| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /******************************************************************************* | 
 | 2 |  | 
 | 3 |    | 
| Malli Chilakala | 2648345 | 2005-04-28 19:44:46 -0700 | [diff] [blame] | 4 |   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5 |    | 
 | 6 |   This program is free software; you can redistribute it and/or modify it  | 
 | 7 |   under the terms of the GNU General Public License as published by the Free  | 
 | 8 |   Software Foundation; either version 2 of the License, or (at your option)  | 
 | 9 |   any later version. | 
 | 10 |    | 
 | 11 |   This program is distributed in the hope that it will be useful, but WITHOUT  | 
 | 12 |   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or  | 
 | 13 |   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for  | 
 | 14 |   more details. | 
 | 15 |    | 
 | 16 |   You should have received a copy of the GNU General Public License along with | 
 | 17 |   this program; if not, write to the Free Software Foundation, Inc., 59  | 
 | 18 |   Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
 | 19 |    | 
 | 20 |   The full GNU General Public License is included in this distribution in the | 
 | 21 |   file called LICENSE. | 
 | 22 |    | 
 | 23 |   Contact Information: | 
 | 24 |   Linux NICS <linux.nics@intel.com> | 
 | 25 |   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
 | 26 |  | 
 | 27 | *******************************************************************************/ | 
 | 28 |  | 
 | 29 | /* e1000_hw.c | 
 | 30 |  * Shared functions for accessing and configuring the MAC | 
 | 31 |  */ | 
 | 32 |  | 
 | 33 | #include "e1000_hw.h" | 
 | 34 |  | 
 | 35 | static int32_t e1000_set_phy_type(struct e1000_hw *hw); | 
 | 36 | static void e1000_phy_init_script(struct e1000_hw *hw); | 
 | 37 | static int32_t e1000_setup_copper_link(struct e1000_hw *hw); | 
 | 38 | static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | 
 | 39 | static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | 
 | 40 | static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); | 
 | 41 | static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); | 
 | 42 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | 
 | 43 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | 
 | 44 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, | 
 | 45 |                                      uint16_t count); | 
 | 46 | static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); | 
 | 47 | static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); | 
 | 48 | static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, | 
 | 49 |                                       uint16_t words, uint16_t *data); | 
 | 50 | static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, | 
 | 51 |                                             uint16_t offset, uint16_t words, | 
 | 52 |                                             uint16_t *data); | 
 | 53 | static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); | 
 | 54 | static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | 
 | 55 | static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | 
 | 56 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, | 
 | 57 |                                     uint16_t count); | 
 | 58 | static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, | 
 | 59 |                                       uint16_t phy_data); | 
 | 60 | static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, | 
 | 61 |                                      uint16_t *phy_data); | 
 | 62 | static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); | 
 | 63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); | 
 | 64 | static void e1000_release_eeprom(struct e1000_hw *hw); | 
 | 65 | static void e1000_standby_eeprom(struct e1000_hw *hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); | 
 | 67 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 
 | 68 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 69 | static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); | 
 | 70 | static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 71 | static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw); | 
 | 72 | static int32_t e1000_check_downshift(struct e1000_hw *hw); | 
 | 73 | static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity); | 
 | 74 | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 
 | 75 | static void e1000_clear_vfta(struct e1000_hw *hw); | 
 | 76 | static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw); | 
 | 77 | static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 
 | 78 | 						  boolean_t link_up); | 
 | 79 | static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw); | 
 | 80 | static int32_t e1000_detect_gig_phy(struct e1000_hw *hw); | 
 | 81 | static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw); | 
 | 82 | static int32_t e1000_get_cable_length(struct e1000_hw *hw, | 
 | 83 | 				      uint16_t *min_length, | 
 | 84 | 				      uint16_t *max_length); | 
 | 85 | static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); | 
 | 86 | static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw); | 
 | 87 | static int32_t e1000_id_led_init(struct e1000_hw * hw); | 
 | 88 | static void e1000_init_rx_addrs(struct e1000_hw *hw); | 
 | 89 | static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); | 
 | 90 | static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); | 
 | 91 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); | 
 | 92 | static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, | 
 | 93 | 				      uint16_t words, uint16_t *data); | 
 | 94 | static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active); | 
 | 95 | static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | 
 | 96 | static int32_t e1000_wait_autoneg(struct e1000_hw *hw); | 
 | 97 |  | 
 | 98 | static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, | 
 | 99 | 			       uint32_t value); | 
 | 100 |  | 
 | 101 | #define E1000_WRITE_REG_IO(a, reg, val) \ | 
 | 102 | 	    e1000_write_reg_io((a), E1000_##reg, val) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 103 |  | 
 | 104 | /* IGP cable length table */ | 
 | 105 | static const | 
 | 106 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | 
 | 107 |     { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
 | 108 |       5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | 
 | 109 |       25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | 
 | 110 |       40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | 
 | 111 |       60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | 
 | 112 |       90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | 
 | 113 |       100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 
 | 114 |       110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 
 | 115 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 116 | static const | 
 | 117 | uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 118 |     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | 
 | 119 |       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | 
 | 120 |       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | 
 | 121 |       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | 
 | 122 |       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | 
 | 123 |       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | 
 | 124 |       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | 
 | 125 |       104, 109, 114, 118, 121, 124}; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 126 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 127 |  | 
 | 128 | /****************************************************************************** | 
 | 129 |  * Set the phy type member in the hw struct. | 
 | 130 |  * | 
 | 131 |  * hw - Struct containing variables accessed by shared code | 
 | 132 |  *****************************************************************************/ | 
 | 133 | int32_t | 
 | 134 | e1000_set_phy_type(struct e1000_hw *hw) | 
 | 135 | { | 
 | 136 |     DEBUGFUNC("e1000_set_phy_type"); | 
 | 137 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 138 |     if(hw->mac_type == e1000_undefined) | 
 | 139 |         return -E1000_ERR_PHY_TYPE; | 
 | 140 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 141 |     switch(hw->phy_id) { | 
 | 142 |     case M88E1000_E_PHY_ID: | 
 | 143 |     case M88E1000_I_PHY_ID: | 
 | 144 |     case M88E1011_I_PHY_ID: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 145 |     case M88E1111_I_PHY_ID: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 146 |         hw->phy_type = e1000_phy_m88; | 
 | 147 |         break; | 
 | 148 |     case IGP01E1000_I_PHY_ID: | 
 | 149 |         if(hw->mac_type == e1000_82541 || | 
 | 150 |            hw->mac_type == e1000_82541_rev_2 || | 
 | 151 |            hw->mac_type == e1000_82547 || | 
 | 152 |            hw->mac_type == e1000_82547_rev_2) { | 
 | 153 |             hw->phy_type = e1000_phy_igp; | 
 | 154 |             break; | 
 | 155 |         } | 
 | 156 |         /* Fall Through */ | 
 | 157 |     default: | 
 | 158 |         /* Should never have loaded on this device */ | 
 | 159 |         hw->phy_type = e1000_phy_undefined; | 
 | 160 |         return -E1000_ERR_PHY_TYPE; | 
 | 161 |     } | 
 | 162 |  | 
 | 163 |     return E1000_SUCCESS; | 
 | 164 | } | 
 | 165 |  | 
 | 166 | /****************************************************************************** | 
 | 167 |  * IGP phy init script - initializes the GbE PHY | 
 | 168 |  * | 
 | 169 |  * hw - Struct containing variables accessed by shared code | 
 | 170 |  *****************************************************************************/ | 
 | 171 | static void | 
 | 172 | e1000_phy_init_script(struct e1000_hw *hw) | 
 | 173 | { | 
 | 174 |     uint32_t ret_val; | 
 | 175 |     uint16_t phy_saved_data; | 
 | 176 |  | 
 | 177 |     DEBUGFUNC("e1000_phy_init_script"); | 
 | 178 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 179 |     if(hw->phy_init_script) { | 
 | 180 |         msec_delay(20); | 
 | 181 |  | 
 | 182 |         /* Save off the current value of register 0x2F5B to be restored at | 
 | 183 |          * the end of this routine. */ | 
 | 184 |         ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
 | 185 |  | 
 | 186 |         /* Disabled the PHY transmitter */ | 
 | 187 |         e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
 | 188 |  | 
 | 189 |         msec_delay(20); | 
 | 190 |  | 
 | 191 |         e1000_write_phy_reg(hw,0x0000,0x0140); | 
 | 192 |  | 
 | 193 |         msec_delay(5); | 
 | 194 |  | 
 | 195 |         switch(hw->mac_type) { | 
 | 196 |         case e1000_82541: | 
 | 197 |         case e1000_82547: | 
 | 198 |             e1000_write_phy_reg(hw, 0x1F95, 0x0001); | 
 | 199 |  | 
 | 200 |             e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | 
 | 201 |  | 
 | 202 |             e1000_write_phy_reg(hw, 0x1F79, 0x0018); | 
 | 203 |  | 
 | 204 |             e1000_write_phy_reg(hw, 0x1F30, 0x1600); | 
 | 205 |  | 
 | 206 |             e1000_write_phy_reg(hw, 0x1F31, 0x0014); | 
 | 207 |  | 
 | 208 |             e1000_write_phy_reg(hw, 0x1F32, 0x161C); | 
 | 209 |  | 
 | 210 |             e1000_write_phy_reg(hw, 0x1F94, 0x0003); | 
 | 211 |  | 
 | 212 |             e1000_write_phy_reg(hw, 0x1F96, 0x003F); | 
 | 213 |  | 
 | 214 |             e1000_write_phy_reg(hw, 0x2010, 0x0008); | 
 | 215 |             break; | 
 | 216 |  | 
 | 217 |         case e1000_82541_rev_2: | 
 | 218 |         case e1000_82547_rev_2: | 
 | 219 |             e1000_write_phy_reg(hw, 0x1F73, 0x0099); | 
 | 220 |             break; | 
 | 221 |         default: | 
 | 222 |             break; | 
 | 223 |         } | 
 | 224 |  | 
 | 225 |         e1000_write_phy_reg(hw, 0x0000, 0x3300); | 
 | 226 |  | 
 | 227 |         msec_delay(20); | 
 | 228 |  | 
 | 229 |         /* Now enable the transmitter */ | 
 | 230 |         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
 | 231 |  | 
 | 232 |         if(hw->mac_type == e1000_82547) { | 
 | 233 |             uint16_t fused, fine, coarse; | 
 | 234 |  | 
 | 235 |             /* Move to analog registers page */ | 
 | 236 |             e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | 
 | 237 |  | 
 | 238 |             if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | 
 | 239 |                 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); | 
 | 240 |  | 
 | 241 |                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | 
 | 242 |                 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | 
 | 243 |  | 
 | 244 |                 if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | 
 | 245 |                     coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; | 
 | 246 |                     fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | 
 | 247 |                 } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | 
 | 248 |                     fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | 
 | 249 |  | 
 | 250 |                 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | 
 | 251 |                         (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | 
 | 252 |                         (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | 
 | 253 |  | 
 | 254 |                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); | 
 | 255 |                 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, | 
 | 256 |                                     IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | 
 | 257 |             } | 
 | 258 |         } | 
 | 259 |     } | 
 | 260 | } | 
 | 261 |  | 
 | 262 | /****************************************************************************** | 
 | 263 |  * Set the mac type member in the hw struct. | 
 | 264 |  * | 
 | 265 |  * hw - Struct containing variables accessed by shared code | 
 | 266 |  *****************************************************************************/ | 
 | 267 | int32_t | 
 | 268 | e1000_set_mac_type(struct e1000_hw *hw) | 
 | 269 | { | 
 | 270 |     DEBUGFUNC("e1000_set_mac_type"); | 
 | 271 |  | 
 | 272 |     switch (hw->device_id) { | 
 | 273 |     case E1000_DEV_ID_82542: | 
 | 274 |         switch (hw->revision_id) { | 
 | 275 |         case E1000_82542_2_0_REV_ID: | 
 | 276 |             hw->mac_type = e1000_82542_rev2_0; | 
 | 277 |             break; | 
 | 278 |         case E1000_82542_2_1_REV_ID: | 
 | 279 |             hw->mac_type = e1000_82542_rev2_1; | 
 | 280 |             break; | 
 | 281 |         default: | 
 | 282 |             /* Invalid 82542 revision ID */ | 
 | 283 |             return -E1000_ERR_MAC_TYPE; | 
 | 284 |         } | 
 | 285 |         break; | 
 | 286 |     case E1000_DEV_ID_82543GC_FIBER: | 
 | 287 |     case E1000_DEV_ID_82543GC_COPPER: | 
 | 288 |         hw->mac_type = e1000_82543; | 
 | 289 |         break; | 
 | 290 |     case E1000_DEV_ID_82544EI_COPPER: | 
 | 291 |     case E1000_DEV_ID_82544EI_FIBER: | 
 | 292 |     case E1000_DEV_ID_82544GC_COPPER: | 
 | 293 |     case E1000_DEV_ID_82544GC_LOM: | 
 | 294 |         hw->mac_type = e1000_82544; | 
 | 295 |         break; | 
 | 296 |     case E1000_DEV_ID_82540EM: | 
 | 297 |     case E1000_DEV_ID_82540EM_LOM: | 
 | 298 |     case E1000_DEV_ID_82540EP: | 
 | 299 |     case E1000_DEV_ID_82540EP_LOM: | 
 | 300 |     case E1000_DEV_ID_82540EP_LP: | 
 | 301 |         hw->mac_type = e1000_82540; | 
 | 302 |         break; | 
 | 303 |     case E1000_DEV_ID_82545EM_COPPER: | 
 | 304 |     case E1000_DEV_ID_82545EM_FIBER: | 
 | 305 |         hw->mac_type = e1000_82545; | 
 | 306 |         break; | 
 | 307 |     case E1000_DEV_ID_82545GM_COPPER: | 
 | 308 |     case E1000_DEV_ID_82545GM_FIBER: | 
 | 309 |     case E1000_DEV_ID_82545GM_SERDES: | 
 | 310 |         hw->mac_type = e1000_82545_rev_3; | 
 | 311 |         break; | 
 | 312 |     case E1000_DEV_ID_82546EB_COPPER: | 
 | 313 |     case E1000_DEV_ID_82546EB_FIBER: | 
 | 314 |     case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
 | 315 |         hw->mac_type = e1000_82546; | 
 | 316 |         break; | 
 | 317 |     case E1000_DEV_ID_82546GB_COPPER: | 
 | 318 |     case E1000_DEV_ID_82546GB_FIBER: | 
 | 319 |     case E1000_DEV_ID_82546GB_SERDES: | 
 | 320 |     case E1000_DEV_ID_82546GB_PCIE: | 
 | 321 |         hw->mac_type = e1000_82546_rev_3; | 
 | 322 |         break; | 
 | 323 |     case E1000_DEV_ID_82541EI: | 
 | 324 |     case E1000_DEV_ID_82541EI_MOBILE: | 
 | 325 |         hw->mac_type = e1000_82541; | 
 | 326 |         break; | 
 | 327 |     case E1000_DEV_ID_82541ER: | 
 | 328 |     case E1000_DEV_ID_82541GI: | 
 | 329 |     case E1000_DEV_ID_82541GI_LF: | 
 | 330 |     case E1000_DEV_ID_82541GI_MOBILE: | 
 | 331 |         hw->mac_type = e1000_82541_rev_2; | 
 | 332 |         break; | 
 | 333 |     case E1000_DEV_ID_82547EI: | 
 | 334 |         hw->mac_type = e1000_82547; | 
 | 335 |         break; | 
 | 336 |     case E1000_DEV_ID_82547GI: | 
 | 337 |         hw->mac_type = e1000_82547_rev_2; | 
 | 338 |         break; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 339 |     case E1000_DEV_ID_82571EB_COPPER: | 
 | 340 |     case E1000_DEV_ID_82571EB_FIBER: | 
 | 341 |     case E1000_DEV_ID_82571EB_SERDES: | 
 | 342 |             hw->mac_type = e1000_82571; | 
 | 343 |         break; | 
 | 344 |     case E1000_DEV_ID_82572EI_COPPER: | 
 | 345 |     case E1000_DEV_ID_82572EI_FIBER: | 
 | 346 |     case E1000_DEV_ID_82572EI_SERDES: | 
 | 347 |         hw->mac_type = e1000_82572; | 
 | 348 |         break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 349 |     case E1000_DEV_ID_82573E: | 
 | 350 |     case E1000_DEV_ID_82573E_IAMT: | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 351 |     case E1000_DEV_ID_82573L: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 352 |         hw->mac_type = e1000_82573; | 
 | 353 |         break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 354 |     default: | 
 | 355 |         /* Should never have loaded on this device */ | 
 | 356 |         return -E1000_ERR_MAC_TYPE; | 
 | 357 |     } | 
 | 358 |  | 
 | 359 |     switch(hw->mac_type) { | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 360 |     case e1000_82571: | 
 | 361 |     case e1000_82572: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 362 |     case e1000_82573: | 
 | 363 |         hw->eeprom_semaphore_present = TRUE; | 
 | 364 |         /* fall through */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 365 |     case e1000_82541: | 
 | 366 |     case e1000_82547: | 
 | 367 |     case e1000_82541_rev_2: | 
 | 368 |     case e1000_82547_rev_2: | 
 | 369 |         hw->asf_firmware_present = TRUE; | 
 | 370 |         break; | 
 | 371 |     default: | 
 | 372 |         break; | 
 | 373 |     } | 
 | 374 |  | 
 | 375 |     return E1000_SUCCESS; | 
 | 376 | } | 
 | 377 |  | 
 | 378 | /***************************************************************************** | 
 | 379 |  * Set media type and TBI compatibility. | 
 | 380 |  * | 
 | 381 |  * hw - Struct containing variables accessed by shared code | 
 | 382 |  * **************************************************************************/ | 
 | 383 | void | 
 | 384 | e1000_set_media_type(struct e1000_hw *hw) | 
 | 385 | { | 
 | 386 |     uint32_t status; | 
 | 387 |  | 
 | 388 |     DEBUGFUNC("e1000_set_media_type"); | 
 | 389 |  | 
 | 390 |     if(hw->mac_type != e1000_82543) { | 
 | 391 |         /* tbi_compatibility is only valid on 82543 */ | 
 | 392 |         hw->tbi_compatibility_en = FALSE; | 
 | 393 |     } | 
 | 394 |  | 
 | 395 |     switch (hw->device_id) { | 
 | 396 |     case E1000_DEV_ID_82545GM_SERDES: | 
 | 397 |     case E1000_DEV_ID_82546GB_SERDES: | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 398 |     case E1000_DEV_ID_82571EB_SERDES: | 
 | 399 |     case E1000_DEV_ID_82572EI_SERDES: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 400 |         hw->media_type = e1000_media_type_internal_serdes; | 
 | 401 |         break; | 
 | 402 |     default: | 
| Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 403 |         switch (hw->mac_type) { | 
 | 404 |         case e1000_82542_rev2_0: | 
 | 405 |         case e1000_82542_rev2_1: | 
 | 406 |             hw->media_type = e1000_media_type_fiber; | 
 | 407 |             break; | 
 | 408 |         case e1000_82573: | 
 | 409 |             /* The STATUS_TBIMODE bit is reserved or reused for the this | 
 | 410 |              * device. | 
 | 411 |              */ | 
 | 412 |             hw->media_type = e1000_media_type_copper; | 
 | 413 |             break; | 
 | 414 |         default: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 415 |             status = E1000_READ_REG(hw, STATUS); | 
| Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 416 |             if (status & E1000_STATUS_TBIMODE) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 417 |                 hw->media_type = e1000_media_type_fiber; | 
 | 418 |                 /* tbi_compatibility not valid on fiber */ | 
 | 419 |                 hw->tbi_compatibility_en = FALSE; | 
 | 420 |             } else { | 
 | 421 |                 hw->media_type = e1000_media_type_copper; | 
 | 422 |             } | 
| Malli Chilakala | 3893d54 | 2005-06-17 17:44:49 -0700 | [diff] [blame] | 423 |             break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 424 |         } | 
 | 425 |     } | 
 | 426 | } | 
 | 427 |  | 
 | 428 | /****************************************************************************** | 
 | 429 |  * Reset the transmit and receive units; mask and clear all interrupts. | 
 | 430 |  * | 
 | 431 |  * hw - Struct containing variables accessed by shared code | 
 | 432 |  *****************************************************************************/ | 
 | 433 | int32_t | 
 | 434 | e1000_reset_hw(struct e1000_hw *hw) | 
 | 435 | { | 
 | 436 |     uint32_t ctrl; | 
 | 437 |     uint32_t ctrl_ext; | 
 | 438 |     uint32_t icr; | 
 | 439 |     uint32_t manc; | 
 | 440 |     uint32_t led_ctrl; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 441 |     uint32_t timeout; | 
 | 442 |     uint32_t extcnf_ctrl; | 
 | 443 |     int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 444 |  | 
 | 445 |     DEBUGFUNC("e1000_reset_hw"); | 
 | 446 |  | 
 | 447 |     /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | 
 | 448 |     if(hw->mac_type == e1000_82542_rev2_0) { | 
 | 449 |         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
 | 450 |         e1000_pci_clear_mwi(hw); | 
 | 451 |     } | 
 | 452 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 453 |     if(hw->bus_type == e1000_bus_type_pci_express) { | 
 | 454 |         /* Prevent the PCI-E bus from sticking if there is no TLP connection | 
 | 455 |          * on the last TLP read/write transaction when MAC is reset. | 
 | 456 |          */ | 
 | 457 |         if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | 
 | 458 |             DEBUGOUT("PCI-E Master disable polling has failed.\n"); | 
 | 459 |         } | 
 | 460 |     } | 
 | 461 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 462 |     /* Clear interrupt mask to stop board from generating interrupts */ | 
 | 463 |     DEBUGOUT("Masking off all interrupts\n"); | 
 | 464 |     E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
 | 465 |  | 
 | 466 |     /* Disable the Transmit and Receive units.  Then delay to allow | 
 | 467 |      * any pending transactions to complete before we hit the MAC with | 
 | 468 |      * the global reset. | 
 | 469 |      */ | 
 | 470 |     E1000_WRITE_REG(hw, RCTL, 0); | 
 | 471 |     E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); | 
 | 472 |     E1000_WRITE_FLUSH(hw); | 
 | 473 |  | 
 | 474 |     /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | 
 | 475 |     hw->tbi_compatibility_on = FALSE; | 
 | 476 |  | 
 | 477 |     /* Delay to allow any outstanding PCI transactions to complete before | 
 | 478 |      * resetting the device | 
 | 479 |      */ | 
 | 480 |     msec_delay(10); | 
 | 481 |  | 
 | 482 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 483 |  | 
 | 484 |     /* Must reset the PHY before resetting the MAC */ | 
 | 485 |     if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 486 |         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 487 |         msec_delay(5); | 
 | 488 |     } | 
 | 489 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 490 |     /* Must acquire the MDIO ownership before MAC reset. | 
 | 491 |      * Ownership defaults to firmware after a reset. */ | 
 | 492 |     if(hw->mac_type == e1000_82573) { | 
 | 493 |         timeout = 10; | 
 | 494 |  | 
 | 495 |         extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | 
 | 496 |         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
 | 497 |  | 
 | 498 |         do { | 
 | 499 |             E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | 
 | 500 |             extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | 
 | 501 |  | 
 | 502 |             if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | 
 | 503 |                 break; | 
 | 504 |             else | 
 | 505 |                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
 | 506 |  | 
 | 507 |             msec_delay(2); | 
 | 508 |             timeout--; | 
 | 509 |         } while(timeout); | 
 | 510 |     } | 
 | 511 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 512 |     /* Issue a global reset to the MAC.  This will reset the chip's | 
 | 513 |      * transmit, receive, DMA, and link units.  It will not effect | 
 | 514 |      * the current PCI configuration.  The global reset bit is self- | 
 | 515 |      * clearing, and should clear within a microsecond. | 
 | 516 |      */ | 
 | 517 |     DEBUGOUT("Issuing a global reset to MAC\n"); | 
 | 518 |  | 
 | 519 |     switch(hw->mac_type) { | 
 | 520 |         case e1000_82544: | 
 | 521 |         case e1000_82540: | 
 | 522 |         case e1000_82545: | 
 | 523 |         case e1000_82546: | 
 | 524 |         case e1000_82541: | 
 | 525 |         case e1000_82541_rev_2: | 
 | 526 |             /* These controllers can't ack the 64-bit write when issuing the | 
 | 527 |              * reset, so use IO-mapping as a workaround to issue the reset */ | 
 | 528 |             E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
 | 529 |             break; | 
 | 530 |         case e1000_82545_rev_3: | 
 | 531 |         case e1000_82546_rev_3: | 
 | 532 |             /* Reset is performed on a shadow of the control register */ | 
 | 533 |             E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 
 | 534 |             break; | 
 | 535 |         default: | 
 | 536 |             E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
 | 537 |             break; | 
 | 538 |     } | 
 | 539 |  | 
 | 540 |     /* After MAC reset, force reload of EEPROM to restore power-on settings to | 
 | 541 |      * device.  Later controllers reload the EEPROM automatically, so just wait | 
 | 542 |      * for reload to complete. | 
 | 543 |      */ | 
 | 544 |     switch(hw->mac_type) { | 
 | 545 |         case e1000_82542_rev2_0: | 
 | 546 |         case e1000_82542_rev2_1: | 
 | 547 |         case e1000_82543: | 
 | 548 |         case e1000_82544: | 
 | 549 |             /* Wait for reset to complete */ | 
 | 550 |             udelay(10); | 
 | 551 |             ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
 | 552 |             ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
 | 553 |             E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
 | 554 |             E1000_WRITE_FLUSH(hw); | 
 | 555 |             /* Wait for EEPROM reload */ | 
 | 556 |             msec_delay(2); | 
 | 557 |             break; | 
 | 558 |         case e1000_82541: | 
 | 559 |         case e1000_82541_rev_2: | 
 | 560 |         case e1000_82547: | 
 | 561 |         case e1000_82547_rev_2: | 
 | 562 |             /* Wait for EEPROM reload */ | 
 | 563 |             msec_delay(20); | 
 | 564 |             break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 565 |         case e1000_82573: | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 566 |             if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) { | 
 | 567 |                 udelay(10); | 
 | 568 |                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
 | 569 |                 ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
 | 570 |                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
 | 571 |                 E1000_WRITE_FLUSH(hw); | 
 | 572 |             } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 573 |             /* fall through */ | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 574 |         case e1000_82571: | 
 | 575 |         case e1000_82572: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 576 |             ret_val = e1000_get_auto_rd_done(hw); | 
 | 577 |             if(ret_val) | 
 | 578 |                 /* We don't want to continue accessing MAC registers. */ | 
 | 579 |                 return ret_val; | 
 | 580 |             break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 581 |         default: | 
 | 582 |             /* Wait for EEPROM reload (it happens automatically) */ | 
 | 583 |             msec_delay(5); | 
 | 584 |             break; | 
 | 585 |     } | 
 | 586 |  | 
 | 587 |     /* Disable HW ARPs on ASF enabled adapters */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 588 |     if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 589 |         manc = E1000_READ_REG(hw, MANC); | 
 | 590 |         manc &= ~(E1000_MANC_ARP_EN); | 
 | 591 |         E1000_WRITE_REG(hw, MANC, manc); | 
 | 592 |     } | 
 | 593 |  | 
 | 594 |     if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
 | 595 |         e1000_phy_init_script(hw); | 
 | 596 |  | 
 | 597 |         /* Configure activity LED after PHY reset */ | 
 | 598 |         led_ctrl = E1000_READ_REG(hw, LEDCTL); | 
 | 599 |         led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
 | 600 |         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
 | 601 |         E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 
 | 602 |     } | 
 | 603 |  | 
 | 604 |     /* Clear interrupt mask to stop board from generating interrupts */ | 
 | 605 |     DEBUGOUT("Masking off all interrupts\n"); | 
 | 606 |     E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
 | 607 |  | 
 | 608 |     /* Clear any pending interrupt events. */ | 
 | 609 |     icr = E1000_READ_REG(hw, ICR); | 
 | 610 |  | 
 | 611 |     /* If MWI was previously enabled, reenable it. */ | 
 | 612 |     if(hw->mac_type == e1000_82542_rev2_0) { | 
 | 613 |         if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | 
 | 614 |             e1000_pci_set_mwi(hw); | 
 | 615 |     } | 
 | 616 |  | 
 | 617 |     return E1000_SUCCESS; | 
 | 618 | } | 
 | 619 |  | 
 | 620 | /****************************************************************************** | 
 | 621 |  * Performs basic configuration of the adapter. | 
 | 622 |  * | 
 | 623 |  * hw - Struct containing variables accessed by shared code | 
 | 624 |  * | 
 | 625 |  * Assumes that the controller has previously been reset and is in a | 
 | 626 |  * post-reset uninitialized state. Initializes the receive address registers, | 
 | 627 |  * multicast table, and VLAN filter table. Calls routines to setup link | 
 | 628 |  * configuration and flow control settings. Clears all on-chip counters. Leaves | 
 | 629 |  * the transmit and receive units disabled and uninitialized. | 
 | 630 |  *****************************************************************************/ | 
 | 631 | int32_t | 
 | 632 | e1000_init_hw(struct e1000_hw *hw) | 
 | 633 | { | 
 | 634 |     uint32_t ctrl; | 
 | 635 |     uint32_t i; | 
 | 636 |     int32_t ret_val; | 
 | 637 |     uint16_t pcix_cmd_word; | 
 | 638 |     uint16_t pcix_stat_hi_word; | 
 | 639 |     uint16_t cmd_mmrbc; | 
 | 640 |     uint16_t stat_mmrbc; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 641 |     uint32_t mta_size; | 
 | 642 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 643 |     DEBUGFUNC("e1000_init_hw"); | 
 | 644 |  | 
 | 645 |     /* Initialize Identification LED */ | 
 | 646 |     ret_val = e1000_id_led_init(hw); | 
 | 647 |     if(ret_val) { | 
 | 648 |         DEBUGOUT("Error Initializing Identification LED\n"); | 
 | 649 |         return ret_val; | 
 | 650 |     } | 
 | 651 |  | 
 | 652 |     /* Set the media type and TBI compatibility */ | 
 | 653 |     e1000_set_media_type(hw); | 
 | 654 |  | 
 | 655 |     /* Disabling VLAN filtering. */ | 
 | 656 |     DEBUGOUT("Initializing the IEEE VLAN\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 657 |     if (hw->mac_type < e1000_82545_rev_3) | 
 | 658 |         E1000_WRITE_REG(hw, VET, 0); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 659 |     e1000_clear_vfta(hw); | 
 | 660 |  | 
 | 661 |     /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 
 | 662 |     if(hw->mac_type == e1000_82542_rev2_0) { | 
 | 663 |         DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
 | 664 |         e1000_pci_clear_mwi(hw); | 
 | 665 |         E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); | 
 | 666 |         E1000_WRITE_FLUSH(hw); | 
 | 667 |         msec_delay(5); | 
 | 668 |     } | 
 | 669 |  | 
 | 670 |     /* Setup the receive address. This involves initializing all of the Receive | 
 | 671 |      * Address Registers (RARs 0 - 15). | 
 | 672 |      */ | 
 | 673 |     e1000_init_rx_addrs(hw); | 
 | 674 |  | 
 | 675 |     /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 
 | 676 |     if(hw->mac_type == e1000_82542_rev2_0) { | 
 | 677 |         E1000_WRITE_REG(hw, RCTL, 0); | 
 | 678 |         E1000_WRITE_FLUSH(hw); | 
 | 679 |         msec_delay(1); | 
 | 680 |         if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | 
 | 681 |             e1000_pci_set_mwi(hw); | 
 | 682 |     } | 
 | 683 |  | 
 | 684 |     /* Zero out the Multicast HASH table */ | 
 | 685 |     DEBUGOUT("Zeroing the MTA\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 686 |     mta_size = E1000_MC_TBL_SIZE; | 
 | 687 |     for(i = 0; i < mta_size; i++) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 688 |         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
 | 689 |  | 
 | 690 |     /* Set the PCI priority bit correctly in the CTRL register.  This | 
 | 691 |      * determines if the adapter gives priority to receives, or if it | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 692 |      * gives equal priority to transmits and receives.  Valid only on | 
 | 693 |      * 82542 and 82543 silicon. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 694 |      */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 695 |     if(hw->dma_fairness && hw->mac_type <= e1000_82543) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 696 |         ctrl = E1000_READ_REG(hw, CTRL); | 
 | 697 |         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | 
 | 698 |     } | 
 | 699 |  | 
 | 700 |     switch(hw->mac_type) { | 
 | 701 |     case e1000_82545_rev_3: | 
 | 702 |     case e1000_82546_rev_3: | 
 | 703 |         break; | 
 | 704 |     default: | 
 | 705 |         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | 
 | 706 |         if(hw->bus_type == e1000_bus_type_pcix) { | 
 | 707 |             e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); | 
 | 708 |             e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, | 
 | 709 |                 &pcix_stat_hi_word); | 
 | 710 |             cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> | 
 | 711 |                 PCIX_COMMAND_MMRBC_SHIFT; | 
 | 712 |             stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> | 
 | 713 |                 PCIX_STATUS_HI_MMRBC_SHIFT; | 
 | 714 |             if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) | 
 | 715 |                 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; | 
 | 716 |             if(cmd_mmrbc > stat_mmrbc) { | 
 | 717 |                 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; | 
 | 718 |                 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; | 
 | 719 |                 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, | 
 | 720 |                     &pcix_cmd_word); | 
 | 721 |             } | 
 | 722 |         } | 
 | 723 |         break; | 
 | 724 |     } | 
 | 725 |  | 
 | 726 |     /* Call a subroutine to configure the link and setup flow control. */ | 
 | 727 |     ret_val = e1000_setup_link(hw); | 
 | 728 |  | 
 | 729 |     /* Set the transmit descriptor write-back policy */ | 
 | 730 |     if(hw->mac_type > e1000_82544) { | 
 | 731 |         ctrl = E1000_READ_REG(hw, TXDCTL); | 
 | 732 |         ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 733 |         switch (hw->mac_type) { | 
 | 734 |         default: | 
 | 735 |             break; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 736 |         case e1000_82571: | 
 | 737 |         case e1000_82572: | 
 | 738 |             ctrl |= (1 << 22); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 739 |         case e1000_82573: | 
 | 740 |             ctrl |= E1000_TXDCTL_COUNT_DESC; | 
 | 741 |             break; | 
 | 742 |         } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 743 |         E1000_WRITE_REG(hw, TXDCTL, ctrl); | 
 | 744 |     } | 
 | 745 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 746 |     if (hw->mac_type == e1000_82573) { | 
 | 747 |         e1000_enable_tx_pkt_filtering(hw);  | 
 | 748 |     } | 
 | 749 |  | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 750 |     switch (hw->mac_type) { | 
 | 751 |     default: | 
 | 752 |         break; | 
 | 753 |     case e1000_82571: | 
| Mallikarjuna R Chilakala | a7990ba | 2005-10-04 07:08:19 -0400 | [diff] [blame] | 754 |     case e1000_82572: | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 755 |         ctrl = E1000_READ_REG(hw, TXDCTL1); | 
 | 756 |         ctrl &= ~E1000_TXDCTL_WTHRESH; | 
 | 757 |         ctrl |= E1000_TXDCTL_COUNT_DESC | E1000_TXDCTL_FULL_TX_DESC_WB; | 
 | 758 |         ctrl |= (1 << 22); | 
 | 759 |         E1000_WRITE_REG(hw, TXDCTL1, ctrl); | 
 | 760 |         break; | 
 | 761 |     } | 
 | 762 |  | 
 | 763 |  | 
 | 764 |  | 
 | 765 |     if (hw->mac_type == e1000_82573) { | 
 | 766 |         uint32_t gcr = E1000_READ_REG(hw, GCR); | 
 | 767 |         gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | 
 | 768 |         E1000_WRITE_REG(hw, GCR, gcr); | 
 | 769 |     } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 770 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 771 |     /* Clear all of the statistics registers (clear on read).  It is | 
 | 772 |      * important that we do this after we have tried to establish link | 
 | 773 |      * because the symbol error count will increment wildly if there | 
 | 774 |      * is no link. | 
 | 775 |      */ | 
 | 776 |     e1000_clear_hw_cntrs(hw); | 
 | 777 |  | 
 | 778 |     return ret_val; | 
 | 779 | } | 
 | 780 |  | 
 | 781 | /****************************************************************************** | 
 | 782 |  * Adjust SERDES output amplitude based on EEPROM setting. | 
 | 783 |  * | 
 | 784 |  * hw - Struct containing variables accessed by shared code. | 
 | 785 |  *****************************************************************************/ | 
 | 786 | static int32_t | 
 | 787 | e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | 
 | 788 | { | 
 | 789 |     uint16_t eeprom_data; | 
 | 790 |     int32_t  ret_val; | 
 | 791 |  | 
 | 792 |     DEBUGFUNC("e1000_adjust_serdes_amplitude"); | 
 | 793 |  | 
 | 794 |     if(hw->media_type != e1000_media_type_internal_serdes) | 
 | 795 |         return E1000_SUCCESS; | 
 | 796 |  | 
 | 797 |     switch(hw->mac_type) { | 
 | 798 |     case e1000_82545_rev_3: | 
 | 799 |     case e1000_82546_rev_3: | 
 | 800 |         break; | 
 | 801 |     default: | 
 | 802 |         return E1000_SUCCESS; | 
 | 803 |     } | 
 | 804 |  | 
 | 805 |     ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); | 
 | 806 |     if (ret_val) { | 
 | 807 |         return ret_val; | 
 | 808 |     } | 
 | 809 |  | 
 | 810 |     if(eeprom_data != EEPROM_RESERVED_WORD) { | 
 | 811 |         /* Adjust SERDES output amplitude only. */ | 
 | 812 |         eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;  | 
 | 813 |         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | 
 | 814 |         if(ret_val) | 
 | 815 |             return ret_val; | 
 | 816 |     } | 
 | 817 |  | 
 | 818 |     return E1000_SUCCESS; | 
 | 819 | } | 
 | 820 |  | 
 | 821 | /****************************************************************************** | 
 | 822 |  * Configures flow control and link settings. | 
 | 823 |  * | 
 | 824 |  * hw - Struct containing variables accessed by shared code | 
 | 825 |  * | 
 | 826 |  * Determines which flow control settings to use. Calls the apropriate media- | 
 | 827 |  * specific link configuration function. Configures the flow control settings. | 
 | 828 |  * Assuming the adapter has a valid link partner, a valid link should be | 
 | 829 |  * established. Assumes the hardware has previously been reset and the | 
 | 830 |  * transmitter and receiver are not enabled. | 
 | 831 |  *****************************************************************************/ | 
 | 832 | int32_t | 
 | 833 | e1000_setup_link(struct e1000_hw *hw) | 
 | 834 | { | 
 | 835 |     uint32_t ctrl_ext; | 
 | 836 |     int32_t ret_val; | 
 | 837 |     uint16_t eeprom_data; | 
 | 838 |  | 
 | 839 |     DEBUGFUNC("e1000_setup_link"); | 
 | 840 |  | 
 | 841 |     /* Read and store word 0x0F of the EEPROM. This word contains bits | 
 | 842 |      * that determine the hardware's default PAUSE (flow control) mode, | 
 | 843 |      * a bit that determines whether the HW defaults to enabling or | 
 | 844 |      * disabling auto-negotiation, and the direction of the | 
