | 435 |   return; | 
 | 436 | } | 
 | 437 |  | 
 | 438 | static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { | 
 | 439 |   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) | 
 | 440 |     ; | 
 | 441 |   return; | 
 | 442 | } | 
 | 443 |  | 
 | 444 | /* TX */ | 
 | 445 |  | 
 | 446 | static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { | 
 | 447 |   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); | 
 | 448 |   return; | 
 | 449 | } | 
 | 450 |  | 
 | 451 | /* Update or query one configuration parameter of a particular channel. */ | 
 | 452 |  | 
 | 453 | static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { | 
 | 454 |   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | 
 | 455 | 	   chan * TX_CHANNEL_CONFIG_MULT | mode); | 
 | 456 |     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); | 
 | 457 |     return; | 
 | 458 | } | 
 | 459 |  | 
 | 460 | static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { | 
 | 461 |   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, | 
 | 462 | 	   chan * TX_CHANNEL_CONFIG_MULT | mode); | 
 | 463 |     return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); | 
 | 464 | } | 
 | 465 |  | 
 | 466 | /********** dump functions **********/ | 
 | 467 |  | 
 | 468 | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { | 
 | 469 | #ifdef DEBUG_HORIZON | 
 | 470 |   unsigned int i; | 
 | 471 |   unsigned char * data = skb->data; | 
 | 472 |   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); | 
 | 473 |   for (i=0; i<skb->len && i < 256;i++) | 
 | 474 |     PRINTDM (DBG_DATA, "%02x ", data[i]); | 
 | 475 |   PRINTDE (DBG_DATA,""); | 
 | 476 | #else | 
 | 477 |   (void) prefix; | 
 | 478 |   (void) vc; | 
 | 479 |   (void) skb; | 
 | 480 | #endif | 
 | 481 |   return; | 
 | 482 | } | 
 | 483 |  | 
 | 484 | static inline void dump_regs (hrz_dev * dev) { | 
 | 485 | #ifdef DEBUG_HORIZON | 
 | 486 |   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); | 
 | 487 |   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); | 
 | 488 |   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); | 
 | 489 |   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); | 
 | 490 |   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); | 
 | 491 |   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); | 
 | 492 | #else | 
 | 493 |   (void) dev; | 
 | 494 | #endif | 
 | 495 |   return; | 
 | 496 | } | 
 | 497 |  | 
 | 498 | static inline void dump_framer (hrz_dev * dev) { | 
 | 499 | #ifdef DEBUG_HORIZON | 
 | 500 |   unsigned int i; | 
 | 501 |   PRINTDB (DBG_REGS, "framer registers:"); | 
 | 502 |   for (i = 0; i < 0x10; ++i) | 
 | 503 |     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); | 
 | 504 |   PRINTDE (DBG_REGS,""); | 
 | 505 | #else | 
 | 506 |   (void) dev; | 
 | 507 | #endif | 
 | 508 |   return; | 
 | 509 | } | 
 | 510 |  | 
 | 511 | /********** VPI/VCI <-> (RX) channel conversions **********/ | 
 | 512 |  | 
 | 513 | /* RX channels are 10 bit integers, these fns are quite paranoid */ | 
 | 514 |  | 
 | 515 | static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { | 
 | 516 |   unsigned short vci_bits = 10 - vpi_bits; | 
 | 517 |   if ((channel & RX_CHANNEL_MASK) == channel) { | 
 | 518 |     *vci = channel & ((~0)<<vci_bits); | 
 | 519 |     *vpi = channel >> vci_bits; | 
 | 520 |     return channel ? 0 : -EINVAL; | 
 | 521 |   } | 
 | 522 |   return -EINVAL; | 
 | 523 | } | 
 | 524 |  | 
 | 525 | static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { | 
 | 526 |   unsigned short vci_bits = 10 - vpi_bits; | 
 | 527 |   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { | 
 | 528 |     *channel = vpi<<vci_bits | vci; | 
 | 529 |     return *channel ? 0 : -EINVAL; | 
 | 530 |   } | 
 | 531 |   return -EINVAL; | 
 | 532 | } | 
 | 533 |  | 
 | 534 | /********** decode RX queue entries **********/ | 
 | 535 |  | 
 | 536 | static inline u16 rx_q_entry_to_length (u32 x) { | 
 | 537 |   return x & RX_Q_ENTRY_LENGTH_MASK; | 
 | 538 | } | 
 | 539 |  | 
 | 540 | static inline u16 rx_q_entry_to_rx_channel (u32 x) { | 
 | 541 |   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; | 
 | 542 | } | 
 | 543 |  | 
 | 544 | /* Cell Transmit Rate Values | 
 | 545 |  * | 
 | 546 |  * the cell transmit rate (cells per sec) can be set to a variety of | 
 | 547 |  * different values by specifying two parameters: a timer preload from | 
 | 548 |  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of | 
 | 549 |  * an exponent from 0 to 14; the special value 15 disables the timer). | 
 | 550 |  * | 
 | 551 |  * cellrate = baserate / (preload * 2^divider) | 
 | 552 |  * | 
 | 553 |  * The maximum cell rate that can be specified is therefore just the | 
 | 554 |  * base rate. Halving the preload is equivalent to adding 1 to the | 
 | 555 |  * divider and so values 1 to 8 of the preload are redundant except | 
 | 556 |  * in the case of a maximal divider (14). | 
 | 557 |  * | 
 | 558 |  * Given a desired cell rate, an algorithm to determine the preload | 
 | 559 |  * and divider is: | 
 | 560 |  *  | 
 | 561 |  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) | 
 | 562 |  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done | 
 | 563 |  *    if x <= 16 then set p = x, d = 0 (high rates), done | 
 | 564 |  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to | 
 | 565 |  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until | 
 | 566 |  *    we find the range (n will be between 1 and 14), set d = n | 
 | 567 |  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n | 
 | 568 |  * | 
 | 569 |  * The algorithm used below is a minor variant of the above. | 
 | 570 |  * | 
 | 571 |  * The base rate is derived from the oscillator frequency (Hz) using a | 
 | 572 |  * fixed divider: | 
 | 573 |  * | 
 | 574 |  * baserate = freq / 32 in the case of some Unknown Card | 
 | 575 |  * baserate = freq / 8  in the case of the Horizon        25 | 
 | 576 |  * baserate = freq / 8  in the case of the Horizon Ultra 155 | 
 | 577 |  * | 
 | 578 |  * The Horizon cards have oscillators and base rates as follows: | 
 | 579 |  * | 
 | 580 |  * Card               Oscillator  Base Rate | 
 | 581 |  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq) | 
 | 582 |  * Horizon        25  32 MHz      4       MHz | 
 | 583 |  * Horizon Ultra 155  40 MHz      5       MHz | 
 | 584 |  * | 
 | 585 |  * The following defines give the base rates in Hz. These were | 
 | 586 |  * previously a factor of 100 larger, no doubt someone was using | 
 | 587 |  * cps*100. | 
 | 588 |  */ | 
 | 589 |  | 
 | 590 | #define BR_UKN 1031250l | 
 | 591 | #define BR_HRZ 4000000l | 
 | 592 | #define BR_ULT 5000000l | 
 | 593 |  | 
 | 594 | // d is an exponent | 
 | 595 | #define CR_MIND 0 | 
 | 596 | #define CR_MAXD 14 | 
 | 597 |  | 
 | 598 | // p ranges from 1 to a power of 2 | 
 | 599 | #define CR_MAXPEXP 4 | 
 | 600 |   | 
 | 601 | static int make_rate (const hrz_dev * dev, u32 c, rounding r, | 
 | 602 | 		      u16 * bits, unsigned int * actual) | 
 | 603 | { | 
 | 604 | 	// note: rounding the rate down means rounding 'p' up | 
 | 605 | 	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; | 
 | 606 |    | 
 | 607 | 	u32 div = CR_MIND; | 
 | 608 | 	u32 pre; | 
 | 609 |    | 
 | 610 | 	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in | 
 | 611 | 	// the tests below. We could think harder about exact possibilities | 
 | 612 | 	// of failure... | 
 | 613 |    | 
 | 614 | 	unsigned long br_man = br; | 
 | 615 | 	unsigned int br_exp = 0; | 
 | 616 |    | 
 | 617 | 	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, | 
 | 618 | 		r == round_up ? "up" : r == round_down ? "down" : "nearest"); | 
 | 619 |    | 
 | 620 | 	// avoid div by zero | 
 | 621 | 	if (!c) { | 
 | 622 | 		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); | 
 | 623 | 		return -EINVAL; | 
 | 624 | 	} | 
 | 625 |    | 
 | 626 | 	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { | 
 | 627 | 		br_man = br_man >> 1; | 
 | 628 | 		++br_exp; | 
 | 629 | 	} | 
 | 630 | 	// (br >>br_exp) <<br_exp == br and | 
 | 631 | 	// br_exp <= CR_MAXPEXP+CR_MIND | 
 | 632 |    | 
 | 633 | 	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { | 
 | 634 | 		// Equivalent to: B <= (c << (MAXPEXP+MIND)) | 
 | 635 | 		// take care of rounding | 
 | 636 | 		switch (r) { | 
 | 637 | 			case round_down: | 
 | 638 | 				pre = (br+(c<<div)-1)/(c<<div); | 
 | 639 | 				// but p must be non-zero | 
 | 640 | 				if (!pre) | 
 | 641 | 					pre = 1; | 
 | 642 | 				break; | 
 | 643 | 			case round_nearest: | 
 | 644 | 				pre = (br+(c<<div)/2)/(c<<div); | 
 | 645 | 				// but p must be non-zero | 
 | 646 | 				if (!pre) | 
 | 647 | 					pre = 1; | 
 | 648 | 				break; | 
 | 649 | 			default:	/* round_up */ | 
 | 650 | 				pre = br/(c<<div); | 
 | 651 | 				// but p must be non-zero | 
 | 652 | 				if (!pre) | 
 | 653 | 					return -EINVAL; | 
 | 654 | 		} | 
 | 655 | 		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); | 
 | 656 | 		goto got_it; | 
 | 657 | 	} | 
 | 658 |    | 
 | 659 | 	// at this point we have | 
 | 660 | 	// d == MIND and (c << (MAXPEXP+MIND)) < B | 
 | 661 | 	while (div < CR_MAXD) { | 
 | 662 | 		div++; | 
 | 663 | 		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { | 
 | 664 | 			// Equivalent to: B <= (c << (MAXPEXP+d)) | 
 | 665 | 			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) | 
 | 666 | 			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP | 
 | 667 | 			// MAXP/2 < B/c2^d <= MAXP | 
 | 668 | 			// take care of rounding | 
 | 669 | 			switch (r) { | 
 | 670 | 				case round_down: | 
 | 671 | 					pre = (br+(c<<div)-1)/(c<<div); | 
 | 672 | 					break; | 
 | 673 | 				case round_nearest: | 
 | 674 | 					pre = (br+(c<<div)/2)/(c<<div); | 
 | 675 | 					break; | 
 | 676 | 				default: /* round_up */ | 
 | 677 | 					pre = br/(c<<div); | 
 | 678 | 			} | 
 | 679 | 			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); | 
 | 680 | 			goto got_it; | 
 | 681 | 		} | 
 | 682 | 	} | 
 | 683 | 	// at this point we have | 
 | 684 | 	// d == MAXD and (c << (MAXPEXP+MAXD)) < B | 
 | 685 | 	// but we cannot go any higher | 
 | 686 | 	// take care of rounding | 
 | 687 | 	if (r == round_down) | 
 | 688 | 		return -EINVAL; | 
 | 689 | 	pre = 1 << CR_MAXPEXP; | 
 | 690 | 	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); | 
 | 691 | got_it: | 
 | 692 | 	// paranoia | 
 | 693 | 	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { | 
 | 694 | 		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", | 
 | 695 | 			div, pre); | 
 | 696 | 		return -EINVAL; | 
 | 697 | 	} else { | 
 | 698 | 		if (bits) | 
 | 699 | 			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); | 
 | 700 | 		if (actual) { | 
 | 701 | 			*actual = (br + (pre<<div) - 1) / (pre<<div); | 
 | 702 | 			PRINTD (DBG_QOS, "actual rate: %u", *actual); | 
 | 703 | 		} | 
 | 704 | 		return 0; | 
 | 705 | 	} | 
 | 706 | } | 
 | 707 |  | 
 | 708 | static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, | 
 | 709 | 				     u16 * bit_pattern, unsigned int * actual) { | 
 | 710 |   unsigned int my_actual; | 
 | 711 |    | 
 | 712 |   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", | 
 | 713 | 	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); | 
 | 714 |    | 
 | 715 |   if (!actual) | 
 | 716 |     // actual rate is not returned | 
 | 717 |     actual = &my_actual; | 
 | 718 |    | 
 | 719 |   if (make_rate (dev, c, round_nearest, bit_pattern, actual)) | 
 | 720 |     // should never happen as round_nearest always succeeds | 
 | 721 |     return -1; | 
 | 722 |    | 
 | 723 |   if (c - tol <= *actual && *actual <= c + tol) | 
 | 724 |     // within tolerance | 
 | 725 |     return 0; | 
 | 726 |   else | 
 | 727 |     // intolerant, try rounding instead | 
 | 728 |     return make_rate (dev, c, r, bit_pattern, actual); | 
 | 729 | } | 
 | 730 |  | 
 | 731 | /********** Listen on a VC **********/ | 
 | 732 |  | 
 | 733 | static int hrz_open_rx (hrz_dev * dev, u16 channel) { | 
 | 734 |   // is there any guarantee that we don't get two simulataneous | 
 | 735 |   // identical calls of this function from different processes? yes | 
 | 736 |   // rate_lock | 
 | 737 |   unsigned long flags; | 
 | 738 |   u32 channel_type; // u16? | 
 | 739 |    | 
 | 740 |   u16 buf_ptr = RX_CHANNEL_IDLE; | 
 | 741 |    | 
 | 742 |   rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; | 
 | 743 |    | 
 | 744 |   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); | 
 | 745 |    | 
 | 746 |   spin_lock_irqsave (&dev->mem_lock, flags); | 
 | 747 |   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
 | 748 |   spin_unlock_irqrestore (&dev->mem_lock, flags); | 