 | 845 |      * SW defined pins. If there is no SW over-ride of the flow | 
 | 846 |      * control setting, then the variable hw->fc will | 
 | 847 |      * be initialized based on a value in the EEPROM. | 
 | 848 |      */ | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 849 |     if (hw->fc == e1000_fc_default) { | 
 | 850 |         switch (hw->mac_type) { | 
 | 851 |         case e1000_82573: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 852 |             hw->fc = e1000_fc_full; | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 853 |             break; | 
 | 854 |         default: | 
 | 855 |             ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 
 | 856 |                                         1, &eeprom_data); | 
 | 857 |             if (ret_val) { | 
 | 858 |                 DEBUGOUT("EEPROM Read Error\n"); | 
 | 859 |                 return -E1000_ERR_EEPROM; | 
 | 860 |             } | 
 | 861 |             if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 
 | 862 |                 hw->fc = e1000_fc_none; | 
 | 863 |             else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 
 | 864 |                     EEPROM_WORD0F_ASM_DIR) | 
 | 865 |                 hw->fc = e1000_fc_tx_pause; | 
 | 866 |             else | 
 | 867 |                 hw->fc = e1000_fc_full; | 
 | 868 |             break; | 
 | 869 |         } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 870 |     } | 
 | 871 |  | 
 | 872 |     /* We want to save off the original Flow Control configuration just | 
 | 873 |      * in case we get disconnected and then reconnected into a different | 
 | 874 |      * hub or switch with different Flow Control capabilities. | 
 | 875 |      */ | 
 | 876 |     if(hw->mac_type == e1000_82542_rev2_0) | 
 | 877 |         hw->fc &= (~e1000_fc_tx_pause); | 
 | 878 |  | 
 | 879 |     if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 
 | 880 |         hw->fc &= (~e1000_fc_rx_pause); | 
 | 881 |  | 
 | 882 |     hw->original_fc = hw->fc; | 
 | 883 |  | 
 | 884 |     DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | 
 | 885 |  | 
 | 886 |     /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 
 | 887 |      * polarity value for the SW controlled pins, and setup the | 
 | 888 |      * Extended Device Control reg with that info. | 
 | 889 |      * This is needed because one of the SW controlled pins is used for | 
 | 890 |      * signal detection.  So this should be done before e1000_setup_pcs_link() | 
 | 891 |      * or e1000_phy_setup() is called. | 
 | 892 |      */ | 
 | 893 |     if(hw->mac_type == e1000_82543) { | 
 | 894 |         ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 
 | 895 |                     SWDPIO__EXT_SHIFT); | 
 | 896 |         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
 | 897 |     } | 
 | 898 |  | 
 | 899 |     /* Call the necessary subroutine to configure the link. */ | 
 | 900 |     ret_val = (hw->media_type == e1000_media_type_copper) ? | 
 | 901 |               e1000_setup_copper_link(hw) : | 
 | 902 |               e1000_setup_fiber_serdes_link(hw); | 
 | 903 |  | 
 | 904 |     /* Initialize the flow control address, type, and PAUSE timer | 
 | 905 |      * registers to their default values.  This is done even if flow | 
 | 906 |      * control is disabled, because it does not hurt anything to | 
 | 907 |      * initialize these registers. | 
 | 908 |      */ | 
 | 909 |     DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 
 | 910 |  | 
 | 911 |     E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
 | 912 |     E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
 | 913 |     E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 914 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 915 |     E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 
 | 916 |  | 
 | 917 |     /* Set the flow control receive threshold registers.  Normally, | 
 | 918 |      * these registers will be set to a default threshold that may be | 
 | 919 |      * adjusted later by the driver's runtime code.  However, if the | 
 | 920 |      * ability to transmit pause frames in not enabled, then these | 
 | 921 |      * registers will be set to 0. | 
 | 922 |      */ | 
 | 923 |     if(!(hw->fc & e1000_fc_tx_pause)) { | 
 | 924 |         E1000_WRITE_REG(hw, FCRTL, 0); | 
 | 925 |         E1000_WRITE_REG(hw, FCRTH, 0); | 
 | 926 |     } else { | 
 | 927 |         /* We need to set up the Receive Threshold high and low water marks | 
 | 928 |          * as well as (optionally) enabling the transmission of XON frames. | 
 | 929 |          */ | 
 | 930 |         if(hw->fc_send_xon) { | 
 | 931 |             E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | 
 | 932 |             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | 
 | 933 |         } else { | 
 | 934 |             E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); | 
 | 935 |             E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | 
 | 936 |         } | 
 | 937 |     } | 
 | 938 |     return ret_val; | 
 | 939 | } | 
 | 940 |  | 
 | 941 | /****************************************************************************** | 
 | 942 |  * Sets up link for a fiber based or serdes based adapter | 
 | 943 |  * | 
 | 944 |  * hw - Struct containing variables accessed by shared code | 
 | 945 |  * | 
 | 946 |  * Manipulates Physical Coding Sublayer functions in order to configure | 
 | 947 |  * link. Assumes the hardware has been previously reset and the transmitter | 
 | 948 |  * and receiver are not enabled. | 
 | 949 |  *****************************************************************************/ | 
 | 950 | static int32_t | 
 | 951 | e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | 
 | 952 | { | 
 | 953 |     uint32_t ctrl; | 
 | 954 |     uint32_t status; | 
 | 955 |     uint32_t txcw = 0; | 
 | 956 |     uint32_t i; | 
 | 957 |     uint32_t signal = 0; | 
 | 958 |     int32_t ret_val; | 
 | 959 |  | 
 | 960 |     DEBUGFUNC("e1000_setup_fiber_serdes_link"); | 
 | 961 |  | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 962 |     /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists | 
 | 963 |      * until explicitly turned off or a power cycle is performed.  A read to | 
 | 964 |      * the register does not indicate its status.  Therefore, we ensure | 
 | 965 |      * loopback mode is disabled during initialization. | 
 | 966 |      */ | 
 | 967 |     if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) | 
 | 968 |         E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK); | 
 | 969 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 970 |     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | 
 | 971 |      * set when the optics detect a signal. On older adapters, it will be | 
 | 972 |      * cleared when there is a signal.  This applies to fiber media only. | 
 | 973 |      * If we're on serdes media, adjust the output amplitude to value set in | 
 | 974 |      * the EEPROM. | 
 | 975 |      */ | 
 | 976 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 977 |     if(hw->media_type == e1000_media_type_fiber) | 
 | 978 |         signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
 | 979 |  | 
 | 980 |     ret_val = e1000_adjust_serdes_amplitude(hw); | 
 | 981 |     if(ret_val) | 
 | 982 |         return ret_val; | 
 | 983 |  | 
 | 984 |     /* Take the link out of reset */ | 
 | 985 |     ctrl &= ~(E1000_CTRL_LRST); | 
 | 986 |  | 
 | 987 |     /* Adjust VCO speed to improve BER performance */ | 
 | 988 |     ret_val = e1000_set_vco_speed(hw); | 
 | 989 |     if(ret_val) | 
 | 990 |         return ret_val; | 
 | 991 |  | 
 | 992 |     e1000_config_collision_dist(hw); | 
 | 993 |  | 
 | 994 |     /* Check for a software override of the flow control settings, and setup | 
 | 995 |      * the device accordingly.  If auto-negotiation is enabled, then software | 
 | 996 |      * will have to set the "PAUSE" bits to the correct value in the Tranmsit | 
 | 997 |      * Config Word Register (TXCW) and re-start auto-negotiation.  However, if | 
 | 998 |      * auto-negotiation is disabled, then software will have to manually | 
 | 999 |      * configure the two flow control enable bits in the CTRL register. | 
 | 1000 |      * | 
 | 1001 |      * The possible values of the "fc" parameter are: | 
 | 1002 |      *      0:  Flow control is completely disabled | 
 | 1003 |      *      1:  Rx flow control is enabled (we can receive pause frames, but | 
 | 1004 |      *          not send pause frames). | 
 | 1005 |      *      2:  Tx flow control is enabled (we can send pause frames but we do | 
 | 1006 |      *          not support receiving pause frames). | 
 | 1007 |      *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
 | 1008 |      */ | 
 | 1009 |     switch (hw->fc) { | 
 | 1010 |     case e1000_fc_none: | 
 | 1011 |         /* Flow control is completely disabled by a software over-ride. */ | 
 | 1012 |         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
 | 1013 |         break; | 
 | 1014 |     case e1000_fc_rx_pause: | 
 | 1015 |         /* RX Flow control is enabled and TX Flow control is disabled by a | 
 | 1016 |          * software over-ride. Since there really isn't a way to advertise | 
 | 1017 |          * that we are capable of RX Pause ONLY, we will advertise that we | 
 | 1018 |          * support both symmetric and asymmetric RX PAUSE. Later, we will | 
 | 1019 |          *  disable the adapter's ability to send PAUSE frames. | 
 | 1020 |          */ | 
 | 1021 |         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
 | 1022 |         break; | 
 | 1023 |     case e1000_fc_tx_pause: | 
 | 1024 |         /* TX Flow control is enabled, and RX Flow control is disabled, by a | 
 | 1025 |          * software over-ride. | 
 | 1026 |          */ | 
 | 1027 |         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
 | 1028 |         break; | 
 | 1029 |     case e1000_fc_full: | 
 | 1030 |         /* Flow control (both RX and TX) is enabled by a software over-ride. */ | 
 | 1031 |         txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
 | 1032 |         break; | 
 | 1033 |     default: | 
 | 1034 |         DEBUGOUT("Flow control param set incorrectly\n"); | 
 | 1035 |         return -E1000_ERR_CONFIG; | 
 | 1036 |         break; | 
 | 1037 |     } | 
 | 1038 |  | 
 | 1039 |     /* Since auto-negotiation is enabled, take the link out of reset (the link | 
 | 1040 |      * will be in reset, because we previously reset the chip). This will | 
 | 1041 |      * restart auto-negotiation.  If auto-neogtiation is successful then the | 
 | 1042 |      * link-up status bit will be set and the flow control enable bits (RFCE | 
 | 1043 |      * and TFCE) will be set according to their negotiated value. | 
 | 1044 |      */ | 
 | 1045 |     DEBUGOUT("Auto-negotiation enabled\n"); | 
 | 1046 |  | 
 | 1047 |     E1000_WRITE_REG(hw, TXCW, txcw); | 
 | 1048 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 1049 |     E1000_WRITE_FLUSH(hw); | 
 | 1050 |  | 
 | 1051 |     hw->txcw = txcw; | 
 | 1052 |     msec_delay(1); | 
 | 1053 |  | 
 | 1054 |     /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | 
 | 1055 |      * indication in the Device Status Register.  Time-out if a link isn't | 
 | 1056 |      * seen in 500 milliseconds seconds (Auto-negotiation should complete in | 
 | 1057 |      * less than 500 milliseconds even if the other end is doing it in SW). | 
 | 1058 |      * For internal serdes, we just assume a signal is present, then poll. | 
 | 1059 |      */ | 
 | 1060 |     if(hw->media_type == e1000_media_type_internal_serdes || | 
 | 1061 |        (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 
 | 1062 |         DEBUGOUT("Looking for Link\n"); | 
 | 1063 |         for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 
 | 1064 |             msec_delay(10); | 
 | 1065 |             status = E1000_READ_REG(hw, STATUS); | 
 | 1066 |             if(status & E1000_STATUS_LU) break; | 
 | 1067 |         } | 
 | 1068 |         if(i == (LINK_UP_TIMEOUT / 10)) { | 
 | 1069 |             DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 
 | 1070 |             hw->autoneg_failed = 1; | 
 | 1071 |             /* AutoNeg failed to achieve a link, so we'll call | 
 | 1072 |              * e1000_check_for_link. This routine will force the link up if | 
 | 1073 |              * we detect a signal. This will allow us to communicate with | 
 | 1074 |              * non-autonegotiating link partners. | 
 | 1075 |              */ | 
 | 1076 |             ret_val = e1000_check_for_link(hw); | 
 | 1077 |             if(ret_val) { | 
 | 1078 |                 DEBUGOUT("Error while checking for link\n"); | 
 | 1079 |                 return ret_val; | 
 | 1080 |             } | 
 | 1081 |             hw->autoneg_failed = 0; | 
 | 1082 |         } else { | 
 | 1083 |             hw->autoneg_failed = 0; | 
 | 1084 |             DEBUGOUT("Valid Link Found\n"); | 
 | 1085 |         } | 
 | 1086 |     } else { | 
 | 1087 |         DEBUGOUT("No Signal Detected\n"); | 
 | 1088 |     } | 
 | 1089 |     return E1000_SUCCESS; | 
 | 1090 | } | 
 | 1091 |  | 
 | 1092 | /****************************************************************************** | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1093 | * Make sure we have a valid PHY and change PHY mode before link setup. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1094 | * | 
 | 1095 | * hw - Struct containing variables accessed by shared code | 
 | 1096 | ******************************************************************************/ | 
 | 1097 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1098 | e1000_copper_link_preconfig(struct e1000_hw *hw) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1099 | { | 
 | 1100 |     uint32_t ctrl; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1101 |     int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1102 |     uint16_t phy_data; | 
 | 1103 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1104 |     DEBUGFUNC("e1000_copper_link_preconfig"); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1105 |  | 
 | 1106 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 1107 |     /* With 82543, we need to force speed and duplex on the MAC equal to what | 
 | 1108 |      * the PHY speed and duplex configuration is. In addition, we need to | 
 | 1109 |      * perform a hardware reset on the PHY to take it out of reset. | 
 | 1110 |      */ | 
 | 1111 |     if(hw->mac_type > e1000_82543) { | 
 | 1112 |         ctrl |= E1000_CTRL_SLU; | 
 | 1113 |         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
 | 1114 |         E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 1115 |     } else { | 
 | 1116 |         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 
 | 1117 |         E1000_WRITE_REG(hw, CTRL, ctrl); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1118 |         ret_val = e1000_phy_hw_reset(hw); | 
 | 1119 |         if(ret_val) | 
 | 1120 |             return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1121 |     } | 
 | 1122 |  | 
 | 1123 |     /* Make sure we have a valid PHY */ | 
 | 1124 |     ret_val = e1000_detect_gig_phy(hw); | 
 | 1125 |     if(ret_val) { | 
 | 1126 |         DEBUGOUT("Error, did not detect valid phy.\n"); | 
 | 1127 |         return ret_val; | 
 | 1128 |     } | 
 | 1129 |     DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | 
 | 1130 |  | 
 | 1131 |     /* Set PHY to class A mode (if necessary) */ | 
 | 1132 |     ret_val = e1000_set_phy_mode(hw); | 
 | 1133 |     if(ret_val) | 
 | 1134 |         return ret_val; | 
 | 1135 |  | 
 | 1136 |     if((hw->mac_type == e1000_82545_rev_3) || | 
 | 1137 |        (hw->mac_type == e1000_82546_rev_3)) { | 
 | 1138 |         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
 | 1139 |         phy_data |= 0x00000008; | 
 | 1140 |         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
 | 1141 |     } | 
 | 1142 |  | 
 | 1143 |     if(hw->mac_type <= e1000_82543 || | 
 | 1144 |        hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | 
 | 1145 |        hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | 
 | 1146 |         hw->phy_reset_disable = FALSE; | 
 | 1147 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1148 |    return E1000_SUCCESS; | 
 | 1149 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1150 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1151 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1152 | /******************************************************************** | 
 | 1153 | * Copper link setup for e1000_phy_igp series. | 
 | 1154 | * | 
 | 1155 | * hw - Struct containing variables accessed by shared code | 
 | 1156 | *********************************************************************/ | 
 | 1157 | static int32_t | 
 | 1158 | e1000_copper_link_igp_setup(struct e1000_hw *hw) | 
 | 1159 | { | 
 | 1160 |     uint32_t led_ctrl; | 
 | 1161 |     int32_t ret_val; | 
 | 1162 |     uint16_t phy_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1163 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1164 |     DEBUGFUNC("e1000_copper_link_igp_setup"); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1165 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1166 |     if (hw->phy_reset_disable) | 
 | 1167 |         return E1000_SUCCESS; | 
 | 1168 |      | 
 | 1169 |     ret_val = e1000_phy_reset(hw); | 
 | 1170 |     if (ret_val) { | 
 | 1171 |         DEBUGOUT("Error Resetting the PHY\n"); | 
 | 1172 |         return ret_val; | 
 | 1173 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1174 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1175 |     /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 
 | 1176 |     msec_delay(15); | 
 | 1177 |  | 
 | 1178 |     /* Configure activity LED after PHY reset */ | 
 | 1179 |     led_ctrl = E1000_READ_REG(hw, LEDCTL); | 
 | 1180 |     led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
 | 1181 |     led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
 | 1182 |     E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 
 | 1183 |  | 
 | 1184 |     /* disable lplu d3 during driver init */ | 
 | 1185 |     ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 
 | 1186 |     if (ret_val) { | 
 | 1187 |         DEBUGOUT("Error Disabling LPLU D3\n"); | 
 | 1188 |         return ret_val; | 
 | 1189 |     } | 
 | 1190 |  | 
 | 1191 |     /* disable lplu d0 during driver init */ | 
 | 1192 |     ret_val = e1000_set_d0_lplu_state(hw, FALSE); | 
 | 1193 |     if (ret_val) { | 
 | 1194 |         DEBUGOUT("Error Disabling LPLU D0\n"); | 
 | 1195 |         return ret_val; | 
 | 1196 |     } | 
 | 1197 |     /* Configure mdi-mdix settings */ | 
 | 1198 |     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
 | 1199 |     if (ret_val) | 
 | 1200 |         return ret_val; | 
 | 1201 |  | 
 | 1202 |     if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
 | 1203 |         hw->dsp_config_state = e1000_dsp_config_disabled; | 
 | 1204 |         /* Force MDI for earlier revs of the IGP PHY */ | 
 | 1205 |         phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 
 | 1206 |         hw->mdix = 1; | 
 | 1207 |  | 
 | 1208 |     } else { | 
 | 1209 |         hw->dsp_config_state = e1000_dsp_config_enabled; | 
 | 1210 |         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
 | 1211 |  | 
 | 1212 |         switch (hw->mdix) { | 
 | 1213 |         case 1: | 
 | 1214 |             phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
 | 1215 |             break; | 
 | 1216 |         case 2: | 
 | 1217 |             phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
 | 1218 |             break; | 
 | 1219 |         case 0: | 
 | 1220 |         default: | 
 | 1221 |             phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | 
 | 1222 |             break; | 
 | 1223 |         } | 
 | 1224 |     } | 
 | 1225 |     ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
 | 1226 |     if(ret_val) | 
 | 1227 |         return ret_val; | 
 | 1228 |  | 
 | 1229 |     /* set auto-master slave resolution settings */ | 
 | 1230 |     if(hw->autoneg) { | 
 | 1231 |         e1000_ms_type phy_ms_setting = hw->master_slave; | 
 | 1232 |  | 
 | 1233 |         if(hw->ffe_config_state == e1000_ffe_config_active) | 
 | 1234 |             hw->ffe_config_state = e1000_ffe_config_enabled; | 
 | 1235 |  | 
 | 1236 |         if(hw->dsp_config_state == e1000_dsp_config_activated) | 
 | 1237 |             hw->dsp_config_state = e1000_dsp_config_enabled; | 
 | 1238 |  | 
 | 1239 |         /* when autonegotiation advertisment is only 1000Mbps then we | 
 | 1240 |           * should disable SmartSpeed and enable Auto MasterSlave | 
 | 1241 |           * resolution as hardware default. */ | 
 | 1242 |         if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 
 | 1243 |             /* Disable SmartSpeed */ | 
 | 1244 |             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1245 |             if(ret_val) | 
 | 1246 |                 return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1247 |             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 1248 |             ret_val = e1000_write_phy_reg(hw, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1249 |                                                   IGP01E1000_PHY_PORT_CONFIG, | 
 | 1250 |                                                   phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1251 |             if(ret_val) | 
 | 1252 |                 return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1253 |             /* Set auto Master/Slave resolution process */ | 
 | 1254 |             ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
 | 1255 |             if(ret_val) | 
 | 1256 |                 return ret_val; | 
 | 1257 |             phy_data &= ~CR_1000T_MS_ENABLE; | 
 | 1258 |             ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
 | 1259 |             if(ret_val) | 
 | 1260 |                 return ret_val; | 
 | 1261 |         } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1262 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1263 |         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
 | 1264 |         if(ret_val) | 
 | 1265 |             return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1266 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1267 |         /* load defaults for future use */ | 
 | 1268 |         hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 
 | 1269 |                                         ((phy_data & CR_1000T_MS_VALUE) ? | 
 | 1270 |                                          e1000_ms_force_master : | 
 | 1271 |                                          e1000_ms_force_slave) : | 
 | 1272 |                                          e1000_ms_auto; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1273 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1274 |         switch (phy_ms_setting) { | 
 | 1275 |         case e1000_ms_force_master: | 
 | 1276 |             phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 
 | 1277 |             break; | 
 | 1278 |         case e1000_ms_force_slave: | 
 | 1279 |             phy_data |= CR_1000T_MS_ENABLE; | 
 | 1280 |             phy_data &= ~(CR_1000T_MS_VALUE); | 
 | 1281 |             break; | 
 | 1282 |         case e1000_ms_auto: | 
 | 1283 |             phy_data &= ~CR_1000T_MS_ENABLE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1284 |             default: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1285 |             break; | 
 | 1286 |         } | 
 | 1287 |         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
 | 1288 |         if(ret_val) | 
 | 1289 |             return ret_val; | 
| Malli Chilakala | 2b02893 | 2005-06-17 17:46:06 -0700 | [diff] [blame] | 1290 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1291 |  | 
| Malli Chilakala | 2b02893 | 2005-06-17 17:46:06 -0700 | [diff] [blame] | 1292 |     return E1000_SUCCESS; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1293 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1294 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1295 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1296 | /******************************************************************** | 
 | 1297 | * Copper link setup for e1000_phy_m88 series. | 
 | 1298 | * | 
 | 1299 | * hw - Struct containing variables accessed by shared code | 
 | 1300 | *********************************************************************/ | 
 | 1301 | static int32_t | 
 | 1302 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) | 
 | 1303 | { | 
 | 1304 |     int32_t ret_val; | 
 | 1305 |     uint16_t phy_data; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1306 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1307 |     DEBUGFUNC("e1000_copper_link_mgp_setup"); | 
 | 1308 |  | 
 | 1309 |     if(hw->phy_reset_disable) | 
 | 1310 |         return E1000_SUCCESS; | 
 | 1311 |      | 
 | 1312 |     /* Enable CRS on TX. This must be set for half-duplex operation. */ | 
 | 1313 |     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
 | 1314 |     if(ret_val) | 
 | 1315 |         return ret_val; | 
 | 1316 |  | 
 | 1317 |     phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
 | 1318 |  | 
 | 1319 |     /* Options: | 
 | 1320 |      *   MDI/MDI-X = 0 (default) | 
 | 1321 |      *   0 - Auto for all speeds | 
 | 1322 |      *   1 - MDI mode | 
 | 1323 |      *   2 - MDI-X mode | 
 | 1324 |      *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
 | 1325 |      */ | 
 | 1326 |     phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
 | 1327 |  | 
 | 1328 |     switch (hw->mdix) { | 
 | 1329 |     case 1: | 
 | 1330 |         phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 
 | 1331 |         break; | 
 | 1332 |     case 2: | 
 | 1333 |         phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 
 | 1334 |         break; | 
 | 1335 |     case 3: | 
 | 1336 |         phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 
 | 1337 |         break; | 
 | 1338 |     case 0: | 
 | 1339 |     default: | 
 | 1340 |         phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
 | 1341 |         break; | 
 | 1342 |     } | 
 | 1343 |  | 
 | 1344 |     /* Options: | 
 | 1345 |      *   disable_polarity_correction = 0 (default) | 
 | 1346 |      *       Automatic Correction for Reversed Cable Polarity | 
 | 1347 |      *   0 - Disabled | 
 | 1348 |      *   1 - Enabled | 
 | 1349 |      */ | 
 | 1350 |     phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
 | 1351 |     if(hw->disable_polarity_correction == 1) | 
 | 1352 |         phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 
 | 1353 |         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
 | 1354 |         if(ret_val) | 
 | 1355 |             return ret_val; | 
 | 1356 |  | 
 | 1357 |     /* Force TX_CLK in the Extended PHY Specific Control Register | 
 | 1358 |      * to 25MHz clock. | 
 | 1359 |      */ | 
 | 1360 |     ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
 | 1361 |     if(ret_val) | 
 | 1362 |         return ret_val; | 
 | 1363 |  | 
 | 1364 |     phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
 | 1365 |  | 
 | 1366 |     if (hw->phy_revision < M88E1011_I_REV_4) { | 
 | 1367 |         /* Configure Master and Slave downshift values */ | 
 | 1368 |         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1369 |                               M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1370 |         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1371 |                              M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1372 |         ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
 | 1373 |         if(ret_val) | 
 | 1374 |             return ret_val; | 
 | 1375 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1376 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1377 |     /* SW Reset the PHY so all changes take effect */ | 
 | 1378 |     ret_val = e1000_phy_reset(hw); | 
 | 1379 |     if(ret_val) { | 
 | 1380 |         DEBUGOUT("Error Resetting the PHY\n"); | 
 | 1381 |         return ret_val; | 
 | 1382 |     } | 
 | 1383 |  | 
 | 1384 |    return E1000_SUCCESS; | 
 | 1385 | } | 
 | 1386 |  | 
 | 1387 | /******************************************************************** | 
 | 1388 | * Setup auto-negotiation and flow control advertisements, | 
 | 1389 | * and then perform auto-negotiation. | 
 | 1390 | * | 
 | 1391 | * hw - Struct containing variables accessed by shared code | 
 | 1392 | *********************************************************************/ | 
 | 1393 | static int32_t | 
 | 1394 | e1000_copper_link_autoneg(struct e1000_hw *hw) | 
 | 1395 | { | 
 | 1396 |     int32_t ret_val; | 
 | 1397 |     uint16_t phy_data; | 
 | 1398 |  | 
 | 1399 |     DEBUGFUNC("e1000_copper_link_autoneg"); | 
 | 1400 |  | 
 | 1401 |     /* Perform some bounds checking on the hw->autoneg_advertised | 
 | 1402 |      * parameter.  If this variable is zero, then set it to the default. | 
 | 1403 |      */ | 
 | 1404 |     hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
 | 1405 |  | 
 | 1406 |     /* If autoneg_advertised is zero, we assume it was not defaulted | 
 | 1407 |      * by the calling code so we set to advertise full capability. | 
 | 1408 |      */ | 
 | 1409 |     if(hw->autoneg_advertised == 0) | 
 | 1410 |         hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
 | 1411 |  | 
 | 1412 |     DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 
 | 1413 |     ret_val = e1000_phy_setup_autoneg(hw); | 
 | 1414 |     if(ret_val) { | 
 | 1415 |         DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 
 | 1416 |         return ret_val; | 
 | 1417 |     } | 
 | 1418 |     DEBUGOUT("Restarting Auto-Neg\n"); | 
 | 1419 |  | 
 | 1420 |     /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 
 | 1421 |      * the Auto Neg Restart bit in the PHY control register. | 
 | 1422 |      */ | 
 | 1423 |     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
 | 1424 |     if(ret_val) | 
 | 1425 |         return ret_val; | 
 | 1426 |  | 
 | 1427 |     phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 
 | 1428 |     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
 | 1429 |     if(ret_val) | 
 | 1430 |         return ret_val; | 
 | 1431 |  | 
 | 1432 |     /* Does the user want to wait for Auto-Neg to complete here, or | 
 | 1433 |      * check at a later time (for example, callback routine). | 
 | 1434 |      */ | 
 | 1435 |     if(hw->wait_autoneg_complete) { | 
 | 1436 |         ret_val = e1000_wait_autoneg(hw); | 
 | 1437 |         if(ret_val) { | 
 | 1438 |             DEBUGOUT("Error while waiting for autoneg to complete\n"); | 
 | 1439 |             return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1440 |         } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1441 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1442 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1443 |     hw->get_link_status = TRUE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1444 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1445 |     return E1000_SUCCESS; | 
 | 1446 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1447 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1448 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1449 | /****************************************************************************** | 
 | 1450 | * Config the MAC and the PHY after link is up. | 
 | 1451 | *   1) Set up the MAC to the current PHY speed/duplex | 
 | 1452 | *      if we are on 82543.  If we | 
 | 1453 | *      are on newer silicon, we only need to configure | 
 | 1454 | *      collision distance in the Transmit Control Register. | 
 | 1455 | *   2) Set up flow control on the MAC to that established with | 
 | 1456 | *      the link partner. | 
 | 1457 | *   3) Config DSP to improve Gigabit link quality for some PHY revisions.     | 
 | 1458 | * | 
 | 1459 | * hw - Struct containing variables accessed by shared code | 
 | 1460 | ******************************************************************************/ | 
 | 1461 | static int32_t | 
 | 1462 | e1000_copper_link_postconfig(struct e1000_hw *hw) | 
 | 1463 | { | 
 | 1464 |     int32_t ret_val; | 
 | 1465 |     DEBUGFUNC("e1000_copper_link_postconfig"); | 
 | 1466 |      | 
 | 1467 |     if(hw->mac_type >= e1000_82544) { | 
 | 1468 |         e1000_config_collision_dist(hw); | 
 | 1469 |     } else { | 
 | 1470 |         ret_val = e1000_config_mac_to_phy(hw); | 
 | 1471 |         if(ret_val) { | 
 | 1472 |             DEBUGOUT("Error configuring MAC to PHY settings\n"); | 
 | 1473 |             return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1474 |         } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1475 |     } | 
 | 1476 |     ret_val = e1000_config_fc_after_link_up(hw); | 
 | 1477 |     if(ret_val) { | 
 | 1478 |         DEBUGOUT("Error Configuring Flow Control\n"); | 
 | 1479 |         return ret_val; | 
 | 1480 |     } | 
 | 1481 |  | 
 | 1482 |     /* Config DSP to improve Giga link quality */ | 
 | 1483 |     if(hw->phy_type == e1000_phy_igp) { | 
 | 1484 |         ret_val = e1000_config_dsp_after_link_change(hw, TRUE); | 
 | 1485 |         if(ret_val) { | 
 | 1486 |             DEBUGOUT("Error Configuring DSP after link up\n"); | 
 | 1487 |             return ret_val; | 
 | 1488 |         } | 
 | 1489 |     } | 
 | 1490 |                  | 
 | 1491 |     return E1000_SUCCESS; | 
 | 1492 | } | 
 | 1493 |  | 
 | 1494 | /****************************************************************************** | 
 | 1495 | * Detects which PHY is present and setup the speed and duplex | 
 | 1496 | * | 
 | 1497 | * hw - Struct containing variables accessed by shared code | 
 | 1498 | ******************************************************************************/ | 
 | 1499 | static int32_t | 
 | 1500 | e1000_setup_copper_link(struct e1000_hw *hw) | 
 | 1501 | { | 
 | 1502 |     int32_t ret_val; | 
 | 1503 |     uint16_t i; | 
 | 1504 |     uint16_t phy_data; | 
 | 1505 |  | 
 | 1506 |     DEBUGFUNC("e1000_setup_copper_link"); | 
 | 1507 |  | 
 | 1508 |     /* Check if it is a valid PHY and set PHY mode if necessary. */ | 
 | 1509 |     ret_val = e1000_copper_link_preconfig(hw); | 
 | 1510 |     if(ret_val) | 
 | 1511 |         return ret_val; | 
 | 1512 |  | 
 | 1513 |     if (hw->phy_type == e1000_phy_igp || | 
 | 1514 |         hw->phy_type == e1000_phy_igp_2) { | 
 | 1515 |         ret_val = e1000_copper_link_igp_setup(hw); | 
 | 1516 |         if(ret_val) | 
 | 1517 |             return ret_val; | 
 | 1518 |     } else if (hw->phy_type == e1000_phy_m88) { | 
 | 1519 |         ret_val = e1000_copper_link_mgp_setup(hw); | 
 | 1520 |         if(ret_val) | 
 | 1521 |             return ret_val; | 
 | 1522 |     } | 
 | 1523 |  | 
 | 1524 |     if(hw->autoneg) { | 
 | 1525 |         /* Setup autoneg and flow control advertisement  | 
 | 1526 |           * and perform autonegotiation */    | 
 | 1527 |         ret_val = e1000_copper_link_autoneg(hw); | 
 | 1528 |         if(ret_val) | 
 | 1529 |             return ret_val;            | 
 | 1530 |     } else { | 
 | 1531 |         /* PHY will be set to 10H, 10F, 100H,or 100F | 
 | 1532 |           * depending on value from forced_speed_duplex. */ | 
 | 1533 |         DEBUGOUT("Forcing speed and duplex\n"); | 
 | 1534 |         ret_val = e1000_phy_force_speed_duplex(hw); | 
 | 1535 |         if(ret_val) { | 
 | 1536 |             DEBUGOUT("Error Forcing Speed and Duplex\n"); | 
 | 1537 |             return ret_val; | 
 | 1538 |         } | 
 | 1539 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1540 |  | 
 | 1541 |     /* Check link status. Wait up to 100 microseconds for link to become | 
 | 1542 |      * valid. | 
 | 1543 |      */ | 
 | 1544 |     for(i = 0; i < 10; i++) { | 
 | 1545 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 1546 |         if(ret_val) | 
 | 1547 |             return ret_val; | 
 | 1548 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 1549 |         if(ret_val) | 
 | 1550 |             return ret_val; | 
 | 1551 |  | 
 | 1552 |         if(phy_data & MII_SR_LINK_STATUS) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1553 |             /* Config the MAC and PHY after link is up */ | 
 | 1554 |             ret_val = e1000_copper_link_postconfig(hw); | 
 | 1555 |             if(ret_val) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1556 |                 return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1557 |              | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1558 |             DEBUGOUT("Valid link established!!!\n"); | 
 | 1559 |             return E1000_SUCCESS; | 
 | 1560 |         } | 
 | 1561 |         udelay(10); | 
 | 1562 |     } | 
 | 1563 |  | 
 | 1564 |     DEBUGOUT("Unable to establish link!!!\n"); | 
 | 1565 |     return E1000_SUCCESS; | 
 | 1566 | } | 
 | 1567 |  | 
 | 1568 | /****************************************************************************** | 
 | 1569 | * Configures PHY autoneg and flow control advertisement settings | 
 | 1570 | * | 
 | 1571 | * hw - Struct containing variables accessed by shared code | 
 | 1572 | ******************************************************************************/ | 
 | 1573 | int32_t | 
 | 1574 | e1000_phy_setup_autoneg(struct e1000_hw *hw) | 
 | 1575 | { | 
 | 1576 |     int32_t ret_val; | 
 | 1577 |     uint16_t mii_autoneg_adv_reg; | 
 | 1578 |     uint16_t mii_1000t_ctrl_reg; | 
 | 1579 |  | 
 | 1580 |     DEBUGFUNC("e1000_phy_setup_autoneg"); | 
 | 1581 |  | 
 | 1582 |     /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 
 | 1583 |     ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | 
 | 1584 |     if(ret_val) | 
 | 1585 |         return ret_val; | 
 | 1586 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1587 |         /* Read the MII 1000Base-T Control Register (Address 9). */ | 
 | 1588 |         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 
 | 1589 |         if(ret_val) | 
 | 1590 |             return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1591 |  | 
 | 1592 |     /* Need to parse both autoneg_advertised and fc and set up | 
 | 1593 |      * the appropriate PHY registers.  First we will parse for | 
 | 1594 |      * autoneg_advertised software override.  Since we can advertise | 
 | 1595 |      * a plethora of combinations, we need to check each bit | 
 | 1596 |      * individually. | 
 | 1597 |      */ | 
 | 1598 |  | 
 | 1599 |     /* First we clear all the 10/100 mb speed bits in the Auto-Neg | 
 | 1600 |      * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
 | 1601 |      * the  1000Base-T Control Register (Address 9). | 
 | 1602 |      */ | 
 | 1603 |     mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | 
 | 1604 |     mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 
 | 1605 |  | 
 | 1606 |     DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | 
 | 1607 |  | 
 | 1608 |     /* Do we want to advertise 10 Mb Half Duplex? */ | 
 | 1609 |     if(hw->autoneg_advertised & ADVERTISE_10_HALF) { | 
 | 1610 |         DEBUGOUT("Advertise 10mb Half duplex\n"); | 
 | 1611 |         mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 
 | 1612 |     } | 
 | 1613 |  | 
 | 1614 |     /* Do we want to advertise 10 Mb Full Duplex? */ | 
 | 1615 |     if(hw->autoneg_advertised & ADVERTISE_10_FULL) { | 
 | 1616 |         DEBUGOUT("Advertise 10mb Full duplex\n"); | 
 | 1617 |         mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 
 | 1618 |     } | 
 | 1619 |  | 
 | 1620 |     /* Do we want to advertise 100 Mb Half Duplex? */ | 
 | 1621 |     if(hw->autoneg_advertised & ADVERTISE_100_HALF) { | 
 | 1622 |         DEBUGOUT("Advertise 100mb Half duplex\n"); | 
 | 1623 |         mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 
 | 1624 |     } | 
 | 1625 |  | 
 | 1626 |     /* Do we want to advertise 100 Mb Full Duplex? */ | 
 | 1627 |     if(hw->autoneg_advertised & ADVERTISE_100_FULL) { | 
 | 1628 |         DEBUGOUT("Advertise 100mb Full duplex\n"); | 
 | 1629 |         mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 
 | 1630 |     } | 
 | 1631 |  | 
 | 1632 |     /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 
 | 1633 |     if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { | 
 | 1634 |         DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); | 
 | 1635 |     } | 
 | 1636 |  | 
 | 1637 |     /* Do we want to advertise 1000 Mb Full Duplex? */ | 
 | 1638 |     if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 
 | 1639 |         DEBUGOUT("Advertise 1000mb Full duplex\n"); | 
 | 1640 |         mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 
 | 1641 |     } | 
 | 1642 |  | 
 | 1643 |     /* Check for a software override of the flow control settings, and | 
 | 1644 |      * setup the PHY advertisement registers accordingly.  If | 
 | 1645 |      * auto-negotiation is enabled, then software will have to set the | 
 | 1646 |      * "PAUSE" bits to the correct value in the Auto-Negotiation | 
 | 1647 |      * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | 
 | 1648 |      * | 
 | 1649 |      * The possible values of the "fc" parameter are: | 
 | 1650 |      *      0:  Flow control is completely disabled | 
 | 1651 |      *      1:  Rx flow control is enabled (we can receive pause frames | 
 | 1652 |      *          but not send pause frames). | 
 | 1653 |      *      2:  Tx flow control is enabled (we can send pause frames | 
 | 1654 |      *          but we do not support receiving pause frames). | 
 | 1655 |      *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
 | 1656 |      *  other:  No software override.  The flow control configuration | 
 | 1657 |      *          in the EEPROM is used. | 
 | 1658 |      */ | 
 | 1659 |     switch (hw->fc) { | 
 | 1660 |     case e1000_fc_none: /* 0 */ | 