 | 749 |    | 
 | 750 |   // very serious error, should never occur | 
 | 751 |   if (channel_type != RX_CHANNEL_DISABLED) { | 
 | 752 |     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); | 
 | 753 |     return -EBUSY; // clean up? | 
 | 754 |   } | 
 | 755 |    | 
 | 756 |   // Give back spare buffer | 
 | 757 |   if (dev->noof_spare_buffers) { | 
 | 758 |     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; | 
 | 759 |     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); | 
 | 760 |     // should never occur | 
 | 761 |     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { | 
 | 762 |       // but easy to recover from | 
 | 763 |       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); | 
 | 764 |       buf_ptr = RX_CHANNEL_IDLE; | 
 | 765 |     } | 
 | 766 |   } else { | 
 | 767 |     PRINTD (DBG_VCC, "using IDLE buffer pointer"); | 
 | 768 |   } | 
 | 769 |    | 
 | 770 |   // Channel is currently disabled so change its status to idle | 
 | 771 |    | 
 | 772 |   // do we really need to save the flags again? | 
 | 773 |   spin_lock_irqsave (&dev->mem_lock, flags); | 
 | 774 |    | 
 | 775 |   wr_mem (dev, &rx_desc->wr_buf_type, | 
 | 776 | 	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); | 
 | 777 |   if (buf_ptr != RX_CHANNEL_IDLE) | 
 | 778 |     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); | 
 | 779 |    | 
 | 780 |   spin_unlock_irqrestore (&dev->mem_lock, flags); | 
 | 781 |    | 
 | 782 |   // rxer->rate = make_rate (qos->peak_cells); | 
 | 783 |    | 
 | 784 |   PRINTD (DBG_FLOW, "hrz_open_rx ok"); | 
 | 785 |    | 
 | 786 |   return 0; | 
 | 787 | } | 
 | 788 |  | 
 | 789 | #if 0 | 
 | 790 | /********** change vc rate for a given vc **********/ | 
 | 791 |  | 
 | 792 | static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { | 
 | 793 |   rxer->rate = make_rate (qos->peak_cells); | 
 | 794 | } | 
 | 795 | #endif | 
 | 796 |  | 
 | 797 | /********** free an skb (as per ATM device driver documentation) **********/ | 
 | 798 |  | 
 | 799 | static inline void hrz_kfree_skb (struct sk_buff * skb) { | 
 | 800 |   if (ATM_SKB(skb)->vcc->pop) { | 
 | 801 |     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); | 
 | 802 |   } else { | 
 | 803 |     dev_kfree_skb_any (skb); | 
 | 804 |   } | 
 | 805 | } | 
 | 806 |  | 
 | 807 | /********** cancel listen on a VC **********/ | 
 | 808 |  | 
 | 809 | static void hrz_close_rx (hrz_dev * dev, u16 vc) { | 
 | 810 |   unsigned long flags; | 
 | 811 |    | 
 | 812 |   u32 value; | 
 | 813 |    | 
 | 814 |   u32 r1, r2; | 
 | 815 |    | 
 | 816 |   rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; | 
 | 817 |    | 
 | 818 |   int was_idle = 0; | 
 | 819 |    | 
 | 820 |   spin_lock_irqsave (&dev->mem_lock, flags); | 
 | 821 |   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
 | 822 |   spin_unlock_irqrestore (&dev->mem_lock, flags); | 
 | 823 |    | 
 | 824 |   if (value == RX_CHANNEL_DISABLED) { | 
 | 825 |     // I suppose this could happen once we deal with _NONE traffic properly | 
 | 826 |     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); | 
 | 827 |     return; | 
 | 828 |   } | 
 | 829 |   if (value == RX_CHANNEL_IDLE) | 
 | 830 |     was_idle = 1; | 
 | 831 |    | 
 | 832 |   spin_lock_irqsave (&dev->mem_lock, flags); | 
 | 833 |    | 
 | 834 |   for (;;) { | 
 | 835 |     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); | 
 | 836 |      | 
 | 837 |     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) | 
 | 838 |       break; | 
 | 839 |      | 
 | 840 |     was_idle = 0; | 
 | 841 |   } | 
 | 842 |    | 
 | 843 |   if (was_idle) { | 
 | 844 |     spin_unlock_irqrestore (&dev->mem_lock, flags); | 
 | 845 |     return; | 
 | 846 |   } | 
 | 847 |    | 
 | 848 |   WAIT_FLUSH_RX_COMPLETE(dev); | 
 | 849 |    | 
 | 850 |   // XXX Is this all really necessary? We can rely on the rx_data_av | 
 | 851 |   // handler to discard frames that remain queued for delivery. If the | 
 | 852 |   // worry is that immediately reopening the channel (perhaps by a | 
 | 853 |   // different process) may cause some data to be mis-delivered then | 
 | 854 |   // there may still be a simpler solution (such as busy-waiting on | 
 | 855 |   // rx_busy once the channel is disabled or before a new one is | 
 | 856 |   // opened - does this leave any holes?). Arguably setting up and | 
 | 857 |   // tearing down the TX and RX halves of each virtual circuit could | 
 | 858 |   // most safely be done within ?x_busy protected regions. | 
 | 859 |    | 
 | 860 |   // OK, current changes are that Simon's marker is disabled and we DO | 
 | 861 |   // look for NULL rxer elsewhere. The code here seems flush frames | 
 | 862 |   // and then remember the last dead cell belonging to the channel | 
 | 863 |   // just disabled - the cell gets relinked at the next vc_open. | 
 | 864 |   // However, when all VCs are closed or only a few opened there are a | 
 | 865 |   // handful of buffers that are unusable. | 
 | 866 |    | 
 | 867 |   // Does anyone feel like documenting spare_buffers properly? | 
 | 868 |   // Does anyone feel like fixing this in a nicer way? | 
 | 869 |    | 
 | 870 |   // Flush any data which is left in the channel | 
 | 871 |   for (;;) { | 
 | 872 |     // Change the rx channel port to something different to the RX | 
 | 873 |     // channel we are trying to close to force Horizon to flush the rx | 
 | 874 |     // channel read and write pointers. | 
 | 875 |      | 
 | 876 |     u16 other = vc^(RX_CHANS/2); | 
 | 877 |      | 
 | 878 |     SELECT_RX_CHANNEL (dev, other); | 
 | 879 |     WAIT_UPDATE_COMPLETE (dev); | 
 | 880 |      | 
 | 881 |     r1 = rd_mem (dev, &rx_desc->rd_buf_type); | 
 | 882 |      | 
 | 883 |     // Select this RX channel. Flush doesn't seem to work unless we | 
 | 884 |     // select an RX channel before hand | 
 | 885 |      | 
 | 886 |     SELECT_RX_CHANNEL (dev, vc); | 
 | 887 |     WAIT_UPDATE_COMPLETE (dev); | 
 | 888 |      | 
 | 889 |     // Attempt to flush a frame on this RX channel | 
 | 890 |      | 
 | 891 |     FLUSH_RX_CHANNEL (dev, vc); | 
 | 892 |     WAIT_FLUSH_RX_COMPLETE (dev); | 
 | 893 |      | 
 | 894 |     // Force Horizon to flush rx channel read and write pointers as before | 
 | 895 |      | 
 | 896 |     SELECT_RX_CHANNEL (dev, other); | 
 | 897 |     WAIT_UPDATE_COMPLETE (dev); | 
 | 898 |      | 
 | 899 |     r2 = rd_mem (dev, &rx_desc->rd_buf_type); | 
 | 900 |      | 
 | 901 |     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); | 
 | 902 |      | 
 | 903 |     if (r1 == r2) { | 
 | 904 |       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; | 
 | 905 |       break; | 
 | 906 |     } | 
 | 907 |   } | 
 | 908 |    | 
 | 909 | #if 0 | 
 | 910 |   { | 
 | 911 |     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; | 
 | 912 |     rx_q_entry * rd_ptr = dev->rx_q_entry; | 
 | 913 |      | 
 | 914 |     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); | 
 | 915 |      | 
 | 916 |     while (rd_ptr != wr_ptr) { | 
 | 917 |       u32 x = rd_mem (dev, (HDW *) rd_ptr); | 
 | 918 |        | 
 | 919 |       if (vc == rx_q_entry_to_rx_channel (x)) { | 
 | 920 | 	x |= SIMONS_DODGEY_MARKER; | 
 | 921 | 	 | 
 | 922 | 	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); | 
 | 923 | 	 | 
 | 924 | 	wr_mem (dev, (HDW *) rd_ptr, x); | 
 | 925 |       } | 
 | 926 |        | 
 | 927 |       if (rd_ptr == dev->rx_q_wrap) | 
 | 928 | 	rd_ptr = dev->rx_q_reset; | 
 | 929 |       else | 
 | 930 | 	rd_ptr++; | 
 | 931 |     } | 
 | 932 |   } | 
 | 933 | #endif | 
 | 934 |    | 
 | 935 |   spin_unlock_irqrestore (&dev->mem_lock, flags); | 
 | 936 |    | 
 | 937 |   return; | 
 | 938 | } | 
 | 939 |  | 
 | 940 | /********** schedule RX transfers **********/ | 
 | 941 |  | 
 | 942 | // Note on tail recursion: a GCC developer said that it is not likely | 
 | 943 | // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you | 
 | 944 | // are sure it does as you may otherwise overflow the kernel stack. | 
 | 945 |  | 
 | 946 | // giving this fn a return value would help GCC, alledgedly | 
 | 947 |  | 
 | 948 | static void rx_schedule (hrz_dev * dev, int irq) { | 
 | 949 |   unsigned int rx_bytes; | 
 | 950 |    | 
 | 951 |   int pio_instead = 0; | 
 | 952 | #ifndef TAILRECURSIONWORKS | 
 | 953 |   pio_instead = 1; | 
 | 954 |   while (pio_instead) { | 
 | 955 | #endif | 
 | 956 |     // bytes waiting for RX transfer | 
 | 957 |     rx_bytes = dev->rx_bytes; | 
 | 958 |      | 
 | 959 | #if 0 | 
 | 960 |     spin_count = 0; | 
 | 961 |     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { | 
 | 962 |       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); | 
 | 963 |       if (++spin_count > 10) { | 
 | 964 | 	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); | 
 | 965 | 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
 | 966 | 	clear_bit (rx_busy, &dev->flags); | 
 | 967 | 	hrz_kfree_skb (dev->rx_skb); | 
 | 968 | 	return; | 
 | 969 |       } | 
 | 970 |     } | 
 | 971 | #endif | 
 | 972 |      | 
 | 973 |     // this code follows the TX code but (at the moment) there is only | 
 | 974 |     // one region - the skb itself. I don't know if this will change, | 
 | 975 |     // but it doesn't hurt to have the code here, disabled. | 
 | 976 |      | 
 | 977 |     if (rx_bytes) { | 
 | 978 |       // start next transfer within same region | 
 | 979 |       if (rx_bytes <= MAX_PIO_COUNT) { | 
 | 980 | 	PRINTD (DBG_RX|DBG_BUS, "(pio)"); | 
 | 981 | 	pio_instead = 1; | 
 | 982 |       } | 
 | 983 |       if (rx_bytes <= MAX_TRANSFER_COUNT) { | 
 | 984 | 	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); | 
 | 985 | 	dev->rx_bytes = 0; | 
 | 986 |       } else { | 
 | 987 | 	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); | 
 | 988 | 	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | 
 | 989 | 	rx_bytes = MAX_TRANSFER_COUNT; | 
 | 990 |       } | 
 | 991 |     } else { | 
 | 992 |       // rx_bytes == 0 -- we're between regions | 
 | 993 |       // regions remaining to transfer | 
 | 994 | #if 0 | 
 | 995 |       unsigned int rx_regions = dev->rx_regions; | 
 | 996 | #else | 
 | 997 |       unsigned int rx_regions = 0; | 
 | 998 | #endif | 
 | 999 |        | 
 | 1000 |       if (rx_regions) { | 
 | 1001 | #if 0 | 
 | 1002 | 	// start a new region | 
 | 1003 | 	dev->rx_addr = dev->rx_iovec->iov_base; | 
 | 1004 | 	rx_bytes = dev->rx_iovec->iov_len; | 
 | 1005 | 	++dev->rx_iovec; | 
 | 1006 | 	dev->rx_regions = rx_regions - 1; | 
 | 1007 | 	 | 
 | 1008 | 	if (rx_bytes <= MAX_PIO_COUNT) { | 
 | 1009 | 	  PRINTD (DBG_RX|DBG_BUS, "(pio)"); | 
 | 1010 | 	  pio_instead = 1; | 
 | 1011 | 	} | 
 | 1012 | 	if (rx_bytes <= MAX_TRANSFER_COUNT) { | 
 | 1013 | 	  PRINTD (DBG_RX|DBG_BUS, "(full region)"); | 
 | 1014 | 	  dev->rx_bytes = 0; | 
 | 1015 | 	} else { | 
 | 1016 | 	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); | 
 | 1017 | 	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; | 
 | 1018 | 	  rx_bytes = MAX_TRANSFER_COUNT; | 
 | 1019 | 	} | 
 | 1020 | #endif | 
 | 1021 |       } else { | 
 | 1022 | 	// rx_regions == 0 | 
 | 1023 | 	// that's all folks - end of frame | 
 | 1024 | 	struct sk_buff * skb = dev->rx_skb; | 
 | 1025 | 	// dev->rx_iovec = 0; | 
 | 1026 | 	 | 
 | 1027 | 	FLUSH_RX_CHANNEL (dev, dev->rx_channel); | 
 | 1028 | 	 | 
 | 1029 | 	dump_skb ("<<<", dev->rx_channel, skb); | 
 | 1030 | 	 | 
 | 1031 | 	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); | 
 | 1032 | 	 | 
 | 1033 | 	{ | 
 | 1034 | 	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc; | 
 | 1035 | 	  // VC layer stats | 
 | 1036 | 	  atomic_inc(&vcc->stats->rx); | 
| Patrick McHardy | a61bbcf | 2005-08-14 17:24:31 -0700 | [diff] [blame] | 1037 | 	  __net_timestamp(skb); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1038 | 	  // end of our responsability | 
 | 1039 | 	  vcc->push (vcc, skb); | 
 | 1040 | 	} | 
 | 1041 |       } | 
 | 1042 |     } | 
 | 1043 |      | 
 | 1044 |     // note: writing RX_COUNT clears any interrupt condition | 
 | 1045 |     if (rx_bytes) { | 
 | 1046 |       if (pio_instead) { | 
 | 1047 | 	if (irq) | 
 | 1048 | 	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
 | 1049 | 	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); | 
 | 1050 |       } else { | 
 | 1051 | 	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); | 
 | 1052 | 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); | 
 | 1053 |       } | 
 | 1054 |       dev->rx_addr += rx_bytes; | 
 | 1055 |     } else { | 
 | 1056 |       if (irq) | 
 | 1057 | 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
 | 1058 |       // allow another RX thread to start | 