 | 1661 |         /* Flow control (RX & TX) is completely disabled by a | 
 | 1662 |          * software over-ride. | 
 | 1663 |          */ | 
 | 1664 |         mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
 | 1665 |         break; | 
 | 1666 |     case e1000_fc_rx_pause: /* 1 */ | 
 | 1667 |         /* RX Flow control is enabled, and TX Flow control is | 
 | 1668 |          * disabled, by a software over-ride. | 
 | 1669 |          */ | 
 | 1670 |         /* Since there really isn't a way to advertise that we are | 
 | 1671 |          * capable of RX Pause ONLY, we will advertise that we | 
 | 1672 |          * support both symmetric and asymmetric RX PAUSE.  Later | 
 | 1673 |          * (in e1000_config_fc_after_link_up) we will disable the | 
 | 1674 |          *hw's ability to send PAUSE frames. | 
 | 1675 |          */ | 
 | 1676 |         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
 | 1677 |         break; | 
 | 1678 |     case e1000_fc_tx_pause: /* 2 */ | 
 | 1679 |         /* TX Flow control is enabled, and RX Flow control is | 
 | 1680 |          * disabled, by a software over-ride. | 
 | 1681 |          */ | 
 | 1682 |         mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 
 | 1683 |         mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 
 | 1684 |         break; | 
 | 1685 |     case e1000_fc_full: /* 3 */ | 
 | 1686 |         /* Flow control (both RX and TX) is enabled by a software | 
 | 1687 |          * over-ride. | 
 | 1688 |          */ | 
 | 1689 |         mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
 | 1690 |         break; | 
 | 1691 |     default: | 
 | 1692 |         DEBUGOUT("Flow control param set incorrectly\n"); | 
 | 1693 |         return -E1000_ERR_CONFIG; | 
 | 1694 |     } | 
 | 1695 |  | 
 | 1696 |     ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | 
 | 1697 |     if(ret_val) | 
 | 1698 |         return ret_val; | 
 | 1699 |  | 
 | 1700 |     DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 
 | 1701 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1702 |     ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);     | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1703 |     if(ret_val) | 
 | 1704 |         return ret_val; | 
 | 1705 |  | 
 | 1706 |     return E1000_SUCCESS; | 
 | 1707 | } | 
 | 1708 |  | 
 | 1709 | /****************************************************************************** | 
 | 1710 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | 
 | 1711 | * | 
 | 1712 | * hw - Struct containing variables accessed by shared code | 
 | 1713 | ******************************************************************************/ | 
 | 1714 | static int32_t | 
 | 1715 | e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 
 | 1716 | { | 
 | 1717 |     uint32_t ctrl; | 
 | 1718 |     int32_t ret_val; | 
 | 1719 |     uint16_t mii_ctrl_reg; | 
 | 1720 |     uint16_t mii_status_reg; | 
 | 1721 |     uint16_t phy_data; | 
 | 1722 |     uint16_t i; | 
 | 1723 |  | 
 | 1724 |     DEBUGFUNC("e1000_phy_force_speed_duplex"); | 
 | 1725 |  | 
 | 1726 |     /* Turn off Flow control if we are forcing speed and duplex. */ | 
 | 1727 |     hw->fc = e1000_fc_none; | 
 | 1728 |  | 
 | 1729 |     DEBUGOUT1("hw->fc = %d\n", hw->fc); | 
 | 1730 |  | 
 | 1731 |     /* Read the Device Control Register. */ | 
 | 1732 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 1733 |  | 
 | 1734 |     /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | 
 | 1735 |     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
 | 1736 |     ctrl &= ~(DEVICE_SPEED_MASK); | 
 | 1737 |  | 
 | 1738 |     /* Clear the Auto Speed Detect Enable bit. */ | 
 | 1739 |     ctrl &= ~E1000_CTRL_ASDE; | 
 | 1740 |  | 
 | 1741 |     /* Read the MII Control Register. */ | 
 | 1742 |     ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | 
 | 1743 |     if(ret_val) | 
 | 1744 |         return ret_val; | 
 | 1745 |  | 
 | 1746 |     /* We need to disable autoneg in order to force link and duplex. */ | 
 | 1747 |  | 
 | 1748 |     mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | 
 | 1749 |  | 
 | 1750 |     /* Are we forcing Full or Half Duplex? */ | 
 | 1751 |     if(hw->forced_speed_duplex == e1000_100_full || | 
 | 1752 |        hw->forced_speed_duplex == e1000_10_full) { | 
 | 1753 |         /* We want to force full duplex so we SET the full duplex bits in the | 
 | 1754 |          * Device and MII Control Registers. | 
 | 1755 |          */ | 
 | 1756 |         ctrl |= E1000_CTRL_FD; | 
 | 1757 |         mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | 
 | 1758 |         DEBUGOUT("Full Duplex\n"); | 
 | 1759 |     } else { | 
 | 1760 |         /* We want to force half duplex so we CLEAR the full duplex bits in | 
 | 1761 |          * the Device and MII Control Registers. | 
 | 1762 |          */ | 
 | 1763 |         ctrl &= ~E1000_CTRL_FD; | 
 | 1764 |         mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | 
 | 1765 |         DEBUGOUT("Half Duplex\n"); | 
 | 1766 |     } | 
 | 1767 |  | 
 | 1768 |     /* Are we forcing 100Mbps??? */ | 
 | 1769 |     if(hw->forced_speed_duplex == e1000_100_full || | 
 | 1770 |        hw->forced_speed_duplex == e1000_100_half) { | 
 | 1771 |         /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | 
 | 1772 |         ctrl |= E1000_CTRL_SPD_100; | 
 | 1773 |         mii_ctrl_reg |= MII_CR_SPEED_100; | 
 | 1774 |         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 
 | 1775 |         DEBUGOUT("Forcing 100mb "); | 
 | 1776 |     } else { | 
 | 1777 |         /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | 
 | 1778 |         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
 | 1779 |         mii_ctrl_reg |= MII_CR_SPEED_10; | 
 | 1780 |         mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 
 | 1781 |         DEBUGOUT("Forcing 10mb "); | 
 | 1782 |     } | 
 | 1783 |  | 
 | 1784 |     e1000_config_collision_dist(hw); | 
 | 1785 |  | 
 | 1786 |     /* Write the configured values back to the Device Control Reg. */ | 
 | 1787 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 1788 |  | 
 | 1789 |     if (hw->phy_type == e1000_phy_m88) { | 
 | 1790 |         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
 | 1791 |         if(ret_val) | 
 | 1792 |             return ret_val; | 
 | 1793 |  | 
 | 1794 |         /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | 
 | 1795 |          * forced whenever speed are duplex are forced. | 
 | 1796 |          */ | 
 | 1797 |         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
 | 1798 |         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
 | 1799 |         if(ret_val) | 
 | 1800 |             return ret_val; | 
 | 1801 |  | 
 | 1802 |         DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | 
 | 1803 |  | 
 | 1804 |         /* Need to reset the PHY or these changes will be ignored */ | 
 | 1805 |         mii_ctrl_reg |= MII_CR_RESET; | 
 | 1806 |     } else { | 
 | 1807 |         /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI | 
 | 1808 |          * forced whenever speed or duplex are forced. | 
 | 1809 |          */ | 
 | 1810 |         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
 | 1811 |         if(ret_val) | 
 | 1812 |             return ret_val; | 
 | 1813 |  | 
 | 1814 |         phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
 | 1815 |         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
 | 1816 |  | 
 | 1817 |         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
 | 1818 |         if(ret_val) | 
 | 1819 |             return ret_val; | 
 | 1820 |     } | 
 | 1821 |  | 
 | 1822 |     /* Write back the modified PHY MII control register. */ | 
 | 1823 |     ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | 
 | 1824 |     if(ret_val) | 
 | 1825 |         return ret_val; | 
 | 1826 |  | 
 | 1827 |     udelay(1); | 
 | 1828 |  | 
 | 1829 |     /* The wait_autoneg_complete flag may be a little misleading here. | 
 | 1830 |      * Since we are forcing speed and duplex, Auto-Neg is not enabled. | 
 | 1831 |      * But we do want to delay for a period while forcing only so we | 
 | 1832 |      * don't generate false No Link messages.  So we will wait here | 
 | 1833 |      * only if the user has set wait_autoneg_complete to 1, which is | 
 | 1834 |      * the default. | 
 | 1835 |      */ | 
 | 1836 |     if(hw->wait_autoneg_complete) { | 
 | 1837 |         /* We will wait for autoneg to complete. */ | 
 | 1838 |         DEBUGOUT("Waiting for forced speed/duplex link.\n"); | 
 | 1839 |         mii_status_reg = 0; | 
 | 1840 |  | 
 | 1841 |         /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
 | 1842 |         for(i = PHY_FORCE_TIME; i > 0; i--) { | 
 | 1843 |             /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
 | 1844 |              * to be set. | 
 | 1845 |              */ | 
 | 1846 |             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 1847 |             if(ret_val) | 
 | 1848 |                 return ret_val; | 
 | 1849 |  | 
 | 1850 |             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 1851 |             if(ret_val) | 
 | 1852 |                 return ret_val; | 
 | 1853 |  | 
 | 1854 |             if(mii_status_reg & MII_SR_LINK_STATUS) break; | 
 | 1855 |             msec_delay(100); | 
 | 1856 |         } | 
 | 1857 |         if((i == 0) && | 
 | 1858 |            (hw->phy_type == e1000_phy_m88)) { | 
 | 1859 |             /* We didn't get link.  Reset the DSP and wait again for link. */ | 
 | 1860 |             ret_val = e1000_phy_reset_dsp(hw); | 
 | 1861 |             if(ret_val) { | 
 | 1862 |                 DEBUGOUT("Error Resetting PHY DSP\n"); | 
 | 1863 |                 return ret_val; | 
 | 1864 |             } | 
 | 1865 |         } | 
 | 1866 |         /* This loop will early-out if the link condition has been met.  */ | 
 | 1867 |         for(i = PHY_FORCE_TIME; i > 0; i--) { | 
 | 1868 |             if(mii_status_reg & MII_SR_LINK_STATUS) break; | 
 | 1869 |             msec_delay(100); | 
 | 1870 |             /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
 | 1871 |              * to be set. | 
 | 1872 |              */ | 
 | 1873 |             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 1874 |             if(ret_val) | 
 | 1875 |                 return ret_val; | 
 | 1876 |  | 
 | 1877 |             ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 1878 |             if(ret_val) | 
 | 1879 |                 return ret_val; | 
 | 1880 |         } | 
 | 1881 |     } | 
 | 1882 |  | 
 | 1883 |     if (hw->phy_type == e1000_phy_m88) { | 
 | 1884 |         /* Because we reset the PHY above, we need to re-force TX_CLK in the | 
 | 1885 |          * Extended PHY Specific Control Register to 25MHz clock.  This value | 
 | 1886 |          * defaults back to a 2.5MHz clock when the PHY is reset. | 
 | 1887 |          */ | 
 | 1888 |         ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
 | 1889 |         if(ret_val) | 
 | 1890 |             return ret_val; | 
 | 1891 |  | 
 | 1892 |         phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
 | 1893 |         ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
 | 1894 |         if(ret_val) | 
 | 1895 |             return ret_val; | 
 | 1896 |  | 
 | 1897 |         /* In addition, because of the s/w reset above, we need to enable CRS on | 
 | 1898 |          * TX.  This must be set for both full and half duplex operation. | 
 | 1899 |          */ | 
 | 1900 |         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
 | 1901 |         if(ret_val) | 
 | 1902 |             return ret_val; | 
 | 1903 |  | 
 | 1904 |         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
 | 1905 |         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
 | 1906 |         if(ret_val) | 
 | 1907 |             return ret_val; | 
 | 1908 |  | 
 | 1909 |         if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 
 | 1910 |            (!hw->autoneg) && | 
 | 1911 |            (hw->forced_speed_duplex == e1000_10_full || | 
 | 1912 |             hw->forced_speed_duplex == e1000_10_half)) { | 
 | 1913 |             ret_val = e1000_polarity_reversal_workaround(hw); | 
 | 1914 |             if(ret_val) | 
 | 1915 |                 return ret_val; | 
 | 1916 |         } | 
 | 1917 |     } | 
 | 1918 |     return E1000_SUCCESS; | 
 | 1919 | } | 
 | 1920 |  | 
 | 1921 | /****************************************************************************** | 
 | 1922 | * Sets the collision distance in the Transmit Control register | 
 | 1923 | * | 
 | 1924 | * hw - Struct containing variables accessed by shared code | 
 | 1925 | * | 
 | 1926 | * Link should have been established previously. Reads the speed and duplex | 
 | 1927 | * information from the Device Status register. | 
 | 1928 | ******************************************************************************/ | 
 | 1929 | void | 
 | 1930 | e1000_config_collision_dist(struct e1000_hw *hw) | 
 | 1931 | { | 
 | 1932 |     uint32_t tctl; | 
 | 1933 |  | 
 | 1934 |     DEBUGFUNC("e1000_config_collision_dist"); | 
 | 1935 |  | 
 | 1936 |     tctl = E1000_READ_REG(hw, TCTL); | 
 | 1937 |  | 
 | 1938 |     tctl &= ~E1000_TCTL_COLD; | 
 | 1939 |     tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
 | 1940 |  | 
 | 1941 |     E1000_WRITE_REG(hw, TCTL, tctl); | 
 | 1942 |     E1000_WRITE_FLUSH(hw); | 
 | 1943 | } | 
 | 1944 |  | 
 | 1945 | /****************************************************************************** | 
 | 1946 | * Sets MAC speed and duplex settings to reflect the those in the PHY | 
 | 1947 | * | 
 | 1948 | * hw - Struct containing variables accessed by shared code | 
 | 1949 | * mii_reg - data to write to the MII control register | 
 | 1950 | * | 
 | 1951 | * The contents of the PHY register containing the needed information need to | 
 | 1952 | * be passed in. | 
 | 1953 | ******************************************************************************/ | 
 | 1954 | static int32_t | 
 | 1955 | e1000_config_mac_to_phy(struct e1000_hw *hw) | 
 | 1956 | { | 
 | 1957 |     uint32_t ctrl; | 
 | 1958 |     int32_t ret_val; | 
 | 1959 |     uint16_t phy_data; | 
 | 1960 |  | 
 | 1961 |     DEBUGFUNC("e1000_config_mac_to_phy"); | 
 | 1962 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1963 |     /* 82544 or newer MAC, Auto Speed Detection takes care of  | 
 | 1964 |     * MAC speed/duplex configuration.*/ | 
 | 1965 |     if (hw->mac_type >= e1000_82544) | 
 | 1966 |         return E1000_SUCCESS; | 
 | 1967 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1968 |     /* Read the Device Control Register and set the bits to Force Speed | 
 | 1969 |      * and Duplex. | 
 | 1970 |      */ | 
 | 1971 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 1972 |     ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
 | 1973 |     ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 
 | 1974 |  | 
 | 1975 |     /* Set up duplex in the Device Control and Transmit Control | 
 | 1976 |      * registers depending on negotiated values. | 
 | 1977 |      */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1978 |     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
 | 1979 |     if(ret_val) | 
 | 1980 |         return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1981 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1982 |     if(phy_data & M88E1000_PSSR_DPLX)  | 
 | 1983 |         ctrl |= E1000_CTRL_FD; | 
 | 1984 |     else  | 
 | 1985 |         ctrl &= ~E1000_CTRL_FD; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1986 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1987 |     e1000_config_collision_dist(hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1988 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 1989 |     /* Set up speed in the Device Control register depending on | 
 | 1990 |      * negotiated values. | 
 | 1991 |      */ | 
 | 1992 |     if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 
 | 1993 |         ctrl |= E1000_CTRL_SPD_1000; | 
 | 1994 |     else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | 
 | 1995 |         ctrl |= E1000_CTRL_SPD_100; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1996 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1997 |     /* Write the configured values back to the Device Control Reg. */ | 
 | 1998 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 1999 |     return E1000_SUCCESS; | 
 | 2000 | } | 
 | 2001 |  | 
 | 2002 | /****************************************************************************** | 
 | 2003 |  * Forces the MAC's flow control settings. | 
 | 2004 |  * | 
 | 2005 |  * hw - Struct containing variables accessed by shared code | 
 | 2006 |  * | 
 | 2007 |  * Sets the TFCE and RFCE bits in the device control register to reflect | 
 | 2008 |  * the adapter settings. TFCE and RFCE need to be explicitly set by | 
 | 2009 |  * software when a Copper PHY is used because autonegotiation is managed | 
 | 2010 |  * by the PHY rather than the MAC. Software must also configure these | 
 | 2011 |  * bits when link is forced on a fiber connection. | 
 | 2012 |  *****************************************************************************/ | 
 | 2013 | int32_t | 
 | 2014 | e1000_force_mac_fc(struct e1000_hw *hw) | 
 | 2015 | { | 
 | 2016 |     uint32_t ctrl; | 
 | 2017 |  | 
 | 2018 |     DEBUGFUNC("e1000_force_mac_fc"); | 
 | 2019 |  | 
 | 2020 |     /* Get the current configuration of the Device Control Register */ | 
 | 2021 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 2022 |  | 
 | 2023 |     /* Because we didn't get link via the internal auto-negotiation | 
 | 2024 |      * mechanism (we either forced link or we got link via PHY | 
 | 2025 |      * auto-neg), we have to manually enable/disable transmit an | 
 | 2026 |      * receive flow control. | 
 | 2027 |      * | 
 | 2028 |      * The "Case" statement below enables/disable flow control | 
 | 2029 |      * according to the "hw->fc" parameter. | 
 | 2030 |      * | 
 | 2031 |      * The possible values of the "fc" parameter are: | 
 | 2032 |      *      0:  Flow control is completely disabled | 
 | 2033 |      *      1:  Rx flow control is enabled (we can receive pause | 
 | 2034 |      *          frames but not send pause frames). | 
 | 2035 |      *      2:  Tx flow control is enabled (we can send pause frames | 
 | 2036 |      *          frames but we do not receive pause frames). | 
 | 2037 |      *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
 | 2038 |      *  other:  No other values should be possible at this point. | 
 | 2039 |      */ | 
 | 2040 |  | 
 | 2041 |     switch (hw->fc) { | 
 | 2042 |     case e1000_fc_none: | 
 | 2043 |         ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
 | 2044 |         break; | 
 | 2045 |     case e1000_fc_rx_pause: | 
 | 2046 |         ctrl &= (~E1000_CTRL_TFCE); | 
 | 2047 |         ctrl |= E1000_CTRL_RFCE; | 
 | 2048 |         break; | 
 | 2049 |     case e1000_fc_tx_pause: | 
 | 2050 |         ctrl &= (~E1000_CTRL_RFCE); | 
 | 2051 |         ctrl |= E1000_CTRL_TFCE; | 
 | 2052 |         break; | 
 | 2053 |     case e1000_fc_full: | 
 | 2054 |         ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
 | 2055 |         break; | 
 | 2056 |     default: | 
 | 2057 |         DEBUGOUT("Flow control param set incorrectly\n"); | 
 | 2058 |         return -E1000_ERR_CONFIG; | 
 | 2059 |     } | 
 | 2060 |  | 
 | 2061 |     /* Disable TX Flow Control for 82542 (rev 2.0) */ | 
 | 2062 |     if(hw->mac_type == e1000_82542_rev2_0) | 
 | 2063 |         ctrl &= (~E1000_CTRL_TFCE); | 
 | 2064 |  | 
 | 2065 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 2066 |     return E1000_SUCCESS; | 
 | 2067 | } | 
 | 2068 |  | 
 | 2069 | /****************************************************************************** | 
 | 2070 |  * Configures flow control settings after link is established | 
 | 2071 |  * | 
 | 2072 |  * hw - Struct containing variables accessed by shared code | 
 | 2073 |  * | 
 | 2074 |  * Should be called immediately after a valid link has been established. | 
 | 2075 |  * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 
 | 2076 |  * and autonegotiation is enabled, the MAC flow control settings will be set | 
 | 2077 |  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 
 | 2078 |  * and RFCE bits will be automaticaly set to the negotiated flow control mode. | 
 | 2079 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 2080 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2081 | e1000_config_fc_after_link_up(struct e1000_hw *hw) | 
 | 2082 | { | 
 | 2083 |     int32_t ret_val; | 
 | 2084 |     uint16_t mii_status_reg; | 
 | 2085 |     uint16_t mii_nway_adv_reg; | 
 | 2086 |     uint16_t mii_nway_lp_ability_reg; | 
 | 2087 |     uint16_t speed; | 
 | 2088 |     uint16_t duplex; | 
 | 2089 |  | 
 | 2090 |     DEBUGFUNC("e1000_config_fc_after_link_up"); | 
 | 2091 |  | 
 | 2092 |     /* Check for the case where we have fiber media and auto-neg failed | 
 | 2093 |      * so we had to force link.  In this case, we need to force the | 
 | 2094 |      * configuration of the MAC to match the "fc" parameter. | 
 | 2095 |      */ | 
 | 2096 |     if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || | 
 | 2097 |        ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || | 
 | 2098 |        ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { | 
 | 2099 |         ret_val = e1000_force_mac_fc(hw); | 
 | 2100 |         if(ret_val) { | 
 | 2101 |             DEBUGOUT("Error forcing flow control settings\n"); | 
 | 2102 |             return ret_val; | 
 | 2103 |         } | 
 | 2104 |     } | 
 | 2105 |  | 
 | 2106 |     /* Check for the case where we have copper media and auto-neg is | 
 | 2107 |      * enabled.  In this case, we need to check and see if Auto-Neg | 
 | 2108 |      * has completed, and if so, how the PHY and link partner has | 
 | 2109 |      * flow control configured. | 
 | 2110 |      */ | 
 | 2111 |     if((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | 
 | 2112 |         /* Read the MII Status Register and check to see if AutoNeg | 
 | 2113 |          * has completed.  We read this twice because this reg has | 
 | 2114 |          * some "sticky" (latched) bits. | 
 | 2115 |          */ | 
 | 2116 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 2117 |         if(ret_val) | 
 | 2118 |             return ret_val; | 
 | 2119 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 2120 |         if(ret_val) | 
 | 2121 |             return ret_val; | 
 | 2122 |  | 
 | 2123 |         if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 
 | 2124 |             /* The AutoNeg process has completed, so we now need to | 
 | 2125 |              * read both the Auto Negotiation Advertisement Register | 
 | 2126 |              * (Address 4) and the Auto_Negotiation Base Page Ability | 
 | 2127 |              * Register (Address 5) to determine how flow control was | 
 | 2128 |              * negotiated. | 
 | 2129 |              */ | 
 | 2130 |             ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | 
 | 2131 |                                          &mii_nway_adv_reg); | 
 | 2132 |             if(ret_val) | 
 | 2133 |                 return ret_val; | 
 | 2134 |             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | 
 | 2135 |                                          &mii_nway_lp_ability_reg); | 
 | 2136 |             if(ret_val) | 
 | 2137 |                 return ret_val; | 
 | 2138 |  | 
 | 2139 |             /* Two bits in the Auto Negotiation Advertisement Register | 
 | 2140 |              * (Address 4) and two bits in the Auto Negotiation Base | 
 | 2141 |              * Page Ability Register (Address 5) determine flow control | 
 | 2142 |              * for both the PHY and the link partner.  The following | 
 | 2143 |              * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
 | 2144 |              * 1999, describes these PAUSE resolution bits and how flow | 
 | 2145 |              * control is determined based upon these settings. | 
 | 2146 |              * NOTE:  DC = Don't Care | 
 | 2147 |              * | 
 | 2148 |              *   LOCAL DEVICE  |   LINK PARTNER | 
 | 2149 |              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
 | 2150 |              *-------|---------|-------|---------|-------------------- | 
 | 2151 |              *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
 | 2152 |              *   0   |    1    |   0   |   DC    | e1000_fc_none | 
 | 2153 |              *   0   |    1    |   1   |    0    | e1000_fc_none | 
 | 2154 |              *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
 | 2155 |              *   1   |    0    |   0   |   DC    | e1000_fc_none | 
 | 2156 |              *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
 | 2157 |              *   1   |    1    |   0   |    0    | e1000_fc_none | 
 | 2158 |              *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
 | 2159 |              * | 
 | 2160 |              */ | 
 | 2161 |             /* Are both PAUSE bits set to 1?  If so, this implies | 
 | 2162 |              * Symmetric Flow Control is enabled at both ends.  The | 
 | 2163 |              * ASM_DIR bits are irrelevant per the spec. | 
 | 2164 |              * | 
 | 2165 |              * For Symmetric Flow Control: | 
 | 2166 |              * | 
 | 2167 |              *   LOCAL DEVICE  |   LINK PARTNER | 
 | 2168 |              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
 | 2169 |              *-------|---------|-------|---------|-------------------- | 
 | 2170 |              *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
 | 2171 |              * | 
 | 2172 |              */ | 
 | 2173 |             if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
 | 2174 |                (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
 | 2175 |                 /* Now we need to check if the user selected RX ONLY | 
 | 2176 |                  * of pause frames.  In this case, we had to advertise | 
 | 2177 |                  * FULL flow control because we could not advertise RX | 
 | 2178 |                  * ONLY. Hence, we must now check to see if we need to | 
 | 2179 |                  * turn OFF  the TRANSMISSION of PAUSE frames. | 
 | 2180 |                  */ | 
 | 2181 |                 if(hw->original_fc == e1000_fc_full) { | 
 | 2182 |                     hw->fc = e1000_fc_full; | 
 | 2183 |                     DEBUGOUT("Flow Control = FULL.\r\n"); | 
 | 2184 |                 } else { | 
 | 2185 |                     hw->fc = e1000_fc_rx_pause; | 
 | 2186 |                     DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | 
 | 2187 |                 } | 
 | 2188 |             } | 
 | 2189 |             /* For receiving PAUSE frames ONLY. | 
 | 2190 |              * | 
 | 2191 |              *   LOCAL DEVICE  |   LINK PARTNER | 
 | 2192 |              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
 | 2193 |              *-------|---------|-------|---------|-------------------- | 
 | 2194 |              *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
 | 2195 |              * | 
 | 2196 |              */ | 
 | 2197 |             else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
 | 2198 |                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
 | 2199 |                     (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
 | 2200 |                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
 | 2201 |                 hw->fc = e1000_fc_tx_pause; | 
 | 2202 |                 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); | 
 | 2203 |             } | 
 | 2204 |             /* For transmitting PAUSE frames ONLY. | 
 | 2205 |              * | 
 | 2206 |              *   LOCAL DEVICE  |   LINK PARTNER | 
 | 2207 |              * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
 | 2208 |              *-------|---------|-------|---------|-------------------- | 
 | 2209 |              *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
 | 2210 |              * | 
 | 2211 |              */ | 
 | 2212 |             else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
 | 2213 |                     (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
 | 2214 |                     !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
 | 2215 |                     (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
 | 2216 |                 hw->fc = e1000_fc_rx_pause; | 
 | 2217 |                 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | 
 | 2218 |             } | 
 | 2219 |             /* Per the IEEE spec, at this point flow control should be | 
 | 2220 |              * disabled.  However, we want to consider that we could | 
 | 2221 |              * be connected to a legacy switch that doesn't advertise | 
 | 2222 |              * desired flow control, but can be forced on the link | 
 | 2223 |              * partner.  So if we advertised no flow control, that is | 
 | 2224 |              * what we will resolve to.  If we advertised some kind of | 
 | 2225 |              * receive capability (Rx Pause Only or Full Flow Control) | 
 | 2226 |              * and the link partner advertised none, we will configure | 
 | 2227 |              * ourselves to enable Rx Flow Control only.  We can do | 
 | 2228 |              * this safely for two reasons:  If the link partner really | 
 | 2229 |              * didn't want flow control enabled, and we enable Rx, no | 
 | 2230 |              * harm done since we won't be receiving any PAUSE frames | 
 | 2231 |              * anyway.  If the intent on the link partner was to have | 
 | 2232 |              * flow control enabled, then by us enabling RX only, we | 
 | 2233 |              * can at least receive pause frames and process them. | 
 | 2234 |              * This is a good idea because in most cases, since we are | 
 | 2235 |              * predominantly a server NIC, more times than not we will | 
 | 2236 |              * be asked to delay transmission of packets than asking | 
 | 2237 |              * our link partner to pause transmission of frames. | 
 | 2238 |              */ | 
 | 2239 |             else if((hw->original_fc == e1000_fc_none || | 
 | 2240 |                      hw->original_fc == e1000_fc_tx_pause) || | 
 | 2241 |                     hw->fc_strict_ieee) { | 
 | 2242 |                 hw->fc = e1000_fc_none; | 
 | 2243 |                 DEBUGOUT("Flow Control = NONE.\r\n"); | 
 | 2244 |             } else { | 
 | 2245 |                 hw->fc = e1000_fc_rx_pause; | 
 | 2246 |                 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | 
 | 2247 |             } | 
 | 2248 |  | 
 | 2249 |             /* Now we need to do one last check...  If we auto- | 
 | 2250 |              * negotiated to HALF DUPLEX, flow control should not be | 
 | 2251 |              * enabled per IEEE 802.3 spec. | 
 | 2252 |              */ | 
 | 2253 |             ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
 | 2254 |             if(ret_val) { | 
 | 2255 |                 DEBUGOUT("Error getting link speed and duplex\n"); | 
 | 2256 |                 return ret_val; | 
 | 2257 |             } | 
 | 2258 |  | 
 | 2259 |             if(duplex == HALF_DUPLEX) | 
 | 2260 |                 hw->fc = e1000_fc_none; | 
 | 2261 |  | 
 | 2262 |             /* Now we call a subroutine to actually force the MAC | 
 | 2263 |              * controller to use the correct flow control settings. | 
 | 2264 |              */ | 
 | 2265 |             ret_val = e1000_force_mac_fc(hw); | 
 | 2266 |             if(ret_val) { | 
 | 2267 |                 DEBUGOUT("Error forcing flow control settings\n"); | 
 | 2268 |                 return ret_val; | 
 | 2269 |             } | 
 | 2270 |         } else { | 
 | 2271 |             DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); | 
 | 2272 |         } | 
 | 2273 |     } | 
 | 2274 |     return E1000_SUCCESS; | 
 | 2275 | } | 
 | 2276 |  | 
 | 2277 | /****************************************************************************** | 
 | 2278 |  * Checks to see if the link status of the hardware has changed. | 
 | 2279 |  * | 
 | 2280 |  * hw - Struct containing variables accessed by shared code | 
 | 2281 |  * | 
 | 2282 |  * Called by any function that needs to check the link status of the adapter. | 
 | 2283 |  *****************************************************************************/ | 
 | 2284 | int32_t | 
 | 2285 | e1000_check_for_link(struct e1000_hw *hw) | 
 | 2286 | { | 
 | 2287 |     uint32_t rxcw = 0; | 
 | 2288 |     uint32_t ctrl; | 
 | 2289 |     uint32_t status; | 
 | 2290 |     uint32_t rctl; | 
 | 2291 |     uint32_t icr; | 
 | 2292 |     uint32_t signal = 0; | 
 | 2293 |     int32_t ret_val; | 
 | 2294 |     uint16_t phy_data; | 
 | 2295 |  | 
 | 2296 |     DEBUGFUNC("e1000_check_for_link"); | 
 | 2297 |  | 
 | 2298 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 2299 |     status = E1000_READ_REG(hw, STATUS); | 
 | 2300 |  | 
 | 2301 |     /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | 
 | 2302 |      * set when the optics detect a signal. On older adapters, it will be | 
 | 2303 |      * cleared when there is a signal.  This applies to fiber media only. | 
 | 2304 |      */ | 
 | 2305 |     if((hw->media_type == e1000_media_type_fiber) || | 
 | 2306 |        (hw->media_type == e1000_media_type_internal_serdes)) { | 
 | 2307 |         rxcw = E1000_READ_REG(hw, RXCW); | 
 | 2308 |  | 
 | 2309 |         if(hw->media_type == e1000_media_type_fiber) { | 
 | 2310 |             signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
 | 2311 |             if(status & E1000_STATUS_LU) | 
 | 2312 |                 hw->get_link_status = FALSE; | 
 | 2313 |         } | 
 | 2314 |     } | 
 | 2315 |  | 
 | 2316 |     /* If we have a copper PHY then we only want to go out to the PHY | 
 | 2317 |      * registers to see if Auto-Neg has completed and/or if our link | 
 | 2318 |      * status has changed.  The get_link_status flag will be set if we | 
 | 2319 |      * receive a Link Status Change interrupt or we have Rx Sequence | 
 | 2320 |      * Errors. | 
 | 2321 |      */ | 
 | 2322 |     if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 
 | 2323 |         /* First we want to see if the MII Status Register reports | 
 | 2324 |          * link.  If so, then we want to get the current speed/duplex | 
 | 2325 |          * of the PHY. | 
 | 2326 |          * Read the register twice since the link bit is sticky. | 
 | 2327 |          */ | 
 | 2328 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 2329 |         if(ret_val) | 
 | 2330 |             return ret_val; | 
 | 2331 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 2332 |         if(ret_val) | 
 | 2333 |             return ret_val; | 
 | 2334 |  | 
 | 2335 |         if(phy_data & MII_SR_LINK_STATUS) { | 
 | 2336 |             hw->get_link_status = FALSE; | 
 | 2337 |             /* Check if there was DownShift, must be checked immediately after | 
 | 2338 |              * link-up */ | 
 | 2339 |             e1000_check_downshift(hw); | 
 | 2340 |  | 
 | 2341 |             /* If we are on 82544 or 82543 silicon and speed/duplex | 
 | 2342 |              * are forced to 10H or 10F, then we will implement the polarity | 
 | 2343 |              * reversal workaround.  We disable interrupts first, and upon | 
 | 2344 |              * returning, place the devices interrupt state to its previous | 
 | 2345 |              * value except for the link status change interrupt which will | 
 | 2346 |              * happen due to the execution of this workaround. | 
 | 2347 |              */ | 
 | 2348 |  | 
 | 2349 |             if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 
 | 2350 |                (!hw->autoneg) && | 
 | 2351 |                (hw->forced_speed_duplex == e1000_10_full || | 
 | 2352 |                 hw->forced_speed_duplex == e1000_10_half)) { | 
 | 2353 |                 E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
 | 2354 |                 ret_val = e1000_polarity_reversal_workaround(hw); | 
 | 2355 |                 icr = E1000_READ_REG(hw, ICR); | 
 | 2356 |                 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); | 
 | 2357 |                 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); | 
 | 2358 |             } | 
 | 2359 |  | 
 | 2360 |         } else { | 
 | 2361 |             /* No link detected */ | 
 | 2362 |             e1000_config_dsp_after_link_change(hw, FALSE); | 
 | 2363 |             return 0; | 
 | 2364 |         } | 
 | 2365 |  | 
 | 2366 |         /* If we are forcing speed/duplex, then we simply return since | 
 | 2367 |          * we have already determined whether we have link or not. | 
 | 2368 |          */ | 
 | 2369 |         if(!hw->autoneg) return -E1000_ERR_CONFIG; | 
 | 2370 |  | 
 | 2371 |         /* optimize the dsp settings for the igp phy */ | 
 | 2372 |         e1000_config_dsp_after_link_change(hw, TRUE); | 
 | 2373 |  | 
 | 2374 |         /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we | 
 | 2375 |          * have Si on board that is 82544 or newer, Auto | 
 | 2376 |          * Speed Detection takes care of MAC speed/duplex | 
 | 2377 |          * configuration.  So we only need to configure Collision | 
 | 2378 |          * Distance in the MAC.  Otherwise, we need to force | 
 | 2379 |          * speed/duplex on the MAC to the current PHY speed/duplex | 
 | 2380 |          * settings. | 
 | 2381 |          */ | 
 | 2382 |         if(hw->mac_type >= e1000_82544) | 
 | 2383 |             e1000_config_collision_dist(hw); | 
 | 2384 |         else { | 
 | 2385 |             ret_val = e1000_config_mac_to_phy(hw); | 
 | 2386 |             if(ret_val) { | 
 | 2387 |                 DEBUGOUT("Error configuring MAC to PHY settings\n"); | 
 | 2388 |                 return ret_val; | 
 | 2389 |             } | 
 | 2390 |         } | 
 | 2391 |  | 
 | 2392 |         /* Configure Flow Control now that Auto-Neg has completed. First, we | 
 | 2393 |          * need to restore the desired flow control settings because we may | 
 | 2394 |          * have had to re-autoneg with a different link partner. | 
 | 2395 |          */ | 
 | 2396 |         ret_val = e1000_config_fc_after_link_up(hw); | 
 | 2397 |         if(ret_val) { | 
 | 2398 |             DEBUGOUT("Error configuring flow control\n"); | 
 | 2399 |             return ret_val; | 
 | 2400 |         } | 
 | 2401 |  | 
 | 2402 |         /* At this point we know that we are on copper and we have | 
 | 2403 |          * auto-negotiated link.  These are conditions for checking the link | 
 | 2404 |          * partner capability register.  We use the link speed to determine if | 
 | 2405 |          * TBI compatibility needs to be turned on or off.  If the link is not | 
 | 2406 |          * at gigabit speed, then TBI compatibility is not needed.  If we are | 
 | 2407 |          * at gigabit speed, we turn on TBI compatibility. | 
 | 2408 |          */ | 
 | 2409 |         if(hw->tbi_compatibility_en) { | 
 | 2410 |             uint16_t speed, duplex; | 
 | 2411 |             e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
 | 2412 |             if(speed != SPEED_1000) { | 
 | 2413 |                 /* If link speed is not set to gigabit speed, we do not need | 
 | 2414 |                  * to enable TBI compatibility. | 
 | 2415 |                  */ | 
 | 2416 |                 if(hw->tbi_compatibility_on) { | 
 | 2417 |                     /* If we previously were in the mode, turn it off. */ | 
 | 2418 |                     rctl = E1000_READ_REG(hw, RCTL); | 
 | 2419 |                     rctl &= ~E1000_RCTL_SBP; | 
 | 2420 |                     E1000_WRITE_REG(hw, RCTL, rctl); | 
 | 2421 |                     hw->tbi_compatibility_on = FALSE; | 
 | 2422 |                 } | 
 | 2423 |             } else { | 
 | 2424 |                 /* If TBI compatibility is was previously off, turn it on. For | 
 | 2425 |                  * compatibility with a TBI link partner, we will store bad | 
 | 2426 |                  * packets. Some frames have an additional byte on the end and | 
 | 2427 |                  * will look like CRC errors to to the hardware. | 
 | 2428 |                  */ | 
 | 2429 |                 if(!hw->tbi_compatibility_on) { | 
 | 2430 |                     hw->tbi_compatibility_on = TRUE; | 
 | 2431 |                     rctl = E1000_READ_REG(hw, RCTL); | 
 | 2432 |                     rctl |= E1000_RCTL_SBP; | 
 | 2433 |                     E1000_WRITE_REG(hw, RCTL, rctl); | 
 | 2434 |                 } | 
 | 2435 |             } | 
 | 2436 |         } | 
 | 2437 |     } | 
 | 2438 |     /* If we don't have link (auto-negotiation failed or link partner cannot | 
 | 2439 |      * auto-negotiate), the cable is plugged in (we have signal), and our | 
 | 2440 |      * link partner is not trying to auto-negotiate with us (we are receiving | 
 | 2441 |      * idles or data), we need to force link up. We also need to give | 
 | 2442 |      * auto-negotiation time to complete, in case the cable was just plugged | 
 | 2443 |      * in. The autoneg_failed flag does this. | 
 | 2444 |      */ | 
 | 2445 |     else if((((hw->media_type == e1000_media_type_fiber) && | 
 | 2446 |               ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || | 
 | 2447 |              (hw->media_type == e1000_media_type_internal_serdes)) && | 
 | 2448 |             (!(status & E1000_STATUS_LU)) && | 
 | 2449 |             (!(rxcw & E1000_RXCW_C))) { | 
 | 2450 |         if(hw->autoneg_failed == 0) { | 
 | 2451 |             hw->autoneg_failed = 1; | 
 | 2452 |             return 0; | 
 | 2453 |         } | 
 | 2454 |         DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); | 
 | 2455 |  | 
 | 2456 |         /* Disable auto-negotiation in the TXCW register */ | 
 | 2457 |         E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | 