 | 1059 |       YELLOW_LED_ON(dev); | 
 | 1060 |       clear_bit (rx_busy, &dev->flags); | 
 | 1061 |       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); | 
 | 1062 |     } | 
 | 1063 |      | 
 | 1064 | #ifdef TAILRECURSIONWORKS | 
 | 1065 |     // and we all bless optimised tail calls | 
 | 1066 |     if (pio_instead) | 
 | 1067 |       return rx_schedule (dev, 0); | 
 | 1068 |     return; | 
 | 1069 | #else | 
 | 1070 |     // grrrrrrr! | 
 | 1071 |     irq = 0; | 
 | 1072 |   } | 
 | 1073 |   return; | 
 | 1074 | #endif | 
 | 1075 | } | 
 | 1076 |  | 
 | 1077 | /********** handle RX bus master complete events **********/ | 
 | 1078 |  | 
 | 1079 | static inline void rx_bus_master_complete_handler (hrz_dev * dev) { | 
 | 1080 |   if (test_bit (rx_busy, &dev->flags)) { | 
 | 1081 |     rx_schedule (dev, 1); | 
 | 1082 |   } else { | 
 | 1083 |     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); | 
 | 1084 |     // clear interrupt condition on adapter | 
 | 1085 |     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); | 
 | 1086 |   } | 
 | 1087 |   return; | 
 | 1088 | } | 
 | 1089 |  | 
 | 1090 | /********** (queue to) become the next TX thread **********/ | 
 | 1091 |  | 
 | 1092 | static inline int tx_hold (hrz_dev * dev) { | 
 | 1093 |   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); | 
 | 1094 |   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); | 
 | 1095 |   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); | 
 | 1096 |   if (signal_pending (current)) | 
 | 1097 |     return -1; | 
 | 1098 |   PRINTD (DBG_TX, "set tx_busy for dev %p", dev); | 
 | 1099 |   return 0; | 
 | 1100 | } | 
 | 1101 |  | 
 | 1102 | /********** allow another TX thread to start **********/ | 
 | 1103 |  | 
 | 1104 | static inline void tx_release (hrz_dev * dev) { | 
 | 1105 |   clear_bit (tx_busy, &dev->flags); | 
 | 1106 |   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); | 
 | 1107 |   wake_up_interruptible (&dev->tx_queue); | 
 | 1108 | } | 
 | 1109 |  | 
 | 1110 | /********** schedule TX transfers **********/ | 
 | 1111 |  | 
 | 1112 | static void tx_schedule (hrz_dev * const dev, int irq) { | 
 | 1113 |   unsigned int tx_bytes; | 
 | 1114 |    | 
 | 1115 |   int append_desc = 0; | 
 | 1116 |    | 
 | 1117 |   int pio_instead = 0; | 
 | 1118 | #ifndef TAILRECURSIONWORKS | 
 | 1119 |   pio_instead = 1; | 
 | 1120 |   while (pio_instead) { | 
 | 1121 | #endif | 
 | 1122 |     // bytes in current region waiting for TX transfer | 
 | 1123 |     tx_bytes = dev->tx_bytes; | 
 | 1124 |      | 
 | 1125 | #if 0 | 
 | 1126 |     spin_count = 0; | 
 | 1127 |     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { | 
 | 1128 |       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); | 
 | 1129 |       if (++spin_count > 10) { | 
 | 1130 | 	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); | 
 | 1131 | 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
 | 1132 | 	tx_release (dev); | 
 | 1133 | 	hrz_kfree_skb (dev->tx_skb); | 
 | 1134 | 	return; | 
 | 1135 |       } | 
 | 1136 |     } | 
 | 1137 | #endif | 
 | 1138 |      | 
 | 1139 |     if (tx_bytes) { | 
 | 1140 |       // start next transfer within same region | 
 | 1141 |       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | 
 | 1142 | 	PRINTD (DBG_TX|DBG_BUS, "(pio)"); | 
 | 1143 | 	pio_instead = 1; | 
 | 1144 |       } | 
 | 1145 |       if (tx_bytes <= MAX_TRANSFER_COUNT) { | 
 | 1146 | 	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); | 
 | 1147 | 	if (!dev->tx_iovec) { | 
 | 1148 | 	  // end of last region | 
 | 1149 | 	  append_desc = 1; | 
 | 1150 | 	} | 
 | 1151 | 	dev->tx_bytes = 0; | 
 | 1152 |       } else { | 
 | 1153 | 	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); | 
 | 1154 | 	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | 
 | 1155 | 	tx_bytes = MAX_TRANSFER_COUNT; | 
 | 1156 |       } | 
 | 1157 |     } else { | 
 | 1158 |       // tx_bytes == 0 -- we're between regions | 
 | 1159 |       // regions remaining to transfer | 
 | 1160 |       unsigned int tx_regions = dev->tx_regions; | 
 | 1161 |        | 
 | 1162 |       if (tx_regions) { | 
 | 1163 | 	// start a new region | 
 | 1164 | 	dev->tx_addr = dev->tx_iovec->iov_base; | 
 | 1165 | 	tx_bytes = dev->tx_iovec->iov_len; | 
 | 1166 | 	++dev->tx_iovec; | 
 | 1167 | 	dev->tx_regions = tx_regions - 1; | 
 | 1168 | 	 | 
 | 1169 | 	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { | 
 | 1170 | 	  PRINTD (DBG_TX|DBG_BUS, "(pio)"); | 
 | 1171 | 	  pio_instead = 1; | 
 | 1172 | 	} | 
 | 1173 | 	if (tx_bytes <= MAX_TRANSFER_COUNT) { | 
 | 1174 | 	  PRINTD (DBG_TX|DBG_BUS, "(full region)"); | 
 | 1175 | 	  dev->tx_bytes = 0; | 
 | 1176 | 	} else { | 
 | 1177 | 	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); | 
 | 1178 | 	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; | 
 | 1179 | 	  tx_bytes = MAX_TRANSFER_COUNT; | 
 | 1180 | 	} | 
 | 1181 |       } else { | 
 | 1182 | 	// tx_regions == 0 | 
 | 1183 | 	// that's all folks - end of frame | 
 | 1184 | 	struct sk_buff * skb = dev->tx_skb; | 
 | 1185 | 	dev->tx_iovec = NULL; | 
 | 1186 | 	 | 
 | 1187 | 	// VC layer stats | 
 | 1188 | 	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); | 
 | 1189 | 	 | 
 | 1190 | 	// free the skb | 
 | 1191 | 	hrz_kfree_skb (skb); | 
 | 1192 |       } | 
 | 1193 |     } | 
 | 1194 |      | 
 | 1195 |     // note: writing TX_COUNT clears any interrupt condition | 
 | 1196 |     if (tx_bytes) { | 
 | 1197 |       if (pio_instead) { | 
 | 1198 | 	if (irq) | 
 | 1199 | 	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
 | 1200 | 	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); | 
 | 1201 | 	if (append_desc) | 
 | 1202 | 	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); | 
 | 1203 |       } else { | 
 | 1204 | 	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); | 
 | 1205 | 	if (append_desc) | 
 | 1206 | 	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); | 
 | 1207 | 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, | 
 | 1208 | 		 append_desc | 
 | 1209 | 		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC | 
 | 1210 | 		 : tx_bytes); | 
 | 1211 |       } | 
 | 1212 |       dev->tx_addr += tx_bytes; | 
 | 1213 |     } else { | 
 | 1214 |       if (irq) | 
 | 1215 | 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
 | 1216 |       YELLOW_LED_ON(dev); | 
 | 1217 |       tx_release (dev); | 
 | 1218 |     } | 
 | 1219 |      | 
 | 1220 | #ifdef TAILRECURSIONWORKS | 
 | 1221 |     // and we all bless optimised tail calls | 
 | 1222 |     if (pio_instead) | 
 | 1223 |       return tx_schedule (dev, 0); | 
 | 1224 |     return; | 
 | 1225 | #else | 
 | 1226 |     // grrrrrrr! | 
 | 1227 |     irq = 0; | 
 | 1228 |   } | 
 | 1229 |   return; | 
 | 1230 | #endif | 
 | 1231 | } | 
 | 1232 |  | 
 | 1233 | /********** handle TX bus master complete events **********/ | 
 | 1234 |  | 
 | 1235 | static inline void tx_bus_master_complete_handler (hrz_dev * dev) { | 
 | 1236 |   if (test_bit (tx_busy, &dev->flags)) { | 
 | 1237 |     tx_schedule (dev, 1); | 
 | 1238 |   } else { | 
 | 1239 |     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); | 
 | 1240 |     // clear interrupt condition on adapter | 
 | 1241 |     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); | 
 | 1242 |   } | 
 | 1243 |   return; | 
 | 1244 | } | 
 | 1245 |  | 
 | 1246 | /********** move RX Q pointer to next item in circular buffer **********/ | 
 | 1247 |  | 
 | 1248 | // called only from IRQ sub-handler | 
 | 1249 | static inline u32 rx_queue_entry_next (hrz_dev * dev) { | 
 | 1250 |   u32 rx_queue_entry; | 
 | 1251 |   spin_lock (&dev->mem_lock); | 
 | 1252 |   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); | 
 | 1253 |   if (dev->rx_q_entry == dev->rx_q_wrap) | 
 | 1254 |     dev->rx_q_entry = dev->rx_q_reset; | 
 | 1255 |   else | 
 | 1256 |     dev->rx_q_entry++; | 
 | 1257 |   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); | 
 | 1258 |   spin_unlock (&dev->mem_lock); | 
 | 1259 |   return rx_queue_entry; | 
 | 1260 | } | 
 | 1261 |  | 
 | 1262 | /********** handle RX disabled by device **********/ | 
 | 1263 |  | 
 | 1264 | static inline void rx_disabled_handler (hrz_dev * dev) { | 
 | 1265 |   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | 
 | 1266 |   // count me please | 
 | 1267 |   PRINTK (KERN_WARNING, "RX was disabled!"); | 
 | 1268 | } | 
 | 1269 |  | 
 | 1270 | /********** handle RX data received by device **********/ | 
 | 1271 |  | 
 | 1272 | // called from IRQ handler | 
 | 1273 | static inline void rx_data_av_handler (hrz_dev * dev) { | 
 | 1274 |   u32 rx_queue_entry; | 
 | 1275 |   u32 rx_queue_entry_flags; | 
 | 1276 |   u16 rx_len; | 
 | 1277 |   u16 rx_channel; | 
 | 1278 |    | 
 | 1279 |   PRINTD (DBG_FLOW, "hrz_data_av_handler"); | 
 | 1280 |    | 
 | 1281 |   // try to grab rx lock (not possible during RX bus mastering) | 
 | 1282 |   if (test_and_set_bit (rx_busy, &dev->flags)) { | 
 | 1283 |     PRINTD (DBG_RX, "locked out of rx lock"); | 
 | 1284 |     return; | 
 | 1285 |   } | 
 | 1286 |   PRINTD (DBG_RX, "set rx_busy for dev %p", dev); | 
 | 1287 |   // lock is cleared if we fail now, o/w after bus master completion | 
 | 1288 |    | 
 | 1289 |   YELLOW_LED_OFF(dev); | 
 | 1290 |    | 
 | 1291 |   rx_queue_entry = rx_queue_entry_next (dev); | 
 | 1292 |    | 
 | 1293 |   rx_len = rx_q_entry_to_length (rx_queue_entry); | 
 | 1294 |   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); | 
 | 1295 |    | 
 | 1296 |   WAIT_FLUSH_RX_COMPLETE (dev); | 
 | 1297 |    | 
 | 1298 |   SELECT_RX_CHANNEL (dev, rx_channel); | 
 | 1299 |    | 
 | 1300 |   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); | 
 | 1301 |   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); | 
 | 1302 |    | 
 | 1303 |   if (!rx_len) { | 
 | 1304 |     // (at least) bus-mastering breaks if we try to handle a | 
 | 1305 |     // zero-length frame, besides AAL5 does not support them | 
 | 1306 |     PRINTK (KERN_ERR, "zero-length frame!"); | 
 | 1307 |     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; | 
 | 1308 |   } | 
 | 1309 |    | 
 | 1310 |   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { | 
 | 1311 |     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); | 
 | 1312 |   } | 
 | 1313 |   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { | 
 | 1314 |     struct atm_vcc * atm_vcc; | 
 | 1315 |      | 
 | 1316 |     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); | 
 | 1317 |      | 
 | 1318 |     atm_vcc = dev->rxer[rx_channel]; | 
 | 1319 |     // if no vcc is assigned to this channel, we should drop the frame | 
 | 1320 |     // (is this what SIMONS etc. was trying to achieve?) | 
 | 1321 |      | 
 | 1322 |     if (atm_vcc) { | 
 | 1323 |        | 
 | 1324 |       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | 
 | 1325 | 	 | 
 | 1326 | 	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { | 
 | 1327 | 	     | 
 | 1328 | 	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); | 
 | 1329 | 	  if (skb) { | 
 | 1330 | 	    // remember this so we can push it later | 
 | 1331 | 	    dev->rx_skb = skb; | 
 | 1332 | 	    // remember this so we can flush it later | 
 | 1333 | 	    dev->rx_channel = rx_channel; | 
 | 1334 | 	     | 
 | 1335 | 	    // prepare socket buffer | 
 | 1336 | 	    skb_put (skb, rx_len); | 
 | 1337 | 	    ATM_SKB(skb)->vcc = atm_vcc; | 
 | 1338 | 	     | 
 | 1339 | 	    // simple transfer | 
 | 1340 | 	    // dev->rx_regions = 0; | 
 | 1341 | 	    // dev->rx_iovec = 0; | 
 | 1342 | 	    dev->rx_bytes = rx_len; | 
 | 1343 | 	    dev->rx_addr = skb->data; | 
 | 1344 | 	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", | 
 | 1345 | 		    skb->data, rx_len); | 
 | 1346 | 	     | 
 | 1347 | 	    // do the business | 
 | 1348 | 	    rx_schedule (dev, 0); | 
 | 1349 | 	    return; | 
 | 1350 | 	     | 
 | 1351 | 	  } else { | 
 | 1352 | 	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); | 
 | 1353 | 	  } | 
 | 1354 | 	   | 
 | 1355 | 	} else { | 
 | 1356 | 	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); | 
 | 1357 | 	  // do we count this? | 
 | 1358 | 	} | 
 | 1359 | 	 | 
 | 1360 |       } else { | 
 | 1361 | 	PRINTK (KERN_WARNING, "dropped over-size frame"); | 
 | 1362 | 	// do we count this? | 
 | 1363 |       } | 
 | 1364 |        | 
 | 1365 |     } else { | 
 | 1366 |       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); | 
 | 1367 |       // do we count this? | 
 | 1368 |     } | 
 | 1369 |      | 
 | 1370 |   } else { | 
 | 1371 |     // Wait update complete ? SPONG | 
 | 1372 |   } | 
 | 1373 |    | 
 | 1374 |   // RX was aborted | 
 | 1375 |   YELLOW_LED_ON(dev); | 
 | 1376 |    | 
 | 1377 |   FLUSH_RX_CHANNEL (dev,rx_channel); | 
 | 1378 |   clear_bit (rx_busy, &dev->flags); | 
 | 1379 |    | 
 | 1380 |   return; | 
 | 1381 | } | 
 | 1382 |  | 
 | 1383 | /********** interrupt handler **********/ | 
 | 1384 |  | 
 | 1385 | static irqreturn_t interrupt_handler(int irq, void *dev_id, | 
 | 1386 | 					struct pt_regs *pt_regs) { | 
 | 1387 |   hrz_dev * dev = (hrz_dev *) dev_id; | 
 | 1388 |   u32 int_source; | 
 | 1389 |   unsigned int irq_ok; | 
 | 1390 |   (void) pt_regs; | 
 | 1391 |    | 
 | 1392 |   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); | 
 | 1393 |    | 
 | 1394 |   if (!dev_id) { | 
 | 1395 |     PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq); | 
 | 1396 |     return IRQ_NONE; | 
 | 1397 |   } | 
 | 1398 |   if (irq != dev->irq) { | 
 | 1399 |     PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq); | 
 | 1400 |     return IRQ_NONE; | 
 | 1401 |   } | 
 | 1402 |    | 
 | 1403 |   // definitely for us | 
 | 1404 |   irq_ok = 0; | 
 | 1405 |   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) | 
 | 1406 | 	  & INTERESTING_INTERRUPTS)) { | 
 | 1407 |     // In the interests of fairness, the (inline) handlers below are | 
 | 1408 |     // called in sequence and without immediate return to the head of | 
 | 1409 |     // the while loop. This is only of issue for slow hosts (or when | 
 | 1410 |     // debugging messages are on). Really slow hosts may find a fast | 
 | 1411 |     // sender keeps them permanently in the IRQ handler. :( | 
 | 1412 |      | 
 | 1413 |     // (only an issue for slow hosts) RX completion goes before | 
 | 1414 |     // rx_data_av as the former implies rx_busy and so the latter | 
 | 1415 |     // would just abort. If it reschedules another transfer | 
 | 1416 |     // (continuing the same frame) then it will not clear rx_busy. | 
 | 1417 |      | 
 | 1418 |     // (only an issue for slow hosts) TX completion goes before RX | 
 | 1419 |     // data available as it is a much shorter routine - there is the | 
 | 1420 |     // chance that any further transfers it schedules will be complete | 
 | 1421 |     // by the time of the return to the head of the while loop | 
 | 1422 |      | 
 | 1423 |     if (int_source & RX_BUS_MASTER_COMPLETE) { | 
 | 1424 |       ++irq_ok; | 
 | 1425 |       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); | 
 | 1426 |       rx_bus_master_complete_handler (dev); | 
 | 1427 |     } | 
 | 1428 |     if (int_source & TX_BUS_MASTER_COMPLETE) { | 
 | 1429 |       ++irq_ok; | 
 | 1430 |       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); | 
 | 1431 |       tx_bus_master_complete_handler (dev); | 
 | 1432 |     } | 
 | 1433 |     if (int_source & RX_DATA_AV) { | 
 | 1434 |       ++irq_ok; | 
 | 1435 |       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); | 
 | 1436 |       rx_data_av_handler (dev); | 
 | 1437 |     } | 
 | 1438 |   } | 
 | 1439 |   if (irq_ok) { | 
 | 1440 |     PRINTD (DBG_IRQ, "work done: %u", irq_ok); | 
 | 1441 |   } else { | 
 | 1442 |     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); | 
 | 1443 |   } | 
 | 1444 |    | 
 | 1445 |   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); | 
 | 1446 |   if (irq_ok) | 
 | 1447 | 	return IRQ_HANDLED; | 
 | 1448 |   return IRQ_NONE; | 
 | 1449 | } | 
 | 1450 |  | 
 | 1451 | /********** housekeeping **********/ | 
 | 1452 |  | 
 | 1453 | static void do_housekeeping (unsigned long arg) { | 
 | 1454 |   // just stats at the moment | 
 | 1455 |   hrz_dev * dev = (hrz_dev *) arg; | 
 | 1456 |  | 
 | 1457 |   // collect device-specific (not driver/atm-linux) stats here | 
 | 1458 |   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); | 
 | 1459 |   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); | 
 | 1460 |   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); | 
 | 1461 |   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); | 
 | 1462 |  | 
 | 1463 |   mod_timer (&dev->housekeeping, jiffies + HZ/10); | 
 | 1464 |  | 
 | 1465 |   return; | 
 | 1466 | } | 
 | 1467 |  | 
 | 1468 | /********** find an idle channel for TX and set it up **********/ | 
 | 1469 |  | 
 | 1470 | // called with tx_busy set | 
 | 1471 | static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { | 
 | 1472 |   unsigned short idle_channels; | 
 | 1473 |   short tx_channel = -1; | 
 | 1474 |   unsigned int spin_count; | 
 | 1475 |   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); | 
 | 1476 |    | 
 | 1477 |   // better would be to fail immediately, the caller can then decide whether | 
 | 1478 |   // to wait or drop (depending on whether this is UBR etc.) | 
 | 1479 |   spin_count = 0; | 
 | 1480 |   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { | 
 | 1481 |     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); | 
 | 1482 |     // delay a bit here | 
 | 1483 |     if (++spin_count > 100) { | 
 | 1484 |       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); | 
 | 1485 |       return -EBUSY; | 
 | 1486 |     } | 
 | 1487 |   } | 
 | 1488 |    | 
 | 1489 |   // got an idle channel | 
 | 1490 |   { | 
 | 1491 |     // tx_idle ensures we look for idle channels in RR order | 
 | 1492 |     int chan = dev->tx_idle; | 
 | 1493 |      | 
 | 1494 |     int keep_going = 1; | 
 | 1495 |     while (keep_going) { | 
 | 1496 |       if (idle_channels & (1<<chan)) { | 
 | 1497 | 	tx_channel = chan; | 
 | 1498 | 	keep_going = 0; | 
 | 1499 |       } | 
 | 1500 |       ++chan; | 
 | 1501 |       if (chan == TX_CHANS) | 
 | 1502 | 	chan = 0; | 
 | 1503 |     } | 
 | 1504 |      | 
 | 1505 |     dev->tx_idle = chan; | 
 | 1506 |   } | 
 | 1507 |    | 
 | 1508 |   // set up the channel we found | 
 | 1509 |   { | 
 | 1510 |     // Initialise the cell header in the transmit channel descriptor | 
 | 1511 |     // a.k.a. prepare the channel and remember that we have done so. | 
 | 1512 |      | 
 | 1513 |     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; | 
| Dave Jones | b925556 | 2005-11-10 12:55:52 -0800 | [diff] [blame] | 1514 |     u32 rd_ptr; | 
 | 1515 |     u32 wr_ptr; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1516 |     u16 channel = vcc->channel; | 
 | 1517 |      | 
 | 1518 |     unsigned long flags; | 
 | 1519 |     spin_lock_irqsave (&dev->mem_lock, flags); | 
 | 1520 |      | 
 | 1521 |     // Update the transmit channel record. | 
 | 1522 |     dev->tx_channel_record[tx_channel] = channel; | 
 | 1523 |      | 
 | 1524 |     // xBR channel | 
 | 1525 |     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, | 
 | 1526 | 			      vcc->tx_xbr_bits); | 
 | 1527 |      | 
 | 1528 |     // Update the PCR counter preload value etc. | 
 | 1529 |     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, | 
 | 1530 | 			      vcc->tx_pcr_bits); | 
 | 1531 |  | 
 | 1532 | #if 0 | 
 | 1533 |     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { | 
 | 1534 |       // SCR timer | 
 | 1535 |       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, | 
 | 1536 | 				vcc->tx_scr_bits); | 
 | 1537 |        | 
 | 1538 |       // Bucket size... | 
 | 1539 |       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, | 
 | 1540 | 				vcc->tx_bucket_bits); | 
 | 1541 |        | 
 | 1542 |       // ... and fullness | 
 | 1543 |       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, | 
 | 1544 | 				vcc->tx_bucket_bits); | 
 | 1545 |     } | 
 | 1546 | #endif | 
 | 1547 |  | 
 | 1548 |     // Initialise the read and write buffer pointers | 
 | 1549 |     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; | 
 | 1550 |     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; | 
 | 1551 |      | 
 | 1552 |     // idle TX channels should have identical pointers | 
 | 1553 |     if (rd_ptr != wr_ptr) { | 
 | 1554 |       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); | 
 | 1555 |       // spin_unlock... return -E... | 
 | 1556 |       // I wonder if gcc would get rid of one of the pointer aliases | 
 | 1557 |     } | 
 | 1558 |     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", | 
 | 1559 | 	    rd_ptr, wr_ptr); | 
 | 1560 |      | 
 | 1561 |     switch (vcc->aal) { | 
 | 1562 |       case aal0: | 
 | 1563 | 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); | 
 | 1564 | 	rd_ptr |= CHANNEL_TYPE_RAW_CELLS; | 
 | 1565 | 	wr_ptr |= CHANNEL_TYPE_RAW_CELLS; | 
 | 1566 | 	break; | 
 | 1567 |       case aal34: | 
 | 1568 | 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); | 
 | 1569 | 	rd_ptr |= CHANNEL_TYPE_AAL3_4; | 
 | 1570 | 	wr_ptr |= CHANNEL_TYPE_AAL3_4; | 
 | 1571 | 	break; | 
 | 1572 |       case aal5: | 
 | 1573 | 	rd_ptr |= CHANNEL_TYPE_AAL5; | 
 | 1574 | 	wr_ptr |= CHANNEL_TYPE_AAL5; | 
 | 1575 | 	// Initialise the CRC | 
 | 1576 | 	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); | 
 | 1577 | 	break; | 
 | 1578 |     } | 
 | 1579 |      | 
 | 1580 |     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); | 
 | 1581 |     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); | 
 | 1582 |      | 
 | 1583 |     // Write the Cell Header | 
 | 1584 |     // Payload Type, CLP and GFC would go here if non-zero | 
 | 1585 |     wr_mem (dev, &tx_desc->cell_header, channel); | 
 | 1586 |      | 
 | 1587 |     spin_unlock_irqrestore (&dev->mem_lock, flags); | 
 | 1588 |   } | 
 | 1589 |    | 
 | 1590 |   return tx_channel; | 
 | 1591 | } | 
 | 1592 |  | 
 | 1593 | /********** send a frame **********/ | 
 | 1594 |  | 
 | 1595 | static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { | 
 | 1596 |   unsigned int spin_count; | 
 | 1597 |   int free_buffers; | 
 | 1598 |   hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
 | 1599 |   hrz_vcc * vcc = HRZ_VCC(atm_vcc); | 
 | 1600 |   u16 channel = vcc->channel; | 
 | 1601 |    | 
 | 1602 |   u32 buffers_required; | 
 | 1603 |    | 
 | 1604 |   /* signed for error return */ | 
 | 1605 |   short tx_channel; | 
 | 1606 |    | 
 | 1607 |   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", | 
 | 1608 | 	  channel, skb->data, skb->len); | 
 | 1609 |    | 
 | 1610 |   dump_skb (">>>", channel, skb); | 
 | 1611 |    | 
 | 1612 |   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { | 
 | 1613 |     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); | 
 | 1614 |     hrz_kfree_skb (skb); | 
 | 1615 |     return -EIO; | 
 | 1616 |   } | 
 | 1617 |    | 
 | 1618 |   // don't understand this | 
 | 1619 |   ATM_SKB(skb)->vcc = atm_vcc; | 
 | 1620 |    | 
 | 1621 |   if (skb->len > atm_vcc->qos.txtp.max_sdu) { | 
 | 1622 |     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); | 
 | 1623 |     hrz_kfree_skb (skb); | 
 | 1624 |     return -EIO; | 
 | 1625 |   } | 
 | 1626 |    | 
 | 1627 |   if (!channel) { | 
 | 1628 |     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); | 
 | 1629 |     hrz_kfree_skb (skb); | 
 | 1630 |     return -EIO; | 
 | 1631 |   } | 
 | 1632 |    | 
 | 1633 | #if 0 | 
 | 1634 |   { | 
 | 1635 |     // where would be a better place for this? housekeeping? | 
 | 1636 |     u16 status; | 
 | 1637 |     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); | 
 | 1638 |     if (status & PCI_STATUS_REC_MASTER_ABORT) { | 
 | 1639 |       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); | 
 | 1640 |       status &= ~PCI_STATUS_REC_MASTER_ABORT; | 
 | 1641 |       pci_write_config_word (dev->pci_dev, PCI_STATUS, status); | 
 | 1642 |       if (test_bit (tx_busy, &dev->flags)) { | 
 | 1643 | 	hrz_kfree_skb (dev->tx_skb); | 
 | 1644 | 	tx_release (dev); | 
 | 1645 |       } | 
 | 1646 |     } | 
 | 1647 |   } | 
 | 1648 | #endif | 
 | 1649 |    | 
 | 1650 | #ifdef DEBUG_HORIZON | 
 | 1651 |   /* wey-hey! */ | 
 | 1652 |   if (channel == 1023) { | 
 | 1653 |     unsigned int i; | 
 | 1654 |     unsigned short d = 0; | 
 | 1655 |     char * s = skb->data; | 
 | 1656 |     if (*s++ == 'D') { | 
 | 1657 |       for (i = 0; i < 4; ++i) { | 
 | 1658 | 	d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10)); | 
 | 1659 | 	++s; | 
 | 1660 |       } | 
 | 1661 |       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); | 
 | 1662 |     } | 
 | 1663 |   } | 
 | 1664 | #endif | 
 | 1665 |    | 
 | 1666 |   // wait until TX is free and grab lock | 
 | 1667 |   if (tx_hold (dev)) { | 
 | 1668 |     hrz_kfree_skb (skb); | 
 | 1669 |     return -ERESTARTSYS; | 
 | 1670 |   } | 
 | 1671 |   | 
 | 1672 |   // Wait for enough space to be available in transmit buffer memory. | 
 | 1673 |    | 
 | 1674 |   // should be number of cells needed + 2 (according to hardware docs) | 
 | 1675 |   // = ((framelen+8)+47) / 48 + 2 | 
 | 1676 |   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX | 