 | 2458 |  | 
 | 2459 |         /* Force link-up and also force full-duplex. */ | 
 | 2460 |         ctrl = E1000_READ_REG(hw, CTRL); | 
 | 2461 |         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
 | 2462 |         E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 2463 |  | 
 | 2464 |         /* Configure Flow Control after forcing link up. */ | 
 | 2465 |         ret_val = e1000_config_fc_after_link_up(hw); | 
 | 2466 |         if(ret_val) { | 
 | 2467 |             DEBUGOUT("Error configuring flow control\n"); | 
 | 2468 |             return ret_val; | 
 | 2469 |         } | 
 | 2470 |     } | 
 | 2471 |     /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | 
 | 2472 |      * auto-negotiation in the TXCW register and disable forced link in the | 
 | 2473 |      * Device Control register in an attempt to auto-negotiate with our link | 
 | 2474 |      * partner. | 
 | 2475 |      */ | 
 | 2476 |     else if(((hw->media_type == e1000_media_type_fiber) || | 
 | 2477 |              (hw->media_type == e1000_media_type_internal_serdes)) && | 
 | 2478 |             (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
 | 2479 |         DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); | 
 | 2480 |         E1000_WRITE_REG(hw, TXCW, hw->txcw); | 
 | 2481 |         E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
 | 2482 |  | 
 | 2483 |         hw->serdes_link_down = FALSE; | 
 | 2484 |     } | 
 | 2485 |     /* If we force link for non-auto-negotiation switch, check link status | 
 | 2486 |      * based on MAC synchronization for internal serdes media type. | 
 | 2487 |      */ | 
 | 2488 |     else if((hw->media_type == e1000_media_type_internal_serdes) && | 
 | 2489 |             !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | 
 | 2490 |         /* SYNCH bit and IV bit are sticky. */ | 
 | 2491 |         udelay(10); | 
 | 2492 |         if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { | 
 | 2493 |             if(!(rxcw & E1000_RXCW_IV)) { | 
 | 2494 |                 hw->serdes_link_down = FALSE; | 
 | 2495 |                 DEBUGOUT("SERDES: Link is up.\n"); | 
 | 2496 |             } | 
 | 2497 |         } else { | 
 | 2498 |             hw->serdes_link_down = TRUE; | 
 | 2499 |             DEBUGOUT("SERDES: Link is down.\n"); | 
 | 2500 |         } | 
 | 2501 |     } | 
 | 2502 |     if((hw->media_type == e1000_media_type_internal_serdes) && | 
 | 2503 |        (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | 
 | 2504 |         hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); | 
 | 2505 |     } | 
 | 2506 |     return E1000_SUCCESS; | 
 | 2507 | } | 
 | 2508 |  | 
 | 2509 | /****************************************************************************** | 
 | 2510 |  * Detects the current speed and duplex settings of the hardware. | 
 | 2511 |  * | 
 | 2512 |  * hw - Struct containing variables accessed by shared code | 
 | 2513 |  * speed - Speed of the connection | 
 | 2514 |  * duplex - Duplex setting of the connection | 
 | 2515 |  *****************************************************************************/ | 
 | 2516 | int32_t | 
 | 2517 | e1000_get_speed_and_duplex(struct e1000_hw *hw, | 
 | 2518 |                            uint16_t *speed, | 
 | 2519 |                            uint16_t *duplex) | 
 | 2520 | { | 
 | 2521 |     uint32_t status; | 
 | 2522 |     int32_t ret_val; | 
 | 2523 |     uint16_t phy_data; | 
 | 2524 |  | 
 | 2525 |     DEBUGFUNC("e1000_get_speed_and_duplex"); | 
 | 2526 |  | 
 | 2527 |     if(hw->mac_type >= e1000_82543) { | 
 | 2528 |         status = E1000_READ_REG(hw, STATUS); | 
 | 2529 |         if(status & E1000_STATUS_SPEED_1000) { | 
 | 2530 |             *speed = SPEED_1000; | 
 | 2531 |             DEBUGOUT("1000 Mbs, "); | 
 | 2532 |         } else if(status & E1000_STATUS_SPEED_100) { | 
 | 2533 |             *speed = SPEED_100; | 
 | 2534 |             DEBUGOUT("100 Mbs, "); | 
 | 2535 |         } else { | 
 | 2536 |             *speed = SPEED_10; | 
 | 2537 |             DEBUGOUT("10 Mbs, "); | 
 | 2538 |         } | 
 | 2539 |  | 
 | 2540 |         if(status & E1000_STATUS_FD) { | 
 | 2541 |             *duplex = FULL_DUPLEX; | 
 | 2542 |             DEBUGOUT("Full Duplex\r\n"); | 
 | 2543 |         } else { | 
 | 2544 |             *duplex = HALF_DUPLEX; | 
 | 2545 |             DEBUGOUT(" Half Duplex\r\n"); | 
 | 2546 |         } | 
 | 2547 |     } else { | 
 | 2548 |         DEBUGOUT("1000 Mbs, Full Duplex\r\n"); | 
 | 2549 |         *speed = SPEED_1000; | 
 | 2550 |         *duplex = FULL_DUPLEX; | 
 | 2551 |     } | 
 | 2552 |  | 
 | 2553 |     /* IGP01 PHY may advertise full duplex operation after speed downgrade even | 
 | 2554 |      * if it is operating at half duplex.  Here we set the duplex settings to | 
 | 2555 |      * match the duplex in the link partner's capabilities. | 
 | 2556 |      */ | 
 | 2557 |     if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | 
 | 2558 |         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | 
 | 2559 |         if(ret_val) | 
 | 2560 |             return ret_val; | 
 | 2561 |  | 
 | 2562 |         if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | 
 | 2563 |             *duplex = HALF_DUPLEX; | 
 | 2564 |         else { | 
 | 2565 |             ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | 
 | 2566 |             if(ret_val) | 
 | 2567 |                 return ret_val; | 
 | 2568 |             if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | 
 | 2569 |                (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | 
 | 2570 |                 *duplex = HALF_DUPLEX; | 
 | 2571 |         } | 
 | 2572 |     } | 
 | 2573 |  | 
 | 2574 |     return E1000_SUCCESS; | 
 | 2575 | } | 
 | 2576 |  | 
 | 2577 | /****************************************************************************** | 
 | 2578 | * Blocks until autoneg completes or times out (~4.5 seconds) | 
 | 2579 | * | 
 | 2580 | * hw - Struct containing variables accessed by shared code | 
 | 2581 | ******************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 2582 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2583 | e1000_wait_autoneg(struct e1000_hw *hw) | 
 | 2584 | { | 
 | 2585 |     int32_t ret_val; | 
 | 2586 |     uint16_t i; | 
 | 2587 |     uint16_t phy_data; | 
 | 2588 |  | 
 | 2589 |     DEBUGFUNC("e1000_wait_autoneg"); | 
 | 2590 |     DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | 
 | 2591 |  | 
 | 2592 |     /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
 | 2593 |     for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 
 | 2594 |         /* Read the MII Status Register and wait for Auto-Neg | 
 | 2595 |          * Complete bit to be set. | 
 | 2596 |          */ | 
 | 2597 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 2598 |         if(ret_val) | 
 | 2599 |             return ret_val; | 
 | 2600 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 2601 |         if(ret_val) | 
 | 2602 |             return ret_val; | 
 | 2603 |         if(phy_data & MII_SR_AUTONEG_COMPLETE) { | 
 | 2604 |             return E1000_SUCCESS; | 
 | 2605 |         } | 
 | 2606 |         msec_delay(100); | 
 | 2607 |     } | 
 | 2608 |     return E1000_SUCCESS; | 
 | 2609 | } | 
 | 2610 |  | 
 | 2611 | /****************************************************************************** | 
 | 2612 | * Raises the Management Data Clock | 
 | 2613 | * | 
 | 2614 | * hw - Struct containing variables accessed by shared code | 
 | 2615 | * ctrl - Device control register's current value | 
 | 2616 | ******************************************************************************/ | 
 | 2617 | static void | 
 | 2618 | e1000_raise_mdi_clk(struct e1000_hw *hw, | 
 | 2619 |                     uint32_t *ctrl) | 
 | 2620 | { | 
 | 2621 |     /* Raise the clock input to the Management Data Clock (by setting the MDC | 
 | 2622 |      * bit), and then delay 10 microseconds. | 
 | 2623 |      */ | 
 | 2624 |     E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); | 
 | 2625 |     E1000_WRITE_FLUSH(hw); | 
 | 2626 |     udelay(10); | 
 | 2627 | } | 
 | 2628 |  | 
 | 2629 | /****************************************************************************** | 
 | 2630 | * Lowers the Management Data Clock | 
 | 2631 | * | 
 | 2632 | * hw - Struct containing variables accessed by shared code | 
 | 2633 | * ctrl - Device control register's current value | 
 | 2634 | ******************************************************************************/ | 
 | 2635 | static void | 
 | 2636 | e1000_lower_mdi_clk(struct e1000_hw *hw, | 
 | 2637 |                     uint32_t *ctrl) | 
 | 2638 | { | 
 | 2639 |     /* Lower the clock input to the Management Data Clock (by clearing the MDC | 
 | 2640 |      * bit), and then delay 10 microseconds. | 
 | 2641 |      */ | 
 | 2642 |     E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 
 | 2643 |     E1000_WRITE_FLUSH(hw); | 
 | 2644 |     udelay(10); | 
 | 2645 | } | 
 | 2646 |  | 
 | 2647 | /****************************************************************************** | 
 | 2648 | * Shifts data bits out to the PHY | 
 | 2649 | * | 
 | 2650 | * hw - Struct containing variables accessed by shared code | 
 | 2651 | * data - Data to send out to the PHY | 
 | 2652 | * count - Number of bits to shift out | 
 | 2653 | * | 
 | 2654 | * Bits are shifted out in MSB to LSB order. | 
 | 2655 | ******************************************************************************/ | 
 | 2656 | static void | 
 | 2657 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, | 
 | 2658 |                          uint32_t data, | 
 | 2659 |                          uint16_t count) | 
 | 2660 | { | 
 | 2661 |     uint32_t ctrl; | 
 | 2662 |     uint32_t mask; | 
 | 2663 |  | 
 | 2664 |     /* We need to shift "count" number of bits out to the PHY. So, the value | 
 | 2665 |      * in the "data" parameter will be shifted out to the PHY one bit at a | 
 | 2666 |      * time. In order to do this, "data" must be broken down into bits. | 
 | 2667 |      */ | 
 | 2668 |     mask = 0x01; | 
 | 2669 |     mask <<= (count - 1); | 
 | 2670 |  | 
 | 2671 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 2672 |  | 
 | 2673 |     /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | 
 | 2674 |     ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | 
 | 2675 |  | 
 | 2676 |     while(mask) { | 
 | 2677 |         /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | 
 | 2678 |          * then raising and lowering the Management Data Clock. A "0" is | 
 | 2679 |          * shifted out to the PHY by setting the MDIO bit to "0" and then | 
 | 2680 |          * raising and lowering the clock. | 
 | 2681 |          */ | 
 | 2682 |         if(data & mask) ctrl |= E1000_CTRL_MDIO; | 
 | 2683 |         else ctrl &= ~E1000_CTRL_MDIO; | 
 | 2684 |  | 
 | 2685 |         E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 2686 |         E1000_WRITE_FLUSH(hw); | 
 | 2687 |  | 
 | 2688 |         udelay(10); | 
 | 2689 |  | 
 | 2690 |         e1000_raise_mdi_clk(hw, &ctrl); | 
 | 2691 |         e1000_lower_mdi_clk(hw, &ctrl); | 
 | 2692 |  | 
 | 2693 |         mask = mask >> 1; | 
 | 2694 |     } | 
 | 2695 | } | 
 | 2696 |  | 
 | 2697 | /****************************************************************************** | 
 | 2698 | * Shifts data bits in from the PHY | 
 | 2699 | * | 
 | 2700 | * hw - Struct containing variables accessed by shared code | 
 | 2701 | * | 
 | 2702 | * Bits are shifted in in MSB to LSB order. | 
 | 2703 | ******************************************************************************/ | 
 | 2704 | static uint16_t | 
 | 2705 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) | 
 | 2706 | { | 
 | 2707 |     uint32_t ctrl; | 
 | 2708 |     uint16_t data = 0; | 
 | 2709 |     uint8_t i; | 
 | 2710 |  | 
 | 2711 |     /* In order to read a register from the PHY, we need to shift in a total | 
 | 2712 |      * of 18 bits from the PHY. The first two bit (turnaround) times are used | 
 | 2713 |      * to avoid contention on the MDIO pin when a read operation is performed. | 
 | 2714 |      * These two bits are ignored by us and thrown away. Bits are "shifted in" | 
 | 2715 |      * by raising the input to the Management Data Clock (setting the MDC bit), | 
 | 2716 |      * and then reading the value of the MDIO bit. | 
 | 2717 |      */ | 
 | 2718 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 2719 |  | 
 | 2720 |     /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | 
 | 2721 |     ctrl &= ~E1000_CTRL_MDIO_DIR; | 
 | 2722 |     ctrl &= ~E1000_CTRL_MDIO; | 
 | 2723 |  | 
 | 2724 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 2725 |     E1000_WRITE_FLUSH(hw); | 
 | 2726 |  | 
 | 2727 |     /* Raise and Lower the clock before reading in the data. This accounts for | 
 | 2728 |      * the turnaround bits. The first clock occurred when we clocked out the | 
 | 2729 |      * last bit of the Register Address. | 
 | 2730 |      */ | 
 | 2731 |     e1000_raise_mdi_clk(hw, &ctrl); | 
 | 2732 |     e1000_lower_mdi_clk(hw, &ctrl); | 
 | 2733 |  | 
 | 2734 |     for(data = 0, i = 0; i < 16; i++) { | 
 | 2735 |         data = data << 1; | 
 | 2736 |         e1000_raise_mdi_clk(hw, &ctrl); | 
 | 2737 |         ctrl = E1000_READ_REG(hw, CTRL); | 
 | 2738 |         /* Check to see if we shifted in a "1". */ | 
 | 2739 |         if(ctrl & E1000_CTRL_MDIO) data |= 1; | 
 | 2740 |         e1000_lower_mdi_clk(hw, &ctrl); | 
 | 2741 |     } | 
 | 2742 |  | 
 | 2743 |     e1000_raise_mdi_clk(hw, &ctrl); | 
 | 2744 |     e1000_lower_mdi_clk(hw, &ctrl); | 
 | 2745 |  | 
 | 2746 |     return data; | 
 | 2747 | } | 
 | 2748 |  | 
 | 2749 | /***************************************************************************** | 
 | 2750 | * Reads the value from a PHY register, if the value is on a specific non zero | 
 | 2751 | * page, sets the page first. | 
 | 2752 | * hw - Struct containing variables accessed by shared code | 
 | 2753 | * reg_addr - address of the PHY register to read | 
 | 2754 | ******************************************************************************/ | 
 | 2755 | int32_t | 
 | 2756 | e1000_read_phy_reg(struct e1000_hw *hw, | 
 | 2757 |                    uint32_t reg_addr, | 
 | 2758 |                    uint16_t *phy_data) | 
 | 2759 | { | 
 | 2760 |     uint32_t ret_val; | 
 | 2761 |  | 
 | 2762 |     DEBUGFUNC("e1000_read_phy_reg"); | 
 | 2763 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2764 |     if((hw->phy_type == e1000_phy_igp ||  | 
 | 2765 |         hw->phy_type == e1000_phy_igp_2) && | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2766 |        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
 | 2767 |         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
 | 2768 |                                          (uint16_t)reg_addr); | 
 | 2769 |         if(ret_val) { | 
 | 2770 |             return ret_val; | 
 | 2771 |         } | 
 | 2772 |     } | 
 | 2773 |  | 
 | 2774 |     ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
 | 2775 |                                     phy_data); | 
 | 2776 |  | 
 | 2777 |     return ret_val; | 
 | 2778 | } | 
 | 2779 |  | 
 | 2780 | int32_t | 
 | 2781 | e1000_read_phy_reg_ex(struct e1000_hw *hw, | 
 | 2782 |                       uint32_t reg_addr, | 
 | 2783 |                       uint16_t *phy_data) | 
 | 2784 | { | 
 | 2785 |     uint32_t i; | 
 | 2786 |     uint32_t mdic = 0; | 
 | 2787 |     const uint32_t phy_addr = 1; | 
 | 2788 |  | 
 | 2789 |     DEBUGFUNC("e1000_read_phy_reg_ex"); | 
 | 2790 |  | 
 | 2791 |     if(reg_addr > MAX_PHY_REG_ADDRESS) { | 
 | 2792 |         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
 | 2793 |         return -E1000_ERR_PARAM; | 
 | 2794 |     } | 
 | 2795 |  | 
 | 2796 |     if(hw->mac_type > e1000_82543) { | 
 | 2797 |         /* Set up Op-code, Phy Address, and register address in the MDI | 
 | 2798 |          * Control register.  The MAC will take care of interfacing with the | 
 | 2799 |          * PHY to retrieve the desired data. | 
 | 2800 |          */ | 
 | 2801 |         mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 
 | 2802 |                 (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
 | 2803 |                 (E1000_MDIC_OP_READ)); | 
 | 2804 |  | 
 | 2805 |         E1000_WRITE_REG(hw, MDIC, mdic); | 
 | 2806 |  | 
 | 2807 |         /* Poll the ready bit to see if the MDI read completed */ | 
 | 2808 |         for(i = 0; i < 64; i++) { | 
 | 2809 |             udelay(50); | 
 | 2810 |             mdic = E1000_READ_REG(hw, MDIC); | 
 | 2811 |             if(mdic & E1000_MDIC_READY) break; | 
 | 2812 |         } | 
 | 2813 |         if(!(mdic & E1000_MDIC_READY)) { | 
 | 2814 |             DEBUGOUT("MDI Read did not complete\n"); | 
 | 2815 |             return -E1000_ERR_PHY; | 
 | 2816 |         } | 
 | 2817 |         if(mdic & E1000_MDIC_ERROR) { | 
 | 2818 |             DEBUGOUT("MDI Error\n"); | 
 | 2819 |             return -E1000_ERR_PHY; | 
 | 2820 |         } | 
 | 2821 |         *phy_data = (uint16_t) mdic; | 
 | 2822 |     } else { | 
 | 2823 |         /* We must first send a preamble through the MDIO pin to signal the | 
 | 2824 |          * beginning of an MII instruction.  This is done by sending 32 | 
 | 2825 |          * consecutive "1" bits. | 
 | 2826 |          */ | 
 | 2827 |         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
 | 2828 |  | 
 | 2829 |         /* Now combine the next few fields that are required for a read | 
 | 2830 |          * operation.  We use this method instead of calling the | 
 | 2831 |          * e1000_shift_out_mdi_bits routine five different times. The format of | 
 | 2832 |          * a MII read instruction consists of a shift out of 14 bits and is | 
 | 2833 |          * defined as follows: | 
 | 2834 |          *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 
 | 2835 |          * followed by a shift in of 18 bits.  This first two bits shifted in | 
 | 2836 |          * are TurnAround bits used to avoid contention on the MDIO pin when a | 
 | 2837 |          * READ operation is performed.  These two bits are thrown away | 
 | 2838 |          * followed by a shift in of 16 bits which contains the desired data. | 
 | 2839 |          */ | 
 | 2840 |         mdic = ((reg_addr) | (phy_addr << 5) | | 
 | 2841 |                 (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 
 | 2842 |  | 
 | 2843 |         e1000_shift_out_mdi_bits(hw, mdic, 14); | 
 | 2844 |  | 
 | 2845 |         /* Now that we've shifted out the read command to the MII, we need to | 
 | 2846 |          * "shift in" the 16-bit value (18 total bits) of the requested PHY | 
 | 2847 |          * register address. | 
 | 2848 |          */ | 
 | 2849 |         *phy_data = e1000_shift_in_mdi_bits(hw); | 
 | 2850 |     } | 
 | 2851 |     return E1000_SUCCESS; | 
 | 2852 | } | 
 | 2853 |  | 
 | 2854 | /****************************************************************************** | 
 | 2855 | * Writes a value to a PHY register | 
 | 2856 | * | 
 | 2857 | * hw - Struct containing variables accessed by shared code | 
 | 2858 | * reg_addr - address of the PHY register to write | 
 | 2859 | * data - data to write to the PHY | 
 | 2860 | ******************************************************************************/ | 
 | 2861 | int32_t | 
 | 2862 | e1000_write_phy_reg(struct e1000_hw *hw, | 
 | 2863 |                     uint32_t reg_addr, | 
 | 2864 |                     uint16_t phy_data) | 
 | 2865 | { | 
 | 2866 |     uint32_t ret_val; | 
 | 2867 |  | 
 | 2868 |     DEBUGFUNC("e1000_write_phy_reg"); | 
 | 2869 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2870 |     if((hw->phy_type == e1000_phy_igp ||  | 
 | 2871 |         hw->phy_type == e1000_phy_igp_2) && | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2872 |        (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
 | 2873 |         ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
 | 2874 |                                          (uint16_t)reg_addr); | 
 | 2875 |         if(ret_val) { | 
 | 2876 |             return ret_val; | 
 | 2877 |         } | 
 | 2878 |     } | 
 | 2879 |  | 
 | 2880 |     ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
 | 2881 |                                      phy_data); | 
 | 2882 |  | 
 | 2883 |     return ret_val; | 
 | 2884 | } | 
 | 2885 |  | 
 | 2886 | int32_t | 
 | 2887 | e1000_write_phy_reg_ex(struct e1000_hw *hw, | 
 | 2888 |                     uint32_t reg_addr, | 
 | 2889 |                     uint16_t phy_data) | 
 | 2890 | { | 
 | 2891 |     uint32_t i; | 
 | 2892 |     uint32_t mdic = 0; | 
 | 2893 |     const uint32_t phy_addr = 1; | 
 | 2894 |  | 
 | 2895 |     DEBUGFUNC("e1000_write_phy_reg_ex"); | 
 | 2896 |  | 
 | 2897 |     if(reg_addr > MAX_PHY_REG_ADDRESS) { | 
 | 2898 |         DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
 | 2899 |         return -E1000_ERR_PARAM; | 
 | 2900 |     } | 
 | 2901 |  | 
 | 2902 |     if(hw->mac_type > e1000_82543) { | 
 | 2903 |         /* Set up Op-code, Phy Address, register address, and data intended | 
 | 2904 |          * for the PHY register in the MDI Control register.  The MAC will take | 
 | 2905 |          * care of interfacing with the PHY to send the desired data. | 
 | 2906 |          */ | 
 | 2907 |         mdic = (((uint32_t) phy_data) | | 
 | 2908 |                 (reg_addr << E1000_MDIC_REG_SHIFT) | | 
 | 2909 |                 (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
 | 2910 |                 (E1000_MDIC_OP_WRITE)); | 
 | 2911 |  | 
 | 2912 |         E1000_WRITE_REG(hw, MDIC, mdic); | 
 | 2913 |  | 
 | 2914 |         /* Poll the ready bit to see if the MDI read completed */ | 
 | 2915 |         for(i = 0; i < 640; i++) { | 
 | 2916 |             udelay(5); | 
 | 2917 |             mdic = E1000_READ_REG(hw, MDIC); | 
 | 2918 |             if(mdic & E1000_MDIC_READY) break; | 
 | 2919 |         } | 
 | 2920 |         if(!(mdic & E1000_MDIC_READY)) { | 
 | 2921 |             DEBUGOUT("MDI Write did not complete\n"); | 
 | 2922 |             return -E1000_ERR_PHY; | 
 | 2923 |         } | 
 | 2924 |     } else { | 
 | 2925 |         /* We'll need to use the SW defined pins to shift the write command | 
 | 2926 |          * out to the PHY. We first send a preamble to the PHY to signal the | 
 | 2927 |          * beginning of the MII instruction.  This is done by sending 32 | 
 | 2928 |          * consecutive "1" bits. | 
 | 2929 |          */ | 
 | 2930 |         e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
 | 2931 |  | 
 | 2932 |         /* Now combine the remaining required fields that will indicate a | 
 | 2933 |          * write operation. We use this method instead of calling the | 
 | 2934 |          * e1000_shift_out_mdi_bits routine for each field in the command. The | 
 | 2935 |          * format of a MII write instruction is as follows: | 
 | 2936 |          * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | 
 | 2937 |          */ | 
 | 2938 |         mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | 
 | 2939 |                 (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | 
 | 2940 |         mdic <<= 16; | 
 | 2941 |         mdic |= (uint32_t) phy_data; | 
 | 2942 |  | 
 | 2943 |         e1000_shift_out_mdi_bits(hw, mdic, 32); | 
 | 2944 |     } | 
 | 2945 |  | 
 | 2946 |     return E1000_SUCCESS; | 
 | 2947 | } | 
 | 2948 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2949 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2950 | /****************************************************************************** | 
 | 2951 | * Returns the PHY to the power-on reset state | 
 | 2952 | * | 
 | 2953 | * hw - Struct containing variables accessed by shared code | 
 | 2954 | ******************************************************************************/ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2955 | int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2956 | e1000_phy_hw_reset(struct e1000_hw *hw) | 
 | 2957 | { | 
 | 2958 |     uint32_t ctrl, ctrl_ext; | 
 | 2959 |     uint32_t led_ctrl; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2960 |     int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2961 |  | 
 | 2962 |     DEBUGFUNC("e1000_phy_hw_reset"); | 
 | 2963 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 2964 |     /* In the case of the phy reset being blocked, it's not an error, we | 
 | 2965 |      * simply return success without performing the reset. */ | 
 | 2966 |     ret_val = e1000_check_phy_reset_block(hw); | 
 | 2967 |     if (ret_val) | 
 | 2968 |         return E1000_SUCCESS; | 
 | 2969 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2970 |     DEBUGOUT("Resetting Phy...\n"); | 
 | 2971 |  | 
 | 2972 |     if(hw->mac_type > e1000_82543) { | 
 | 2973 |         /* Read the device control register and assert the E1000_CTRL_PHY_RST | 
 | 2974 |          * bit. Then, take it out of reset. | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 2975 |          * For pre-e1000_82571 hardware, we delay for 10ms between the assert  | 
 | 2976 |          * and deassert.  For e1000_82571 hardware and later, we instead delay | 
 | 2977 |          * for 10ms after the deassertion. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2978 |          */ | 
 | 2979 |         ctrl = E1000_READ_REG(hw, CTRL); | 
 | 2980 |         E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); | 
 | 2981 |         E1000_WRITE_FLUSH(hw); | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 2982 |          | 
 | 2983 |         if (hw->mac_type < e1000_82571)  | 
 | 2984 |             msec_delay(10); | 
 | 2985 |          | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2986 |         E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 2987 |         E1000_WRITE_FLUSH(hw); | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 2988 |          | 
 | 2989 |         if (hw->mac_type >= e1000_82571) | 
 | 2990 |             msec_delay(10); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2991 |     } else { | 
 | 2992 |         /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 
 | 2993 |          * bit to put the PHY into reset. Then, take it out of reset. | 
 | 2994 |          */ | 
 | 2995 |         ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
 | 2996 |         ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | 
 | 2997 |         ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | 
 | 2998 |         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
 | 2999 |         E1000_WRITE_FLUSH(hw); | 
 | 3000 |         msec_delay(10); | 
 | 3001 |         ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | 
 | 3002 |         E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
 | 3003 |         E1000_WRITE_FLUSH(hw); | 
 | 3004 |     } | 
 | 3005 |     udelay(150); | 
 | 3006 |  | 
 | 3007 |     if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
 | 3008 |         /* Configure activity LED after PHY reset */ | 
 | 3009 |         led_ctrl = E1000_READ_REG(hw, LEDCTL); | 
 | 3010 |         led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
 | 3011 |         led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
 | 3012 |         E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 
 | 3013 |     } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3014 |  | 
 | 3015 |     /* Wait for FW to finish PHY configuration. */ | 
 | 3016 |     ret_val = e1000_get_phy_cfg_done(hw); | 
 | 3017 |  | 
 | 3018 |     return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3019 | } | 
 | 3020 |  | 
 | 3021 | /****************************************************************************** | 
 | 3022 | * Resets the PHY | 
 | 3023 | * | 
 | 3024 | * hw - Struct containing variables accessed by shared code | 
 | 3025 | * | 
 | 3026 | * Sets bit 15 of the MII Control regiser | 
 | 3027 | ******************************************************************************/ | 
 | 3028 | int32_t | 
 | 3029 | e1000_phy_reset(struct e1000_hw *hw) | 
 | 3030 | { | 
 | 3031 |     int32_t ret_val; | 
 | 3032 |     uint16_t phy_data; | 
 | 3033 |  | 
 | 3034 |     DEBUGFUNC("e1000_phy_reset"); | 
 | 3035 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3036 |     /* In the case of the phy reset being blocked, it's not an error, we | 
 | 3037 |      * simply return success without performing the reset. */ | 
 | 3038 |     ret_val = e1000_check_phy_reset_block(hw); | 
 | 3039 |     if (ret_val) | 
 | 3040 |         return E1000_SUCCESS; | 
 | 3041 |  | 
 | 3042 |     switch (hw->mac_type) { | 
 | 3043 |     case e1000_82541_rev_2: | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3044 |     case e1000_82571: | 
 | 3045 |     case e1000_82572: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3046 |         ret_val = e1000_phy_hw_reset(hw); | 
 | 3047 |         if(ret_val) | 
 | 3048 |             return ret_val; | 
 | 3049 |         break; | 
 | 3050 |     default: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3051 |         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
 | 3052 |         if(ret_val) | 
 | 3053 |             return ret_val; | 
 | 3054 |  | 
 | 3055 |         phy_data |= MII_CR_RESET; | 
 | 3056 |         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
 | 3057 |         if(ret_val) | 
 | 3058 |             return ret_val; | 
 | 3059 |  | 
 | 3060 |         udelay(1); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3061 |         break; | 
 | 3062 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3063 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3064 |     if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3065 |         e1000_phy_init_script(hw); | 
 | 3066 |  | 
 | 3067 |     return E1000_SUCCESS; | 
 | 3068 | } | 
 | 3069 |  | 
 | 3070 | /****************************************************************************** | 
 | 3071 | * Probes the expected PHY address for known PHY IDs | 
 | 3072 | * | 
 | 3073 | * hw - Struct containing variables accessed by shared code | 
 | 3074 | ******************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 3075 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3076 | e1000_detect_gig_phy(struct e1000_hw *hw) | 
 | 3077 | { | 
 | 3078 |     int32_t phy_init_status, ret_val; | 
 | 3079 |     uint16_t phy_id_high, phy_id_low; | 
 | 3080 |     boolean_t match = FALSE; | 
 | 3081 |  | 
 | 3082 |     DEBUGFUNC("e1000_detect_gig_phy"); | 
 | 3083 |  | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3084 |     /* The 82571 firmware may still be configuring the PHY.  In this | 
 | 3085 |      * case, we cannot access the PHY until the configuration is done.  So | 
 | 3086 |      * we explicitly set the PHY values. */ | 
 | 3087 |     if(hw->mac_type == e1000_82571 || | 
 | 3088 |        hw->mac_type == e1000_82572) { | 
 | 3089 |         hw->phy_id = IGP01E1000_I_PHY_ID; | 
 | 3090 |         hw->phy_type = e1000_phy_igp_2; | 
 | 3091 |         return E1000_SUCCESS; | 
 | 3092 |     } | 
 | 3093 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3094 |     /* Read the PHY ID Registers to identify which PHY is onboard. */ | 
 | 3095 |     ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 
 | 3096 |     if(ret_val) | 
 | 3097 |         return ret_val; | 
 | 3098 |  | 
 | 3099 |     hw->phy_id = (uint32_t) (phy_id_high << 16); | 
 | 3100 |     udelay(20); | 
 | 3101 |     ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | 
 | 3102 |     if(ret_val) | 
 | 3103 |         return ret_val; | 
 | 3104 |  | 
 | 3105 |     hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); | 
 | 3106 |     hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; | 
 | 3107 |  | 
 | 3108 |     switch(hw->mac_type) { | 
 | 3109 |     case e1000_82543: | 
 | 3110 |         if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; | 
 | 3111 |         break; | 
 | 3112 |     case e1000_82544: | 
 | 3113 |         if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; | 
 | 3114 |         break; | 
 | 3115 |     case e1000_82540: | 
 | 3116 |     case e1000_82545: | 
 | 3117 |     case e1000_82545_rev_3: | 
 | 3118 |     case e1000_82546: | 
 | 3119 |     case e1000_82546_rev_3: | 
 | 3120 |         if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; | 
 | 3121 |         break; | 
 | 3122 |     case e1000_82541: | 
 | 3123 |     case e1000_82541_rev_2: | 
 | 3124 |     case e1000_82547: | 
 | 3125 |     case e1000_82547_rev_2: | 
 | 3126 |         if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; | 
 | 3127 |         break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3128 |     case e1000_82573: | 
 | 3129 |         if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; | 
 | 3130 |         break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3131 |     default: | 
 | 3132 |         DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 
 | 3133 |         return -E1000_ERR_CONFIG; | 
 | 3134 |     } | 
 | 3135 |     phy_init_status = e1000_set_phy_type(hw); | 
 | 3136 |  | 
 | 3137 |     if ((match) && (phy_init_status == E1000_SUCCESS)) { | 
 | 3138 |         DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | 
 | 3139 |         return E1000_SUCCESS; | 
 | 3140 |     } | 
 | 3141 |     DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | 
 | 3142 |     return -E1000_ERR_PHY; | 
 | 3143 | } | 
 | 3144 |  | 
 | 3145 | /****************************************************************************** | 
 | 3146 | * Resets the PHY's DSP | 
 | 3147 | * | 
 | 3148 | * hw - Struct containing variables accessed by shared code | 
 | 3149 | ******************************************************************************/ | 
 | 3150 | static int32_t | 
 | 3151 | e1000_phy_reset_dsp(struct e1000_hw *hw) | 
 | 3152 | { | 
 | 3153 |     int32_t ret_val; | 
 | 3154 |     DEBUGFUNC("e1000_phy_reset_dsp"); | 
 | 3155 |  | 
 | 3156 |     do { | 
 | 3157 |         ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | 
 | 3158 |         if(ret_val) break; | 
 | 3159 |         ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | 
 | 3160 |         if(ret_val) break; | 
 | 3161 |         ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | 
 | 3162 |         if(ret_val) break; | 
 | 3163 |         ret_val = E1000_SUCCESS; | 
 | 3164 |     } while(0); | 
 | 3165 |  | 
 | 3166 |     return ret_val; | 
 | 3167 | } | 
 | 3168 |  | 
 | 3169 | /****************************************************************************** | 
 | 3170 | * Get PHY information from various PHY registers for igp PHY only. | 
 | 3171 | * | 
 | 3172 | * hw - Struct containing variables accessed by shared code | 
 | 3173 | * phy_info - PHY information structure | 
 | 3174 | ******************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 3175 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3176 | e1000_phy_igp_get_info(struct e1000_hw *hw, | 
 | 3177 |                        struct e1000_phy_info *phy_info) | 
 | 3178 | { | 
 | 3179 |     int32_t ret_val; | 
 | 3180 |     uint16_t phy_data, polarity, min_length, max_length, average; | 
 | 3181 |  | 
 | 3182 |     DEBUGFUNC("e1000_phy_igp_get_info"); | 
 | 3183 |  | 
 | 3184 |     /* The downshift status is checked only once, after link is established, | 
 | 3185 |      * and it stored in the hw->speed_downgraded parameter. */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3186 |     phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3187 |  | 
 | 3188 |     /* IGP01E1000 does not need to support it. */ | 
 | 3189 |     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 
 | 3190 |  | 
 | 3191 |     /* IGP01E1000 always correct polarity reversal */ | 
 | 3192 |     phy_info->polarity_correction = e1000_polarity_reversal_enabled; | 
 | 3193 |  | 
 | 3194 |     /* Check polarity status */ | 
 | 3195 |     ret_val = e1000_check_polarity(hw, &polarity); | 
 | 3196 |     if(ret_val) | 
 | 3197 |         return ret_val; | 
 | 3198 |  | 
 | 3199 |     phy_info->cable_polarity = polarity; | 
 | 3200 |  | 
 | 3201 |     ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | 
 | 3202 |     if(ret_val) | 
 | 3203 |         return ret_val; | 
 | 3204 |  | 
 | 3205 |     phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> | 
 | 3206 |                           IGP01E1000_PSSR_MDIX_SHIFT; | 
 | 3207 |  | 
 | 3208 |     if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
 | 3209 |        IGP01E1000_PSSR_SPEED_1000MBPS) { | 
 | 3210 |         /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | 
 | 3211 |         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
 | 3212 |         if(ret_val) | 
 | 3213 |             return ret_val; | 
 | 3214 |  | 
 | 3215 |         phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
 | 3216 |                              SR_1000T_LOCAL_RX_STATUS_SHIFT; | 
 | 3217 |         phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
 | 3218 |                               SR_1000T_REMOTE_RX_STATUS_SHIFT; | 
 | 3219 |  | 
 | 3220 |         /* Get cable length */ | 
 | 3221 |         ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 
 | 3222 |         if(ret_val) | 
 | 3223 |             return ret_val; | 
 | 3224 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3225 |         /* Translate to old method */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3226 |         average = (max_length + min_length) / 2; | 
 | 3227 |  | 
 | 3228 |         if(average <= e1000_igp_cable_length_50) | 
 | 3229 |             phy_info->cable_length = e1000_cable_length_50; | 
 | 3230 |         else if(average <= e1000_igp_cable_length_80) | 
 | 3231 |             phy_info->cable_length = e1000_cable_length_50_80; | 
 | 3232 |         else if(average <= e1000_igp_cable_length_110) | 
 | 3233 |             phy_info->cable_length = e1000_cable_length_80_110; | 
 | 3234 |         else if(average <= e1000_igp_cable_length_140) | 
 | 3235 |             phy_info->cable_length = e1000_cable_length_110_140; | 
 | 3236 |         else | 
 | 3237 |             phy_info->cable_length = e1000_cable_length_140; | 
 | 3238 |     } | 
 | 3239 |  | 
 | 3240 |     return E1000_SUCCESS; | 
 | 3241 | } | 
 | 3242 |  | 
 | 3243 | /****************************************************************************** | 
 | 3244 | * Get PHY information from various PHY registers fot m88 PHY only. | 
 | 3245 | * | 
 | 3246 | * hw - Struct containing variables accessed by shared code | 
 | 3247 | * phy_info - PHY information structure | 
 | 3248 | ******************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 3249 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3250 | e1000_phy_m88_get_info(struct e1000_hw *hw, | 
 | 3251 |                        struct e1000_phy_info *phy_info) | 
 | 3252 | { | 
 | 3253 |     int32_t ret_val; | 
 | 3254 |     uint16_t phy_data, polarity; | 
 | 3255 |  | 
 | 3256 |     DEBUGFUNC("e1000_phy_m88_get_info"); | 
 | 3257 |  | 
 | 3258 |     /* The downshift status is checked only once, after link is established, | 
 | 3259 |      * and it stored in the hw->speed_downgraded parameter. */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3260 |     phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3261 |  | 
 | 3262 |     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
 | 3263 |     if(ret_val) | 
 | 3264 |         return ret_val; | 
 | 3265 |  | 
 | 3266 |     phy_info->extended_10bt_distance = | 
 | 3267 |         (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | 
 | 3268 |         M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT; | 
 | 3269 |     phy_info->polarity_correction = | 
 | 3270 |         (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | 
 | 3271 |         M88E1000_PSCR_POLARITY_REVERSAL_SHIFT; | 
 | 3272 |  | 
 | 3273 |     /* Check polarity status */ | 
 | 3274 |     ret_val = e1000_check_polarity(hw, &polarity); | 
 | 3275 |     if(ret_val) | 
 | 3276 |         return ret_val;  | 
 | 3277 |     phy_info->cable_polarity = polarity; | 
 | 3278 |  | 
 | 3279 |     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
 | 3280 |     if(ret_val) | 
 | 3281 |         return ret_val; | 
 | 3282 |  | 
 | 3283 |     phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> | 
 | 3284 |                           M88E1000_PSSR_MDIX_SHIFT; | 
 | 3285 |  | 
 | 3286 |     if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 
 | 3287 |         /* Cable Length Estimation and Local/Remote Receiver Information | 
 | 3288 |          * are only valid at 1000 Mbps. | 
 | 3289 |          */ | 
 | 3290 |         phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
 | 3291 |                                   M88E1000_PSSR_CABLE_LENGTH_SHIFT); | 
 | 3292 |  | 
 | 3293 |         ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
 | 3294 |         if(ret_val) | 
 | 3295 |             return ret_val; | 
 | 3296 |  | 
 | 3297 |         phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
 | 3298 |                              SR_1000T_LOCAL_RX_STATUS_SHIFT; | 
 | 3299 |  | 
 | 3300 |         phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
 | 3301 |                               SR_1000T_REMOTE_RX_STATUS_SHIFT; | 
 | 3302 |     } | 
 | 3303 |  | 
 | 3304 |     return E1000_SUCCESS; | 
 | 3305 | } | 
 | 3306 |  | 
 | 3307 | /****************************************************************************** | 
 | 3308 | * Get PHY information from various PHY registers | 
 | 3309 | * | 
 | 3310 | * hw - Struct containing variables accessed by shared code | 
 | 3311 | * phy_info - PHY information structure | 
 | 3312 | ******************************************************************************/ | 
 | 3313 | int32_t | 
 | 3314 | e1000_phy_get_info(struct e1000_hw *hw, | 
 | 3315 |                    struct e1000_phy_info *phy_info) | 
 | 3316 | { | 
 | 3317 |     int32_t ret_val; | 
 | 3318 |     uint16_t phy_data; | 
 | 3319 |  | 
 | 3320 |     DEBUGFUNC("e1000_phy_get_info"); | 
 | 3321 |  | 
 | 3322 |     phy_info->cable_length = e1000_cable_length_undefined; | 