 | 1677 |   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; | 
 | 1678 |    | 
 | 1679 |   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) | 
 | 1680 |   spin_count = 0; | 
 | 1681 |   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { | 
 | 1682 |     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", | 
 | 1683 | 	    free_buffers, buffers_required); | 
 | 1684 |     // what is the appropriate delay? implement a timeout? (depending on line speed?) | 
 | 1685 |     // mdelay (1); | 
 | 1686 |     // what happens if we kill (current_pid, SIGKILL) ? | 
 | 1687 |     schedule(); | 
 | 1688 |     if (++spin_count > 1000) { | 
 | 1689 |       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", | 
 | 1690 | 	      free_buffers, buffers_required); | 
 | 1691 |       tx_release (dev); | 
 | 1692 |       hrz_kfree_skb (skb); | 
 | 1693 |       return -ERESTARTSYS; | 
 | 1694 |     } | 
 | 1695 |   } | 
 | 1696 |    | 
 | 1697 |   // Select a channel to transmit the frame on. | 
 | 1698 |   if (channel == dev->last_vc) { | 
 | 1699 |     PRINTD (DBG_TX, "last vc hack: hit"); | 
 | 1700 |     tx_channel = dev->tx_last; | 
 | 1701 |   } else { | 
 | 1702 |     PRINTD (DBG_TX, "last vc hack: miss"); | 
 | 1703 |     // Are we currently transmitting this VC on one of the channels? | 
 | 1704 |     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) | 
 | 1705 |       if (dev->tx_channel_record[tx_channel] == channel) { | 
 | 1706 | 	PRINTD (DBG_TX, "vc already on channel: hit"); | 
 | 1707 | 	break; | 
 | 1708 |       } | 
 | 1709 |     if (tx_channel == TX_CHANS) {  | 
 | 1710 |       PRINTD (DBG_TX, "vc already on channel: miss"); | 
 | 1711 |       // Find and set up an idle channel. | 
 | 1712 |       tx_channel = setup_idle_tx_channel (dev, vcc); | 
 | 1713 |       if (tx_channel < 0) { | 
 | 1714 | 	PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); | 
 | 1715 | 	tx_release (dev); | 
 | 1716 | 	return tx_channel; | 
 | 1717 |       } | 
 | 1718 |     } | 
 | 1719 |      | 
 | 1720 |     PRINTD (DBG_TX, "got channel"); | 
 | 1721 |     SELECT_TX_CHANNEL(dev, tx_channel); | 
 | 1722 |      | 
 | 1723 |     dev->last_vc = channel; | 
 | 1724 |     dev->tx_last = tx_channel; | 
 | 1725 |   } | 
 | 1726 |    | 
 | 1727 |   PRINTD (DBG_TX, "using channel %u", tx_channel); | 
 | 1728 |    | 
 | 1729 |   YELLOW_LED_OFF(dev); | 
 | 1730 |    | 
 | 1731 |   // TX start transfer | 
 | 1732 |    | 
 | 1733 |   { | 
 | 1734 |     unsigned int tx_len = skb->len; | 
 | 1735 |     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; | 
 | 1736 |     // remember this so we can free it later | 
 | 1737 |     dev->tx_skb = skb; | 
 | 1738 |      | 
 | 1739 |     if (tx_iovcnt) { | 
 | 1740 |       // scatter gather transfer | 
 | 1741 |       dev->tx_regions = tx_iovcnt; | 
 | 1742 |       dev->tx_iovec = NULL;		/* @@@ needs rewritten */ | 
 | 1743 |       dev->tx_bytes = 0; | 
 | 1744 |       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", | 
 | 1745 | 	      skb->data, tx_len); | 
 | 1746 |       tx_release (dev); | 
 | 1747 |       hrz_kfree_skb (skb); | 
 | 1748 |       return -EIO; | 
 | 1749 |     } else { | 
 | 1750 |       // simple transfer | 
 | 1751 |       dev->tx_regions = 0; | 
 | 1752 |       dev->tx_iovec = NULL; | 
 | 1753 |       dev->tx_bytes = tx_len; | 
 | 1754 |       dev->tx_addr = skb->data; | 
 | 1755 |       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", | 
 | 1756 | 	      skb->data, tx_len); | 
 | 1757 |     } | 
 | 1758 |      | 
 | 1759 |     // and do the business | 
 | 1760 |     tx_schedule (dev, 0); | 
 | 1761 |      | 
 | 1762 |   } | 
 | 1763 |    | 
 | 1764 |   return 0; | 
 | 1765 | } | 
 | 1766 |  | 
 | 1767 | /********** reset a card **********/ | 
 | 1768 |  | 
 | 1769 | static void hrz_reset (const hrz_dev * dev) { | 
 | 1770 |   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); | 
 | 1771 |    | 
 | 1772 |   // why not set RESET_HORIZON to one and wait for the card to | 
 | 1773 |   // reassert that bit as zero? Like so: | 
 | 1774 |   control_0_reg = control_0_reg & RESET_HORIZON; | 
 | 1775 |   wr_regl (dev, CONTROL_0_REG, control_0_reg); | 
 | 1776 |   while (control_0_reg & RESET_HORIZON) | 
 | 1777 |     control_0_reg = rd_regl (dev, CONTROL_0_REG); | 
 | 1778 |    | 
 | 1779 |   // old reset code retained: | 
 | 1780 |   wr_regl (dev, CONTROL_0_REG, control_0_reg | | 
 | 1781 | 	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); | 
 | 1782 |   // just guessing here | 
 | 1783 |   udelay (1000); | 
 | 1784 |    | 
 | 1785 |   wr_regl (dev, CONTROL_0_REG, control_0_reg); | 
 | 1786 | } | 
 | 1787 |  | 
 | 1788 | /********** read the burnt in address **********/ | 
 | 1789 |  | 
 | 1790 | static inline void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) | 
 | 1791 | { | 
 | 1792 | 	wr_regl (dev, CONTROL_0_REG, ctrl); | 
 | 1793 | 	udelay (5); | 
 | 1794 | } | 
 | 1795 |    | 
 | 1796 | static inline void CLOCK_IT (const hrz_dev *dev, u32 ctrl) | 
 | 1797 | { | 
 | 1798 | 	// DI must be valid around rising SK edge | 
 | 1799 | 	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); | 
 | 1800 | 	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); | 
 | 1801 | } | 
 | 1802 |  | 
 | 1803 | static u16 __init read_bia (const hrz_dev * dev, u16 addr) | 
 | 1804 | { | 
 | 1805 |   u32 ctrl = rd_regl (dev, CONTROL_0_REG); | 
 | 1806 |    | 
 | 1807 |   const unsigned int addr_bits = 6; | 
 | 1808 |   const unsigned int data_bits = 16; | 
 | 1809 |    | 
 | 1810 |   unsigned int i; | 
 | 1811 |    | 
 | 1812 |   u16 res; | 
 | 1813 |    | 
 | 1814 |   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); | 
 | 1815 |   WRITE_IT_WAIT(dev, ctrl); | 
 | 1816 |    | 
 | 1817 |   // wake Serial EEPROM and send 110 (READ) command | 
 | 1818 |   ctrl |=  (SEEPROM_CS | SEEPROM_DI); | 
 | 1819 |   CLOCK_IT(dev, ctrl); | 
 | 1820 |    | 
 | 1821 |   ctrl |= SEEPROM_DI; | 
 | 1822 |   CLOCK_IT(dev, ctrl); | 
 | 1823 |    | 
 | 1824 |   ctrl &= ~SEEPROM_DI; | 
 | 1825 |   CLOCK_IT(dev, ctrl); | 
 | 1826 |    | 
 | 1827 |   for (i=0; i<addr_bits; i++) { | 
 | 1828 |     if (addr & (1 << (addr_bits-1))) | 
 | 1829 |       ctrl |= SEEPROM_DI; | 
 | 1830 |     else | 
 | 1831 |       ctrl &= ~SEEPROM_DI; | 
 | 1832 |      | 
 | 1833 |     CLOCK_IT(dev, ctrl); | 
 | 1834 |      | 
 | 1835 |     addr = addr << 1; | 
 | 1836 |   } | 
 | 1837 |    | 
 | 1838 |   // we could check that we have DO = 0 here | 
 | 1839 |   ctrl &= ~SEEPROM_DI; | 
 | 1840 |    | 
 | 1841 |   res = 0; | 
 | 1842 |   for (i=0;i<data_bits;i++) { | 
 | 1843 |     res = res >> 1; | 
 | 1844 |      | 
 | 1845 |     CLOCK_IT(dev, ctrl); | 
 | 1846 |      | 
 | 1847 |     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) | 
 | 1848 |       res |= (1 << (data_bits-1)); | 
 | 1849 |   } | 
 | 1850 |    | 
 | 1851 |   ctrl &= ~(SEEPROM_SK | SEEPROM_CS); | 
 | 1852 |   WRITE_IT_WAIT(dev, ctrl); | 
 | 1853 |    | 
 | 1854 |   return res; | 
 | 1855 | } | 
 | 1856 |  | 
 | 1857 | /********** initialise a card **********/ | 
 | 1858 |  | 
 | 1859 | static int __init hrz_init (hrz_dev * dev) { | 
 | 1860 |   int onefivefive; | 
 | 1861 |    | 
 | 1862 |   u16 chan; | 
 | 1863 |    | 
 | 1864 |   int buff_count; | 
 | 1865 |    | 
 | 1866 |   HDW * mem; | 
 | 1867 |    | 
 | 1868 |   cell_buf * tx_desc; | 
 | 1869 |   cell_buf * rx_desc; | 
 | 1870 |    | 
 | 1871 |   u32 ctrl; | 
 | 1872 |    | 
 | 1873 |   ctrl = rd_regl (dev, CONTROL_0_REG); | 
 | 1874 |   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); | 
 | 1875 |   onefivefive = ctrl & ATM_LAYER_STATUS; | 
 | 1876 |    | 
 | 1877 |   if (onefivefive) | 
 | 1878 |     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); | 
 | 1879 |   else | 
 | 1880 |     printk (DEV_LABEL ": Horizon (at 25 MBps)"); | 
 | 1881 |    | 
 | 1882 |   printk (":"); | 
 | 1883 |   // Reset the card to get everything in a known state | 
 | 1884 |    | 
 | 1885 |   printk (" reset"); | 
 | 1886 |   hrz_reset (dev); | 
 | 1887 |    | 
 | 1888 |   // Clear all the buffer memory | 
 | 1889 |    | 
 | 1890 |   printk (" clearing memory"); | 
 | 1891 |    | 
 | 1892 |   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) | 
 | 1893 |     wr_mem (dev, mem, 0); | 
 | 1894 |    | 
 | 1895 |   printk (" tx channels"); | 
 | 1896 |    | 
 | 1897 |   // All transmit eight channels are set up as AAL5 ABR channels with | 
 | 1898 |   // a 16us cell spacing. Why? | 
 | 1899 |    | 
 | 1900 |   // Channel 0 gets the free buffer at 100h, channel 1 gets the free | 
 | 1901 |   // buffer at 110h etc. | 
 | 1902 |    | 
 | 1903 |   for (chan = 0; chan < TX_CHANS; ++chan) { | 
 | 1904 |     tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; | 
 | 1905 |     cell_buf * buf = &memmap->inittxbufs[chan]; | 
 | 1906 |      | 
 | 1907 |     // initialise the read and write buffer pointers | 
 | 1908 |     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); | 
 | 1909 |     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); | 
 | 1910 |      | 
 | 1911 |     // set the status of the initial buffers to empty | 
 | 1912 |     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); | 
 | 1913 |   } | 
 | 1914 |    | 
 | 1915 |   // Use space bufn3 at the moment for tx buffers | 
 | 1916 |    | 
 | 1917 |   printk (" tx buffers"); | 
 | 1918 |    | 
 | 1919 |   tx_desc = memmap->bufn3; | 
 | 1920 |    | 
 | 1921 |   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); | 
 | 1922 |    | 
 | 1923 |   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { | 
 | 1924 |     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); | 
 | 1925 |     tx_desc++; | 
 | 1926 |   } | 
 | 1927 |    | 
 | 1928 |   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); | 
 | 1929 |    | 
 | 1930 |   // Initialise the transmit free buffer count | 
 | 1931 |   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); | 
 | 1932 |    | 
 | 1933 |   printk (" rx channels"); | 
 | 1934 |    | 
 | 1935 |   // Initialise all of the receive channels to be AAL5 disabled with | 
 | 1936 |   // an interrupt threshold of 0 | 
 | 1937 |    | 
 | 1938 |   for (chan = 0; chan < RX_CHANS; ++chan) { | 
 | 1939 |     rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; | 
 | 1940 |      | 
 | 1941 |     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); | 
 | 1942 |   } | 
 | 1943 |    | 
 | 1944 |   printk (" rx buffers"); | 
 | 1945 |    | 
 | 1946 |   // Use space bufn4 at the moment for rx buffers | 
 | 1947 |    | 
 | 1948 |   rx_desc = memmap->bufn4; | 
 | 1949 |    | 
 | 1950 |   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); | 
 | 1951 |    | 
 | 1952 |   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { | 
 | 1953 |     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); | 
 | 1954 |      | 
 | 1955 |     rx_desc++; | 
 | 1956 |   } | 
 | 1957 |    | 
 | 1958 |   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); | 
 | 1959 |    | 
 | 1960 |   // Initialise the receive free buffer count | 
 | 1961 |   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); | 
 | 1962 |    | 
 | 1963 |   // Initialize Horizons registers | 
 | 1964 |    | 
 | 1965 |   // TX config | 
 | 1966 |   wr_regw (dev, TX_CONFIG_OFF, | 
 | 1967 | 	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); | 
 | 1968 |    | 
 | 1969 |   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. | 
 | 1970 |   wr_regw (dev, RX_CONFIG_OFF, | 
 | 1971 | 	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); | 
 | 1972 |    | 
 | 1973 |   // RX line config | 
 | 1974 |   wr_regw (dev, RX_LINE_CONFIG_OFF, | 
 | 1975 | 	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); | 
 | 1976 |    | 
 | 1977 |   // Set the max AAL5 cell count to be just enough to contain the | 
 | 1978 |   // largest AAL5 frame that the user wants to receive | 
 | 1979 |   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, | 
 | 1980 | 	   (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD); | 
 | 1981 |    | 
 | 1982 |   // Enable receive | 
 | 1983 |   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); | 
 | 1984 |    | 
 | 1985 |   printk (" control"); | 
 | 1986 |    | 
 | 1987 |   // Drive the OE of the LEDs then turn the green LED on | 
 | 1988 |   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; | 
 | 1989 |   wr_regl (dev, CONTROL_0_REG, ctrl); | 
 | 1990 |    | 
 | 1991 |   // Test for a 155-capable card | 
 | 1992 |    | 
 | 1993 |   if (onefivefive) { | 
 | 1994 |     // Select 155 mode... make this a choice (or: how do we detect | 
 | 1995 |     // external line speed and switch?) | 
 | 1996 |     ctrl |= ATM_LAYER_SELECT; | 
 | 1997 |     wr_regl (dev, CONTROL_0_REG, ctrl); | 
 | 1998 |      | 
 | 1999 |     // test SUNI-lite vs SAMBA | 
 | 2000 |      | 
 | 2001 |     // Register 0x00 in the SUNI will have some of bits 3-7 set, and | 
 | 2002 |     // they will always be zero for the SAMBA.  Ha!  Bloody hardware | 
 | 2003 |     // engineers.  It'll never work. | 
 | 2004 |      | 
 | 2005 |     if (rd_framer (dev, 0) & 0x00f0) { | 
 | 2006 |       // SUNI | 
 | 2007 |       printk (" SUNI"); | 
 | 2008 |        | 
 | 2009 |       // Reset, just in case | 
 | 2010 |       wr_framer (dev, 0x00, 0x0080); | 
 | 2011 |       wr_framer (dev, 0x00, 0x0000); | 
 | 2012 |        | 
 | 2013 |       // Configure transmit FIFO | 
 | 2014 |       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); | 
 | 2015 |        | 
 | 2016 |       // Set line timed mode | 
 | 2017 |       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); | 
 | 2018 |     } else { | 
 | 2019 |       // SAMBA | 
 | 2020 |       printk (" SAMBA"); | 
 | 2021 |        | 
 | 2022 |       // Reset, just in case | 
 | 2023 |       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); | 
 | 2024 |       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); | 
 | 2025 |        | 
 | 2026 |       // Turn off diagnostic loopback and enable line-timed mode | 
 | 2027 |       wr_framer (dev, 0, 0x0002); | 
 | 2028 |        | 
 | 2029 |       // Turn on transmit outputs | 
 | 2030 |       wr_framer (dev, 2, 0x0B80); | 
 | 2031 |     } | 
 | 2032 |   } else { | 
 | 2033 |     // Select 25 mode | 
 | 2034 |     ctrl &= ~ATM_LAYER_SELECT; | 
 | 2035 |      | 
 | 2036 |     // Madge B154 setup | 
 | 2037 |     // none required? | 
 | 2038 |   } | 
 | 2039 |    | 
 | 2040 |   printk (" LEDs"); | 
 | 2041 |    | 
 | 2042 |   GREEN_LED_ON(dev); | 
 | 2043 |   YELLOW_LED_ON(dev); | 
 | 2044 |    | 
 | 2045 |   printk (" ESI="); | 
 | 2046 |    | 
 | 2047 |   { | 
 | 2048 |     u16 b = 0; | 
 | 2049 |     int i; | 
 | 2050 |     u8 * esi = dev->atm_dev->esi; | 
 | 2051 |      | 
 | 2052 |     // in the card I have, EEPROM | 
 | 2053 |     // addresses 0, 1, 2 contain 0 | 
 | 2054 |     // addresess 5, 6 etc. contain ffff | 
 | 2055 |     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) | 
 | 2056 |     // the read_bia routine gets the BIA in Ethernet bit order | 
 | 2057 |      | 
 | 2058 |     for (i=0; i < ESI_LEN; ++i) { | 
 | 2059 |       if (i % 2 == 0) | 
 | 2060 | 	b = read_bia (dev, i/2 + 2); | 
 | 2061 |       else | 
 | 2062 | 	b = b >> 8; | 
 | 2063 |       esi[i] = b & 0xFF; | 
 | 2064 |       printk ("%02x", esi[i]); | 
 | 2065 |     } | 
 | 2066 |   } | 
 | 2067 |    | 
 | 2068 |   // Enable RX_Q and ?X_COMPLETE interrupts only | 
 | 2069 |   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); | 
 | 2070 |   printk (" IRQ on"); | 
 | 2071 |    | 
 | 2072 |   printk (".\n"); | 
 | 2073 |    | 
 | 2074 |   return onefivefive; | 
 | 2075 | } | 
 | 2076 |  | 
 | 2077 | /********** check max_sdu **********/ | 
 | 2078 |  | 
 | 2079 | static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { | 
 | 2080 |   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); | 
 | 2081 |    | 
 | 2082 |   switch (aal) { | 
 | 2083 |     case aal0: | 
 | 2084 |       if (!(tp->max_sdu)) { | 
 | 2085 | 	PRINTD (DBG_QOS, "defaulting max_sdu"); | 
 | 2086 | 	tp->max_sdu = ATM_AAL0_SDU; | 
 | 2087 |       } else if (tp->max_sdu != ATM_AAL0_SDU) { | 
 | 2088 | 	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); | 
 | 2089 | 	return -EINVAL; | 
 | 2090 |       } | 
 | 2091 |       break; | 
 | 2092 |     case aal34: | 
 | 2093 |       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { | 
 | 2094 | 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | 
 | 2095 | 	tp->max_sdu = ATM_MAX_AAL34_PDU; | 
 | 2096 |       } | 
 | 2097 |       break; | 
 | 2098 |     case aal5: | 
 | 2099 |       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { | 
 | 2100 | 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); | 
 | 2101 | 	tp->max_sdu = max_frame_size; | 
 | 2102 |       } | 
 | 2103 |       break; | 
 | 2104 |   } | 
 | 2105 |   return 0; | 
 | 2106 | } | 
 | 2107 |  | 
 | 2108 | /********** check pcr **********/ | 
 | 2109 |  | 
 | 2110 | // something like this should be part of ATM Linux | 
 | 2111 | static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { | 
 | 2112 |   // we are assuming non-UBR, and non-special values of pcr | 
 | 2113 |   if (tp->min_pcr == ATM_MAX_PCR) | 
 | 2114 |     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); | 
 | 2115 |   else if (tp->min_pcr < 0) | 
 | 2116 |     PRINTD (DBG_QOS, "luser gave negative min_pcr"); | 
 | 2117 |   else if (tp->min_pcr && tp->min_pcr > pcr) | 
 | 2118 |     PRINTD (DBG_QOS, "pcr less than min_pcr"); | 
 | 2119 |   else | 
 | 2120 |     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) | 
 | 2121 |     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? | 
 | 2122 |     // [this would get rid of next two conditionals] | 
 | 2123 |     if ((0) && tp->max_pcr == ATM_MAX_PCR) | 
 | 2124 |       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); | 
 | 2125 |     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) | 
 | 2126 |       PRINTD (DBG_QOS, "luser gave negative max_pcr"); | 
 | 2127 |     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) | 
 | 2128 |       PRINTD (DBG_QOS, "pcr greater than max_pcr"); | 
 | 2129 |     else { | 
 | 2130 |       // each limit unspecified or not violated | 
 | 2131 |       PRINTD (DBG_QOS, "xBR(pcr) OK"); | 
 | 2132 |       return 0; | 
 | 2133 |     } | 
 | 2134 |   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", | 
 | 2135 | 	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr); | 
 | 2136 |   return -EINVAL; | 
 | 2137 | } | 
 | 2138 |  | 
 | 2139 | /********** open VC **********/ | 
 | 2140 |  | 
 | 2141 | static int hrz_open (struct atm_vcc *atm_vcc) | 
 | 2142 | { | 
 | 2143 |   int error; | 
 | 2144 |   u16 channel; | 
 | 2145 |    | 
 | 2146 |   struct atm_qos * qos; | 
 | 2147 |   struct atm_trafprm * txtp; | 
 | 2148 |   struct atm_trafprm * rxtp; | 
 | 2149 |    | 
 | 2150 |   hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
 | 2151 |   hrz_vcc vcc; | 
 | 2152 |   hrz_vcc * vccp; // allocated late | 
 | 2153 |   short vpi = atm_vcc->vpi; | 
 | 2154 |   int vci = atm_vcc->vci; | 
 | 2155 |   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); | 
 | 2156 |    | 
 | 2157 | #ifdef ATM_VPI_UNSPEC | 
 | 2158 |   // UNSPEC is deprecated, remove this code eventually | 
 | 2159 |   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { | 
 | 2160 |     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); | 
 | 2161 |     return -EINVAL; | 
 | 2162 |   } | 
 | 2163 | #endif | 
 | 2164 |    | 
 | 2165 |   error = vpivci_to_channel (&channel, vpi, vci); | 
 | 2166 |   if (error) { | 
 | 2167 |     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); | 
 | 2168 |     return error; | 
 | 2169 |   } | 
 | 2170 |    | 
 | 2171 |   vcc.channel = channel; | 
 | 2172 |   // max speed for the moment | 
 | 2173 |   vcc.tx_rate = 0x0; | 
 | 2174 |    | 
 | 2175 |   qos = &atm_vcc->qos; | 
 | 2176 |    | 
 | 2177 |   // check AAL and remember it | 
 | 2178 |   switch (qos->aal) { | 
 | 2179 |     case ATM_AAL0: | 
 | 2180 |       // we would if it were 48 bytes and not 52! | 
 | 2181 |       PRINTD (DBG_QOS|DBG_VCC, "AAL0"); | 
 | 2182 |       vcc.aal = aal0; | 
 | 2183 |       break; | 
 | 2184 |     case ATM_AAL34: | 
 | 2185 |       // we would if I knew how do the SAR! | 
 | 2186 |       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); | 
 | 2187 |       vcc.aal = aal34; | 
 | 2188 |       break; | 
 | 2189 |     case ATM_AAL5: | 
 | 2190 |       PRINTD (DBG_QOS|DBG_VCC, "AAL5"); | 
 | 2191 |       vcc.aal = aal5; | 
 | 2192 |       break; | 
 | 2193 |     default: | 
 | 2194 |       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); | 
 | 2195 |       return -EINVAL; | 
 | 2196 |       break; | 
 | 2197 |   } | 
 | 2198 |    | 
 | 2199 |   // TX traffic parameters | 
 | 2200 |    | 
 | 2201 |   // there are two, interrelated problems here: 1. the reservation of | 
 | 2202 |   // PCR is not a binary choice, we are given bounds and/or a | 
 | 2203 |   // desirable value; 2. the device is only capable of certain values, | 
 | 2204 |   // most of which are not integers. It is almost certainly acceptable | 
 | 2205 |   // to be off by a maximum of 1 to 10 cps. | 
 | 2206 |    | 
 | 2207 |   // Pragmatic choice: always store an integral PCR as that which has | 
 | 2208 |   // been allocated, even if we allocate a little (or a lot) less, | 
 | 2209 |   // after rounding. The actual allocation depends on what we can | 
 | 2210 |   // manage with our rate selection algorithm. The rate selection | 
 | 2211 |   // algorithm is given an integral PCR and a tolerance and told | 
 | 2212 |   // whether it should round the value up or down if the tolerance is | 
 | 2213 |   // exceeded; it returns: a) the actual rate selected (rounded up to | 
 | 2214 |   // the nearest integer), b) a bit pattern to feed to the timer | 
 | 2215 |   // register, and c) a failure value if no applicable rate exists. | 
 | 2216 |    | 
 | 2217 |   // Part of the job is done by atm_pcr_goal which gives us a PCR | 
 | 2218 |   // specification which says: EITHER grab the maximum available PCR | 
 | 2219 |   // (and perhaps a lower bound which we musn't pass), OR grab this | 
 | 2220 |   // amount, rounding down if you have to (and perhaps a lower bound | 
 | 2221 |   // which we musn't pass) OR grab this amount, rounding up if you | 
 | 2222 |   // have to (and perhaps an upper bound which we musn't pass). If any | 
 | 2223 |   // bounds ARE passed we fail. Note that rounding is only rounding to | 
 | 2224 |   // match device limitations, we do not round down to satisfy | 
 | 2225 |   // bandwidth availability even if this would not violate any given | 
 | 2226 |   // lower bound. | 
 | 2227 |    | 
 | 2228 |   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s | 
 | 2229 |   // (say) so this is not even a binary fixpoint cell rate (but this | 
 | 2230 |   // device can do it). To avoid this sort of hassle we use a | 
 | 2231 |   // tolerance parameter (currently fixed at 10 cps). | 
 | 2232 |    | 
 | 2233 |   PRINTD (DBG_QOS, "TX:"); | 
 | 2234 |    | 
 | 2235 |   txtp = &qos->txtp; | 
 | 2236 |    | 
 | 2237 |   // set up defaults for no traffic | 
 | 2238 |   vcc.tx_rate = 0; | 
 | 2239 |   // who knows what would actually happen if you try and send on this? | 
 | 2240 |   vcc.tx_xbr_bits = IDLE_RATE_TYPE; | 
 | 2241 |   vcc.tx_pcr_bits = CLOCK_DISABLE; | 
 | 2242 | #if 0 | 
 | 2243 |   vcc.tx_scr_bits = CLOCK_DISABLE; | 
 | 2244 |   vcc.tx_bucket_bits = 0; | 
 | 2245 | #endif | 
 | 2246 |    | 
 | 2247 |   if (txtp->traffic_class != ATM_NONE) { | 
 | 2248 |     error = check_max_sdu (vcc.aal, txtp, max_tx_size); | 
 | 2249 |     if (error) { | 
 | 2250 |       PRINTD (DBG_QOS, "TX max_sdu check failed"); | 
 | 2251 |       return error; | 
 | 2252 |     } | 
 | 2253 |      | 
 | 2254 |     switch (txtp->traffic_class) { | 
 | 2255 |       case ATM_UBR: { | 
 | 2256 | 	// we take "the PCR" as a rate-cap | 
 | 2257 | 	// not reserved | 
 | 2258 | 	vcc.tx_rate = 0; | 
 | 2259 | 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); | 
 | 2260 | 	vcc.tx_xbr_bits = ABR_RATE_TYPE; | 
 | 2261 | 	break; | 
 | 2262 |       } | 
 | 2263 | #if 0 | 
 | 2264 |       case ATM_ABR: { | 
 | 2265 | 	// reserve min, allow up to max | 
 | 2266 | 	vcc.tx_rate = 0; // ? | 
 | 2267 | 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); | 
 | 2268 | 	vcc.tx_xbr_bits = ABR_RATE_TYPE; | 
 | 2269 | 	break; | 
 | 2270 |       } | 
 | 2271 | #endif | 
 | 2272 |       case ATM_CBR: { | 
 | 2273 | 	int pcr = atm_pcr_goal (txtp); | 
 | 2274 | 	rounding r; | 
 | 2275 | 	if (!pcr) { | 
 | 2276 | 	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!! | 
 | 2277 | 	  // should really have: once someone gets unlimited bandwidth | 
 | 2278 | 	  // that no more non-UBR channels can be opened until the | 
 | 2279 | 	  // unlimited one closes?? For the moment, round_down means | 
 | 2280 | 	  // greedy people actually get something and not nothing | 
 | 2281 | 	  r = round_down; | 
 | 2282 | 	  // slight race (no locking) here so we may get -EAGAIN | 
 | 2283 | 	  // later; the greedy bastards would deserve it :) | 
 | 2284 | 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | 
 | 2285 | 	  pcr = dev->tx_avail; | 
 | 2286 | 	} else if (pcr < 0) { | 
 | 2287 | 	  r = round_down; | 
 | 2288 | 	  pcr = -pcr; | 
 | 2289 | 	} else { | 