 | 3323 |     phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | 
 | 3324 |     phy_info->cable_polarity = e1000_rev_polarity_undefined; | 
 | 3325 |     phy_info->downshift = e1000_downshift_undefined; | 
 | 3326 |     phy_info->polarity_correction = e1000_polarity_reversal_undefined; | 
 | 3327 |     phy_info->mdix_mode = e1000_auto_x_mode_undefined; | 
 | 3328 |     phy_info->local_rx = e1000_1000t_rx_status_undefined; | 
 | 3329 |     phy_info->remote_rx = e1000_1000t_rx_status_undefined; | 
 | 3330 |  | 
 | 3331 |     if(hw->media_type != e1000_media_type_copper) { | 
 | 3332 |         DEBUGOUT("PHY info is only valid for copper media\n"); | 
 | 3333 |         return -E1000_ERR_CONFIG; | 
 | 3334 |     } | 
 | 3335 |  | 
 | 3336 |     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 3337 |     if(ret_val) | 
 | 3338 |         return ret_val; | 
 | 3339 |  | 
 | 3340 |     ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
 | 3341 |     if(ret_val) | 
 | 3342 |         return ret_val; | 
 | 3343 |  | 
 | 3344 |     if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | 
 | 3345 |         DEBUGOUT("PHY info is only valid if link is up\n"); | 
 | 3346 |         return -E1000_ERR_CONFIG; | 
 | 3347 |     } | 
 | 3348 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3349 |     if(hw->phy_type == e1000_phy_igp || | 
 | 3350 |         hw->phy_type == e1000_phy_igp_2) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3351 |         return e1000_phy_igp_get_info(hw, phy_info); | 
 | 3352 |     else | 
 | 3353 |         return e1000_phy_m88_get_info(hw, phy_info); | 
 | 3354 | } | 
 | 3355 |  | 
 | 3356 | int32_t | 
 | 3357 | e1000_validate_mdi_setting(struct e1000_hw *hw) | 
 | 3358 | { | 
 | 3359 |     DEBUGFUNC("e1000_validate_mdi_settings"); | 
 | 3360 |  | 
 | 3361 |     if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | 
 | 3362 |         DEBUGOUT("Invalid MDI setting detected\n"); | 
 | 3363 |         hw->mdix = 1; | 
 | 3364 |         return -E1000_ERR_CONFIG; | 
 | 3365 |     } | 
 | 3366 |     return E1000_SUCCESS; | 
 | 3367 | } | 
 | 3368 |  | 
 | 3369 |  | 
 | 3370 | /****************************************************************************** | 
 | 3371 |  * Sets up eeprom variables in the hw struct.  Must be called after mac_type | 
 | 3372 |  * is configured. | 
 | 3373 |  * | 
 | 3374 |  * hw - Struct containing variables accessed by shared code | 
 | 3375 |  *****************************************************************************/ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3376 | int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3377 | e1000_init_eeprom_params(struct e1000_hw *hw) | 
 | 3378 | { | 
 | 3379 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 3380 |     uint32_t eecd = E1000_READ_REG(hw, EECD); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3381 |     int32_t ret_val = E1000_SUCCESS; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3382 |     uint16_t eeprom_size; | 
 | 3383 |  | 
 | 3384 |     DEBUGFUNC("e1000_init_eeprom_params"); | 
 | 3385 |  | 
 | 3386 |     switch (hw->mac_type) { | 
 | 3387 |     case e1000_82542_rev2_0: | 
 | 3388 |     case e1000_82542_rev2_1: | 
 | 3389 |     case e1000_82543: | 
 | 3390 |     case e1000_82544: | 
 | 3391 |         eeprom->type = e1000_eeprom_microwire; | 
 | 3392 |         eeprom->word_size = 64; | 
 | 3393 |         eeprom->opcode_bits = 3; | 
 | 3394 |         eeprom->address_bits = 6; | 
 | 3395 |         eeprom->delay_usec = 50; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3396 |         eeprom->use_eerd = FALSE; | 
 | 3397 |         eeprom->use_eewr = FALSE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3398 |         break; | 
 | 3399 |     case e1000_82540: | 
 | 3400 |     case e1000_82545: | 
 | 3401 |     case e1000_82545_rev_3: | 
 | 3402 |     case e1000_82546: | 
 | 3403 |     case e1000_82546_rev_3: | 
 | 3404 |         eeprom->type = e1000_eeprom_microwire; | 
 | 3405 |         eeprom->opcode_bits = 3; | 
 | 3406 |         eeprom->delay_usec = 50; | 
 | 3407 |         if(eecd & E1000_EECD_SIZE) { | 
 | 3408 |             eeprom->word_size = 256; | 
 | 3409 |             eeprom->address_bits = 8; | 
 | 3410 |         } else { | 
 | 3411 |             eeprom->word_size = 64; | 
 | 3412 |             eeprom->address_bits = 6; | 
 | 3413 |         } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3414 |         eeprom->use_eerd = FALSE; | 
 | 3415 |         eeprom->use_eewr = FALSE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3416 |         break; | 
 | 3417 |     case e1000_82541: | 
 | 3418 |     case e1000_82541_rev_2: | 
 | 3419 |     case e1000_82547: | 
 | 3420 |     case e1000_82547_rev_2: | 
 | 3421 |         if (eecd & E1000_EECD_TYPE) { | 
 | 3422 |             eeprom->type = e1000_eeprom_spi; | 
 | 3423 |             eeprom->opcode_bits = 8; | 
 | 3424 |             eeprom->delay_usec = 1; | 
 | 3425 |             if (eecd & E1000_EECD_ADDR_BITS) { | 
 | 3426 |                 eeprom->page_size = 32; | 
 | 3427 |                 eeprom->address_bits = 16; | 
 | 3428 |             } else { | 
 | 3429 |                 eeprom->page_size = 8; | 
 | 3430 |                 eeprom->address_bits = 8; | 
 | 3431 |             } | 
 | 3432 |         } else { | 
 | 3433 |             eeprom->type = e1000_eeprom_microwire; | 
 | 3434 |             eeprom->opcode_bits = 3; | 
 | 3435 |             eeprom->delay_usec = 50; | 
 | 3436 |             if (eecd & E1000_EECD_ADDR_BITS) { | 
 | 3437 |                 eeprom->word_size = 256; | 
 | 3438 |                 eeprom->address_bits = 8; | 
 | 3439 |             } else { | 
 | 3440 |                 eeprom->word_size = 64; | 
 | 3441 |                 eeprom->address_bits = 6; | 
 | 3442 |             } | 
 | 3443 |         } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3444 |         eeprom->use_eerd = FALSE; | 
 | 3445 |         eeprom->use_eewr = FALSE; | 
 | 3446 |         break; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3447 |     case e1000_82571: | 
 | 3448 |     case e1000_82572: | 
 | 3449 |         eeprom->type = e1000_eeprom_spi; | 
 | 3450 |         eeprom->opcode_bits = 8; | 
 | 3451 |         eeprom->delay_usec = 1; | 
 | 3452 |         if (eecd & E1000_EECD_ADDR_BITS) { | 
 | 3453 |             eeprom->page_size = 32; | 
 | 3454 |             eeprom->address_bits = 16; | 
 | 3455 |         } else { | 
 | 3456 |             eeprom->page_size = 8; | 
 | 3457 |             eeprom->address_bits = 8; | 
 | 3458 |         } | 
 | 3459 |         eeprom->use_eerd = FALSE; | 
 | 3460 |         eeprom->use_eewr = FALSE; | 
 | 3461 |         break; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3462 |     case e1000_82573: | 
 | 3463 |         eeprom->type = e1000_eeprom_spi; | 
 | 3464 |         eeprom->opcode_bits = 8; | 
 | 3465 |         eeprom->delay_usec = 1; | 
 | 3466 |         if (eecd & E1000_EECD_ADDR_BITS) { | 
 | 3467 |             eeprom->page_size = 32; | 
 | 3468 |             eeprom->address_bits = 16; | 
 | 3469 |         } else { | 
 | 3470 |             eeprom->page_size = 8; | 
 | 3471 |             eeprom->address_bits = 8; | 
 | 3472 |         } | 
 | 3473 |         eeprom->use_eerd = TRUE; | 
 | 3474 |         eeprom->use_eewr = TRUE; | 
 | 3475 |         if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) { | 
 | 3476 |             eeprom->type = e1000_eeprom_flash; | 
 | 3477 |             eeprom->word_size = 2048; | 
 | 3478 |  | 
 | 3479 |             /* Ensure that the Autonomous FLASH update bit is cleared due to | 
 | 3480 |              * Flash update issue on parts which use a FLASH for NVM. */ | 
 | 3481 |             eecd &= ~E1000_EECD_AUPDEN; | 
 | 3482 |             E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3483 |         } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3484 |         break; | 
 | 3485 |     default: | 
 | 3486 |         break; | 
 | 3487 |     } | 
 | 3488 |  | 
 | 3489 |     if (eeprom->type == e1000_eeprom_spi) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3490 |         /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | 
 | 3491 |          * 32KB (incremented by powers of 2). | 
 | 3492 |          */ | 
 | 3493 |         if(hw->mac_type <= e1000_82547_rev_2) { | 
 | 3494 |             /* Set to default value for initial eeprom read. */ | 
 | 3495 |             eeprom->word_size = 64; | 
 | 3496 |             ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | 
 | 3497 |             if(ret_val) | 
 | 3498 |                 return ret_val; | 
 | 3499 |             eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | 
 | 3500 |             /* 256B eeprom size was not supported in earlier hardware, so we | 
 | 3501 |              * bump eeprom_size up one to ensure that "1" (which maps to 256B) | 
 | 3502 |              * is never the result used in the shifting logic below. */ | 
 | 3503 |             if(eeprom_size) | 
 | 3504 |                 eeprom_size++; | 
 | 3505 |         } else { | 
 | 3506 |             eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
 | 3507 |                           E1000_EECD_SIZE_EX_SHIFT); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3508 |         } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3509 |  | 
 | 3510 |         eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3511 |     } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3512 |     return ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3513 | } | 
 | 3514 |  | 
 | 3515 | /****************************************************************************** | 
 | 3516 |  * Raises the EEPROM's clock input. | 
 | 3517 |  * | 
 | 3518 |  * hw - Struct containing variables accessed by shared code | 
 | 3519 |  * eecd - EECD's current value | 
 | 3520 |  *****************************************************************************/ | 
 | 3521 | static void | 
 | 3522 | e1000_raise_ee_clk(struct e1000_hw *hw, | 
 | 3523 |                    uint32_t *eecd) | 
 | 3524 | { | 
 | 3525 |     /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 
 | 3526 |      * wait <delay> microseconds. | 
 | 3527 |      */ | 
 | 3528 |     *eecd = *eecd | E1000_EECD_SK; | 
 | 3529 |     E1000_WRITE_REG(hw, EECD, *eecd); | 
 | 3530 |     E1000_WRITE_FLUSH(hw); | 
 | 3531 |     udelay(hw->eeprom.delay_usec); | 
 | 3532 | } | 
 | 3533 |  | 
 | 3534 | /****************************************************************************** | 
 | 3535 |  * Lowers the EEPROM's clock input. | 
 | 3536 |  * | 
 | 3537 |  * hw - Struct containing variables accessed by shared code | 
 | 3538 |  * eecd - EECD's current value | 
 | 3539 |  *****************************************************************************/ | 
 | 3540 | static void | 
 | 3541 | e1000_lower_ee_clk(struct e1000_hw *hw, | 
 | 3542 |                    uint32_t *eecd) | 
 | 3543 | { | 
 | 3544 |     /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | 
 | 3545 |      * wait 50 microseconds. | 
 | 3546 |      */ | 
 | 3547 |     *eecd = *eecd & ~E1000_EECD_SK; | 
 | 3548 |     E1000_WRITE_REG(hw, EECD, *eecd); | 
 | 3549 |     E1000_WRITE_FLUSH(hw); | 
 | 3550 |     udelay(hw->eeprom.delay_usec); | 
 | 3551 | } | 
 | 3552 |  | 
 | 3553 | /****************************************************************************** | 
 | 3554 |  * Shift data bits out to the EEPROM. | 
 | 3555 |  * | 
 | 3556 |  * hw - Struct containing variables accessed by shared code | 
 | 3557 |  * data - data to send to the EEPROM | 
 | 3558 |  * count - number of bits to shift out | 
 | 3559 |  *****************************************************************************/ | 
 | 3560 | static void | 
 | 3561 | e1000_shift_out_ee_bits(struct e1000_hw *hw, | 
 | 3562 |                         uint16_t data, | 
 | 3563 |                         uint16_t count) | 
 | 3564 | { | 
 | 3565 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 3566 |     uint32_t eecd; | 
 | 3567 |     uint32_t mask; | 
 | 3568 |  | 
 | 3569 |     /* We need to shift "count" bits out to the EEPROM. So, value in the | 
 | 3570 |      * "data" parameter will be shifted out to the EEPROM one bit at a time. | 
 | 3571 |      * In order to do this, "data" must be broken down into bits. | 
 | 3572 |      */ | 
 | 3573 |     mask = 0x01 << (count - 1); | 
 | 3574 |     eecd = E1000_READ_REG(hw, EECD); | 
 | 3575 |     if (eeprom->type == e1000_eeprom_microwire) { | 
 | 3576 |         eecd &= ~E1000_EECD_DO; | 
 | 3577 |     } else if (eeprom->type == e1000_eeprom_spi) { | 
 | 3578 |         eecd |= E1000_EECD_DO; | 
 | 3579 |     } | 
 | 3580 |     do { | 
 | 3581 |         /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | 
 | 3582 |          * and then raising and then lowering the clock (the SK bit controls | 
 | 3583 |          * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM | 
 | 3584 |          * by setting "DI" to "0" and then raising and then lowering the clock. | 
 | 3585 |          */ | 
 | 3586 |         eecd &= ~E1000_EECD_DI; | 
 | 3587 |  | 
 | 3588 |         if(data & mask) | 
 | 3589 |             eecd |= E1000_EECD_DI; | 
 | 3590 |  | 
 | 3591 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3592 |         E1000_WRITE_FLUSH(hw); | 
 | 3593 |  | 
 | 3594 |         udelay(eeprom->delay_usec); | 
 | 3595 |  | 
 | 3596 |         e1000_raise_ee_clk(hw, &eecd); | 
 | 3597 |         e1000_lower_ee_clk(hw, &eecd); | 
 | 3598 |  | 
 | 3599 |         mask = mask >> 1; | 
 | 3600 |  | 
 | 3601 |     } while(mask); | 
 | 3602 |  | 
 | 3603 |     /* We leave the "DI" bit set to "0" when we leave this routine. */ | 
 | 3604 |     eecd &= ~E1000_EECD_DI; | 
 | 3605 |     E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3606 | } | 
 | 3607 |  | 
 | 3608 | /****************************************************************************** | 
 | 3609 |  * Shift data bits in from the EEPROM | 
 | 3610 |  * | 
 | 3611 |  * hw - Struct containing variables accessed by shared code | 
 | 3612 |  *****************************************************************************/ | 
 | 3613 | static uint16_t | 
 | 3614 | e1000_shift_in_ee_bits(struct e1000_hw *hw, | 
 | 3615 |                        uint16_t count) | 
 | 3616 | { | 
 | 3617 |     uint32_t eecd; | 
 | 3618 |     uint32_t i; | 
 | 3619 |     uint16_t data; | 
 | 3620 |  | 
 | 3621 |     /* In order to read a register from the EEPROM, we need to shift 'count' | 
 | 3622 |      * bits in from the EEPROM. Bits are "shifted in" by raising the clock | 
 | 3623 |      * input to the EEPROM (setting the SK bit), and then reading the value of | 
 | 3624 |      * the "DO" bit.  During this "shifting in" process the "DI" bit should | 
 | 3625 |      * always be clear. | 
 | 3626 |      */ | 
 | 3627 |  | 
 | 3628 |     eecd = E1000_READ_REG(hw, EECD); | 
 | 3629 |  | 
 | 3630 |     eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
 | 3631 |     data = 0; | 
 | 3632 |  | 
 | 3633 |     for(i = 0; i < count; i++) { | 
 | 3634 |         data = data << 1; | 
 | 3635 |         e1000_raise_ee_clk(hw, &eecd); | 
 | 3636 |  | 
 | 3637 |         eecd = E1000_READ_REG(hw, EECD); | 
 | 3638 |  | 
 | 3639 |         eecd &= ~(E1000_EECD_DI); | 
 | 3640 |         if(eecd & E1000_EECD_DO) | 
 | 3641 |             data |= 1; | 
 | 3642 |  | 
 | 3643 |         e1000_lower_ee_clk(hw, &eecd); | 
 | 3644 |     } | 
 | 3645 |  | 
 | 3646 |     return data; | 
 | 3647 | } | 
 | 3648 |  | 
 | 3649 | /****************************************************************************** | 
 | 3650 |  * Prepares EEPROM for access | 
 | 3651 |  * | 
 | 3652 |  * hw - Struct containing variables accessed by shared code | 
 | 3653 |  * | 
 | 3654 |  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 
 | 3655 |  * function should be called before issuing a command to the EEPROM. | 
 | 3656 |  *****************************************************************************/ | 
 | 3657 | static int32_t | 
 | 3658 | e1000_acquire_eeprom(struct e1000_hw *hw) | 
 | 3659 | { | 
 | 3660 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 3661 |     uint32_t eecd, i=0; | 
 | 3662 |  | 
 | 3663 |     DEBUGFUNC("e1000_acquire_eeprom"); | 
 | 3664 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3665 |     if(e1000_get_hw_eeprom_semaphore(hw)) | 
 | 3666 |         return -E1000_ERR_EEPROM; | 
 | 3667 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3668 |     eecd = E1000_READ_REG(hw, EECD); | 
 | 3669 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3670 |     if (hw->mac_type != e1000_82573) { | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3671 |         /* Request EEPROM Access */ | 
 | 3672 |         if(hw->mac_type > e1000_82544) { | 
 | 3673 |             eecd |= E1000_EECD_REQ; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3674 |             E1000_WRITE_REG(hw, EECD, eecd); | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 3675 |             eecd = E1000_READ_REG(hw, EECD); | 
 | 3676 |             while((!(eecd & E1000_EECD_GNT)) && | 
 | 3677 |                   (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 
 | 3678 |                 i++; | 
 | 3679 |                 udelay(5); | 
 | 3680 |                 eecd = E1000_READ_REG(hw, EECD); | 
 | 3681 |             } | 
 | 3682 |             if(!(eecd & E1000_EECD_GNT)) { | 
 | 3683 |                 eecd &= ~E1000_EECD_REQ; | 
 | 3684 |                 E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3685 |                 DEBUGOUT("Could not acquire EEPROM grant\n"); | 
 | 3686 |                 e1000_put_hw_eeprom_semaphore(hw); | 
 | 3687 |                 return -E1000_ERR_EEPROM; | 
 | 3688 |             } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3689 |         } | 
 | 3690 |     } | 
 | 3691 |  | 
 | 3692 |     /* Setup EEPROM for Read/Write */ | 
 | 3693 |  | 
 | 3694 |     if (eeprom->type == e1000_eeprom_microwire) { | 
 | 3695 |         /* Clear SK and DI */ | 
 | 3696 |         eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 
 | 3697 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3698 |  | 
 | 3699 |         /* Set CS */ | 
 | 3700 |         eecd |= E1000_EECD_CS; | 
 | 3701 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3702 |     } else if (eeprom->type == e1000_eeprom_spi) { | 
 | 3703 |         /* Clear SK and CS */ | 
 | 3704 |         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
 | 3705 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3706 |         udelay(1); | 
 | 3707 |     } | 
 | 3708 |  | 
 | 3709 |     return E1000_SUCCESS; | 
 | 3710 | } | 
 | 3711 |  | 
 | 3712 | /****************************************************************************** | 
 | 3713 |  * Returns EEPROM to a "standby" state | 
 | 3714 |  * | 
 | 3715 |  * hw - Struct containing variables accessed by shared code | 
 | 3716 |  *****************************************************************************/ | 
 | 3717 | static void | 
 | 3718 | e1000_standby_eeprom(struct e1000_hw *hw) | 
 | 3719 | { | 
 | 3720 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 3721 |     uint32_t eecd; | 
 | 3722 |  | 
 | 3723 |     eecd = E1000_READ_REG(hw, EECD); | 
 | 3724 |  | 
 | 3725 |     if(eeprom->type == e1000_eeprom_microwire) { | 
 | 3726 |         eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
 | 3727 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3728 |         E1000_WRITE_FLUSH(hw); | 
 | 3729 |         udelay(eeprom->delay_usec); | 
 | 3730 |  | 
 | 3731 |         /* Clock high */ | 
 | 3732 |         eecd |= E1000_EECD_SK; | 
 | 3733 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3734 |         E1000_WRITE_FLUSH(hw); | 
 | 3735 |         udelay(eeprom->delay_usec); | 
 | 3736 |  | 
 | 3737 |         /* Select EEPROM */ | 
 | 3738 |         eecd |= E1000_EECD_CS; | 
 | 3739 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3740 |         E1000_WRITE_FLUSH(hw); | 
 | 3741 |         udelay(eeprom->delay_usec); | 
 | 3742 |  | 
 | 3743 |         /* Clock low */ | 
 | 3744 |         eecd &= ~E1000_EECD_SK; | 
 | 3745 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3746 |         E1000_WRITE_FLUSH(hw); | 
 | 3747 |         udelay(eeprom->delay_usec); | 
 | 3748 |     } else if(eeprom->type == e1000_eeprom_spi) { | 
 | 3749 |         /* Toggle CS to flush commands */ | 
 | 3750 |         eecd |= E1000_EECD_CS; | 
 | 3751 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3752 |         E1000_WRITE_FLUSH(hw); | 
 | 3753 |         udelay(eeprom->delay_usec); | 
 | 3754 |         eecd &= ~E1000_EECD_CS; | 
 | 3755 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3756 |         E1000_WRITE_FLUSH(hw); | 
 | 3757 |         udelay(eeprom->delay_usec); | 
 | 3758 |     } | 
 | 3759 | } | 
 | 3760 |  | 
 | 3761 | /****************************************************************************** | 
 | 3762 |  * Terminates a command by inverting the EEPROM's chip select pin | 
 | 3763 |  * | 
 | 3764 |  * hw - Struct containing variables accessed by shared code | 
 | 3765 |  *****************************************************************************/ | 
 | 3766 | static void | 
 | 3767 | e1000_release_eeprom(struct e1000_hw *hw) | 
 | 3768 | { | 
 | 3769 |     uint32_t eecd; | 
 | 3770 |  | 
 | 3771 |     DEBUGFUNC("e1000_release_eeprom"); | 
 | 3772 |  | 
 | 3773 |     eecd = E1000_READ_REG(hw, EECD); | 
 | 3774 |  | 
 | 3775 |     if (hw->eeprom.type == e1000_eeprom_spi) { | 
 | 3776 |         eecd |= E1000_EECD_CS;  /* Pull CS high */ | 
 | 3777 |         eecd &= ~E1000_EECD_SK; /* Lower SCK */ | 
 | 3778 |  | 
 | 3779 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3780 |  | 
 | 3781 |         udelay(hw->eeprom.delay_usec); | 
 | 3782 |     } else if(hw->eeprom.type == e1000_eeprom_microwire) { | 
 | 3783 |         /* cleanup eeprom */ | 
 | 3784 |  | 
 | 3785 |         /* CS on Microwire is active-high */ | 
 | 3786 |         eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 
 | 3787 |  | 
 | 3788 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3789 |  | 
 | 3790 |         /* Rising edge of clock */ | 
 | 3791 |         eecd |= E1000_EECD_SK; | 
 | 3792 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3793 |         E1000_WRITE_FLUSH(hw); | 
 | 3794 |         udelay(hw->eeprom.delay_usec); | 
 | 3795 |  | 
 | 3796 |         /* Falling edge of clock */ | 
 | 3797 |         eecd &= ~E1000_EECD_SK; | 
 | 3798 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3799 |         E1000_WRITE_FLUSH(hw); | 
 | 3800 |         udelay(hw->eeprom.delay_usec); | 
 | 3801 |     } | 
 | 3802 |  | 
 | 3803 |     /* Stop requesting EEPROM access */ | 
 | 3804 |     if(hw->mac_type > e1000_82544) { | 
 | 3805 |         eecd &= ~E1000_EECD_REQ; | 
 | 3806 |         E1000_WRITE_REG(hw, EECD, eecd); | 
 | 3807 |     } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3808 |  | 
 | 3809 |     e1000_put_hw_eeprom_semaphore(hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3810 | } | 
 | 3811 |  | 
 | 3812 | /****************************************************************************** | 
 | 3813 |  * Reads a 16 bit word from the EEPROM. | 
 | 3814 |  * | 
 | 3815 |  * hw - Struct containing variables accessed by shared code | 
 | 3816 |  *****************************************************************************/ | 
 | 3817 | int32_t | 
 | 3818 | e1000_spi_eeprom_ready(struct e1000_hw *hw) | 
 | 3819 | { | 
 | 3820 |     uint16_t retry_count = 0; | 
 | 3821 |     uint8_t spi_stat_reg; | 
 | 3822 |  | 
 | 3823 |     DEBUGFUNC("e1000_spi_eeprom_ready"); | 
 | 3824 |  | 
 | 3825 |     /* Read "Status Register" repeatedly until the LSB is cleared.  The | 
 | 3826 |      * EEPROM will signal that the command has been completed by clearing | 
 | 3827 |      * bit 0 of the internal status register.  If it's not cleared within | 
 | 3828 |      * 5 milliseconds, then error out. | 
 | 3829 |      */ | 
 | 3830 |     retry_count = 0; | 
 | 3831 |     do { | 
 | 3832 |         e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | 
 | 3833 |                                 hw->eeprom.opcode_bits); | 
 | 3834 |         spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); | 
 | 3835 |         if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | 
 | 3836 |             break; | 
 | 3837 |  | 
 | 3838 |         udelay(5); | 
 | 3839 |         retry_count += 5; | 
 | 3840 |  | 
 | 3841 |         e1000_standby_eeprom(hw); | 
 | 3842 |     } while(retry_count < EEPROM_MAX_RETRY_SPI); | 
 | 3843 |  | 
 | 3844 |     /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | 
 | 3845 |      * only 0-5mSec on 5V devices) | 
 | 3846 |      */ | 
 | 3847 |     if(retry_count >= EEPROM_MAX_RETRY_SPI) { | 
 | 3848 |         DEBUGOUT("SPI EEPROM Status error\n"); | 
 | 3849 |         return -E1000_ERR_EEPROM; | 
 | 3850 |     } | 
 | 3851 |  | 
 | 3852 |     return E1000_SUCCESS; | 
 | 3853 | } | 
 | 3854 |  | 
 | 3855 | /****************************************************************************** | 
 | 3856 |  * Reads a 16 bit word from the EEPROM. | 
 | 3857 |  * | 
 | 3858 |  * hw - Struct containing variables accessed by shared code | 
 | 3859 |  * offset - offset of  word in the EEPROM to read | 
 | 3860 |  * data - word read from the EEPROM | 
 | 3861 |  * words - number of words to read | 
 | 3862 |  *****************************************************************************/ | 
 | 3863 | int32_t | 
 | 3864 | e1000_read_eeprom(struct e1000_hw *hw, | 
 | 3865 |                   uint16_t offset, | 
 | 3866 |                   uint16_t words, | 
 | 3867 |                   uint16_t *data) | 
 | 3868 | { | 
 | 3869 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 3870 |     uint32_t i = 0; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3871 |     int32_t ret_val; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3872 |  | 
 | 3873 |     DEBUGFUNC("e1000_read_eeprom"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3874 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3875 |     /* A check for invalid values:  offset too large, too many words, and not | 
 | 3876 |      * enough words. | 
 | 3877 |      */ | 
 | 3878 |     if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 
 | 3879 |        (words == 0)) { | 
 | 3880 |         DEBUGOUT("\"words\" parameter out of bounds\n"); | 
 | 3881 |         return -E1000_ERR_EEPROM; | 
 | 3882 |     } | 
 | 3883 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3884 |     /* FLASH reads without acquiring the semaphore are safe in 82573-based | 
 | 3885 |      * controllers. | 
 | 3886 |      */ | 
 | 3887 |     if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | 
 | 3888 |         (hw->mac_type != e1000_82573)) { | 
 | 3889 |         /* Prepare the EEPROM for reading  */ | 
 | 3890 |         if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
 | 3891 |             return -E1000_ERR_EEPROM; | 
 | 3892 |     } | 
 | 3893 |  | 
 | 3894 |     if(eeprom->use_eerd == TRUE) { | 
 | 3895 |         ret_val = e1000_read_eeprom_eerd(hw, offset, words, data); | 
 | 3896 |         if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | 
 | 3897 |             (hw->mac_type != e1000_82573)) | 
 | 3898 |             e1000_release_eeprom(hw); | 
 | 3899 |         return ret_val; | 
 | 3900 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3901 |  | 
 | 3902 |     if(eeprom->type == e1000_eeprom_spi) { | 
 | 3903 |         uint16_t word_in; | 
 | 3904 |         uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | 
 | 3905 |  | 
 | 3906 |         if(e1000_spi_eeprom_ready(hw)) { | 
 | 3907 |             e1000_release_eeprom(hw); | 
 | 3908 |             return -E1000_ERR_EEPROM; | 
 | 3909 |         } | 
 | 3910 |  | 
 | 3911 |         e1000_standby_eeprom(hw); | 
 | 3912 |  | 
 | 3913 |         /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
 | 3914 |         if((eeprom->address_bits == 8) && (offset >= 128)) | 
 | 3915 |             read_opcode |= EEPROM_A8_OPCODE_SPI; | 
 | 3916 |  | 
 | 3917 |         /* Send the READ command (opcode + addr)  */ | 
 | 3918 |         e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | 
 | 3919 |         e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); | 
 | 3920 |  | 
 | 3921 |         /* Read the data.  The address of the eeprom internally increments with | 
 | 3922 |          * each byte (spi) being read, saving on the overhead of eeprom setup | 
 | 3923 |          * and tear-down.  The address counter will roll over if reading beyond | 
 | 3924 |          * the size of the eeprom, thus allowing the entire memory to be read | 
 | 3925 |          * starting from any offset. */ | 
 | 3926 |         for (i = 0; i < words; i++) { | 
 | 3927 |             word_in = e1000_shift_in_ee_bits(hw, 16); | 
 | 3928 |             data[i] = (word_in >> 8) | (word_in << 8); | 
 | 3929 |         } | 
 | 3930 |     } else if(eeprom->type == e1000_eeprom_microwire) { | 
 | 3931 |         for (i = 0; i < words; i++) { | 
 | 3932 |             /* Send the READ command (opcode + addr)  */ | 
 | 3933 |             e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, | 
 | 3934 |                                     eeprom->opcode_bits); | 
 | 3935 |             e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), | 
 | 3936 |                                     eeprom->address_bits); | 
 | 3937 |  | 
 | 3938 |             /* Read the data.  For microwire, each word requires the overhead | 
 | 3939 |              * of eeprom setup and tear-down. */ | 
 | 3940 |             data[i] = e1000_shift_in_ee_bits(hw, 16); | 
 | 3941 |             e1000_standby_eeprom(hw); | 
 | 3942 |         } | 
 | 3943 |     } | 
 | 3944 |  | 
 | 3945 |     /* End this read operation */ | 
 | 3946 |     e1000_release_eeprom(hw); | 
 | 3947 |  | 
 | 3948 |     return E1000_SUCCESS; | 
 | 3949 | } | 
 | 3950 |  | 
 | 3951 | /****************************************************************************** | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3952 |  * Reads a 16 bit word from the EEPROM using the EERD register. | 
 | 3953 |  * | 
 | 3954 |  * hw - Struct containing variables accessed by shared code | 
 | 3955 |  * offset - offset of  word in the EEPROM to read | 
 | 3956 |  * data - word read from the EEPROM | 
 | 3957 |  * words - number of words to read | 
 | 3958 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 3959 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3960 | e1000_read_eeprom_eerd(struct e1000_hw *hw, | 
 | 3961 |                   uint16_t offset, | 
 | 3962 |                   uint16_t words, | 
 | 3963 |                   uint16_t *data) | 
 | 3964 | { | 
 | 3965 |     uint32_t i, eerd = 0; | 
 | 3966 |     int32_t error = 0; | 
 | 3967 |  | 
 | 3968 |     for (i = 0; i < words; i++) { | 
 | 3969 |         eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | 
 | 3970 |                          E1000_EEPROM_RW_REG_START; | 
 | 3971 |  | 
 | 3972 |         E1000_WRITE_REG(hw, EERD, eerd); | 
 | 3973 |         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | 
 | 3974 |          | 
 | 3975 |         if(error) { | 
 | 3976 |             break; | 
 | 3977 |         } | 
 | 3978 |         data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); | 
 | 3979 |        | 
 | 3980 |     } | 
 | 3981 |      | 
 | 3982 |     return error; | 
 | 3983 | } | 
 | 3984 |  | 
 | 3985 | /****************************************************************************** | 
 | 3986 |  * Writes a 16 bit word from the EEPROM using the EEWR register. | 
 | 3987 |  * | 
 | 3988 |  * hw - Struct containing variables accessed by shared code | 
 | 3989 |  * offset - offset of  word in the EEPROM to read | 
 | 3990 |  * data - word read from the EEPROM | 
 | 3991 |  * words - number of words to read | 
 | 3992 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 3993 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 3994 | e1000_write_eeprom_eewr(struct e1000_hw *hw, | 
 | 3995 |                    uint16_t offset, | 
 | 3996 |                    uint16_t words, | 
 | 3997 |                    uint16_t *data) | 
 | 3998 | { | 
 | 3999 |     uint32_t    register_value = 0; | 
 | 4000 |     uint32_t    i              = 0; | 
 | 4001 |     int32_t     error          = 0; | 
 | 4002 |  | 
 | 4003 |     for (i = 0; i < words; i++) { | 
 | 4004 |         register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |  | 
 | 4005 |                          ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |  | 
 | 4006 |                          E1000_EEPROM_RW_REG_START; | 
 | 4007 |  | 
 | 4008 |         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | 
 | 4009 |         if(error) { | 
 | 4010 |             break; | 
 | 4011 |         }        | 
 | 4012 |  | 
 | 4013 |         E1000_WRITE_REG(hw, EEWR, register_value); | 
 | 4014 |          | 
 | 4015 |         error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | 
 | 4016 |          | 
 | 4017 |         if(error) { | 
 | 4018 |             break; | 
 | 4019 |         }        | 
 | 4020 |     } | 
 | 4021 |      | 
 | 4022 |     return error; | 
 | 4023 | } | 
 | 4024 |  | 
 | 4025 | /****************************************************************************** | 
 | 4026 |  * Polls the status bit (bit 1) of the EERD to determine when the read is done. | 
 | 4027 |  * | 
 | 4028 |  * hw - Struct containing variables accessed by shared code | 
 | 4029 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4030 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4031 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | 
 | 4032 | { | 
 | 4033 |     uint32_t attempts = 100000; | 
 | 4034 |     uint32_t i, reg = 0; | 
 | 4035 |     int32_t done = E1000_ERR_EEPROM; | 
 | 4036 |  | 
 | 4037 |     for(i = 0; i < attempts; i++) { | 
 | 4038 |         if(eerd == E1000_EEPROM_POLL_READ) | 
 | 4039 |             reg = E1000_READ_REG(hw, EERD); | 
 | 4040 |         else  | 
 | 4041 |             reg = E1000_READ_REG(hw, EEWR); | 
 | 4042 |  | 
 | 4043 |         if(reg & E1000_EEPROM_RW_REG_DONE) { | 
 | 4044 |             done = E1000_SUCCESS; | 
 | 4045 |             break; | 
 | 4046 |         } | 
 | 4047 |         udelay(5); | 
 | 4048 |     } | 
 | 4049 |  | 
 | 4050 |     return done; | 
 | 4051 | } | 
 | 4052 |  | 
 | 4053 | /*************************************************************************** | 
 | 4054 | * Description:     Determines if the onboard NVM is FLASH or EEPROM. | 
 | 4055 | * | 
 | 4056 | * hw - Struct containing variables accessed by shared code | 
 | 4057 | ****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4058 | static boolean_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4059 | e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | 
 | 4060 | { | 
 | 4061 |     uint32_t eecd = 0; | 
 | 4062 |  | 
 | 4063 |     if(hw->mac_type == e1000_82573) { | 
 | 4064 |         eecd = E1000_READ_REG(hw, EECD); | 
 | 4065 |  | 
 | 4066 |         /* Isolate bits 15 & 16 */ | 
 | 4067 |         eecd = ((eecd >> 15) & 0x03); | 
 | 4068 |  | 
 | 4069 |         /* If both bits are set, device is Flash type */ | 
 | 4070 |         if(eecd == 0x03) { | 
 | 4071 |             return FALSE; | 
 | 4072 |         } | 
 | 4073 |     } | 
 | 4074 |     return TRUE; | 
 | 4075 | } | 
 | 4076 |  | 
 | 4077 | /****************************************************************************** | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4078 |  * Verifies that the EEPROM has a valid checksum | 
 | 4079 |  * | 
 | 4080 |  * hw - Struct containing variables accessed by shared code | 
 | 4081 |  * | 
 | 4082 |  * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 
 | 4083 |  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 
 | 4084 |  * valid. | 
 | 4085 |  *****************************************************************************/ | 
 | 4086 | int32_t | 
 | 4087 | e1000_validate_eeprom_checksum(struct e1000_hw *hw) | 
 | 4088 | { | 
 | 4089 |     uint16_t checksum = 0; | 
 | 4090 |     uint16_t i, eeprom_data; | 
 | 4091 |  | 
 | 4092 |     DEBUGFUNC("e1000_validate_eeprom_checksum"); | 
 | 4093 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4094 |     if ((hw->mac_type == e1000_82573) && | 
 | 4095 |         (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { | 
 | 4096 |         /* Check bit 4 of word 10h.  If it is 0, firmware is done updating | 
 | 4097 |          * 10h-12h.  Checksum may need to be fixed. */ | 
 | 4098 |         e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | 
 | 4099 |         if ((eeprom_data & 0x10) == 0) { | 
 | 4100 |             /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum | 
 | 4101 |              * has already been fixed.  If the checksum is still wrong and this | 
 | 4102 |              * bit is a 1, we need to return bad checksum.  Otherwise, we need | 
 | 4103 |              * to set this bit to a 1 and update the checksum. */ | 
 | 4104 |             e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | 
 | 4105 |             if ((eeprom_data & 0x8000) == 0) { | 
 | 4106 |                 eeprom_data |= 0x8000; | 
 | 4107 |                 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | 
 | 4108 |                 e1000_update_eeprom_checksum(hw); | 
 | 4109 |             } | 
 | 4110 |         } | 
 | 4111 |     } | 
 | 4112 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4113 |     for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
 | 4114 |         if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
 | 4115 |             DEBUGOUT("EEPROM Read Error\n"); | 
 | 4116 |             return -E1000_ERR_EEPROM; | 
 | 4117 |         } | 
 | 4118 |         checksum += eeprom_data; | 
 | 4119 |     } | 
 | 4120 |  | 
 | 4121 |     if(checksum == (uint16_t) EEPROM_SUM) | 
 | 4122 |         return E1000_SUCCESS; | 
 | 4123 |     else { | 
 | 4124 |         DEBUGOUT("EEPROM Checksum Invalid\n"); | 
 | 4125 |         return -E1000_ERR_EEPROM; | 
 | 4126 |     } | 
 | 4127 | } | 
 | 4128 |  | 
 | 4129 | /****************************************************************************** | 
 | 4130 |  * Calculates the EEPROM checksum and writes it to the EEPROM | 
 | 4131 |  * | 
 | 4132 |  * hw - Struct containing variables accessed by shared code | 
 | 4133 |  * | 
 | 4134 |  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | 
 | 4135 |  * Writes the difference to word offset 63 of the EEPROM. | 
 | 4136 |  *****************************************************************************/ | 
 | 4137 | int32_t | 
 | 4138 | e1000_update_eeprom_checksum(struct e1000_hw *hw) | 
 | 4139 | { | 
 | 4140 |     uint16_t checksum = 0; | 
 | 4141 |     uint16_t i, eeprom_data; | 
 | 4142 |  | 
 | 4143 |     DEBUGFUNC("e1000_update_eeprom_checksum"); | 
 | 4144 |  | 
 | 4145 |     for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 
 | 4146 |         if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
 | 4147 |             DEBUGOUT("EEPROM Read Error\n"); | 
 | 4148 |             return -E1000_ERR_EEPROM; | 
 | 4149 |         } | 
 | 4150 |         checksum += eeprom_data; | 
 | 4151 |     } | 
 | 4152 |     checksum = (uint16_t) EEPROM_SUM - checksum; | 
 | 4153 |     if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 
 | 4154 |         DEBUGOUT("EEPROM Write Error\n"); | 
 | 4155 |         return -E1000_ERR_EEPROM; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4156 |     } else if (hw->eeprom.type == e1000_eeprom_flash) { | 
 | 4157 |         e1000_commit_shadow_ram(hw); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4158 |     } | 
 | 4159 |     return E1000_SUCCESS; | 
 | 4160 | } | 
 | 4161 |  | 
 | 4162 | /****************************************************************************** | 
 | 4163 |  * Parent function for writing words to the different EEPROM types. | 
 | 4164 |  * | 
 | 4165 |  * hw - Struct containing variables accessed by shared code | 
 | 4166 |  * offset - offset within the EEPROM to be written to | 
 | 4167 |  * words - number of words to write | 
 | 4168 |  * data - 16 bit word to be written to the EEPROM | 
 | 4169 |  * | 
 | 4170 |  * If e1000_update_eeprom_checksum is not called after this function, the | 
 | 4171 |  * EEPROM will most likely contain an invalid checksum. | 
 | 4172 |  *****************************************************************************/ | 
 | 4173 | int32_t | 
 | 4174 | e1000_write_eeprom(struct e1000_hw *hw, | 
 | 4175 |                    uint16_t offset, | 
 | 4176 |                    uint16_t words, | 
 | 4177 |                    uint16_t *data) | 
 | 4178 | { | 
 | 4179 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 4180 |     int32_t status = 0; | 
 | 4181 |  | 
 | 4182 |     DEBUGFUNC("e1000_write_eeprom"); | 
 | 4183 |  | 
 | 4184 |     /* A check for invalid values:  offset too large, too many words, and not | 
 | 4185 |      * enough words. | 
 | 4186 |      */ | 
 | 4187 |     if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 
 | 4188 |        (words == 0)) { | 
 | 4189 |         DEBUGOUT("\"words\" parameter out of bounds\n"); | 
 | 4190 |         return -E1000_ERR_EEPROM; | 
 | 4191 |     } | 
 | 4192 |  | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4193 |     /* 82573 writes only through eewr */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4194 |     if(eeprom->use_eewr == TRUE) | 
 | 4195 |         return e1000_write_eeprom_eewr(hw, offset, words, data); | 
 | 4196 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4197 |     /* Prepare the EEPROM for writing  */ | 
 | 4198 |     if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
 | 4199 |         return -E1000_ERR_EEPROM; | 
 | 4200 |  | 
 | 4201 |     if(eeprom->type == e1000_eeprom_microwire) { | 
 | 4202 |         status = e1000_write_eeprom_microwire(hw, offset, words, data); | 
 | 4203 |     } else { | 
 | 4204 |         status = e1000_write_eeprom_spi(hw, offset, words, data); | 
 | 4205 |         msec_delay(10); | 
 | 4206 |     } | 
 | 4207 |  | 