 | 2290 | 	  r = round_up; | 
 | 2291 | 	} | 
 | 2292 | 	error = make_rate_with_tolerance (dev, pcr, r, 10, | 
 | 2293 | 					  &vcc.tx_pcr_bits, &vcc.tx_rate); | 
 | 2294 | 	if (error) { | 
 | 2295 | 	  PRINTD (DBG_QOS, "could not make rate from TX PCR"); | 
 | 2296 | 	  return error; | 
 | 2297 | 	} | 
 | 2298 | 	// not really clear what further checking is needed | 
 | 2299 | 	error = atm_pcr_check (txtp, vcc.tx_rate); | 
 | 2300 | 	if (error) { | 
 | 2301 | 	  PRINTD (DBG_QOS, "TX PCR failed consistency check"); | 
 | 2302 | 	  return error; | 
 | 2303 | 	} | 
 | 2304 | 	vcc.tx_xbr_bits = CBR_RATE_TYPE; | 
 | 2305 | 	break; | 
 | 2306 |       } | 
 | 2307 | #if 0 | 
 | 2308 |       case ATM_VBR: { | 
 | 2309 | 	int pcr = atm_pcr_goal (txtp); | 
 | 2310 | 	// int scr = atm_scr_goal (txtp); | 
 | 2311 | 	int scr = pcr/2; // just for fun | 
 | 2312 | 	unsigned int mbs = 60; // just for fun | 
 | 2313 | 	rounding pr; | 
 | 2314 | 	rounding sr; | 
 | 2315 | 	unsigned int bucket; | 
 | 2316 | 	if (!pcr) { | 
 | 2317 | 	  pr = round_nearest; | 
 | 2318 | 	  pcr = 1<<30; | 
 | 2319 | 	} else if (pcr < 0) { | 
 | 2320 | 	  pr = round_down; | 
 | 2321 | 	  pcr = -pcr; | 
 | 2322 | 	} else { | 
 | 2323 | 	  pr = round_up; | 
 | 2324 | 	} | 
 | 2325 | 	error = make_rate_with_tolerance (dev, pcr, pr, 10, | 
 | 2326 | 					  &vcc.tx_pcr_bits, 0); | 
 | 2327 | 	if (!scr) { | 
 | 2328 | 	  // see comments for PCR with CBR above | 
 | 2329 | 	  sr = round_down; | 
 | 2330 | 	  // slight race (no locking) here so we may get -EAGAIN | 
 | 2331 | 	  // later; the greedy bastards would deserve it :) | 
 | 2332 | 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); | 
 | 2333 | 	  scr = dev->tx_avail; | 
 | 2334 | 	} else if (scr < 0) { | 
 | 2335 | 	  sr = round_down; | 
 | 2336 | 	  scr = -scr; | 
 | 2337 | 	} else { | 
 | 2338 | 	  sr = round_up; | 
 | 2339 | 	} | 
 | 2340 | 	error = make_rate_with_tolerance (dev, scr, sr, 10, | 
 | 2341 | 					  &vcc.tx_scr_bits, &vcc.tx_rate); | 
 | 2342 | 	if (error) { | 
 | 2343 | 	  PRINTD (DBG_QOS, "could not make rate from TX SCR"); | 
 | 2344 | 	  return error; | 
 | 2345 | 	} | 
 | 2346 | 	// not really clear what further checking is needed | 
 | 2347 | 	// error = atm_scr_check (txtp, vcc.tx_rate); | 
 | 2348 | 	if (error) { | 
 | 2349 | 	  PRINTD (DBG_QOS, "TX SCR failed consistency check"); | 
 | 2350 | 	  return error; | 
 | 2351 | 	} | 
 | 2352 | 	// bucket calculations (from a piece of paper...) cell bucket | 
 | 2353 | 	// capacity must be largest integer smaller than m(p-s)/p + 1 | 
 | 2354 | 	// where m = max burst size, p = pcr, s = scr | 
 | 2355 | 	bucket = mbs*(pcr-scr)/pcr; | 
 | 2356 | 	if (bucket*pcr != mbs*(pcr-scr)) | 
 | 2357 | 	  bucket += 1; | 
 | 2358 | 	if (bucket > BUCKET_MAX_SIZE) { | 
 | 2359 | 	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u", | 
 | 2360 | 		  bucket, BUCKET_MAX_SIZE); | 
 | 2361 | 	  bucket = BUCKET_MAX_SIZE; | 
 | 2362 | 	} | 
 | 2363 | 	vcc.tx_xbr_bits = VBR_RATE_TYPE; | 
 | 2364 | 	vcc.tx_bucket_bits = bucket; | 
 | 2365 | 	break; | 
 | 2366 |       } | 
 | 2367 | #endif | 
 | 2368 |       default: { | 
 | 2369 | 	PRINTD (DBG_QOS, "unsupported TX traffic class"); | 
 | 2370 | 	return -EINVAL; | 
 | 2371 | 	break; | 
 | 2372 |       } | 
 | 2373 |     } | 
 | 2374 |   } | 
 | 2375 |    | 
 | 2376 |   // RX traffic parameters | 
 | 2377 |    | 
 | 2378 |   PRINTD (DBG_QOS, "RX:"); | 
 | 2379 |    | 
 | 2380 |   rxtp = &qos->rxtp; | 
 | 2381 |    | 
 | 2382 |   // set up defaults for no traffic | 
 | 2383 |   vcc.rx_rate = 0; | 
 | 2384 |    | 
 | 2385 |   if (rxtp->traffic_class != ATM_NONE) { | 
 | 2386 |     error = check_max_sdu (vcc.aal, rxtp, max_rx_size); | 
 | 2387 |     if (error) { | 
 | 2388 |       PRINTD (DBG_QOS, "RX max_sdu check failed"); | 
 | 2389 |       return error; | 
 | 2390 |     } | 
 | 2391 |     switch (rxtp->traffic_class) { | 
 | 2392 |       case ATM_UBR: { | 
 | 2393 | 	// not reserved | 
 | 2394 | 	break; | 
 | 2395 |       } | 
 | 2396 | #if 0 | 
 | 2397 |       case ATM_ABR: { | 
 | 2398 | 	// reserve min | 
 | 2399 | 	vcc.rx_rate = 0; // ? | 
 | 2400 | 	break; | 
 | 2401 |       } | 
 | 2402 | #endif | 
 | 2403 |       case ATM_CBR: { | 
 | 2404 | 	int pcr = atm_pcr_goal (rxtp); | 
 | 2405 | 	if (!pcr) { | 
 | 2406 | 	  // slight race (no locking) here so we may get -EAGAIN | 
 | 2407 | 	  // later; the greedy bastards would deserve it :) | 
 | 2408 | 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | 
 | 2409 | 	  pcr = dev->rx_avail; | 
 | 2410 | 	} else if (pcr < 0) { | 
 | 2411 | 	  pcr = -pcr; | 
 | 2412 | 	} | 
 | 2413 | 	vcc.rx_rate = pcr; | 
 | 2414 | 	// not really clear what further checking is needed | 
 | 2415 | 	error = atm_pcr_check (rxtp, vcc.rx_rate); | 
 | 2416 | 	if (error) { | 
 | 2417 | 	  PRINTD (DBG_QOS, "RX PCR failed consistency check"); | 
 | 2418 | 	  return error; | 
 | 2419 | 	} | 
 | 2420 | 	break; | 
 | 2421 |       } | 
 | 2422 | #if 0 | 
 | 2423 |       case ATM_VBR: { | 
 | 2424 | 	// int scr = atm_scr_goal (rxtp); | 
 | 2425 | 	int scr = 1<<16; // just for fun | 
 | 2426 | 	if (!scr) { | 
 | 2427 | 	  // slight race (no locking) here so we may get -EAGAIN | 
 | 2428 | 	  // later; the greedy bastards would deserve it :) | 
 | 2429 | 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); | 
 | 2430 | 	  scr = dev->rx_avail; | 
 | 2431 | 	} else if (scr < 0) { | 
 | 2432 | 	  scr = -scr; | 
 | 2433 | 	} | 
 | 2434 | 	vcc.rx_rate = scr; | 
 | 2435 | 	// not really clear what further checking is needed | 
 | 2436 | 	// error = atm_scr_check (rxtp, vcc.rx_rate); | 
 | 2437 | 	if (error) { | 
 | 2438 | 	  PRINTD (DBG_QOS, "RX SCR failed consistency check"); | 
 | 2439 | 	  return error; | 
 | 2440 | 	} | 
 | 2441 | 	break; | 
 | 2442 |       } | 
 | 2443 | #endif | 
 | 2444 |       default: { | 
 | 2445 | 	PRINTD (DBG_QOS, "unsupported RX traffic class"); | 
 | 2446 | 	return -EINVAL; | 
 | 2447 | 	break; | 
 | 2448 |       } | 
 | 2449 |     } | 
 | 2450 |   } | 
 | 2451 |    | 
 | 2452 |    | 
 | 2453 |   // late abort useful for diagnostics | 
 | 2454 |   if (vcc.aal != aal5) { | 
 | 2455 |     PRINTD (DBG_QOS, "AAL not supported"); | 
 | 2456 |     return -EINVAL; | 
 | 2457 |   } | 
 | 2458 |    | 
 | 2459 |   // get space for our vcc stuff and copy parameters into it | 
 | 2460 |   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); | 
 | 2461 |   if (!vccp) { | 
 | 2462 |     PRINTK (KERN_ERR, "out of memory!"); | 
 | 2463 |     return -ENOMEM; | 
 | 2464 |   } | 
 | 2465 |   *vccp = vcc; | 
 | 2466 |    | 
 | 2467 |   // clear error and grab cell rate resource lock | 
 | 2468 |   error = 0; | 
 | 2469 |   spin_lock (&dev->rate_lock); | 
 | 2470 |    | 
 | 2471 |   if (vcc.tx_rate > dev->tx_avail) { | 
 | 2472 |     PRINTD (DBG_QOS, "not enough TX PCR left"); | 
 | 2473 |     error = -EAGAIN; | 
 | 2474 |   } | 
 | 2475 |    | 
 | 2476 |   if (vcc.rx_rate > dev->rx_avail) { | 
 | 2477 |     PRINTD (DBG_QOS, "not enough RX PCR left"); | 
 | 2478 |     error = -EAGAIN; | 
 | 2479 |   } | 
 | 2480 |    | 
 | 2481 |   if (!error) { | 
 | 2482 |     // really consume cell rates | 
 | 2483 |     dev->tx_avail -= vcc.tx_rate; | 
 | 2484 |     dev->rx_avail -= vcc.rx_rate; | 
 | 2485 |     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", | 
 | 2486 | 	    vcc.tx_rate, vcc.rx_rate); | 
 | 2487 |   } | 
 | 2488 |    | 
 | 2489 |   // release lock and exit on error | 
 | 2490 |   spin_unlock (&dev->rate_lock); | 
 | 2491 |   if (error) { | 
 | 2492 |     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); | 
 | 2493 |     kfree (vccp); | 
 | 2494 |     return error; | 
 | 2495 |   } | 
 | 2496 |    | 
 | 2497 |   // this is "immediately before allocating the connection identifier | 
 | 2498 |   // in hardware" - so long as the next call does not fail :) | 
 | 2499 |   set_bit(ATM_VF_ADDR,&atm_vcc->flags); | 
 | 2500 |    | 
 | 2501 |   // any errors here are very serious and should never occur | 
 | 2502 |    | 
 | 2503 |   if (rxtp->traffic_class != ATM_NONE) { | 
 | 2504 |     if (dev->rxer[channel]) { | 
 | 2505 |       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); | 
 | 2506 |       error = -EBUSY; | 
 | 2507 |     } | 
 | 2508 |     if (!error) | 
 | 2509 |       error = hrz_open_rx (dev, channel); | 
 | 2510 |     if (error) { | 
 | 2511 |       kfree (vccp); | 
 | 2512 |       return error; | 
 | 2513 |     } | 
 | 2514 |     // this link allows RX frames through | 
 | 2515 |     dev->rxer[channel] = atm_vcc; | 
 | 2516 |   } | 
 | 2517 |    | 
 | 2518 |   // success, set elements of atm_vcc | 
 | 2519 |   atm_vcc->dev_data = (void *) vccp; | 
 | 2520 |    | 
 | 2521 |   // indicate readiness | 
 | 2522 |   set_bit(ATM_VF_READY,&atm_vcc->flags); | 
 | 2523 |    | 
 | 2524 |   return 0; | 
 | 2525 | } | 
 | 2526 |  | 
 | 2527 | /********** close VC **********/ | 
 | 2528 |  | 
 | 2529 | static void hrz_close (struct atm_vcc * atm_vcc) { | 
 | 2530 |   hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
 | 2531 |   hrz_vcc * vcc = HRZ_VCC(atm_vcc); | 
 | 2532 |   u16 channel = vcc->channel; | 
 | 2533 |   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); | 
 | 2534 |    | 
 | 2535 |   // indicate unreadiness | 
 | 2536 |   clear_bit(ATM_VF_READY,&atm_vcc->flags); | 
 | 2537 |  | 
 | 2538 |   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { | 
 | 2539 |     unsigned int i; | 
 | 2540 |      | 
 | 2541 |     // let any TX on this channel that has started complete | 
 | 2542 |     // no restart, just keep trying | 
 | 2543 |     while (tx_hold (dev)) | 
 | 2544 |       ; | 
 | 2545 |     // remove record of any tx_channel having been setup for this channel | 
 | 2546 |     for (i = 0; i < TX_CHANS; ++i) | 
 | 2547 |       if (dev->tx_channel_record[i] == channel) { | 
 | 2548 | 	dev->tx_channel_record[i] = -1; | 
 | 2549 | 	break; | 
 | 2550 |       } | 
 | 2551 |     if (dev->last_vc == channel) | 
 | 2552 |       dev->tx_last = -1; | 
 | 2553 |     tx_release (dev); | 
 | 2554 |   } | 
 | 2555 |  | 
 | 2556 |   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { | 
 | 2557 |     // disable RXing - it tries quite hard | 
 | 2558 |     hrz_close_rx (dev, channel); | 
 | 2559 |     // forget the vcc - no more skbs will be pushed | 
 | 2560 |     if (atm_vcc != dev->rxer[channel]) | 
 | 2561 |       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", | 
 | 2562 | 	      "arghhh! we're going to die!", | 
 | 2563 | 	      atm_vcc, dev->rxer[channel]); | 
 | 2564 |     dev->rxer[channel] = NULL; | 
 | 2565 |   } | 
 | 2566 |    | 
 | 2567 |   // atomically release our rate reservation | 
 | 2568 |   spin_lock (&dev->rate_lock); | 
 | 2569 |   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", | 
 | 2570 | 	  vcc->tx_rate, vcc->rx_rate); | 
 | 2571 |   dev->tx_avail += vcc->tx_rate; | 
 | 2572 |   dev->rx_avail += vcc->rx_rate; | 
 | 2573 |   spin_unlock (&dev->rate_lock); | 
 | 2574 |    | 
 | 2575 |   // free our structure | 
 | 2576 |   kfree (vcc); | 
 | 2577 |   // say the VPI/VCI is free again | 
 | 2578 |   clear_bit(ATM_VF_ADDR,&atm_vcc->flags); | 
 | 2579 | } | 
 | 2580 |  | 
 | 2581 | #if 0 | 
 | 2582 | static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, | 
 | 2583 | 			   void *optval, int optlen) { | 
 | 2584 |   hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
 | 2585 |   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); | 
 | 2586 |   switch (level) { | 
 | 2587 |     case SOL_SOCKET: | 
 | 2588 |       switch (optname) { | 
 | 2589 | //	case SO_BCTXOPT: | 
 | 2590 | //	  break; | 
 | 2591 | //	case SO_BCRXOPT: | 
 | 2592 | //	  break; | 
 | 2593 | 	default: | 
 | 2594 | 	  return -ENOPROTOOPT; | 
 | 2595 | 	  break; | 
 | 2596 |       }; | 
 | 2597 |       break; | 
 | 2598 |   } | 
 | 2599 |   return -EINVAL; | 
 | 2600 | } | 
 | 2601 |  | 
 | 2602 | static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, | 
 | 2603 | 			   void *optval, int optlen) { | 
 | 2604 |   hrz_dev * dev = HRZ_DEV(atm_vcc->dev); | 
 | 2605 |   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); | 
 | 2606 |   switch (level) { | 
 | 2607 |     case SOL_SOCKET: | 
 | 2608 |       switch (optname) { | 
 | 2609 | //	case SO_BCTXOPT: | 
 | 2610 | //	  break; | 
 | 2611 | //	case SO_BCRXOPT: | 
 | 2612 | //	  break; | 
 | 2613 | 	default: | 
 | 2614 | 	  return -ENOPROTOOPT; | 
 | 2615 | 	  break; | 
 | 2616 |       }; | 
 | 2617 |       break; | 
 | 2618 |   } | 
 | 2619 |   return -EINVAL; | 
 | 2620 | } | 
 | 2621 | #endif | 
 | 2622 |  | 
 | 2623 | #if 0 | 
 | 2624 | static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { | 
 | 2625 |   hrz_dev * dev = HRZ_DEV(atm_dev); | 