 | 4208 |     /* Done with writing */ | 
 | 4209 |     e1000_release_eeprom(hw); | 
 | 4210 |  | 
 | 4211 |     return status; | 
 | 4212 | } | 
 | 4213 |  | 
 | 4214 | /****************************************************************************** | 
 | 4215 |  * Writes a 16 bit word to a given offset in an SPI EEPROM. | 
 | 4216 |  * | 
 | 4217 |  * hw - Struct containing variables accessed by shared code | 
 | 4218 |  * offset - offset within the EEPROM to be written to | 
 | 4219 |  * words - number of words to write | 
 | 4220 |  * data - pointer to array of 8 bit words to be written to the EEPROM | 
 | 4221 |  * | 
 | 4222 |  *****************************************************************************/ | 
 | 4223 | int32_t | 
 | 4224 | e1000_write_eeprom_spi(struct e1000_hw *hw, | 
 | 4225 |                        uint16_t offset, | 
 | 4226 |                        uint16_t words, | 
 | 4227 |                        uint16_t *data) | 
 | 4228 | { | 
 | 4229 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 4230 |     uint16_t widx = 0; | 
 | 4231 |  | 
 | 4232 |     DEBUGFUNC("e1000_write_eeprom_spi"); | 
 | 4233 |  | 
 | 4234 |     while (widx < words) { | 
 | 4235 |         uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; | 
 | 4236 |  | 
 | 4237 |         if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; | 
 | 4238 |  | 
 | 4239 |         e1000_standby_eeprom(hw); | 
 | 4240 |  | 
 | 4241 |         /*  Send the WRITE ENABLE command (8 bit opcode )  */ | 
 | 4242 |         e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | 
 | 4243 |                                     eeprom->opcode_bits); | 
 | 4244 |  | 
 | 4245 |         e1000_standby_eeprom(hw); | 
 | 4246 |  | 
 | 4247 |         /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
 | 4248 |         if((eeprom->address_bits == 8) && (offset >= 128)) | 
 | 4249 |             write_opcode |= EEPROM_A8_OPCODE_SPI; | 
 | 4250 |  | 
 | 4251 |         /* Send the Write command (8-bit opcode + addr) */ | 
 | 4252 |         e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | 
 | 4253 |  | 
 | 4254 |         e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), | 
 | 4255 |                                 eeprom->address_bits); | 
 | 4256 |  | 
 | 4257 |         /* Send the data */ | 
 | 4258 |  | 
 | 4259 |         /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | 
 | 4260 |         while (widx < words) { | 
 | 4261 |             uint16_t word_out = data[widx]; | 
 | 4262 |             word_out = (word_out >> 8) | (word_out << 8); | 
 | 4263 |             e1000_shift_out_ee_bits(hw, word_out, 16); | 
 | 4264 |             widx++; | 
 | 4265 |  | 
 | 4266 |             /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | 
 | 4267 |              * operation, while the smaller eeproms are capable of an 8-byte | 
 | 4268 |              * PAGE WRITE operation.  Break the inner loop to pass new address | 
 | 4269 |              */ | 
 | 4270 |             if((((offset + widx)*2) % eeprom->page_size) == 0) { | 
 | 4271 |                 e1000_standby_eeprom(hw); | 
 | 4272 |                 break; | 
 | 4273 |             } | 
 | 4274 |         } | 
 | 4275 |     } | 
 | 4276 |  | 
 | 4277 |     return E1000_SUCCESS; | 
 | 4278 | } | 
 | 4279 |  | 
 | 4280 | /****************************************************************************** | 
 | 4281 |  * Writes a 16 bit word to a given offset in a Microwire EEPROM. | 
 | 4282 |  * | 
 | 4283 |  * hw - Struct containing variables accessed by shared code | 
 | 4284 |  * offset - offset within the EEPROM to be written to | 
 | 4285 |  * words - number of words to write | 
 | 4286 |  * data - pointer to array of 16 bit words to be written to the EEPROM | 
 | 4287 |  * | 
 | 4288 |  *****************************************************************************/ | 
 | 4289 | int32_t | 
 | 4290 | e1000_write_eeprom_microwire(struct e1000_hw *hw, | 
 | 4291 |                              uint16_t offset, | 
 | 4292 |                              uint16_t words, | 
 | 4293 |                              uint16_t *data) | 
 | 4294 | { | 
 | 4295 |     struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
 | 4296 |     uint32_t eecd; | 
 | 4297 |     uint16_t words_written = 0; | 
 | 4298 |     uint16_t i = 0; | 
 | 4299 |  | 
 | 4300 |     DEBUGFUNC("e1000_write_eeprom_microwire"); | 
 | 4301 |  | 
 | 4302 |     /* Send the write enable command to the EEPROM (3-bit opcode plus | 
 | 4303 |      * 6/8-bit dummy address beginning with 11).  It's less work to include | 
 | 4304 |      * the 11 of the dummy address as part of the opcode than it is to shift | 
 | 4305 |      * it over the correct number of bits for the address.  This puts the | 
 | 4306 |      * EEPROM into write/erase mode. | 
 | 4307 |      */ | 
 | 4308 |     e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | 
 | 4309 |                             (uint16_t)(eeprom->opcode_bits + 2)); | 
 | 4310 |  | 
 | 4311 |     e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | 
 | 4312 |  | 
 | 4313 |     /* Prepare the EEPROM */ | 
 | 4314 |     e1000_standby_eeprom(hw); | 
 | 4315 |  | 
 | 4316 |     while (words_written < words) { | 
 | 4317 |         /* Send the Write command (3-bit opcode + addr) */ | 
 | 4318 |         e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | 
 | 4319 |                                 eeprom->opcode_bits); | 
 | 4320 |  | 
 | 4321 |         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), | 
 | 4322 |                                 eeprom->address_bits); | 
 | 4323 |  | 
 | 4324 |         /* Send the data */ | 
 | 4325 |         e1000_shift_out_ee_bits(hw, data[words_written], 16); | 
 | 4326 |  | 
 | 4327 |         /* Toggle the CS line.  This in effect tells the EEPROM to execute | 
 | 4328 |          * the previous command. | 
 | 4329 |          */ | 
 | 4330 |         e1000_standby_eeprom(hw); | 
 | 4331 |  | 
 | 4332 |         /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will | 
 | 4333 |          * signal that the command has been completed by raising the DO signal. | 
 | 4334 |          * If DO does not go high in 10 milliseconds, then error out. | 
 | 4335 |          */ | 
 | 4336 |         for(i = 0; i < 200; i++) { | 
 | 4337 |             eecd = E1000_READ_REG(hw, EECD); | 
 | 4338 |             if(eecd & E1000_EECD_DO) break; | 
 | 4339 |             udelay(50); | 
 | 4340 |         } | 
 | 4341 |         if(i == 200) { | 
 | 4342 |             DEBUGOUT("EEPROM Write did not complete\n"); | 
 | 4343 |             return -E1000_ERR_EEPROM; | 
 | 4344 |         } | 
 | 4345 |  | 
 | 4346 |         /* Recover from write */ | 
 | 4347 |         e1000_standby_eeprom(hw); | 
 | 4348 |  | 
 | 4349 |         words_written++; | 
 | 4350 |     } | 
 | 4351 |  | 
 | 4352 |     /* Send the write disable command to the EEPROM (3-bit opcode plus | 
 | 4353 |      * 6/8-bit dummy address beginning with 10).  It's less work to include | 
 | 4354 |      * the 10 of the dummy address as part of the opcode than it is to shift | 
 | 4355 |      * it over the correct number of bits for the address.  This takes the | 
 | 4356 |      * EEPROM out of write/erase mode. | 
 | 4357 |      */ | 
 | 4358 |     e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | 
 | 4359 |                             (uint16_t)(eeprom->opcode_bits + 2)); | 
 | 4360 |  | 
 | 4361 |     e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | 
 | 4362 |  | 
 | 4363 |     return E1000_SUCCESS; | 
 | 4364 | } | 
 | 4365 |  | 
 | 4366 | /****************************************************************************** | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4367 |  * Flushes the cached eeprom to NVM. This is done by saving the modified values | 
 | 4368 |  * in the eeprom cache and the non modified values in the currently active bank | 
 | 4369 |  * to the new bank. | 
 | 4370 |  * | 
 | 4371 |  * hw - Struct containing variables accessed by shared code | 
 | 4372 |  * offset - offset of  word in the EEPROM to read | 
 | 4373 |  * data - word read from the EEPROM | 
 | 4374 |  * words - number of words to read | 
 | 4375 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4376 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4377 | e1000_commit_shadow_ram(struct e1000_hw *hw) | 
 | 4378 | { | 
 | 4379 |     uint32_t attempts = 100000; | 
 | 4380 |     uint32_t eecd = 0; | 
 | 4381 |     uint32_t flop = 0; | 
 | 4382 |     uint32_t i = 0; | 
 | 4383 |     int32_t error = E1000_SUCCESS; | 
 | 4384 |  | 
 | 4385 |     /* The flop register will be used to determine if flash type is STM */ | 
 | 4386 |     flop = E1000_READ_REG(hw, FLOP); | 
 | 4387 |  | 
 | 4388 |     if (hw->mac_type == e1000_82573) { | 
 | 4389 |         for (i=0; i < attempts; i++) { | 
 | 4390 |             eecd = E1000_READ_REG(hw, EECD); | 
 | 4391 |             if ((eecd & E1000_EECD_FLUPD) == 0) { | 
 | 4392 |                 break; | 
 | 4393 |             } | 
 | 4394 |             udelay(5); | 
 | 4395 |         } | 
 | 4396 |  | 
 | 4397 |         if (i == attempts) { | 
 | 4398 |             return -E1000_ERR_EEPROM; | 
 | 4399 |         } | 
 | 4400 |  | 
 | 4401 | 	/* If STM opcode located in bits 15:8 of flop, reset firmware */ | 
 | 4402 |         if ((flop & 0xFF00) == E1000_STM_OPCODE) { | 
 | 4403 |             E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); | 
 | 4404 |         } | 
 | 4405 |  | 
 | 4406 |         /* Perform the flash update */ | 
 | 4407 |         E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); | 
 | 4408 |  | 
 | 4409 | 	for (i=0; i < attempts; i++) { | 
 | 4410 |             eecd = E1000_READ_REG(hw, EECD); | 
 | 4411 |             if ((eecd & E1000_EECD_FLUPD) == 0) { | 
 | 4412 |                 break; | 
 | 4413 |             } | 
 | 4414 |             udelay(5); | 
 | 4415 |         } | 
 | 4416 |  | 
 | 4417 |         if (i == attempts) { | 
 | 4418 |             return -E1000_ERR_EEPROM; | 
 | 4419 |         } | 
 | 4420 |     } | 
 | 4421 |  | 
 | 4422 |     return error; | 
 | 4423 | } | 
 | 4424 |  | 
 | 4425 | /****************************************************************************** | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4426 |  * Reads the adapter's part number from the EEPROM | 
 | 4427 |  * | 
 | 4428 |  * hw - Struct containing variables accessed by shared code | 
 | 4429 |  * part_num - Adapter's part number | 
 | 4430 |  *****************************************************************************/ | 
 | 4431 | int32_t | 
 | 4432 | e1000_read_part_num(struct e1000_hw *hw, | 
 | 4433 |                     uint32_t *part_num) | 
 | 4434 | { | 
 | 4435 |     uint16_t offset = EEPROM_PBA_BYTE_1; | 
 | 4436 |     uint16_t eeprom_data; | 
 | 4437 |  | 
 | 4438 |     DEBUGFUNC("e1000_read_part_num"); | 
 | 4439 |  | 
 | 4440 |     /* Get word 0 from EEPROM */ | 
 | 4441 |     if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 
 | 4442 |         DEBUGOUT("EEPROM Read Error\n"); | 
 | 4443 |         return -E1000_ERR_EEPROM; | 
 | 4444 |     } | 
 | 4445 |     /* Save word 0 in upper half of part_num */ | 
 | 4446 |     *part_num = (uint32_t) (eeprom_data << 16); | 
 | 4447 |  | 
 | 4448 |     /* Get word 1 from EEPROM */ | 
 | 4449 |     if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { | 
 | 4450 |         DEBUGOUT("EEPROM Read Error\n"); | 
 | 4451 |         return -E1000_ERR_EEPROM; | 
 | 4452 |     } | 
 | 4453 |     /* Save word 1 in lower half of part_num */ | 
 | 4454 |     *part_num |= eeprom_data; | 
 | 4455 |  | 
 | 4456 |     return E1000_SUCCESS; | 
 | 4457 | } | 
 | 4458 |  | 
 | 4459 | /****************************************************************************** | 
 | 4460 |  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 
 | 4461 |  * second function of dual function devices | 
 | 4462 |  * | 
 | 4463 |  * hw - Struct containing variables accessed by shared code | 
 | 4464 |  *****************************************************************************/ | 
 | 4465 | int32_t | 
 | 4466 | e1000_read_mac_addr(struct e1000_hw * hw) | 
 | 4467 | { | 
 | 4468 |     uint16_t offset; | 
 | 4469 |     uint16_t eeprom_data, i; | 
 | 4470 |  | 
 | 4471 |     DEBUGFUNC("e1000_read_mac_addr"); | 
 | 4472 |  | 
 | 4473 |     for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 
 | 4474 |         offset = i >> 1; | 
 | 4475 |         if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 
 | 4476 |             DEBUGOUT("EEPROM Read Error\n"); | 
 | 4477 |             return -E1000_ERR_EEPROM; | 
 | 4478 |         } | 
 | 4479 |         hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); | 
 | 4480 |         hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); | 
 | 4481 |     } | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4482 |     switch (hw->mac_type) { | 
 | 4483 |     default: | 
 | 4484 |         break; | 
 | 4485 |     case e1000_82546: | 
 | 4486 |     case e1000_82546_rev_3: | 
 | 4487 |     case e1000_82571: | 
 | 4488 |         if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4489 |             hw->perm_mac_addr[5] ^= 0x01; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4490 |         break; | 
 | 4491 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4492 |  | 
 | 4493 |     for(i = 0; i < NODE_ADDRESS_SIZE; i++) | 
 | 4494 |         hw->mac_addr[i] = hw->perm_mac_addr[i]; | 
 | 4495 |     return E1000_SUCCESS; | 
 | 4496 | } | 
 | 4497 |  | 
 | 4498 | /****************************************************************************** | 
 | 4499 |  * Initializes receive address filters. | 
 | 4500 |  * | 
 | 4501 |  * hw - Struct containing variables accessed by shared code | 
 | 4502 |  * | 
 | 4503 |  * Places the MAC address in receive address register 0 and clears the rest | 
 | 4504 |  * of the receive addresss registers. Clears the multicast table. Assumes | 
 | 4505 |  * the receiver is in reset when the routine is called. | 
 | 4506 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4507 | static void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4508 | e1000_init_rx_addrs(struct e1000_hw *hw) | 
 | 4509 | { | 
 | 4510 |     uint32_t i; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4511 |     uint32_t rar_num; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4512 |  | 
 | 4513 |     DEBUGFUNC("e1000_init_rx_addrs"); | 
 | 4514 |  | 
 | 4515 |     /* Setup the receive address. */ | 
 | 4516 |     DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 
 | 4517 |  | 
 | 4518 |     e1000_rar_set(hw, hw->mac_addr, 0); | 
 | 4519 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4520 |     rar_num = E1000_RAR_ENTRIES; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4521 |  | 
 | 4522 |     /* Reserve a spot for the Locally Administered Address to work around | 
 | 4523 |      * an 82571 issue in which a reset on one port will reload the MAC on | 
 | 4524 |      * the other port. */ | 
 | 4525 |     if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) | 
 | 4526 |         rar_num -= 1; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4527 |     /* Zero out the other 15 receive addresses. */ | 
 | 4528 |     DEBUGOUT("Clearing RAR[1-15]\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4529 |     for(i = 1; i < rar_num; i++) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4530 |         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
 | 4531 |         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
 | 4532 |     } | 
 | 4533 | } | 
 | 4534 |  | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4535 | #if 0 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4536 | /****************************************************************************** | 
 | 4537 |  * Updates the MAC's list of multicast addresses. | 
 | 4538 |  * | 
 | 4539 |  * hw - Struct containing variables accessed by shared code | 
 | 4540 |  * mc_addr_list - the list of new multicast addresses | 
 | 4541 |  * mc_addr_count - number of addresses | 
 | 4542 |  * pad - number of bytes between addresses in the list | 
 | 4543 |  * rar_used_count - offset where to start adding mc addresses into the RAR's | 
 | 4544 |  * | 
 | 4545 |  * The given list replaces any existing list. Clears the last 15 receive | 
 | 4546 |  * address registers and the multicast table. Uses receive address registers | 
 | 4547 |  * for the first 15 multicast addresses, and hashes the rest into the | 
 | 4548 |  * multicast table. | 
 | 4549 |  *****************************************************************************/ | 
 | 4550 | void | 
 | 4551 | e1000_mc_addr_list_update(struct e1000_hw *hw, | 
 | 4552 |                           uint8_t *mc_addr_list, | 
 | 4553 |                           uint32_t mc_addr_count, | 
 | 4554 |                           uint32_t pad, | 
 | 4555 |                           uint32_t rar_used_count) | 
 | 4556 | { | 
 | 4557 |     uint32_t hash_value; | 
 | 4558 |     uint32_t i; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4559 |     uint32_t num_rar_entry; | 
 | 4560 |     uint32_t num_mta_entry; | 
 | 4561 |      | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4562 |     DEBUGFUNC("e1000_mc_addr_list_update"); | 
 | 4563 |  | 
 | 4564 |     /* Set the new number of MC addresses that we are being requested to use. */ | 
 | 4565 |     hw->num_mc_addrs = mc_addr_count; | 
 | 4566 |  | 
 | 4567 |     /* Clear RAR[1-15] */ | 
 | 4568 |     DEBUGOUT(" Clearing RAR[1-15]\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4569 |     num_rar_entry = E1000_RAR_ENTRIES; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 4570 |     /* Reserve a spot for the Locally Administered Address to work around | 
 | 4571 |      * an 82571 issue in which a reset on one port will reload the MAC on | 
 | 4572 |      * the other port. */ | 
 | 4573 |     if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) | 
 | 4574 |         num_rar_entry -= 1; | 
 | 4575 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4576 |     for(i = rar_used_count; i < num_rar_entry; i++) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4577 |         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
 | 4578 |         E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
 | 4579 |     } | 
 | 4580 |  | 
 | 4581 |     /* Clear the MTA */ | 
 | 4582 |     DEBUGOUT(" Clearing MTA\n"); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4583 |     num_mta_entry = E1000_NUM_MTA_REGISTERS; | 
 | 4584 |     for(i = 0; i < num_mta_entry; i++) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4585 |         E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
 | 4586 |     } | 
 | 4587 |  | 
 | 4588 |     /* Add the new addresses */ | 
 | 4589 |     for(i = 0; i < mc_addr_count; i++) { | 
 | 4590 |         DEBUGOUT(" Adding the multicast addresses:\n"); | 
 | 4591 |         DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, | 
 | 4592 |                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], | 
 | 4593 |                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], | 
 | 4594 |                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], | 
 | 4595 |                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], | 
 | 4596 |                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], | 
 | 4597 |                   mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); | 
 | 4598 |  | 
 | 4599 |         hash_value = e1000_hash_mc_addr(hw, | 
 | 4600 |                                         mc_addr_list + | 
 | 4601 |                                         (i * (ETH_LENGTH_OF_ADDRESS + pad))); | 
 | 4602 |  | 
 | 4603 |         DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); | 
 | 4604 |  | 
 | 4605 |         /* Place this multicast address in the RAR if there is room, * | 
 | 4606 |          * else put it in the MTA | 
 | 4607 |          */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4608 |         if (rar_used_count < num_rar_entry) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4609 |             e1000_rar_set(hw, | 
 | 4610 |                           mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), | 
 | 4611 |                           rar_used_count); | 
 | 4612 |             rar_used_count++; | 
 | 4613 |         } else { | 
 | 4614 |             e1000_mta_set(hw, hash_value); | 
 | 4615 |         } | 
 | 4616 |     } | 
 | 4617 |     DEBUGOUT("MC Update Complete\n"); | 
 | 4618 | } | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4619 | #endif  /*  0  */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4620 |  | 
 | 4621 | /****************************************************************************** | 
 | 4622 |  * Hashes an address to determine its location in the multicast table | 
 | 4623 |  * | 
 | 4624 |  * hw - Struct containing variables accessed by shared code | 
 | 4625 |  * mc_addr - the multicast address to hash | 
 | 4626 |  *****************************************************************************/ | 
 | 4627 | uint32_t | 
 | 4628 | e1000_hash_mc_addr(struct e1000_hw *hw, | 
 | 4629 |                    uint8_t *mc_addr) | 
 | 4630 | { | 
 | 4631 |     uint32_t hash_value = 0; | 
 | 4632 |  | 
 | 4633 |     /* The portion of the address that is used for the hash table is | 
 | 4634 |      * determined by the mc_filter_type setting. | 
 | 4635 |      */ | 
 | 4636 |     switch (hw->mc_filter_type) { | 
 | 4637 |     /* [0] [1] [2] [3] [4] [5] | 
 | 4638 |      * 01  AA  00  12  34  56 | 
 | 4639 |      * LSB                 MSB | 
 | 4640 |      */ | 
 | 4641 |     case 0: | 
 | 4642 |         /* [47:36] i.e. 0x563 for above example address */ | 
 | 4643 |         hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | 
 | 4644 |         break; | 
 | 4645 |     case 1: | 
 | 4646 |         /* [46:35] i.e. 0xAC6 for above example address */ | 
 | 4647 |         hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | 
 | 4648 |         break; | 
 | 4649 |     case 2: | 
 | 4650 |         /* [45:34] i.e. 0x5D8 for above example address */ | 
 | 4651 |         hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | 
 | 4652 |         break; | 
 | 4653 |     case 3: | 
 | 4654 |         /* [43:32] i.e. 0x634 for above example address */ | 
 | 4655 |         hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | 
 | 4656 |         break; | 
 | 4657 |     } | 
 | 4658 |  | 
 | 4659 |     hash_value &= 0xFFF; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4660 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4661 |     return hash_value; | 
 | 4662 | } | 
 | 4663 |  | 
 | 4664 | /****************************************************************************** | 
 | 4665 |  * Sets the bit in the multicast table corresponding to the hash value. | 
 | 4666 |  * | 
 | 4667 |  * hw - Struct containing variables accessed by shared code | 
 | 4668 |  * hash_value - Multicast address hash value | 
 | 4669 |  *****************************************************************************/ | 
 | 4670 | void | 
 | 4671 | e1000_mta_set(struct e1000_hw *hw, | 
 | 4672 |               uint32_t hash_value) | 
 | 4673 | { | 
 | 4674 |     uint32_t hash_bit, hash_reg; | 
 | 4675 |     uint32_t mta; | 
 | 4676 |     uint32_t temp; | 
 | 4677 |  | 
 | 4678 |     /* The MTA is a register array of 128 32-bit registers. | 
 | 4679 |      * It is treated like an array of 4096 bits.  We want to set | 
 | 4680 |      * bit BitArray[hash_value]. So we figure out what register | 
 | 4681 |      * the bit is in, read it, OR in the new bit, then write | 
 | 4682 |      * back the new value.  The register is determined by the | 
 | 4683 |      * upper 7 bits of the hash value and the bit within that | 
 | 4684 |      * register are determined by the lower 5 bits of the value. | 
 | 4685 |      */ | 
 | 4686 |     hash_reg = (hash_value >> 5) & 0x7F; | 
 | 4687 |     hash_bit = hash_value & 0x1F; | 
 | 4688 |  | 
 | 4689 |     mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); | 
 | 4690 |  | 
 | 4691 |     mta |= (1 << hash_bit); | 
 | 4692 |  | 
 | 4693 |     /* If we are on an 82544 and we are trying to write an odd offset | 
 | 4694 |      * in the MTA, save off the previous entry before writing and | 
 | 4695 |      * restore the old value after writing. | 
 | 4696 |      */ | 
 | 4697 |     if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { | 
 | 4698 |         temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); | 
 | 4699 |         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 
 | 4700 |         E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); | 
 | 4701 |     } else { | 
 | 4702 |         E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | 
 | 4703 |     } | 
 | 4704 | } | 
 | 4705 |  | 
 | 4706 | /****************************************************************************** | 
 | 4707 |  * Puts an ethernet address into a receive address register. | 
 | 4708 |  * | 
 | 4709 |  * hw - Struct containing variables accessed by shared code | 
 | 4710 |  * addr - Address to put into receive address register | 
 | 4711 |  * index - Receive address register to write | 
 | 4712 |  *****************************************************************************/ | 
 | 4713 | void | 
 | 4714 | e1000_rar_set(struct e1000_hw *hw, | 
 | 4715 |               uint8_t *addr, | 
 | 4716 |               uint32_t index) | 
 | 4717 | { | 
 | 4718 |     uint32_t rar_low, rar_high; | 
 | 4719 |  | 
 | 4720 |     /* HW expects these in little endian so we reverse the byte order | 
 | 4721 |      * from network order (big endian) to little endian | 
 | 4722 |      */ | 
 | 4723 |     rar_low = ((uint32_t) addr[0] | | 
 | 4724 |                ((uint32_t) addr[1] << 8) | | 
 | 4725 |                ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); | 
 | 4726 |  | 
 | 4727 |     rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV); | 
 | 4728 |  | 
 | 4729 |     E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 
 | 4730 |     E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 
 | 4731 | } | 
 | 4732 |  | 
 | 4733 | /****************************************************************************** | 
 | 4734 |  * Writes a value to the specified offset in the VLAN filter table. | 
 | 4735 |  * | 
 | 4736 |  * hw - Struct containing variables accessed by shared code | 
 | 4737 |  * offset - Offset in VLAN filer table to write | 
 | 4738 |  * value - Value to write into VLAN filter table | 
 | 4739 |  *****************************************************************************/ | 
 | 4740 | void | 
 | 4741 | e1000_write_vfta(struct e1000_hw *hw, | 
 | 4742 |                  uint32_t offset, | 
 | 4743 |                  uint32_t value) | 
 | 4744 | { | 
 | 4745 |     uint32_t temp; | 
 | 4746 |  | 
 | 4747 |     if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 
 | 4748 |         temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 
 | 4749 |         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
 | 4750 |         E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 
 | 4751 |     } else { | 
 | 4752 |         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
 | 4753 |     } | 
 | 4754 | } | 
 | 4755 |  | 
 | 4756 | /****************************************************************************** | 
 | 4757 |  * Clears the VLAN filer table | 
 | 4758 |  * | 
 | 4759 |  * hw - Struct containing variables accessed by shared code | 
 | 4760 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4761 | static void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4762 | e1000_clear_vfta(struct e1000_hw *hw) | 
 | 4763 | { | 
 | 4764 |     uint32_t offset; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4765 |     uint32_t vfta_value = 0; | 
 | 4766 |     uint32_t vfta_offset = 0; | 
 | 4767 |     uint32_t vfta_bit_in_reg = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4768 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 4769 |     if (hw->mac_type == e1000_82573) { | 
 | 4770 |         if (hw->mng_cookie.vlan_id != 0) { | 
 | 4771 |             /* The VFTA is a 4096b bit-field, each identifying a single VLAN | 
 | 4772 |              * ID.  The following operations determine which 32b entry | 
 | 4773 |              * (i.e. offset) into the array we want to set the VLAN ID | 
 | 4774 |              * (i.e. bit) of the manageability unit. */ | 
 | 4775 |             vfta_offset = (hw->mng_cookie.vlan_id >> | 
 | 4776 |                            E1000_VFTA_ENTRY_SHIFT) & | 
 | 4777 |                           E1000_VFTA_ENTRY_MASK; | 
 | 4778 |             vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | 
 | 4779 |                                     E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | 
 | 4780 |         } | 
 | 4781 |     } | 
 | 4782 |     for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
 | 4783 |         /* If the offset we want to clear is the same offset of the | 
 | 4784 |          * manageability VLAN ID, then clear all bits except that of the | 
 | 4785 |          * manageability unit */ | 
 | 4786 |         vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 
 | 4787 |         E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 
 | 4788 |     } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4789 | } | 
 | 4790 |  | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 4791 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 4792 | e1000_id_led_init(struct e1000_hw * hw) | 
 | 4793 | { | 
 | 4794 |     uint32_t ledctl; | 
 | 4795 |     const uint32_t ledctl_mask = 0x000000FF; | 
 | 4796 |     const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
 | 4797 |     const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
 | 4798 |     uint16_t eeprom_data, i, temp; | 
 | 4799 |     const uint16_t led_mask = 0x0F; | 
 | 4800 |  | 
 | 4801 |     DEBUGFUNC("e1000_id_led_init"); | 
 | 4802 |  | 
 | 4803 |     if(hw->mac_type < e1000_82540) { | 
 | 4804 |         /* Nothing to do */ | 
 | 4805 |         return E1000_SUCCESS; | 
 | 4806 |     } | 
 | 4807 |  | 
 | 4808 |     ledctl = E1000_READ_REG(hw, LEDCTL); | 
 | 4809 |     hw->ledctl_default = ledctl; | 
 | 4810 |     hw->ledctl_mode1 = hw->ledctl_default; | 
 | 4811 |     hw->ledctl_mode2 = hw->ledctl_default; | 
 | 4812 |  | 
 | 4813 |     if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | 
 | 4814 |         DEBUGOUT("EEPROM Read Error\n"); | 
 | 4815 |         return -E1000_ERR_EEPROM; | 
 | 4816 |     } | 
 | 4817 |     if((eeprom_data== ID_LED_RESERVED_0000) || | 
 | 4818 |        (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; | 
 | 4819 |     for(i = 0; i < 4; i++) { | 
 | 4820 |         temp = (eeprom_data >> (i << 2)) & led_mask; | 
 | 4821 |         switch(temp) { | 
 | 4822 |         case ID_LED_ON1_DEF2: | 
 | 4823 |         case ID_LED_ON1_ON2: | 
 | 4824 |         case ID_LED_ON1_OFF2: | 
 | 4825 |             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
 | 4826 |             hw->ledctl_mode1 |= ledctl_on << (i << 3); | 
 | 4827 |             break; | 
 | 4828 |         case ID_LED_OFF1_DEF2: | 
 | 4829 |         case ID_LED_OFF1_ON2: | 
 | 4830 |         case ID_LED_OFF1_OFF2: | 
 | 4831 |             hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
 | 4832 |             hw->ledctl_mode1 |= ledctl_off << (i << 3); | 
 | 4833 |             break; | 
 | 4834 |         default: | 
 | 4835 |             /* Do nothing */ | 
 | 4836 |             break; | 
 | 4837 |         } | 
 | 4838 |         switch(temp) { | 
 | 4839 |         case ID_LED_DEF1_ON2: | 
 | 4840 |         case ID_LED_ON1_ON2: | 
 | 4841 |         case ID_LED_OFF1_ON2: | 
 | 4842 |             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
 | 4843 |             hw->ledctl_mode2 |= ledctl_on << (i << 3); | 
 | 4844 |             break; | 
 | 4845 |         case ID_LED_DEF1_OFF2: | 
 | 4846 |         case ID_LED_ON1_OFF2: | 
 | 4847 |         case ID_LED_OFF1_OFF2: | 
 | 4848 |             hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
 | 4849 |             hw->ledctl_mode2 |= ledctl_off << (i << 3); | 
 | 4850 |             break; | 
 | 4851 |         default: | 
 | 4852 |             /* Do nothing */ | 
 | 4853 |             break; | 
 | 4854 |         } | 
 | 4855 |     } | 
 | 4856 |     return E1000_SUCCESS; | 
 | 4857 | } | 
 | 4858 |  | 
 | 4859 | /****************************************************************************** | 
 | 4860 |  * Prepares SW controlable LED for use and saves the current state of the LED. | 
 | 4861 |  * | 
 | 4862 |  * hw - Struct containing variables accessed by shared code | 
 | 4863 |  *****************************************************************************/ | 
 | 4864 | int32_t | 
 | 4865 | e1000_setup_led(struct e1000_hw *hw) | 
 | 4866 | { | 
 | 4867 |     uint32_t ledctl; | 
 | 4868 |     int32_t ret_val = E1000_SUCCESS; | 
 | 4869 |  | 
 | 4870 |     DEBUGFUNC("e1000_setup_led"); | 
 | 4871 |  | 
 | 4872 |     switch(hw->mac_type) { | 
 | 4873 |     case e1000_82542_rev2_0: | 
 | 4874 |     case e1000_82542_rev2_1: | 
 | 4875 |     case e1000_82543: | 
 | 4876 |     case e1000_82544: | 
 | 4877 |         /* No setup necessary */ | 
 | 4878 |         break; | 
 | 4879 |     case e1000_82541: | 
 | 4880 |     case e1000_82547: | 
 | 4881 |     case e1000_82541_rev_2: | 
 | 4882 |     case e1000_82547_rev_2: | 
 | 4883 |         /* Turn off PHY Smart Power Down (if enabled) */ | 
 | 4884 |         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
 | 4885 |                                      &hw->phy_spd_default); | 
 | 4886 |         if(ret_val) | 
 | 4887 |             return ret_val; | 
 | 4888 |         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
 | 4889 |                                       (uint16_t)(hw->phy_spd_default & | 
 | 4890 |                                       ~IGP01E1000_GMII_SPD)); | 
 | 4891 |         if(ret_val) | 
 | 4892 |             return ret_val; | 
 | 4893 |         /* Fall Through */ | 
 | 4894 |     default: | 
 | 4895 |         if(hw->media_type == e1000_media_type_fiber) { | 
 | 4896 |             ledctl = E1000_READ_REG(hw, LEDCTL); | 
 | 4897 |             /* Save current LEDCTL settings */ | 
 | 4898 |             hw->ledctl_default = ledctl; | 
 | 4899 |             /* Turn off LED0 */ | 
 | 4900 |             ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | 
 | 4901 |                         E1000_LEDCTL_LED0_BLINK | | 
 | 4902 |                         E1000_LEDCTL_LED0_MODE_MASK); | 
 | 4903 |             ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | 
 | 4904 |                        E1000_LEDCTL_LED0_MODE_SHIFT); | 
 | 4905 |             E1000_WRITE_REG(hw, LEDCTL, ledctl); | 
 | 4906 |         } else if(hw->media_type == e1000_media_type_copper) | 
 | 4907 |             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | 
 | 4908 |         break; | 
 | 4909 |     } | 
 | 4910 |  | 
 | 4911 |     return E1000_SUCCESS; | 
 | 4912 | } | 
 | 4913 |  | 
 | 4914 | /****************************************************************************** | 
 | 4915 |  * Restores the saved state of the SW controlable LED. | 
 | 4916 |  * | 
 | 4917 |  * hw - Struct containing variables accessed by shared code | 
 | 4918 |  *****************************************************************************/ | 
 | 4919 | int32_t | 
 | 4920 | e1000_cleanup_led(struct e1000_hw *hw) | 
 | 4921 | { | 
 | 4922 |     int32_t ret_val = E1000_SUCCESS; | 
 | 4923 |  | 
 | 4924 |     DEBUGFUNC("e1000_cleanup_led"); | 
 | 4925 |  | 
 | 4926 |     switch(hw->mac_type) { | 
 | 4927 |     case e1000_82542_rev2_0: | 
 | 4928 |     case e1000_82542_rev2_1: | 
 | 4929 |     case e1000_82543: | 
 | 4930 |     case e1000_82544: | 
 | 4931 |         /* No cleanup necessary */ | 
 | 4932 |         break; | 
 | 4933 |     case e1000_82541: | 
 | 4934 |     case e1000_82547: | 
 | 4935 |     case e1000_82541_rev_2: | 
 | 4936 |     case e1000_82547_rev_2: | 
 | 4937 |         /* Turn on PHY Smart Power Down (if previously enabled) */ | 
 | 4938 |         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
 | 4939 |                                       hw->phy_spd_default); | 
 | 4940 |         if(ret_val) | 
 | 4941 |             return ret_val; | 
 | 4942 |         /* Fall Through */ | 
 | 4943 |     default: | 
 | 4944 |         /* Restore LEDCTL settings */ | 
 | 4945 |         E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); | 
 | 4946 |         break; | 
 | 4947 |     } | 
 | 4948 |  | 
 | 4949 |     return E1000_SUCCESS; | 
 | 4950 | } | 
 | 4951 |  | 
 | 4952 | /****************************************************************************** | 
 | 4953 |  * Turns on the software controllable LED | 
 | 4954 |  * | 
 | 4955 |  * hw - Struct containing variables accessed by shared code | 
 | 4956 |  *****************************************************************************/ | 
 | 4957 | int32_t | 
 | 4958 | e1000_led_on(struct e1000_hw *hw) | 
 | 4959 | { | 
 | 4960 |     uint32_t ctrl = E1000_READ_REG(hw, CTRL); | 
 | 4961 |  | 
 | 4962 |     DEBUGFUNC("e1000_led_on"); | 
 | 4963 |  | 
 | 4964 |     switch(hw->mac_type) { | 
 | 4965 |     case e1000_82542_rev2_0: | 
 | 4966 |     case e1000_82542_rev2_1: | 
 | 4967 |     case e1000_82543: | 
 | 4968 |         /* Set SW Defineable Pin 0 to turn on the LED */ | 
 | 4969 |         ctrl |= E1000_CTRL_SWDPIN0; | 
 | 4970 |         ctrl |= E1000_CTRL_SWDPIO0; | 
 | 4971 |         break; | 
 | 4972 |     case e1000_82544: | 
 | 4973 |         if(hw->media_type == e1000_media_type_fiber) { | 
 | 4974 |             /* Set SW Defineable Pin 0 to turn on the LED */ | 
 | 4975 |             ctrl |= E1000_CTRL_SWDPIN0; | 
 | 4976 |             ctrl |= E1000_CTRL_SWDPIO0; | 
 | 4977 |         } else { | 
 | 4978 |             /* Clear SW Defineable Pin 0 to turn on the LED */ | 
 | 4979 |             ctrl &= ~E1000_CTRL_SWDPIN0; | 
 | 4980 |             ctrl |= E1000_CTRL_SWDPIO0; | 
 | 4981 |         } | 
 | 4982 |         break; | 
 | 4983 |     default: | 
 | 4984 |         if(hw->media_type == e1000_media_type_fiber) { | 
 | 4985 |             /* Clear SW Defineable Pin 0 to turn on the LED */ | 
 | 4986 |             ctrl &= ~E1000_CTRL_SWDPIN0; | 
 | 4987 |             ctrl |= E1000_CTRL_SWDPIO0; | 
 | 4988 |         } else if(hw->media_type == e1000_media_type_copper) { | 
 | 4989 |             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); | 
 | 4990 |             return E1000_SUCCESS; | 
 | 4991 |         } | 
 | 4992 |         break; | 
 | 4993 |     } | 
 | 4994 |  | 
 | 4995 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 4996 |  | 
 | 4997 |     return E1000_SUCCESS; | 
 | 4998 | } | 
 | 4999 |  | 
 | 5000 | /****************************************************************************** | 
 | 5001 |  * Turns off the software controllable LED | 
 | 5002 |  * | 
 | 5003 |  * hw - Struct containing variables accessed by shared code | 
 | 5004 |  *****************************************************************************/ | 
 | 5005 | int32_t | 
 | 5006 | e1000_led_off(struct e1000_hw *hw) | 
 | 5007 | { | 
 | 5008 |     uint32_t ctrl = E1000_READ_REG(hw, CTRL); | 
 | 5009 |  | 
 | 5010 |     DEBUGFUNC("e1000_led_off"); | 
 | 5011 |  | 
 | 5012 |     switch(hw->mac_type) { | 
 | 5013 |     case e1000_82542_rev2_0: | 
 | 5014 |     case e1000_82542_rev2_1: | 
 | 5015 |     case e1000_82543: | 
 | 5016 |         /* Clear SW Defineable Pin 0 to turn off the LED */ | 
 | 5017 |         ctrl &= ~E1000_CTRL_SWDPIN0; | 
 | 5018 |         ctrl |= E1000_CTRL_SWDPIO0; | 
 | 5019 |         break; | 
 | 5020 |     case e1000_82544: | 
 | 5021 |         if(hw->media_type == e1000_media_type_fiber) { | 
 | 5022 |             /* Clear SW Defineable Pin 0 to turn off the LED */ | 
 | 5023 |             ctrl &= ~E1000_CTRL_SWDPIN0; | 
 | 5024 |             ctrl |= E1000_CTRL_SWDPIO0; | 
 | 5025 |         } else { | 
 | 5026 |             /* Set SW Defineable Pin 0 to turn off the LED */ | 
 | 5027 |             ctrl |= E1000_CTRL_SWDPIN0; | 
 | 5028 |             ctrl |= E1000_CTRL_SWDPIO0; | 
 | 5029 |         } | 
 | 5030 |         break; | 
 | 5031 |     default: | 
 | 5032 |         if(hw->media_type == e1000_media_type_fiber) { | 
 | 5033 |             /* Set SW Defineable Pin 0 to turn off the LED */ | 
 | 5034 |             ctrl |= E1000_CTRL_SWDPIN0; | 
 | 5035 |             ctrl |= E1000_CTRL_SWDPIO0; | 
 | 5036 |         } else if(hw->media_type == e1000_media_type_copper) { | 
 | 5037 |             E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | 
 | 5038 |             return E1000_SUCCESS; | 
 | 5039 |         } | 
 | 5040 |         break; | 
 | 5041 |     } | 
 | 5042 |  | 
 | 5043 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 5044 |  | 
 | 5045 |     return E1000_SUCCESS; | 
 | 5046 | } | 
 | 5047 |  | 
 | 5048 | /****************************************************************************** | 
 | 5049 |  * Clears all hardware statistics counters. | 
 | 5050 |  * | 
 | 5051 |  * hw - Struct containing variables accessed by shared code | 
 | 5052 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5053 | static void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5054 | e1000_clear_hw_cntrs(struct e1000_hw *hw) | 
 | 5055 | { | 
 | 5056 |     volatile uint32_t temp; | 
 | 5057 |  | 
 | 5058 |     temp = E1000_READ_REG(hw, CRCERRS); | 
 | 5059 |     temp = E1000_READ_REG(hw, SYMERRS); | 
 | 5060 |     temp = E1000_READ_REG(hw, MPC); | 
 | 5061 |     temp = E1000_READ_REG(hw, SCC); | 
 | 5062 |     temp = E1000_READ_REG(hw, ECOL); | 
 | 5063 |     temp = E1000_READ_REG(hw, MCC); | 
 | 5064 |     temp = E1000_READ_REG(hw, LATECOL); | 
 | 5065 |     temp = E1000_READ_REG(hw, COLC); | 
 | 5066 |     temp = E1000_READ_REG(hw, DC); | 
 | 5067 |     temp = E1000_READ_REG(hw, SEC); | 
 | 5068 |     temp = E1000_READ_REG(hw, RLEC); | 
 | 5069 |     temp = E1000_READ_REG(hw, XONRXC); | 
 | 5070 |     temp = E1000_READ_REG(hw, XONTXC); | 