 | 2626 |   PRINTD (DBG_FLOW, "hrz_ioctl"); | 
 | 2627 |   return -1; | 
 | 2628 | } | 
 | 2629 |  | 
 | 2630 | unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { | 
 | 2631 |   hrz_dev * dev = HRZ_DEV(atm_dev); | 
 | 2632 |   PRINTD (DBG_FLOW, "hrz_phy_get"); | 
 | 2633 |   return 0; | 
 | 2634 | } | 
 | 2635 |  | 
 | 2636 | static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, | 
 | 2637 | 			 unsigned long addr) { | 
 | 2638 |   hrz_dev * dev = HRZ_DEV(atm_dev); | 
 | 2639 |   PRINTD (DBG_FLOW, "hrz_phy_put"); | 
 | 2640 | } | 
 | 2641 |  | 
 | 2642 | static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { | 
 | 2643 |   hrz_dev * dev = HRZ_DEV(vcc->dev); | 
 | 2644 |   PRINTD (DBG_FLOW, "hrz_change_qos"); | 
 | 2645 |   return -1; | 
 | 2646 | } | 
 | 2647 | #endif | 
 | 2648 |  | 
 | 2649 | /********** proc file contents **********/ | 
 | 2650 |  | 
 | 2651 | static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { | 
 | 2652 |   hrz_dev * dev = HRZ_DEV(atm_dev); | 
 | 2653 |   int left = *pos; | 
 | 2654 |   PRINTD (DBG_FLOW, "hrz_proc_read"); | 
 | 2655 |    | 
 | 2656 |   /* more diagnostics here? */ | 
 | 2657 |    | 
 | 2658 | #if 0 | 
 | 2659 |   if (!left--) { | 
 | 2660 |     unsigned int count = sprintf (page, "vbr buckets:"); | 
 | 2661 |     unsigned int i; | 
 | 2662 |     for (i = 0; i < TX_CHANS; ++i) | 
 | 2663 |       count += sprintf (page, " %u/%u", | 
 | 2664 | 			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), | 
 | 2665 | 			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); | 
 | 2666 |     count += sprintf (page+count, ".\n"); | 
 | 2667 |     return count; | 
 | 2668 |   } | 
 | 2669 | #endif | 
 | 2670 |    | 
 | 2671 |   if (!left--) | 
 | 2672 |     return sprintf (page, | 
 | 2673 | 		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", | 
 | 2674 | 		    dev->tx_cell_count, dev->rx_cell_count, | 
 | 2675 | 		    dev->hec_error_count, dev->unassigned_cell_count); | 
 | 2676 |    | 
 | 2677 |   if (!left--) | 
 | 2678 |     return sprintf (page, | 
 | 2679 | 		    "free cell buffers: TX %hu, RX %hu+%hu.\n", | 
 | 2680 | 		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), | 
 | 2681 | 		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), | 
 | 2682 | 		    dev->noof_spare_buffers); | 
 | 2683 |    | 
 | 2684 |   if (!left--) | 
 | 2685 |     return sprintf (page, | 
 | 2686 | 		    "cps remaining: TX %u, RX %u\n", | 
 | 2687 | 		    dev->tx_avail, dev->rx_avail); | 
 | 2688 |    | 
 | 2689 |   return 0; | 
 | 2690 | } | 
 | 2691 |  | 
 | 2692 | static const struct atmdev_ops hrz_ops = { | 
 | 2693 |   .open	= hrz_open, | 
 | 2694 |   .close	= hrz_close, | 
 | 2695 |   .send	= hrz_send, | 
 | 2696 |   .proc_read	= hrz_proc_read, | 
 | 2697 |   .owner	= THIS_MODULE, | 
 | 2698 | }; | 
 | 2699 |  | 
 | 2700 | static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) | 
 | 2701 | { | 
 | 2702 | 	hrz_dev * dev; | 
 | 2703 | 	int err = 0; | 
 | 2704 |  | 
 | 2705 | 	// adapter slot free, read resources from PCI configuration space | 
 | 2706 | 	u32 iobase = pci_resource_start (pci_dev, 0); | 
 | 2707 | 	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); | 
 | 2708 | 	unsigned int irq; | 
 | 2709 | 	unsigned char lat; | 
 | 2710 |  | 
 | 2711 | 	PRINTD (DBG_FLOW, "hrz_probe"); | 
 | 2712 |  | 
 | 2713 | 	if (pci_enable_device(pci_dev)) | 
 | 2714 | 		return -EINVAL; | 
 | 2715 |  | 
 | 2716 | 	/* XXX DEV_LABEL is a guess */ | 
 | 2717 | 	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { | 
 | 2718 | 		return -EINVAL; | 
 | 2719 | 		goto out_disable; | 
 | 2720 | 	} | 
 | 2721 |  | 
 | 2722 | 	dev = kmalloc(sizeof(hrz_dev), GFP_KERNEL); | 
 | 2723 | 	if (!dev) { | 
 | 2724 | 		// perhaps we should be nice: deregister all adapters and abort? | 
 | 2725 | 		PRINTD(DBG_ERR, "out of memory"); | 
 | 2726 | 		err = -ENOMEM; | 
 | 2727 | 		goto out_release; | 
 | 2728 | 	} | 
 | 2729 |  | 
 | 2730 | 	memset(dev, 0, sizeof(hrz_dev)); | 
 | 2731 |  | 
 | 2732 | 	pci_set_drvdata(pci_dev, dev); | 
 | 2733 |  | 
 | 2734 | 	// grab IRQ and install handler - move this someplace more sensible | 
 | 2735 | 	irq = pci_dev->irq; | 
 | 2736 | 	if (request_irq(irq, | 
 | 2737 | 			interrupt_handler, | 
 | 2738 | 			SA_SHIRQ, /* irqflags guess */ | 
 | 2739 | 			DEV_LABEL, /* name guess */ | 
 | 2740 | 			dev)) { | 
 | 2741 | 		PRINTD(DBG_WARN, "request IRQ failed!"); | 
 | 2742 | 		err = -EINVAL; | 
 | 2743 | 		goto out_free; | 
 | 2744 | 	} | 
 | 2745 |  | 
 | 2746 | 	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", | 
 | 2747 | 	       iobase, irq, membase); | 
 | 2748 |  | 
 | 2749 | 	dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL); | 
 | 2750 | 	if (!(dev->atm_dev)) { | 
 | 2751 | 		PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); | 
 | 2752 | 		err = -EINVAL; | 
 | 2753 | 		goto out_free_irq; | 
 | 2754 | 	} | 
 | 2755 |  | 
 | 2756 | 	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", | 
 | 2757 | 	       dev->atm_dev->number, dev, dev->atm_dev); | 
 | 2758 | 	dev->atm_dev->dev_data = (void *) dev; | 
 | 2759 | 	dev->pci_dev = pci_dev;  | 
 | 2760 |  | 
 | 2761 | 	// enable bus master accesses | 
 | 2762 | 	pci_set_master(pci_dev); | 
 | 2763 |  | 
 | 2764 | 	// frobnicate latency (upwards, usually) | 
 | 2765 | 	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); | 
 | 2766 | 	if (pci_lat) { | 
 | 2767 | 		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", | 
 | 2768 | 		       "changing", lat, pci_lat); | 
 | 2769 | 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); | 
 | 2770 | 	} else if (lat < MIN_PCI_LATENCY) { | 
 | 2771 | 		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", | 
 | 2772 | 		       "increasing", lat, MIN_PCI_LATENCY); | 
 | 2773 | 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); | 
 | 2774 | 	} | 
 | 2775 |  | 
 | 2776 | 	dev->iobase = iobase; | 
 | 2777 | 	dev->irq = irq;  | 
 | 2778 | 	dev->membase = membase;  | 
 | 2779 |  | 
 | 2780 | 	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; | 
 | 2781 | 	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1]; | 
 | 2782 |  | 
 | 2783 | 	// these next three are performance hacks | 
 | 2784 | 	dev->last_vc = -1; | 
 | 2785 | 	dev->tx_last = -1; | 
 | 2786 | 	dev->tx_idle = 0; | 
 | 2787 |  | 
 | 2788 | 	dev->tx_regions = 0; | 
 | 2789 | 	dev->tx_bytes = 0; | 
 | 2790 | 	dev->tx_skb = NULL; | 
 | 2791 | 	dev->tx_iovec = NULL; | 
 | 2792 |  | 
 | 2793 | 	dev->tx_cell_count = 0; | 
 | 2794 | 	dev->rx_cell_count = 0; | 
 | 2795 | 	dev->hec_error_count = 0; | 
 | 2796 | 	dev->unassigned_cell_count = 0; | 
 | 2797 |  | 
 | 2798 | 	dev->noof_spare_buffers = 0; | 
 | 2799 |  | 
 | 2800 | 	{ | 
 | 2801 | 		unsigned int i; | 
 | 2802 | 		for (i = 0; i < TX_CHANS; ++i) | 
 | 2803 | 			dev->tx_channel_record[i] = -1; | 
 | 2804 | 	} | 
 | 2805 |  | 
 | 2806 | 	dev->flags = 0; | 
 | 2807 |  | 
 | 2808 | 	// Allocate cell rates and remember ASIC version | 
 | 2809 | 	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 | 
 | 2810 | 	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s | 
 | 2811 | 	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53 | 
 | 2812 |  | 
 | 2813 | 	if (hrz_init(dev)) { | 
 | 2814 | 		// to be really pedantic, this should be ATM_OC3c_PCR | 
 | 2815 | 		dev->tx_avail = ATM_OC3_PCR; | 
 | 2816 | 		dev->rx_avail = ATM_OC3_PCR; | 
 | 2817 | 		set_bit(ultra, &dev->flags); // NOT "|= ultra" ! | 
 | 2818 | 	} else { | 
 | 2819 | 		dev->tx_avail = ((25600000/8)*26)/(27*53); | 
 | 2820 | 		dev->rx_avail = ((25600000/8)*26)/(27*53); | 
 | 2821 | 		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); | 
 | 2822 | 	} | 
 | 2823 |  | 
 | 2824 | 	// rate changes spinlock | 
 | 2825 | 	spin_lock_init(&dev->rate_lock); | 
 | 2826 |  | 
 | 2827 | 	// on-board memory access spinlock; we want atomic reads and | 
 | 2828 | 	// writes to adapter memory (handles IRQ and SMP) | 
 | 2829 | 	spin_lock_init(&dev->mem_lock); | 
 | 2830 |  | 
 | 2831 | 	init_waitqueue_head(&dev->tx_queue); | 
 | 2832 |  | 
 | 2833 | 	// vpi in 0..4, vci in 6..10 | 
 | 2834 | 	dev->atm_dev->ci_range.vpi_bits = vpi_bits; | 
 | 2835 | 	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; | 
 | 2836 |  | 
 | 2837 | 	init_timer(&dev->housekeeping); | 
 | 2838 | 	dev->housekeeping.function = do_housekeeping; | 
 | 2839 | 	dev->housekeeping.data = (unsigned long) dev; | 
 | 2840 | 	mod_timer(&dev->housekeeping, jiffies); | 
 | 2841 |  | 
 | 2842 | out: | 
 | 2843 | 	return err; | 
 | 2844 |  | 
 | 2845 | out_free_irq: | 
 | 2846 | 	free_irq(dev->irq, dev); | 
 | 2847 | out_free: | 
 | 2848 | 	kfree(dev); | 
 | 2849 | out_release: | 
 | 2850 | 	release_region(iobase, HRZ_IO_EXTENT); | 
 | 2851 | out_disable: | 
 | 2852 | 	pci_disable_device(pci_dev); | 
 | 2853 | 	goto out; | 
 | 2854 | } | 
 | 2855 |  | 
 | 2856 | static void __devexit hrz_remove_one(struct pci_dev *pci_dev) | 
 | 2857 | { | 
 | 2858 | 	hrz_dev *dev; | 
 | 2859 |  | 
 | 2860 | 	dev = pci_get_drvdata(pci_dev); | 
 | 2861 |  | 
 | 2862 | 	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); | 
 | 2863 | 	del_timer_sync(&dev->housekeeping); | 
 | 2864 | 	hrz_reset(dev); | 
 | 2865 | 	atm_dev_deregister(dev->atm_dev); | 
 | 2866 | 	free_irq(dev->irq, dev); | 
 | 2867 | 	release_region(dev->iobase, HRZ_IO_EXTENT); | 
 | 2868 | 	kfree(dev); | 
 | 2869 |  | 
 | 2870 | 	pci_disable_device(pci_dev); | 
 | 2871 | } | 
 | 2872 |  | 
 | 2873 | static void __init hrz_check_args (void) { | 
 | 2874 | #ifdef DEBUG_HORIZON | 
 | 2875 |   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); | 
 | 2876 | #else | 
 | 2877 |   if (debug) | 
 | 2878 |     PRINTK (KERN_NOTICE, "no debug support in this image"); | 
 | 2879 | #endif | 
 | 2880 |    | 
 | 2881 |   if (vpi_bits > HRZ_MAX_VPI) | 
 | 2882 |     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", | 
 | 2883 | 	    vpi_bits = HRZ_MAX_VPI); | 
 | 2884 |    | 
 | 2885 |   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) | 
 | 2886 |     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", | 
 | 2887 | 	    max_tx_size = TX_AAL5_LIMIT); | 
 | 2888 |    | 
 | 2889 |   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) | 
 | 2890 |     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", | 
 | 2891 | 	    max_rx_size = RX_AAL5_LIMIT); | 
 | 2892 |    | 
 | 2893 |   return; | 
 | 2894 | } | 
 | 2895 |  | 
 | 2896 | MODULE_AUTHOR(maintainer_string); | 
 | 2897 | MODULE_DESCRIPTION(description_string); | 
 | 2898 | MODULE_LICENSE("GPL"); | 
 | 2899 | module_param(debug, ushort, 0644); | 
 | 2900 | module_param(vpi_bits, ushort, 0); | 
 | 2901 | module_param(max_tx_size, int, 0); | 
 | 2902 | module_param(max_rx_size, int, 0); | 
 | 2903 | module_param(pci_lat, byte, 0); | 
 | 2904 | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); | 
 | 2905 | MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); | 
 | 2906 | MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); | 
 | 2907 | MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); | 
 | 2908 | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); | 
 | 2909 |  | 
 | 2910 | static struct pci_device_id hrz_pci_tbl[] = { | 
 | 2911 | 	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, | 
 | 2912 | 	  0, 0, 0 }, | 
 | 2913 | 	{ 0, } | 
 | 2914 | }; | 
 | 2915 |  | 
 | 2916 | MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); | 
 | 2917 |  | 
 | 2918 | static struct pci_driver hrz_driver = { | 
 | 2919 | 	.name =		"horizon", | 
 | 2920 | 	.probe =	hrz_probe, | 
 | 2921 | 	.remove =	__devexit_p(hrz_remove_one), | 
 | 2922 | 	.id_table =	hrz_pci_tbl, | 
 | 2923 | }; | 
 | 2924 |  | 
 | 2925 | /********** module entry **********/ | 
 | 2926 |  | 
 | 2927 | static int __init hrz_module_init (void) { | 
 | 2928 |   // sanity check - cast is needed since printk does not support %Zu | 
 | 2929 |   if (sizeof(struct MEMMAP) != 128*1024/4) { | 
 | 2930 |     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", | 
 | 2931 | 	    (unsigned long) sizeof(struct MEMMAP)); | 
 | 2932 |     return -ENOMEM; | 
 | 2933 |   } | 
 | 2934 |    | 
 | 2935 |   show_version(); | 
 | 2936 |    | 
 | 2937 |   // check arguments | 
 | 2938 |   hrz_check_args(); | 
 | 2939 |    | 
 | 2940 |   // get the juice | 
 | 2941 |   return pci_register_driver(&hrz_driver); | 
 | 2942 | } | 
 | 2943 |  | 
 | 2944 | /********** module exit **********/ | 
 | 2945 |  | 
 | 2946 | static void __exit hrz_module_exit (void) { | 
 | 2947 |   PRINTD (DBG_FLOW, "cleanup_module"); | 
 | 2948 |    | 
 | 2949 |   return pci_unregister_driver(&hrz_driver); | 
 | 2950 | } | 
 | 2951 |  | 
 | 2952 | module_init(hrz_module_init); | 
 | 2953 | module_exit(hrz_module_exit); |