 | 5071 |     temp = E1000_READ_REG(hw, XOFFRXC); | 
 | 5072 |     temp = E1000_READ_REG(hw, XOFFTXC); | 
 | 5073 |     temp = E1000_READ_REG(hw, FCRUC); | 
 | 5074 |     temp = E1000_READ_REG(hw, PRC64); | 
 | 5075 |     temp = E1000_READ_REG(hw, PRC127); | 
 | 5076 |     temp = E1000_READ_REG(hw, PRC255); | 
 | 5077 |     temp = E1000_READ_REG(hw, PRC511); | 
 | 5078 |     temp = E1000_READ_REG(hw, PRC1023); | 
 | 5079 |     temp = E1000_READ_REG(hw, PRC1522); | 
 | 5080 |     temp = E1000_READ_REG(hw, GPRC); | 
 | 5081 |     temp = E1000_READ_REG(hw, BPRC); | 
 | 5082 |     temp = E1000_READ_REG(hw, MPRC); | 
 | 5083 |     temp = E1000_READ_REG(hw, GPTC); | 
 | 5084 |     temp = E1000_READ_REG(hw, GORCL); | 
 | 5085 |     temp = E1000_READ_REG(hw, GORCH); | 
 | 5086 |     temp = E1000_READ_REG(hw, GOTCL); | 
 | 5087 |     temp = E1000_READ_REG(hw, GOTCH); | 
 | 5088 |     temp = E1000_READ_REG(hw, RNBC); | 
 | 5089 |     temp = E1000_READ_REG(hw, RUC); | 
 | 5090 |     temp = E1000_READ_REG(hw, RFC); | 
 | 5091 |     temp = E1000_READ_REG(hw, ROC); | 
 | 5092 |     temp = E1000_READ_REG(hw, RJC); | 
 | 5093 |     temp = E1000_READ_REG(hw, TORL); | 
 | 5094 |     temp = E1000_READ_REG(hw, TORH); | 
 | 5095 |     temp = E1000_READ_REG(hw, TOTL); | 
 | 5096 |     temp = E1000_READ_REG(hw, TOTH); | 
 | 5097 |     temp = E1000_READ_REG(hw, TPR); | 
 | 5098 |     temp = E1000_READ_REG(hw, TPT); | 
 | 5099 |     temp = E1000_READ_REG(hw, PTC64); | 
 | 5100 |     temp = E1000_READ_REG(hw, PTC127); | 
 | 5101 |     temp = E1000_READ_REG(hw, PTC255); | 
 | 5102 |     temp = E1000_READ_REG(hw, PTC511); | 
 | 5103 |     temp = E1000_READ_REG(hw, PTC1023); | 
 | 5104 |     temp = E1000_READ_REG(hw, PTC1522); | 
 | 5105 |     temp = E1000_READ_REG(hw, MPTC); | 
 | 5106 |     temp = E1000_READ_REG(hw, BPTC); | 
 | 5107 |  | 
 | 5108 |     if(hw->mac_type < e1000_82543) return; | 
 | 5109 |  | 
 | 5110 |     temp = E1000_READ_REG(hw, ALGNERRC); | 
 | 5111 |     temp = E1000_READ_REG(hw, RXERRC); | 
 | 5112 |     temp = E1000_READ_REG(hw, TNCRS); | 
 | 5113 |     temp = E1000_READ_REG(hw, CEXTERR); | 
 | 5114 |     temp = E1000_READ_REG(hw, TSCTC); | 
 | 5115 |     temp = E1000_READ_REG(hw, TSCTFC); | 
 | 5116 |  | 
 | 5117 |     if(hw->mac_type <= e1000_82544) return; | 
 | 5118 |  | 
 | 5119 |     temp = E1000_READ_REG(hw, MGTPRC); | 
 | 5120 |     temp = E1000_READ_REG(hw, MGTPDC); | 
 | 5121 |     temp = E1000_READ_REG(hw, MGTPTC); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5122 |  | 
 | 5123 |     if(hw->mac_type <= e1000_82547_rev_2) return; | 
 | 5124 |  | 
 | 5125 |     temp = E1000_READ_REG(hw, IAC); | 
 | 5126 |     temp = E1000_READ_REG(hw, ICRXOC); | 
 | 5127 |     temp = E1000_READ_REG(hw, ICRXPTC); | 
 | 5128 |     temp = E1000_READ_REG(hw, ICRXATC); | 
 | 5129 |     temp = E1000_READ_REG(hw, ICTXPTC); | 
 | 5130 |     temp = E1000_READ_REG(hw, ICTXATC); | 
 | 5131 |     temp = E1000_READ_REG(hw, ICTXQEC); | 
 | 5132 |     temp = E1000_READ_REG(hw, ICTXQMTC); | 
 | 5133 |     temp = E1000_READ_REG(hw, ICRXDMTC); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5134 | } | 
 | 5135 |  | 
 | 5136 | /****************************************************************************** | 
 | 5137 |  * Resets Adaptive IFS to its default state. | 
 | 5138 |  * | 
 | 5139 |  * hw - Struct containing variables accessed by shared code | 
 | 5140 |  * | 
 | 5141 |  * Call this after e1000_init_hw. You may override the IFS defaults by setting | 
 | 5142 |  * hw->ifs_params_forced to TRUE. However, you must initialize hw-> | 
 | 5143 |  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | 
 | 5144 |  * before calling this function. | 
 | 5145 |  *****************************************************************************/ | 
 | 5146 | void | 
 | 5147 | e1000_reset_adaptive(struct e1000_hw *hw) | 
 | 5148 | { | 
 | 5149 |     DEBUGFUNC("e1000_reset_adaptive"); | 
 | 5150 |  | 
 | 5151 |     if(hw->adaptive_ifs) { | 
 | 5152 |         if(!hw->ifs_params_forced) { | 
 | 5153 |             hw->current_ifs_val = 0; | 
 | 5154 |             hw->ifs_min_val = IFS_MIN; | 
 | 5155 |             hw->ifs_max_val = IFS_MAX; | 
 | 5156 |             hw->ifs_step_size = IFS_STEP; | 
 | 5157 |             hw->ifs_ratio = IFS_RATIO; | 
 | 5158 |         } | 
 | 5159 |         hw->in_ifs_mode = FALSE; | 
 | 5160 |         E1000_WRITE_REG(hw, AIT, 0); | 
 | 5161 |     } else { | 
 | 5162 |         DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
 | 5163 |     } | 
 | 5164 | } | 
 | 5165 |  | 
 | 5166 | /****************************************************************************** | 
 | 5167 |  * Called during the callback/watchdog routine to update IFS value based on | 
 | 5168 |  * the ratio of transmits to collisions. | 
 | 5169 |  * | 
 | 5170 |  * hw - Struct containing variables accessed by shared code | 
 | 5171 |  * tx_packets - Number of transmits since last callback | 
 | 5172 |  * total_collisions - Number of collisions since last callback | 
 | 5173 |  *****************************************************************************/ | 
 | 5174 | void | 
 | 5175 | e1000_update_adaptive(struct e1000_hw *hw) | 
 | 5176 | { | 
 | 5177 |     DEBUGFUNC("e1000_update_adaptive"); | 
 | 5178 |  | 
 | 5179 |     if(hw->adaptive_ifs) { | 
 | 5180 |         if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | 
 | 5181 |             if(hw->tx_packet_delta > MIN_NUM_XMITS) { | 
 | 5182 |                 hw->in_ifs_mode = TRUE; | 
 | 5183 |                 if(hw->current_ifs_val < hw->ifs_max_val) { | 
 | 5184 |                     if(hw->current_ifs_val == 0) | 
 | 5185 |                         hw->current_ifs_val = hw->ifs_min_val; | 
 | 5186 |                     else | 
 | 5187 |                         hw->current_ifs_val += hw->ifs_step_size; | 
 | 5188 |                     E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); | 
 | 5189 |                 } | 
 | 5190 |             } | 
 | 5191 |         } else { | 
 | 5192 |             if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | 
 | 5193 |                 hw->current_ifs_val = 0; | 
 | 5194 |                 hw->in_ifs_mode = FALSE; | 
 | 5195 |                 E1000_WRITE_REG(hw, AIT, 0); | 
 | 5196 |             } | 
 | 5197 |         } | 
 | 5198 |     } else { | 
 | 5199 |         DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
 | 5200 |     } | 
 | 5201 | } | 
 | 5202 |  | 
 | 5203 | /****************************************************************************** | 
 | 5204 |  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | 
 | 5205 |  * | 
 | 5206 |  * hw - Struct containing variables accessed by shared code | 
 | 5207 |  * frame_len - The length of the frame in question | 
 | 5208 |  * mac_addr - The Ethernet destination address of the frame in question | 
 | 5209 |  *****************************************************************************/ | 
 | 5210 | void | 
 | 5211 | e1000_tbi_adjust_stats(struct e1000_hw *hw, | 
 | 5212 |                        struct e1000_hw_stats *stats, | 
 | 5213 |                        uint32_t frame_len, | 
 | 5214 |                        uint8_t *mac_addr) | 
 | 5215 | { | 
 | 5216 |     uint64_t carry_bit; | 
 | 5217 |  | 
 | 5218 |     /* First adjust the frame length. */ | 
 | 5219 |     frame_len--; | 
 | 5220 |     /* We need to adjust the statistics counters, since the hardware | 
 | 5221 |      * counters overcount this packet as a CRC error and undercount | 
 | 5222 |      * the packet as a good packet | 
 | 5223 |      */ | 
 | 5224 |     /* This packet should not be counted as a CRC error.    */ | 
 | 5225 |     stats->crcerrs--; | 
 | 5226 |     /* This packet does count as a Good Packet Received.    */ | 
 | 5227 |     stats->gprc++; | 
 | 5228 |  | 
 | 5229 |     /* Adjust the Good Octets received counters             */ | 
 | 5230 |     carry_bit = 0x80000000 & stats->gorcl; | 
 | 5231 |     stats->gorcl += frame_len; | 
 | 5232 |     /* If the high bit of Gorcl (the low 32 bits of the Good Octets | 
 | 5233 |      * Received Count) was one before the addition, | 
 | 5234 |      * AND it is zero after, then we lost the carry out, | 
 | 5235 |      * need to add one to Gorch (Good Octets Received Count High). | 
 | 5236 |      * This could be simplified if all environments supported | 
 | 5237 |      * 64-bit integers. | 
 | 5238 |      */ | 
 | 5239 |     if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) | 
 | 5240 |         stats->gorch++; | 
 | 5241 |     /* Is this a broadcast or multicast?  Check broadcast first, | 
 | 5242 |      * since the test for a multicast frame will test positive on | 
 | 5243 |      * a broadcast frame. | 
 | 5244 |      */ | 
 | 5245 |     if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) | 
 | 5246 |         /* Broadcast packet */ | 
 | 5247 |         stats->bprc++; | 
 | 5248 |     else if(*mac_addr & 0x01) | 
 | 5249 |         /* Multicast packet */ | 
 | 5250 |         stats->mprc++; | 
 | 5251 |  | 
 | 5252 |     if(frame_len == hw->max_frame_size) { | 
 | 5253 |         /* In this case, the hardware has overcounted the number of | 
 | 5254 |          * oversize frames. | 
 | 5255 |          */ | 
 | 5256 |         if(stats->roc > 0) | 
 | 5257 |             stats->roc--; | 
 | 5258 |     } | 
 | 5259 |  | 
 | 5260 |     /* Adjust the bin counters when the extra byte put the frame in the | 
 | 5261 |      * wrong bin. Remember that the frame_len was adjusted above. | 
 | 5262 |      */ | 
 | 5263 |     if(frame_len == 64) { | 
 | 5264 |         stats->prc64++; | 
 | 5265 |         stats->prc127--; | 
 | 5266 |     } else if(frame_len == 127) { | 
 | 5267 |         stats->prc127++; | 
 | 5268 |         stats->prc255--; | 
 | 5269 |     } else if(frame_len == 255) { | 
 | 5270 |         stats->prc255++; | 
 | 5271 |         stats->prc511--; | 
 | 5272 |     } else if(frame_len == 511) { | 
 | 5273 |         stats->prc511++; | 
 | 5274 |         stats->prc1023--; | 
 | 5275 |     } else if(frame_len == 1023) { | 
 | 5276 |         stats->prc1023++; | 
 | 5277 |         stats->prc1522--; | 
 | 5278 |     } else if(frame_len == 1522) { | 
 | 5279 |         stats->prc1522++; | 
 | 5280 |     } | 
 | 5281 | } | 
 | 5282 |  | 
 | 5283 | /****************************************************************************** | 
 | 5284 |  * Gets the current PCI bus type, speed, and width of the hardware | 
 | 5285 |  * | 
 | 5286 |  * hw - Struct containing variables accessed by shared code | 
 | 5287 |  *****************************************************************************/ | 
 | 5288 | void | 
 | 5289 | e1000_get_bus_info(struct e1000_hw *hw) | 
 | 5290 | { | 
 | 5291 |     uint32_t status; | 
 | 5292 |  | 
 | 5293 |     switch (hw->mac_type) { | 
 | 5294 |     case e1000_82542_rev2_0: | 
 | 5295 |     case e1000_82542_rev2_1: | 
 | 5296 |         hw->bus_type = e1000_bus_type_unknown; | 
 | 5297 |         hw->bus_speed = e1000_bus_speed_unknown; | 
 | 5298 |         hw->bus_width = e1000_bus_width_unknown; | 
 | 5299 |         break; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 5300 |     case e1000_82572: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5301 |     case e1000_82573: | 
 | 5302 |         hw->bus_type = e1000_bus_type_pci_express; | 
 | 5303 |         hw->bus_speed = e1000_bus_speed_2500; | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 5304 |         hw->bus_width = e1000_bus_width_pciex_1; | 
 | 5305 |         break; | 
 | 5306 |     case e1000_82571: | 
 | 5307 |         hw->bus_type = e1000_bus_type_pci_express; | 
 | 5308 |         hw->bus_speed = e1000_bus_speed_2500; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5309 |         hw->bus_width = e1000_bus_width_pciex_4; | 
 | 5310 |         break; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5311 |     default: | 
 | 5312 |         status = E1000_READ_REG(hw, STATUS); | 
 | 5313 |         hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 
 | 5314 |                        e1000_bus_type_pcix : e1000_bus_type_pci; | 
 | 5315 |  | 
 | 5316 |         if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | 
 | 5317 |             hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | 
 | 5318 |                             e1000_bus_speed_66 : e1000_bus_speed_120; | 
 | 5319 |         } else if(hw->bus_type == e1000_bus_type_pci) { | 
 | 5320 |             hw->bus_speed = (status & E1000_STATUS_PCI66) ? | 
 | 5321 |                             e1000_bus_speed_66 : e1000_bus_speed_33; | 
 | 5322 |         } else { | 
 | 5323 |             switch (status & E1000_STATUS_PCIX_SPEED) { | 
 | 5324 |             case E1000_STATUS_PCIX_SPEED_66: | 
 | 5325 |                 hw->bus_speed = e1000_bus_speed_66; | 
 | 5326 |                 break; | 
 | 5327 |             case E1000_STATUS_PCIX_SPEED_100: | 
 | 5328 |                 hw->bus_speed = e1000_bus_speed_100; | 
 | 5329 |                 break; | 
 | 5330 |             case E1000_STATUS_PCIX_SPEED_133: | 
 | 5331 |                 hw->bus_speed = e1000_bus_speed_133; | 
 | 5332 |                 break; | 
 | 5333 |             default: | 
 | 5334 |                 hw->bus_speed = e1000_bus_speed_reserved; | 
 | 5335 |                 break; | 
 | 5336 |             } | 
 | 5337 |         } | 
 | 5338 |         hw->bus_width = (status & E1000_STATUS_BUS64) ? | 
 | 5339 |                         e1000_bus_width_64 : e1000_bus_width_32; | 
 | 5340 |         break; | 
 | 5341 |     } | 
 | 5342 | } | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5343 |  | 
 | 5344 | #if 0 | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5345 | /****************************************************************************** | 
 | 5346 |  * Reads a value from one of the devices registers using port I/O (as opposed | 
 | 5347 |  * memory mapped I/O). Only 82544 and newer devices support port I/O. | 
 | 5348 |  * | 
 | 5349 |  * hw - Struct containing variables accessed by shared code | 
 | 5350 |  * offset - offset to read from | 
 | 5351 |  *****************************************************************************/ | 
 | 5352 | uint32_t | 
 | 5353 | e1000_read_reg_io(struct e1000_hw *hw, | 
 | 5354 |                   uint32_t offset) | 
 | 5355 | { | 
 | 5356 |     unsigned long io_addr = hw->io_base; | 
 | 5357 |     unsigned long io_data = hw->io_base + 4; | 
 | 5358 |  | 
 | 5359 |     e1000_io_write(hw, io_addr, offset); | 
 | 5360 |     return e1000_io_read(hw, io_data); | 
 | 5361 | } | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5362 | #endif  /*  0  */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5363 |  | 
 | 5364 | /****************************************************************************** | 
 | 5365 |  * Writes a value to one of the devices registers using port I/O (as opposed to | 
 | 5366 |  * memory mapped I/O). Only 82544 and newer devices support port I/O. | 
 | 5367 |  * | 
 | 5368 |  * hw - Struct containing variables accessed by shared code | 
 | 5369 |  * offset - offset to write to | 
 | 5370 |  * value - value to write | 
 | 5371 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5372 | static void | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5373 | e1000_write_reg_io(struct e1000_hw *hw, | 
 | 5374 |                    uint32_t offset, | 
 | 5375 |                    uint32_t value) | 
 | 5376 | { | 
 | 5377 |     unsigned long io_addr = hw->io_base; | 
 | 5378 |     unsigned long io_data = hw->io_base + 4; | 
 | 5379 |  | 
 | 5380 |     e1000_io_write(hw, io_addr, offset); | 
 | 5381 |     e1000_io_write(hw, io_data, value); | 
 | 5382 | } | 
 | 5383 |  | 
 | 5384 |  | 
 | 5385 | /****************************************************************************** | 
 | 5386 |  * Estimates the cable length. | 
 | 5387 |  * | 
 | 5388 |  * hw - Struct containing variables accessed by shared code | 
 | 5389 |  * min_length - The estimated minimum length | 
 | 5390 |  * max_length - The estimated maximum length | 
 | 5391 |  * | 
 | 5392 |  * returns: - E1000_ERR_XXX | 
 | 5393 |  *            E1000_SUCCESS | 
 | 5394 |  * | 
 | 5395 |  * This function always returns a ranged length (minimum & maximum). | 
 | 5396 |  * So for M88 phy's, this function interprets the one value returned from the | 
 | 5397 |  * register to the minimum and maximum range. | 
 | 5398 |  * For IGP phy's, the function calculates the range by the AGC registers. | 
 | 5399 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5400 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5401 | e1000_get_cable_length(struct e1000_hw *hw, | 
 | 5402 |                        uint16_t *min_length, | 
 | 5403 |                        uint16_t *max_length) | 
 | 5404 | { | 
 | 5405 |     int32_t ret_val; | 
 | 5406 |     uint16_t agc_value = 0; | 
 | 5407 |     uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 5408 |     uint16_t max_agc = 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5409 |     uint16_t i, phy_data; | 
 | 5410 |     uint16_t cable_length; | 
 | 5411 |  | 
 | 5412 |     DEBUGFUNC("e1000_get_cable_length"); | 
 | 5413 |  | 
 | 5414 |     *min_length = *max_length = 0; | 
 | 5415 |  | 
 | 5416 |     /* Use old method for Phy older than IGP */ | 
 | 5417 |     if(hw->phy_type == e1000_phy_m88) { | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5418 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5419 |         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
 | 5420 |                                      &phy_data); | 
 | 5421 |         if(ret_val) | 
 | 5422 |             return ret_val; | 
 | 5423 |         cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
 | 5424 |                        M88E1000_PSSR_CABLE_LENGTH_SHIFT; | 
 | 5425 |  | 
 | 5426 |         /* Convert the enum value to ranged values */ | 
 | 5427 |         switch (cable_length) { | 
 | 5428 |         case e1000_cable_length_50: | 
 | 5429 |             *min_length = 0; | 
 | 5430 |             *max_length = e1000_igp_cable_length_50; | 
 | 5431 |             break; | 
 | 5432 |         case e1000_cable_length_50_80: | 
 | 5433 |             *min_length = e1000_igp_cable_length_50; | 
 | 5434 |             *max_length = e1000_igp_cable_length_80; | 
 | 5435 |             break; | 
 | 5436 |         case e1000_cable_length_80_110: | 
 | 5437 |             *min_length = e1000_igp_cable_length_80; | 
 | 5438 |             *max_length = e1000_igp_cable_length_110; | 
 | 5439 |             break; | 
 | 5440 |         case e1000_cable_length_110_140: | 
 | 5441 |             *min_length = e1000_igp_cable_length_110; | 
 | 5442 |             *max_length = e1000_igp_cable_length_140; | 
 | 5443 |             break; | 
 | 5444 |         case e1000_cable_length_140: | 
 | 5445 |             *min_length = e1000_igp_cable_length_140; | 
 | 5446 |             *max_length = e1000_igp_cable_length_170; | 
 | 5447 |             break; | 
 | 5448 |         default: | 
 | 5449 |             return -E1000_ERR_PHY; | 
 | 5450 |             break; | 
 | 5451 |         } | 
 | 5452 |     } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 
 | 5453 |         uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
 | 5454 |                                                          {IGP01E1000_PHY_AGC_A, | 
 | 5455 |                                                           IGP01E1000_PHY_AGC_B, | 
 | 5456 |                                                           IGP01E1000_PHY_AGC_C, | 
 | 5457 |                                                           IGP01E1000_PHY_AGC_D}; | 
 | 5458 |         /* Read the AGC registers for all channels */ | 
 | 5459 |         for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
 | 5460 |  | 
 | 5461 |             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 
 | 5462 |             if(ret_val) | 
 | 5463 |                 return ret_val; | 
 | 5464 |  | 
 | 5465 |             cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 
 | 5466 |  | 
 | 5467 |             /* Array bound check. */ | 
 | 5468 |             if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 
 | 5469 |                (cur_agc == 0)) | 
 | 5470 |                 return -E1000_ERR_PHY; | 
 | 5471 |  | 
 | 5472 |             agc_value += cur_agc; | 
 | 5473 |  | 
 | 5474 |             /* Update minimal AGC value. */ | 
 | 5475 |             if(min_agc > cur_agc) | 
 | 5476 |                 min_agc = cur_agc; | 
 | 5477 |         } | 
 | 5478 |  | 
 | 5479 |         /* Remove the minimal AGC result for length < 50m */ | 
 | 5480 |         if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 
 | 5481 |             agc_value -= min_agc; | 
 | 5482 |  | 
 | 5483 |             /* Get the average length of the remaining 3 channels */ | 
 | 5484 |             agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 
 | 5485 |         } else { | 
 | 5486 |             /* Get the average length of all the 4 channels. */ | 
 | 5487 |             agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | 
 | 5488 |         } | 
 | 5489 |  | 
 | 5490 |         /* Set the range of the calculated length. */ | 
 | 5491 |         *min_length = ((e1000_igp_cable_length_table[agc_value] - | 
 | 5492 |                        IGP01E1000_AGC_RANGE) > 0) ? | 
 | 5493 |                        (e1000_igp_cable_length_table[agc_value] - | 
 | 5494 |                        IGP01E1000_AGC_RANGE) : 0; | 
 | 5495 |         *max_length = e1000_igp_cable_length_table[agc_value] + | 
 | 5496 |                       IGP01E1000_AGC_RANGE; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 5497 |     } else if (hw->phy_type == e1000_phy_igp_2) { | 
 | 5498 |         uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | 
 | 5499 |                                                          {IGP02E1000_PHY_AGC_A, | 
 | 5500 |                                                           IGP02E1000_PHY_AGC_B, | 
 | 5501 |                                                           IGP02E1000_PHY_AGC_C, | 
 | 5502 |                                                           IGP02E1000_PHY_AGC_D}; | 
 | 5503 |         /* Read the AGC registers for all channels */ | 
 | 5504 |         for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | 
 | 5505 |             ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 
 | 5506 |             if (ret_val) | 
 | 5507 |                 return ret_val; | 
 | 5508 |  | 
 | 5509 | 	    /* Getting bits 15:9, which represent the combination of course and | 
 | 5510 |              * fine gain values.  The result is a number that can be put into | 
 | 5511 |              * the lookup table to obtain the approximate cable length. */ | 
 | 5512 |             cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | 
 | 5513 |                       IGP02E1000_AGC_LENGTH_MASK; | 
 | 5514 |  | 
 | 5515 |             /* Remove min & max AGC values from calculation. */ | 
 | 5516 |             if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc]) | 
 | 5517 |                 min_agc = cur_agc; | 
 | 5518 | 	    if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc]) | 
 | 5519 |                 max_agc = cur_agc; | 
 | 5520 |  | 
 | 5521 |             agc_value += e1000_igp_2_cable_length_table[cur_agc]; | 
 | 5522 |         } | 
 | 5523 |  | 
 | 5524 |         agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]); | 
 | 5525 |         agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | 
 | 5526 |  | 
 | 5527 |         /* Calculate cable length with the error range of +/- 10 meters. */ | 
 | 5528 |         *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | 
 | 5529 |                        (agc_value - IGP02E1000_AGC_RANGE) : 0; | 
 | 5530 |         *max_length = agc_value + IGP02E1000_AGC_RANGE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5531 |     } | 
 | 5532 |  | 
 | 5533 |     return E1000_SUCCESS; | 
 | 5534 | } | 
 | 5535 |  | 
 | 5536 | /****************************************************************************** | 
 | 5537 |  * Check the cable polarity | 
 | 5538 |  * | 
 | 5539 |  * hw - Struct containing variables accessed by shared code | 
 | 5540 |  * polarity - output parameter : 0 - Polarity is not reversed | 
 | 5541 |  *                               1 - Polarity is reversed. | 
 | 5542 |  * | 
 | 5543 |  * returns: - E1000_ERR_XXX | 
 | 5544 |  *            E1000_SUCCESS | 
 | 5545 |  * | 
 | 5546 |  * For phy's older then IGP, this function simply reads the polarity bit in the | 
 | 5547 |  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is | 
 | 5548 |  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will | 
 | 5549 |  * return 0.  If the link speed is 1000 Mbps the polarity status is in the | 
 | 5550 |  * IGP01E1000_PHY_PCS_INIT_REG. | 
 | 5551 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5552 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5553 | e1000_check_polarity(struct e1000_hw *hw, | 
 | 5554 |                      uint16_t *polarity) | 
 | 5555 | { | 
 | 5556 |     int32_t ret_val; | 
 | 5557 |     uint16_t phy_data; | 
 | 5558 |  | 
 | 5559 |     DEBUGFUNC("e1000_check_polarity"); | 
 | 5560 |  | 
 | 5561 |     if(hw->phy_type == e1000_phy_m88) { | 
 | 5562 |         /* return the Polarity bit in the Status register. */ | 
 | 5563 |         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
 | 5564 |                                      &phy_data); | 
 | 5565 |         if(ret_val) | 
 | 5566 |             return ret_val; | 
 | 5567 |         *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 
 | 5568 |                     M88E1000_PSSR_REV_POLARITY_SHIFT; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5569 |     } else if(hw->phy_type == e1000_phy_igp || | 
 | 5570 |               hw->phy_type == e1000_phy_igp_2) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5571 |         /* Read the Status register to check the speed */ | 
 | 5572 |         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 
 | 5573 |                                      &phy_data); | 
 | 5574 |         if(ret_val) | 
 | 5575 |             return ret_val; | 
 | 5576 |  | 
 | 5577 |         /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | 
 | 5578 |          * find the polarity status */ | 
 | 5579 |         if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
 | 5580 |            IGP01E1000_PSSR_SPEED_1000MBPS) { | 
 | 5581 |  | 
 | 5582 |             /* Read the GIG initialization PCS register (0x00B4) */ | 
 | 5583 |             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | 
 | 5584 |                                          &phy_data); | 
 | 5585 |             if(ret_val) | 
 | 5586 |                 return ret_val; | 
 | 5587 |  | 
 | 5588 |             /* Check the polarity bits */ | 
 | 5589 |             *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0; | 
 | 5590 |         } else { | 
 | 5591 |             /* For 10 Mbps, read the polarity bit in the status register. (for | 
 | 5592 |              * 100 Mbps this bit is always 0) */ | 
 | 5593 |             *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; | 
 | 5594 |         } | 
 | 5595 |     } | 
 | 5596 |     return E1000_SUCCESS; | 
 | 5597 | } | 
 | 5598 |  | 
 | 5599 | /****************************************************************************** | 
 | 5600 |  * Check if Downshift occured | 
 | 5601 |  * | 
 | 5602 |  * hw - Struct containing variables accessed by shared code | 
 | 5603 |  * downshift - output parameter : 0 - No Downshift ocured. | 
 | 5604 |  *                                1 - Downshift ocured. | 
 | 5605 |  * | 
 | 5606 |  * returns: - E1000_ERR_XXX | 
 | 5607 |  *            E1000_SUCCESS  | 
 | 5608 |  * | 
 | 5609 |  * For phy's older then IGP, this function reads the Downshift bit in the Phy | 
 | 5610 |  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the | 
 | 5611 |  * Link Health register.  In IGP this bit is latched high, so the driver must | 
 | 5612 |  * read it immediately after link is established. | 
 | 5613 |  *****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5614 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5615 | e1000_check_downshift(struct e1000_hw *hw) | 
 | 5616 | { | 
 | 5617 |     int32_t ret_val; | 
 | 5618 |     uint16_t phy_data; | 
 | 5619 |  | 
 | 5620 |     DEBUGFUNC("e1000_check_downshift"); | 
 | 5621 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5622 |     if(hw->phy_type == e1000_phy_igp ||  | 
 | 5623 |         hw->phy_type == e1000_phy_igp_2) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5624 |         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 
 | 5625 |                                      &phy_data); | 
 | 5626 |         if(ret_val) | 
 | 5627 |             return ret_val; | 
 | 5628 |  | 
 | 5629 |         hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | 
 | 5630 |     } else if(hw->phy_type == e1000_phy_m88) { | 
 | 5631 |         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
 | 5632 |                                      &phy_data); | 
 | 5633 |         if(ret_val) | 
 | 5634 |             return ret_val; | 
 | 5635 |  | 
 | 5636 |         hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 
 | 5637 |                                M88E1000_PSSR_DOWNSHIFT_SHIFT; | 
 | 5638 |     } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5639 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5640 |     return E1000_SUCCESS; | 
 | 5641 | } | 
 | 5642 |  | 
 | 5643 | /***************************************************************************** | 
 | 5644 |  * | 
 | 5645 |  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | 
 | 5646 |  * gigabit link is achieved to improve link quality. | 
 | 5647 |  * | 
 | 5648 |  * hw: Struct containing variables accessed by shared code | 
 | 5649 |  * | 
 | 5650 |  * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
 | 5651 |  *            E1000_SUCCESS at any other case. | 
 | 5652 |  * | 
 | 5653 |  ****************************************************************************/ | 
 | 5654 |  | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5655 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5656 | e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 
 | 5657 |                                    boolean_t link_up) | 
 | 5658 | { | 
 | 5659 |     int32_t ret_val; | 
 | 5660 |     uint16_t phy_data, phy_saved_data, speed, duplex, i; | 
 | 5661 |     uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
 | 5662 |                                         {IGP01E1000_PHY_AGC_PARAM_A, | 
 | 5663 |                                         IGP01E1000_PHY_AGC_PARAM_B, | 
 | 5664 |                                         IGP01E1000_PHY_AGC_PARAM_C, | 
 | 5665 |                                         IGP01E1000_PHY_AGC_PARAM_D}; | 
 | 5666 |     uint16_t min_length, max_length; | 
 | 5667 |  | 
 | 5668 |     DEBUGFUNC("e1000_config_dsp_after_link_change"); | 
 | 5669 |  | 
 | 5670 |     if(hw->phy_type != e1000_phy_igp) | 
 | 5671 |         return E1000_SUCCESS; | 
 | 5672 |  | 
 | 5673 |     if(link_up) { | 
 | 5674 |         ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
 | 5675 |         if(ret_val) { | 
 | 5676 |             DEBUGOUT("Error getting link speed and duplex\n"); | 
 | 5677 |             return ret_val; | 
 | 5678 |         } | 
 | 5679 |  | 
 | 5680 |         if(speed == SPEED_1000) { | 
 | 5681 |  | 
 | 5682 |             e1000_get_cable_length(hw, &min_length, &max_length); | 
 | 5683 |  | 
 | 5684 |             if((hw->dsp_config_state == e1000_dsp_config_enabled) && | 
 | 5685 |                 min_length >= e1000_igp_cable_length_50) { | 
 | 5686 |  | 
 | 5687 |                 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
 | 5688 |                     ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], | 
 | 5689 |                                                  &phy_data); | 
 | 5690 |                     if(ret_val) | 
 | 5691 |                         return ret_val; | 
 | 5692 |  | 
 | 5693 |                     phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
 | 5694 |  | 
 | 5695 |                     ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], | 
 | 5696 |                                                   phy_data); | 
 | 5697 |                     if(ret_val) | 
 | 5698 |                         return ret_val; | 
 | 5699 |                 } | 
 | 5700 |                 hw->dsp_config_state = e1000_dsp_config_activated; | 
 | 5701 |             } | 
 | 5702 |  | 
 | 5703 |             if((hw->ffe_config_state == e1000_ffe_config_enabled) && | 
 | 5704 |                (min_length < e1000_igp_cable_length_50)) { | 
 | 5705 |  | 
 | 5706 |                 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | 
 | 5707 |                 uint32_t idle_errs = 0; | 
 | 5708 |  | 
 | 5709 |                 /* clear previous idle error counts */ | 
 | 5710 |                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
 | 5711 |                                              &phy_data); | 
 | 5712 |                 if(ret_val) | 
 | 5713 |                     return ret_val; | 
 | 5714 |  | 
 | 5715 |                 for(i = 0; i < ffe_idle_err_timeout; i++) { | 
 | 5716 |                     udelay(1000); | 
 | 5717 |                     ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
 | 5718 |                                                  &phy_data); | 
 | 5719 |                     if(ret_val) | 
 | 5720 |                         return ret_val; | 
 | 5721 |  | 
 | 5722 |                     idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | 
 | 5723 |                     if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | 
 | 5724 |                         hw->ffe_config_state = e1000_ffe_config_active; | 
 | 5725 |  | 
 | 5726 |                         ret_val = e1000_write_phy_reg(hw, | 
 | 5727 |                                     IGP01E1000_PHY_DSP_FFE, | 
 | 5728 |                                     IGP01E1000_PHY_DSP_FFE_CM_CP); | 
 | 5729 |                         if(ret_val) | 
 | 5730 |                             return ret_val; | 
 | 5731 |                         break; | 
 | 5732 |                     } | 
 | 5733 |  | 
 | 5734 |                     if(idle_errs) | 
 | 5735 |                         ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; | 
 | 5736 |                 } | 
 | 5737 |             } | 
 | 5738 |         } | 
 | 5739 |     } else { | 
 | 5740 |         if(hw->dsp_config_state == e1000_dsp_config_activated) { | 
 | 5741 |             /* Save off the current value of register 0x2F5B to be restored at | 
 | 5742 |              * the end of the routines. */ | 
 | 5743 |             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
 | 5744 |  | 
 | 5745 |             if(ret_val) | 
 | 5746 |                 return ret_val; | 
 | 5747 |  | 
 | 5748 |             /* Disable the PHY transmitter */ | 
 | 5749 |             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
 | 5750 |  | 
 | 5751 |             if(ret_val) | 
 | 5752 |                 return ret_val; | 
 | 5753 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5754 |             msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5755 |  | 
 | 5756 |             ret_val = e1000_write_phy_reg(hw, 0x0000, | 
 | 5757 |                                           IGP01E1000_IEEE_FORCE_GIGA); | 
 | 5758 |             if(ret_val) | 
 | 5759 |                 return ret_val; | 
 | 5760 |             for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
 | 5761 |                 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); | 
 | 5762 |                 if(ret_val) | 
 | 5763 |                     return ret_val; | 
 | 5764 |  | 
 | 5765 |                 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
 | 5766 |                 phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | 
 | 5767 |  | 
 | 5768 |                 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); | 
 | 5769 |                 if(ret_val) | 
 | 5770 |                     return ret_val; | 
 | 5771 |             } | 
 | 5772 |  | 
 | 5773 |             ret_val = e1000_write_phy_reg(hw, 0x0000, | 
 | 5774 |                                           IGP01E1000_IEEE_RESTART_AUTONEG); | 
 | 5775 |             if(ret_val) | 
 | 5776 |                 return ret_val; | 
 | 5777 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5778 |             msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5779 |  | 
 | 5780 |             /* Now enable the transmitter */ | 
 | 5781 |             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
 | 5782 |  | 
 | 5783 |             if(ret_val) | 
 | 5784 |                 return ret_val; | 
 | 5785 |  | 
 | 5786 |             hw->dsp_config_state = e1000_dsp_config_enabled; | 
 | 5787 |         } | 
 | 5788 |  | 
 | 5789 |         if(hw->ffe_config_state == e1000_ffe_config_active) { | 
 | 5790 |             /* Save off the current value of register 0x2F5B to be restored at | 
 | 5791 |              * the end of the routines. */ | 
 | 5792 |             ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
 | 5793 |  | 
 | 5794 |             if(ret_val) | 
 | 5795 |                 return ret_val; | 
 | 5796 |  | 
 | 5797 |             /* Disable the PHY transmitter */ | 
 | 5798 |             ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
 | 5799 |  | 
 | 5800 |             if(ret_val) | 
 | 5801 |                 return ret_val; | 
 | 5802 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5803 |             msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5804 |  | 
 | 5805 |             ret_val = e1000_write_phy_reg(hw, 0x0000, | 
 | 5806 |                                           IGP01E1000_IEEE_FORCE_GIGA); | 
 | 5807 |             if(ret_val) | 
 | 5808 |                 return ret_val; | 
 | 5809 |             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | 
 | 5810 |                                           IGP01E1000_PHY_DSP_FFE_DEFAULT); | 
 | 5811 |             if(ret_val) | 
 | 5812 |                 return ret_val; | 
 | 5813 |  | 
 | 5814 |             ret_val = e1000_write_phy_reg(hw, 0x0000, | 
 | 5815 |                                           IGP01E1000_IEEE_RESTART_AUTONEG); | 
 | 5816 |             if(ret_val) | 
 | 5817 |                 return ret_val; | 
 | 5818 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5819 |             msec_delay_irq(20); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5820 |  | 
 | 5821 |             /* Now enable the transmitter */ | 
 | 5822 |             ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
 | 5823 |  | 
 | 5824 |             if(ret_val) | 
 | 5825 |                 return ret_val; | 
 | 5826 |  | 
 | 5827 |             hw->ffe_config_state = e1000_ffe_config_enabled; | 
 | 5828 |         } | 
 | 5829 |     } | 
 | 5830 |     return E1000_SUCCESS; | 
 | 5831 | } | 
 | 5832 |  | 
 | 5833 | /***************************************************************************** | 
 | 5834 |  * Set PHY to class A mode | 
 | 5835 |  * Assumes the following operations will follow to enable the new class mode. | 
 | 5836 |  *  1. Do a PHY soft reset | 
 | 5837 |  *  2. Restart auto-negotiation or force link. | 
 | 5838 |  * | 
 | 5839 |  * hw - Struct containing variables accessed by shared code | 
 | 5840 |  ****************************************************************************/ | 
 | 5841 | static int32_t | 
 | 5842 | e1000_set_phy_mode(struct e1000_hw *hw) | 
 | 5843 | { | 
 | 5844 |     int32_t ret_val; | 
 | 5845 |     uint16_t eeprom_data; | 
 | 5846 |  | 
 | 5847 |     DEBUGFUNC("e1000_set_phy_mode"); | 
 | 5848 |  | 
 | 5849 |     if((hw->mac_type == e1000_82545_rev_3) && | 
 | 5850 |        (hw->media_type == e1000_media_type_copper)) { | 
 | 5851 |         ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); | 
 | 5852 |         if(ret_val) { | 
 | 5853 |             return ret_val; | 
 | 5854 |         } | 
 | 5855 |  | 
 | 5856 |         if((eeprom_data != EEPROM_RESERVED_WORD) && | 
 | 5857 |            (eeprom_data & EEPROM_PHY_CLASS_A)) { | 
 | 5858 |             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); | 
 | 5859 |             if(ret_val) | 
 | 5860 |                 return ret_val; | 
 | 5861 |             ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); | 
 | 5862 |             if(ret_val) | 
 | 5863 |                 return ret_val; | 
 | 5864 |  | 
 | 5865 |             hw->phy_reset_disable = FALSE; | 
 | 5866 |         } | 
 | 5867 |     } | 
 | 5868 |  | 
 | 5869 |     return E1000_SUCCESS; | 
 | 5870 | } | 
 | 5871 |  | 
 | 5872 | /***************************************************************************** | 
 | 5873 |  * | 
 | 5874 |  * This function sets the lplu state according to the active flag.  When | 
 | 5875 |  * activating lplu this function also disables smart speed and vise versa. | 
 | 5876 |  * lplu will not be activated unless the device autonegotiation advertisment | 
 | 5877 |  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
 | 5878 |  * hw: Struct containing variables accessed by shared code | 
 | 5879 |  * active - true to enable lplu false to disable lplu. | 
 | 5880 |  * | 
 | 5881 |  * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
 | 5882 |  *            E1000_SUCCESS at any other case. | 
 | 5883 |  * | 
 | 5884 |  ****************************************************************************/ | 
 | 5885 |  | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5886 | static int32_t | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5887 | e1000_set_d3_lplu_state(struct e1000_hw *hw, | 
 | 5888 |                         boolean_t active) | 
 | 5889 | { | 
 | 5890 |     int32_t ret_val; | 
 | 5891 |     uint16_t phy_data; | 
 | 5892 |     DEBUGFUNC("e1000_set_d3_lplu_state"); | 
 | 5893 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5894 |     if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5895 |         return E1000_SUCCESS; | 
 | 5896 |  | 
 | 5897 |     /* During driver activity LPLU should not be used or it will attain link | 
 | 5898 |      * from the lowest speeds starting from 10Mbps. The capability is used for | 
 | 5899 |      * Dx transitions and states */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5900 |     if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | 
 | 5901 |         ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5902 |         if(ret_val) | 
 | 5903 |             return ret_val; | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5904 |     } else { | 
 | 5905 |         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
 | 5906 |         if(ret_val) | 
 | 5907 |             return ret_val; | 
 | 5908 |     } | 
 | 5909 |  | 
 | 5910 |     if(!active) { | 
 | 5911 |         if(hw->mac_type == e1000_82541_rev_2 || | 
 | 5912 |            hw->mac_type == e1000_82547_rev_2) { | 
 | 5913 |             phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | 
 | 5914 |             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 
 | 5915 |             if(ret_val) | 
 | 5916 |                 return ret_val; | 
 | 5917 |         } else { | 
 | 5918 |                 phy_data &= ~IGP02E1000_PM_D3_LPLU; | 
 | 5919 |                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
 | 5920 |                                               phy_data); | 
 | 5921 |                 if (ret_val) | 
 | 5922 |                     return ret_val; | 
 | 5923 |         } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5924 |  | 
 | 5925 |         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during | 
 | 5926 |          * Dx states where the power conservation is most important.  During | 
 | 5927 |          * driver activity we should enable SmartSpeed, so performance is | 
 | 5928 |          * maintained. */ | 
 | 5929 |         if (hw->smart_speed == e1000_smart_speed_on) { | 
 | 5930 |             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 5931 |                                          &phy_data); | 
 | 5932 |             if(ret_val) | 
 | 5933 |                 return ret_val; | 
 | 5934 |  | 
 | 5935 |             phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
 | 5936 |             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 5937 |                                           phy_data); | 
 | 5938 |             if(ret_val) | 
 | 5939 |                 return ret_val; | 
 | 5940 |         } else if (hw->smart_speed == e1000_smart_speed_off) { | 
 | 5941 |             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 5942 |                                          &phy_data); | 
 | 5943 | 	    if (ret_val) | 
 | 5944 |                 return ret_val; | 
 | 5945 |  | 
 | 5946 |             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 5947 |             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 5948 |                                           phy_data); | 
 | 5949 |             if(ret_val) | 
 | 5950 |                 return ret_val; | 
 | 5951 |         } | 
 | 5952 |  | 
 | 5953 |     } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | 
 | 5954 |               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | 
 | 5955 |               (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 
 | 5956 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5957 |         if(hw->mac_type == e1000_82541_rev_2 || | 
 | 5958 |            hw->mac_type == e1000_82547_rev_2) { | 
 | 5959 |             phy_data |= IGP01E1000_GMII_FLEX_SPD; | 
 | 5960 |             ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 
 | 5961 |             if(ret_val) | 
 | 5962 |                 return ret_val; | 
 | 5963 |         } else { | 
 | 5964 |                 phy_data |= IGP02E1000_PM_D3_LPLU; | 
 | 5965 |                 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
 | 5966 |                                               phy_data); | 
 | 5967 |                 if (ret_val) | 
 | 5968 |                     return ret_val; | 
 | 5969 |         } | 
 | 5970 |  | 
 | 5971 |         /* When LPLU is enabled we should disable SmartSpeed */ | 
 | 5972 |         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5973 |         if(ret_val) | 
 | 5974 |             return ret_val; | 
 | 5975 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 5976 |         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 5977 |         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | 
 | 5978 |         if(ret_val) | 
 | 5979 |             return ret_val; | 
 | 5980 |  | 
 | 5981 |     } | 
 | 5982 |     return E1000_SUCCESS; | 
 | 5983 | } | 
 | 5984 |  | 
 | 5985 | /***************************************************************************** | 
 | 5986 |  * | 
 | 5987 |  * This function sets the lplu d0 state according to the active flag.  When | 
 | 5988 |  * activating lplu this function also disables smart speed and vise versa. | 
 | 5989 |  * lplu will not be activated unless the device autonegotiation advertisment | 
 | 5990 |  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
 | 5991 |  * hw: Struct containing variables accessed by shared code | 
 | 5992 |  * active - true to enable lplu false to disable lplu. | 
 | 5993 |  * | 
 | 5994 |  * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
 | 5995 |  *            E1000_SUCCESS at any other case. | 
 | 5996 |  * | 
 | 5997 |  ****************************************************************************/ | 
 | 5998 |  | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 5999 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6000 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | 
 | 6001 |                         boolean_t active) | 
 | 6002 | { | 
 | 6003 |     int32_t ret_val; | 
 | 6004 |     uint16_t phy_data; | 
 | 6005 |     DEBUGFUNC("e1000_set_d0_lplu_state"); | 
 | 6006 |  | 
 | 6007 |     if(hw->mac_type <= e1000_82547_rev_2) | 
 | 6008 |         return E1000_SUCCESS; | 
 | 6009 |  | 
 | 6010 |         ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
 | 6011 |         if(ret_val) | 
 | 6012 |             return ret_val; | 
 | 6013 |  | 
 | 6014 |     if (!active) { | 
 | 6015 |             phy_data &= ~IGP02E1000_PM_D0_LPLU; | 
 | 6016 |             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
 | 6017 |             if (ret_val) | 
 | 6018 |                 return ret_val; | 
 | 6019 |  | 
 | 6020 |         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during | 
 | 6021 |          * Dx states where the power conservation is most important.  During | 
 | 6022 |          * driver activity we should enable SmartSpeed, so performance is | 
 | 6023 |          * maintained. */ | 
 | 6024 |         if (hw->smart_speed == e1000_smart_speed_on) { | 
 | 6025 |             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 6026 |                                          &phy_data); | 
 | 6027 |             if(ret_val) | 
 | 6028 |                 return ret_val; | 
 | 6029 |  | 
 | 6030 |             phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
 | 6031 |             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 6032 |                                           phy_data); | 
 | 6033 |             if(ret_val) | 
 | 6034 |                 return ret_val; | 
 | 6035 |         } else if (hw->smart_speed == e1000_smart_speed_off) { | 
 | 6036 |             ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 6037 |                                          &phy_data); | 
 | 6038 | 	    if (ret_val) | 
 | 6039 |                 return ret_val; | 
 | 6040 |  | 
 | 6041 |             phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 6042 |             ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 6043 |                                           phy_data); | 
 | 6044 |             if(ret_val) | 
 | 6045 |                 return ret_val; | 
 | 6046 |         } | 
 | 6047 |  | 
 | 6048 |  | 
 | 6049 |     } else { | 
 | 6050 |   | 
 | 6051 |             phy_data |= IGP02E1000_PM_D0_LPLU;    | 
 | 6052 |             ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
 | 6053 |             if (ret_val) | 
 | 6054 |                 return ret_val; | 
 | 6055 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6056 |         /* When LPLU is enabled we should disable SmartSpeed */ | 
 | 6057 |         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
 | 6058 |         if(ret_val) | 
 | 6059 |             return ret_val; | 
 | 6060 |  | 
 | 6061 |         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 6062 |         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | 
 | 6063 |         if(ret_val) | 
 | 6064 |             return ret_val; | 
 | 6065 |  | 
 | 6066 |     } | 
 | 6067 |     return E1000_SUCCESS; | 
 | 6068 | } | 
 | 6069 |  | 
 | 6070 | /****************************************************************************** | 
 | 6071 |  * Change VCO speed register to improve Bit Error Rate performance of SERDES. | 
 | 6072 |  * | 
 | 6073 |  * hw - Struct containing variables accessed by shared code | 
 | 6074 |  *****************************************************************************/ | 
 | 6075 | static int32_t | 
 | 6076 | e1000_set_vco_speed(struct e1000_hw *hw) | 
 | 6077 | { | 
 | 6078 |     int32_t  ret_val; | 
 | 6079 |     uint16_t default_page = 0; | 
 | 6080 |     uint16_t phy_data; | 
 | 6081 |  | 
 | 6082 |     DEBUGFUNC("e1000_set_vco_speed"); | 
 | 6083 |  | 
 | 6084 |     switch(hw->mac_type) { | 
 | 6085 |     case e1000_82545_rev_3: | 
 | 6086 |     case e1000_82546_rev_3: | 
 | 6087 |        break; | 
 | 6088 |     default: | 
 | 6089 |         return E1000_SUCCESS; | 
 | 6090 |     } | 
 | 6091 |  | 
 | 6092 |     /* Set PHY register 30, page 5, bit 8 to 0 */ | 
 | 6093 |  | 
 | 6094 |     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | 
 | 6095 |     if(ret_val) | 
 | 6096 |         return ret_val; | 
 | 6097 |  | 
 | 6098 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | 
 | 6099 |     if(ret_val) | 
 | 6100 |         return ret_val; | 
 | 6101 |  | 
 | 6102 |     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
 | 6103 |     if(ret_val) | 
 | 6104 |         return ret_val; | 
 | 6105 |  | 
 | 6106 |     phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | 
 | 6107 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
 | 6108 |     if(ret_val) | 
 | 6109 |         return ret_val; | 
 | 6110 |  | 
 | 6111 |     /* Set PHY register 30, page 4, bit 11 to 1 */ | 
 | 6112 |  | 
 | 6113 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | 
 | 6114 |     if(ret_val) | 
 | 6115 |         return ret_val; | 
 | 6116 |  | 
 | 6117 |     ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
 | 6118 |     if(ret_val) | 
 | 6119 |         return ret_val; | 
 | 6120 |  | 
 | 6121 |     phy_data |= M88E1000_PHY_VCO_REG_BIT11; | 
 | 6122 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
 | 6123 |     if(ret_val) | 
 | 6124 |         return ret_val; | 
 | 6125 |  | 
 | 6126 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | 
 | 6127 |     if(ret_val) | 
 | 6128 |         return ret_val; | 
 | 6129 |  | 
 | 6130 |     return E1000_SUCCESS; | 
 | 6131 | } | 
 | 6132 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6133 |  | 
 | 6134 | /***************************************************************************** | 
 | 6135 |  * This function reads the cookie from ARC ram. | 
 | 6136 |  * | 
 | 6137 |  * returns: - E1000_SUCCESS . | 
 | 6138 |  ****************************************************************************/ | 
 | 6139 | int32_t | 
 | 6140 | e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) | 
 | 6141 | { | 
 | 6142 |     uint8_t i; | 
 | 6143 |     uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;  | 
 | 6144 |     uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; | 
 | 6145 |  | 
 | 6146 |     length = (length >> 2); | 
 | 6147 |     offset = (offset >> 2); | 
 | 6148 |  | 
 | 6149 |     for (i = 0; i < length; i++) { | 
 | 6150 |         *((uint32_t *) buffer + i) = | 
 | 6151 |             E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | 
 | 6152 |     } | 
 | 6153 |     return E1000_SUCCESS; | 
 | 6154 | } | 
 | 6155 |  | 
 | 6156 |  | 
 | 6157 | /***************************************************************************** | 
 | 6158 |  * This function checks whether the HOST IF is enabled for command operaton | 
 | 6159 |  * and also checks whether the previous command is completed. | 
 | 6160 |  * It busy waits in case of previous command is not completed. | 
 | 6161 |  * | 
 | 6162 |  * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or  | 
 | 6163 |  *            timeout | 
 | 6164 |  *          - E1000_SUCCESS for success. | 
 | 6165 |  ****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6166 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6167 | e1000_mng_enable_host_if(struct e1000_hw * hw) | 
 | 6168 | { | 
 | 6169 |     uint32_t hicr; | 
 | 6170 |     uint8_t i; | 
 | 6171 |  | 
 | 6172 |     /* Check that the host interface is enabled. */ | 
 | 6173 |     hicr = E1000_READ_REG(hw, HICR); | 
 | 6174 |     if ((hicr & E1000_HICR_EN) == 0) { | 
 | 6175 |         DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | 
 | 6176 |         return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
 | 6177 |     } | 
 | 6178 |     /* check the previous command is completed */ | 
 | 6179 |     for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | 
 | 6180 |         hicr = E1000_READ_REG(hw, HICR); | 
 | 6181 |         if (!(hicr & E1000_HICR_C)) | 
 | 6182 |             break; | 
 | 6183 |         msec_delay_irq(1); | 
 | 6184 |     } | 
 | 6185 |  | 
 | 6186 |     if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {  | 
 | 6187 |         DEBUGOUT("Previous command timeout failed .\n"); | 
 | 6188 |         return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
 | 6189 |     } | 
 | 6190 |     return E1000_SUCCESS; | 
 | 6191 | } | 
 | 6192 |  | 
 | 6193 | /***************************************************************************** | 
 | 6194 |  * This function writes the buffer content at the offset given on the host if. | 
 | 6195 |  * It also does alignment considerations to do the writes in most efficient way. | 
 | 6196 |  * Also fills up the sum of the buffer in *buffer parameter. | 
 | 6197 |  * | 
 | 6198 |  * returns  - E1000_SUCCESS for success. | 
 | 6199 |  ****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6200 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6201 | e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, | 
 | 6202 |                         uint16_t length, uint16_t offset, uint8_t *sum) | 
 | 6203 | { | 
 | 6204 |     uint8_t *tmp; | 
 | 6205 |     uint8_t *bufptr = buffer; | 
 | 6206 |     uint32_t data; | 
 | 6207 |     uint16_t remaining, i, j, prev_bytes; | 
 | 6208 |  | 
 | 6209 |     /* sum = only sum of the data and it is not checksum */ | 
 | 6210 |  | 
 | 6211 |     if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | 
 | 6212 |         return -E1000_ERR_PARAM; | 
 | 6213 |     } | 
 | 6214 |  | 
 | 6215 |     tmp = (uint8_t *)&data; | 
 | 6216 |     prev_bytes = offset & 0x3; | 
 | 6217 |     offset &= 0xFFFC; | 
 | 6218 |     offset >>= 2; | 
 | 6219 |  | 
 | 6220 |     if (prev_bytes) { | 
 | 6221 |         data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | 
 | 6222 |         for (j = prev_bytes; j < sizeof(uint32_t); j++) { | 
 | 6223 |             *(tmp + j) = *bufptr++; | 
 | 6224 |             *sum += *(tmp + j); | 
 | 6225 |         } | 
 | 6226 |         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | 
 | 6227 |         length -= j - prev_bytes; | 
 | 6228 |         offset++; | 
 | 6229 |     } | 
 | 6230 |  | 
 | 6231 |     remaining = length & 0x3; | 
 | 6232 |     length -= remaining; | 
 | 6233 |  | 
 | 6234 |     /* Calculate length in DWORDs */ | 
 | 6235 |     length >>= 2; | 
 | 6236 |  | 
 | 6237 |     /* The device driver writes the relevant command block into the | 
 | 6238 |      * ram area. */ | 
 | 6239 |     for (i = 0; i < length; i++) { | 
 | 6240 |         for (j = 0; j < sizeof(uint32_t); j++) { | 
 | 6241 |             *(tmp + j) = *bufptr++; | 
 | 6242 |             *sum += *(tmp + j); | 
 | 6243 |         } | 
 | 6244 |  | 
 | 6245 |         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | 
 | 6246 |     } | 
 | 6247 |     if (remaining) { | 
 | 6248 |         for (j = 0; j < sizeof(uint32_t); j++) { | 
 | 6249 |             if (j < remaining) | 
 | 6250 |                 *(tmp + j) = *bufptr++; | 
 | 6251 |             else | 
 | 6252 |                 *(tmp + j) = 0; | 
 | 6253 |  | 
 | 6254 |             *sum += *(tmp + j); | 
 | 6255 |         } | 
 | 6256 |         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | 
 | 6257 |     } | 
 | 6258 |  | 
 | 6259 |     return E1000_SUCCESS; | 
 | 6260 | } | 
 | 6261 |  | 
 | 6262 |  | 
 | 6263 | /***************************************************************************** | 
 | 6264 |  * This function writes the command header after does the checksum calculation. | 
 | 6265 |  * | 
 | 6266 |  * returns  - E1000_SUCCESS for success. | 
 | 6267 |  ****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6268 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6269 | e1000_mng_write_cmd_header(struct e1000_hw * hw, | 
 | 6270 |                            struct e1000_host_mng_command_header * hdr) | 
 | 6271 | { | 
 | 6272 |     uint16_t i; | 
 | 6273 |     uint8_t sum; | 
 | 6274 |     uint8_t *buffer; | 
 | 6275 |  | 
 | 6276 |     /* Write the whole command header structure which includes sum of | 
 | 6277 |      * the buffer */ | 
 | 6278 |  | 
 | 6279 |     uint16_t length = sizeof(struct e1000_host_mng_command_header); | 
 | 6280 |  | 
 | 6281 |     sum = hdr->checksum; | 
 | 6282 |     hdr->checksum = 0; | 
 | 6283 |  | 
 | 6284 |     buffer = (uint8_t *) hdr; | 
 | 6285 |     i = length; | 
 | 6286 |     while(i--) | 
 | 6287 |         sum += buffer[i]; | 
 | 6288 |  | 
 | 6289 |     hdr->checksum = 0 - sum; | 
 | 6290 |  | 
 | 6291 |     length >>= 2; | 
 | 6292 |     /* The device driver writes the relevant command block into the ram area. */ | 
 | 6293 |     for (i = 0; i < length; i++) | 
 | 6294 |         E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | 
 | 6295 |  | 
 | 6296 |     return E1000_SUCCESS; | 
 | 6297 | } | 
 | 6298 |  | 
 | 6299 |  | 
 | 6300 | /***************************************************************************** | 
 | 6301 |  * This function indicates to ARC that a new command is pending which completes | 
 | 6302 |  * one write operation by the driver. | 
 | 6303 |  * | 
 | 6304 |  * returns  - E1000_SUCCESS for success. | 
 | 6305 |  ****************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6306 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6307 | e1000_mng_write_commit( | 
 | 6308 |     struct e1000_hw * hw) | 
 | 6309 | { | 
 | 6310 |     uint32_t hicr; | 
 | 6311 |  | 
 | 6312 |     hicr = E1000_READ_REG(hw, HICR); | 
 | 6313 |     /* Setting this bit tells the ARC that a new command is pending. */ | 
 | 6314 |     E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); | 
 | 6315 |  | 
 | 6316 |     return E1000_SUCCESS; | 
 | 6317 | } | 
 | 6318 |  | 
 | 6319 |  | 
 | 6320 | /***************************************************************************** | 
 | 6321 |  * This function checks the mode of the firmware. | 
 | 6322 |  * | 
 | 6323 |  * returns  - TRUE when the mode is IAMT or FALSE. | 
 | 6324 |  ****************************************************************************/ | 
 | 6325 | boolean_t | 
 | 6326 | e1000_check_mng_mode( | 
 | 6327 |     struct e1000_hw *hw) | 
 | 6328 | { | 
 | 6329 |     uint32_t fwsm; | 
 | 6330 |  | 
 | 6331 |     fwsm = E1000_READ_REG(hw, FWSM); | 
 | 6332 |  | 
 | 6333 |     if((fwsm & E1000_FWSM_MODE_MASK) == | 
 | 6334 |         (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 
 | 6335 |         return TRUE; | 
 | 6336 |  | 
 | 6337 |     return FALSE; | 
 | 6338 | } | 
 | 6339 |  | 
 | 6340 |  | 
 | 6341 | /***************************************************************************** | 
 | 6342 |  * This function writes the dhcp info . | 
 | 6343 |  ****************************************************************************/ | 
 | 6344 | int32_t | 
 | 6345 | e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, | 
 | 6346 | 			  uint16_t length) | 
 | 6347 | { | 
 | 6348 |     int32_t ret_val; | 
 | 6349 |     struct e1000_host_mng_command_header hdr; | 
 | 6350 |  | 
 | 6351 |     hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | 
 | 6352 |     hdr.command_length = length; | 
 | 6353 |     hdr.reserved1 = 0; | 
 | 6354 |     hdr.reserved2 = 0; | 
 | 6355 |     hdr.checksum = 0; | 
 | 6356 |  | 
 | 6357 |     ret_val = e1000_mng_enable_host_if(hw); | 
 | 6358 |     if (ret_val == E1000_SUCCESS) { | 
 | 6359 |         ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | 
 | 6360 |                                           &(hdr.checksum)); | 
 | 6361 |         if (ret_val == E1000_SUCCESS) { | 
 | 6362 |             ret_val = e1000_mng_write_cmd_header(hw, &hdr); | 
 | 6363 |             if (ret_val == E1000_SUCCESS) | 
 | 6364 |                 ret_val = e1000_mng_write_commit(hw); | 
 | 6365 |         } | 
 | 6366 |     } | 
 | 6367 |     return ret_val; | 
 | 6368 | } | 
 | 6369 |  | 
 | 6370 |  | 
 | 6371 | /***************************************************************************** | 
 | 6372 |  * This function calculates the checksum. | 
 | 6373 |  * | 
 | 6374 |  * returns  - checksum of buffer contents. | 
 | 6375 |  ****************************************************************************/ | 
 | 6376 | uint8_t | 
 | 6377 | e1000_calculate_mng_checksum(char *buffer, uint32_t length) | 
 | 6378 | { | 
 | 6379 |     uint8_t sum = 0; | 
 | 6380 |     uint32_t i; | 
 | 6381 |  | 
 | 6382 |     if (!buffer) | 
 | 6383 |         return 0; | 
 | 6384 |  | 
 | 6385 |     for (i=0; i < length; i++) | 
 | 6386 |         sum += buffer[i]; | 
 | 6387 |  | 
 | 6388 |     return (uint8_t) (0 - sum); | 
 | 6389 | } | 
 | 6390 |  | 
 | 6391 | /***************************************************************************** | 
 | 6392 |  * This function checks whether tx pkt filtering needs to be enabled or not. | 
 | 6393 |  * | 
 | 6394 |  * returns  - TRUE for packet filtering or FALSE. | 
 | 6395 |  ****************************************************************************/ | 
 | 6396 | boolean_t | 
 | 6397 | e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | 
 | 6398 | { | 
 | 6399 |     /* called in init as well as watchdog timer functions */ | 
 | 6400 |  | 
 | 6401 |     int32_t ret_val, checksum; | 
 | 6402 |     boolean_t tx_filter = FALSE; | 
 | 6403 |     struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | 
 | 6404 |     uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); | 
 | 6405 |  | 
 | 6406 |     if (e1000_check_mng_mode(hw)) { | 
 | 6407 |         ret_val = e1000_mng_enable_host_if(hw); | 
 | 6408 |         if (ret_val == E1000_SUCCESS) { | 
 | 6409 |             ret_val = e1000_host_if_read_cookie(hw, buffer); | 
 | 6410 |             if (ret_val == E1000_SUCCESS) { | 
 | 6411 |                 checksum = hdr->checksum; | 
 | 6412 |                 hdr->checksum = 0; | 
 | 6413 |                 if ((hdr->signature == E1000_IAMT_SIGNATURE) && | 
 | 6414 |                     checksum == e1000_calculate_mng_checksum((char *)buffer, | 
 | 6415 |                                                E1000_MNG_DHCP_COOKIE_LENGTH)) { | 
 | 6416 |                     if (hdr->status & | 
 | 6417 |                         E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | 
 | 6418 |                         tx_filter = TRUE; | 
 | 6419 |                 } else | 
 | 6420 |                     tx_filter = TRUE; | 
 | 6421 |             } else | 
 | 6422 |                 tx_filter = TRUE; | 
 | 6423 |         } | 
 | 6424 |     } | 
 | 6425 |  | 
 | 6426 |     hw->tx_pkt_filtering = tx_filter; | 
 | 6427 |     return tx_filter; | 
 | 6428 | } | 
 | 6429 |  | 
 | 6430 | /****************************************************************************** | 
 | 6431 |  * Verifies the hardware needs to allow ARPs to be processed by the host | 
 | 6432 |  * | 
 | 6433 |  * hw - Struct containing variables accessed by shared code | 
 | 6434 |  * | 
 | 6435 |  * returns: - TRUE/FALSE | 
 | 6436 |  * | 
 | 6437 |  *****************************************************************************/ | 
 | 6438 | uint32_t | 
 | 6439 | e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 
 | 6440 | { | 
 | 6441 |     uint32_t manc; | 
 | 6442 |     uint32_t fwsm, factps; | 
 | 6443 |  | 
 | 6444 |     if (hw->asf_firmware_present) { | 
 | 6445 |         manc = E1000_READ_REG(hw, MANC); | 
 | 6446 |  | 
 | 6447 |         if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
 | 6448 |             !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
 | 6449 |             return FALSE; | 
 | 6450 |         if (e1000_arc_subsystem_valid(hw) == TRUE) { | 
 | 6451 |             fwsm = E1000_READ_REG(hw, FWSM); | 
 | 6452 |             factps = E1000_READ_REG(hw, FACTPS); | 
 | 6453 |  | 
 | 6454 |             if (((fwsm & E1000_FWSM_MODE_MASK) == | 
 | 6455 |                 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) && | 
 | 6456 |                 (factps & E1000_FACTPS_MNGCG)) | 
 | 6457 |                 return TRUE; | 
 | 6458 |         } else | 
 | 6459 |             if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | 
 | 6460 |                 return TRUE; | 
 | 6461 |     } | 
 | 6462 |     return FALSE; | 
 | 6463 | } | 
 | 6464 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 6465 | static int32_t | 
 | 6466 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 
 | 6467 | { | 
 | 6468 |     int32_t ret_val; | 
 | 6469 |     uint16_t mii_status_reg; | 
 | 6470 |     uint16_t i; | 
 | 6471 |  | 
 | 6472 |     /* Polarity reversal workaround for forced 10F/10H links. */ | 
 | 6473 |  | 
 | 6474 |     /* Disable the transmitter on the PHY */ | 
 | 6475 |  | 
 | 6476 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
 | 6477 |     if(ret_val) | 
 | 6478 |         return ret_val; | 
 | 6479 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | 
 | 6480 |     if(ret_val) | 
 | 6481 |         return ret_val; | 
 | 6482 |  | 
 | 6483 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
 | 6484 |     if(ret_val) | 
 | 6485 |         return ret_val; | 
 | 6486 |  | 
 | 6487 |     /* This loop will early-out if the NO link condition has been met. */ | 
 | 6488 |     for(i = PHY_FORCE_TIME; i > 0; i--) { | 
 | 6489 |         /* Read the MII Status Register and wait for Link Status bit | 
 | 6490 |          * to be clear. | 
 | 6491 |          */ | 
 | 6492 |  | 
 | 6493 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 6494 |         if(ret_val) | 
 | 6495 |             return ret_val; | 
 | 6496 |  | 
 | 6497 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 6498 |         if(ret_val) | 
 | 6499 |             return ret_val; | 
 | 6500 |  | 
 | 6501 |         if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; | 
 | 6502 |         msec_delay_irq(100); | 
 | 6503 |     } | 
 | 6504 |  | 
 | 6505 |     /* Recommended delay time after link has been lost */ | 
 | 6506 |     msec_delay_irq(1000); | 
 | 6507 |  | 
 | 6508 |     /* Now we will re-enable th transmitter on the PHY */ | 
 | 6509 |  | 
 | 6510 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
 | 6511 |     if(ret_val) | 
 | 6512 |         return ret_val; | 
 | 6513 |     msec_delay_irq(50); | 
 | 6514 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | 
 | 6515 |     if(ret_val) | 
 | 6516 |         return ret_val; | 
 | 6517 |     msec_delay_irq(50); | 
 | 6518 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | 
 | 6519 |     if(ret_val) | 
 | 6520 |         return ret_val; | 
 | 6521 |     msec_delay_irq(50); | 
 | 6522 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | 
 | 6523 |     if(ret_val) | 
 | 6524 |         return ret_val; | 
 | 6525 |  | 
 | 6526 |     ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
 | 6527 |     if(ret_val) | 
 | 6528 |         return ret_val; | 
 | 6529 |  | 
 | 6530 |     /* This loop will early-out if the link condition has been met. */ | 
 | 6531 |     for(i = PHY_FORCE_TIME; i > 0; i--) { | 
 | 6532 |         /* Read the MII Status Register and wait for Link Status bit | 
 | 6533 |          * to be set. | 
 | 6534 |          */ | 
 | 6535 |  | 
 | 6536 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 6537 |         if(ret_val) | 
 | 6538 |             return ret_val; | 
 | 6539 |  | 
 | 6540 |         ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 6541 |         if(ret_val) | 
 | 6542 |             return ret_val; | 
 | 6543 |  | 
 | 6544 |         if(mii_status_reg & MII_SR_LINK_STATUS) break; | 
 | 6545 |         msec_delay_irq(100); | 
 | 6546 |     } | 
 | 6547 |     return E1000_SUCCESS; | 
 | 6548 | } | 
 | 6549 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6550 | /*************************************************************************** | 
 | 6551 |  * | 
 | 6552 |  * Disables PCI-Express master access. | 
 | 6553 |  * | 
 | 6554 |  * hw: Struct containing variables accessed by shared code | 
 | 6555 |  * | 
 | 6556 |  * returns: - none. | 
 | 6557 |  * | 
 | 6558 |  ***************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6559 | static void | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6560 | e1000_set_pci_express_master_disable(struct e1000_hw *hw) | 
 | 6561 | { | 
 | 6562 |     uint32_t ctrl; | 
 | 6563 |  | 
 | 6564 |     DEBUGFUNC("e1000_set_pci_express_master_disable"); | 
 | 6565 |  | 
 | 6566 |     if (hw->bus_type != e1000_bus_type_pci_express) | 
 | 6567 |         return; | 
 | 6568 |  | 
 | 6569 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 6570 |     ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
 | 6571 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 6572 | } | 
 | 6573 |  | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6574 | #if 0 | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6575 | /*************************************************************************** | 
 | 6576 |  * | 
 | 6577 |  * Enables PCI-Express master access. | 
 | 6578 |  * | 
 | 6579 |  * hw: Struct containing variables accessed by shared code | 
 | 6580 |  * | 
 | 6581 |  * returns: - none. | 
 | 6582 |  * | 
 | 6583 |  ***************************************************************************/ | 
 | 6584 | void | 
 | 6585 | e1000_enable_pciex_master(struct e1000_hw *hw) | 
 | 6586 | { | 
 | 6587 |     uint32_t ctrl; | 
 | 6588 |  | 
 | 6589 |     DEBUGFUNC("e1000_enable_pciex_master"); | 
 | 6590 |  | 
 | 6591 |     if (hw->bus_type != e1000_bus_type_pci_express) | 
 | 6592 |         return; | 
 | 6593 |  | 
 | 6594 |     ctrl = E1000_READ_REG(hw, CTRL); | 
 | 6595 |     ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; | 
 | 6596 |     E1000_WRITE_REG(hw, CTRL, ctrl); | 
 | 6597 | } | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6598 | #endif  /*  0  */ | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6599 |  | 
 | 6600 | /******************************************************************************* | 
 | 6601 |  * | 
 | 6602 |  * Disables PCI-Express master access and verifies there are no pending requests | 
 | 6603 |  * | 
 | 6604 |  * hw: Struct containing variables accessed by shared code | 
 | 6605 |  * | 
 | 6606 |  * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | 
 | 6607 |  *            caused the master requests to be disabled. | 
 | 6608 |  *            E1000_SUCCESS master requests disabled. | 
 | 6609 |  * | 
 | 6610 |  ******************************************************************************/ | 
 | 6611 | int32_t | 
 | 6612 | e1000_disable_pciex_master(struct e1000_hw *hw) | 
 | 6613 | { | 
 | 6614 |     int32_t timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */ | 
 | 6615 |  | 
 | 6616 |     DEBUGFUNC("e1000_disable_pciex_master"); | 
 | 6617 |  | 
 | 6618 |     if (hw->bus_type != e1000_bus_type_pci_express) | 
 | 6619 |         return E1000_SUCCESS; | 
 | 6620 |  | 
 | 6621 |     e1000_set_pci_express_master_disable(hw); | 
 | 6622 |  | 
 | 6623 |     while(timeout) { | 
 | 6624 |         if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | 
 | 6625 |             break; | 
 | 6626 |         else | 
 | 6627 |             udelay(100); | 
 | 6628 |         timeout--; | 
 | 6629 |     } | 
 | 6630 |  | 
 | 6631 |     if(!timeout) { | 
 | 6632 |         DEBUGOUT("Master requests are pending.\n"); | 
 | 6633 |         return -E1000_ERR_MASTER_REQUESTS_PENDING; | 
 | 6634 |     } | 
 | 6635 |  | 
 | 6636 |     return E1000_SUCCESS; | 
 | 6637 | } | 
 | 6638 |  | 
 | 6639 | /******************************************************************************* | 
 | 6640 |  * | 
 | 6641 |  * Check for EEPROM Auto Read bit done. | 
 | 6642 |  * | 
 | 6643 |  * hw: Struct containing variables accessed by shared code | 
 | 6644 |  * | 
 | 6645 |  * returns: - E1000_ERR_RESET if fail to reset MAC | 
 | 6646 |  *            E1000_SUCCESS at any other case. | 
 | 6647 |  * | 
 | 6648 |  ******************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6649 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6650 | e1000_get_auto_rd_done(struct e1000_hw *hw) | 
 | 6651 | { | 
 | 6652 |     int32_t timeout = AUTO_READ_DONE_TIMEOUT; | 
 | 6653 |  | 
 | 6654 |     DEBUGFUNC("e1000_get_auto_rd_done"); | 
 | 6655 |  | 
 | 6656 |     switch (hw->mac_type) { | 
 | 6657 |     default: | 
 | 6658 |         msec_delay(5); | 
 | 6659 |         break; | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6660 |     case e1000_82571: | 
 | 6661 |     case e1000_82572: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6662 |     case e1000_82573: | 
 | 6663 |         while(timeout) { | 
 | 6664 |             if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | 
 | 6665 |             else msec_delay(1); | 
 | 6666 |             timeout--; | 
 | 6667 |         } | 
 | 6668 |  | 
 | 6669 |         if(!timeout) { | 
 | 6670 |             DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | 
 | 6671 |             return -E1000_ERR_RESET; | 
 | 6672 |         } | 
 | 6673 |         break; | 
 | 6674 |     } | 
 | 6675 |  | 
| Jeff Kirsher | fd80324 | 2005-12-13 00:06:22 -0500 | [diff] [blame] | 6676 |     /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. | 
 | 6677 |      * Need to wait for PHY configuration completion before accessing NVM | 
 | 6678 |      * and PHY. */ | 
 | 6679 |     if (hw->mac_type == e1000_82573) | 
 | 6680 |         msec_delay(25); | 
 | 6681 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6682 |     return E1000_SUCCESS; | 
 | 6683 | } | 
 | 6684 |  | 
 | 6685 | /*************************************************************************** | 
 | 6686 |  * Checks if the PHY configuration is done | 
 | 6687 |  * | 
 | 6688 |  * hw: Struct containing variables accessed by shared code | 
 | 6689 |  * | 
 | 6690 |  * returns: - E1000_ERR_RESET if fail to reset MAC | 
 | 6691 |  *            E1000_SUCCESS at any other case. | 
 | 6692 |  * | 
 | 6693 |  ***************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6694 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6695 | e1000_get_phy_cfg_done(struct e1000_hw *hw) | 
 | 6696 | { | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6697 |     int32_t timeout = PHY_CFG_TIMEOUT; | 
 | 6698 |     uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; | 
 | 6699 |  | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6700 |     DEBUGFUNC("e1000_get_phy_cfg_done"); | 
 | 6701 |  | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6702 |     switch (hw->mac_type) { | 
 | 6703 |     default: | 
 | 6704 |         msec_delay(10); | 
 | 6705 |         break; | 
 | 6706 |     case e1000_82571: | 
 | 6707 |     case e1000_82572: | 
 | 6708 |         while (timeout) { | 
 | 6709 |             if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) | 
 | 6710 |                 break; | 
 | 6711 |             else | 
 | 6712 |                 msec_delay(1); | 
 | 6713 |             timeout--; | 
 | 6714 |         } | 
 | 6715 |  | 
 | 6716 |         if (!timeout) { | 
 | 6717 |             DEBUGOUT("MNG configuration cycle has not completed.\n"); | 
 | 6718 |             return -E1000_ERR_RESET; | 
 | 6719 |         } | 
 | 6720 |         break; | 
 | 6721 |     } | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6722 |  | 
 | 6723 |     return E1000_SUCCESS; | 
 | 6724 | } | 
 | 6725 |  | 
 | 6726 | /*************************************************************************** | 
 | 6727 |  * | 
 | 6728 |  * Using the combination of SMBI and SWESMBI semaphore bits when resetting | 
 | 6729 |  * adapter or Eeprom access. | 
 | 6730 |  * | 
 | 6731 |  * hw: Struct containing variables accessed by shared code | 
 | 6732 |  * | 
 | 6733 |  * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | 
 | 6734 |  *            E1000_SUCCESS at any other case. | 
 | 6735 |  * | 
 | 6736 |  ***************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6737 | static int32_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6738 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | 
 | 6739 | { | 
 | 6740 |     int32_t timeout; | 
 | 6741 |     uint32_t swsm; | 
 | 6742 |  | 
 | 6743 |     DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); | 
 | 6744 |  | 
 | 6745 |     if(!hw->eeprom_semaphore_present) | 
 | 6746 |         return E1000_SUCCESS; | 
 | 6747 |  | 
 | 6748 |  | 
 | 6749 |     /* Get the FW semaphore. */ | 
 | 6750 |     timeout = hw->eeprom.word_size + 1; | 
 | 6751 |     while(timeout) { | 
 | 6752 |         swsm = E1000_READ_REG(hw, SWSM); | 
 | 6753 |         swsm |= E1000_SWSM_SWESMBI; | 
 | 6754 |         E1000_WRITE_REG(hw, SWSM, swsm); | 
 | 6755 |         /* if we managed to set the bit we got the semaphore. */ | 
 | 6756 |         swsm = E1000_READ_REG(hw, SWSM); | 
 | 6757 |         if(swsm & E1000_SWSM_SWESMBI) | 
 | 6758 |             break; | 
 | 6759 |  | 
 | 6760 |         udelay(50); | 
 | 6761 |         timeout--; | 
 | 6762 |     } | 
 | 6763 |  | 
 | 6764 |     if(!timeout) { | 
 | 6765 |         /* Release semaphores */ | 
 | 6766 |         e1000_put_hw_eeprom_semaphore(hw); | 
 | 6767 |         DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); | 
 | 6768 |         return -E1000_ERR_EEPROM; | 
 | 6769 |     } | 
 | 6770 |  | 
 | 6771 |     return E1000_SUCCESS; | 
 | 6772 | } | 
 | 6773 |  | 
 | 6774 | /*************************************************************************** | 
 | 6775 |  * This function clears HW semaphore bits. | 
 | 6776 |  * | 
 | 6777 |  * hw: Struct containing variables accessed by shared code | 
 | 6778 |  * | 
 | 6779 |  * returns: - None. | 
 | 6780 |  * | 
 | 6781 |  ***************************************************************************/ | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6782 | static void | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6783 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | 
 | 6784 | { | 
 | 6785 |     uint32_t swsm; | 
 | 6786 |  | 
 | 6787 |     DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); | 
 | 6788 |  | 
 | 6789 |     if(!hw->eeprom_semaphore_present) | 
 | 6790 |         return; | 
 | 6791 |  | 
 | 6792 |     swsm = E1000_READ_REG(hw, SWSM); | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6793 |         swsm &= ~(E1000_SWSM_SWESMBI); | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6794 |     E1000_WRITE_REG(hw, SWSM, swsm); | 
 | 6795 | } | 
 | 6796 |  | 
 | 6797 | /****************************************************************************** | 
 | 6798 |  * Checks if PHY reset is blocked due to SOL/IDER session, for example. | 
 | 6799 |  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to | 
 | 6800 |  * the caller to figure out how to deal with it. | 
 | 6801 |  * | 
 | 6802 |  * hw - Struct containing variables accessed by shared code | 
 | 6803 |  * | 
 | 6804 |  * returns: - E1000_BLK_PHY_RESET | 
 | 6805 |  *            E1000_SUCCESS | 
 | 6806 |  * | 
 | 6807 |  *****************************************************************************/ | 
 | 6808 | int32_t | 
 | 6809 | e1000_check_phy_reset_block(struct e1000_hw *hw) | 
 | 6810 | { | 
 | 6811 |     uint32_t manc = 0; | 
 | 6812 |     if(hw->mac_type > e1000_82547_rev_2) | 
 | 6813 |         manc = E1000_READ_REG(hw, MANC); | 
 | 6814 |     return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | 
 | 6815 | 	    E1000_BLK_PHY_RESET : E1000_SUCCESS; | 
 | 6816 | } | 
 | 6817 |  | 
| Adrian Bunk | 3ad2cc6 | 2005-10-30 16:53:34 +0100 | [diff] [blame] | 6818 | static uint8_t | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6819 | e1000_arc_subsystem_valid(struct e1000_hw *hw) | 
 | 6820 | { | 
 | 6821 |     uint32_t fwsm; | 
 | 6822 |  | 
 | 6823 |     /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | 
 | 6824 |      * may not be provided a DMA clock when no manageability features are | 
 | 6825 |      * enabled.  We do not want to perform any reads/writes to these registers | 
 | 6826 |      * if this is the case.  We read FWSM to determine the manageability mode. | 
 | 6827 |      */ | 
 | 6828 |     switch (hw->mac_type) { | 
| Mallikarjuna R Chilakala | 868d530 | 2005-10-04 06:58:59 -0400 | [diff] [blame] | 6829 |     case e1000_82571: | 
 | 6830 |     case e1000_82572: | 
| Malli Chilakala | 2d7edb9 | 2005-04-28 19:43:52 -0700 | [diff] [blame] | 6831 |     case e1000_82573: | 
 | 6832 |         fwsm = E1000_READ_REG(hw, FWSM); | 
 | 6833 |         if((fwsm & E1000_FWSM_MODE_MASK) != 0) | 
 | 6834 |             return TRUE; | 
 | 6835 |         break; | 
 | 6836 |     default: | 
 | 6837 |         break; | 
 | 6838 |     } | 
 | 6839 |     return FALSE; | 
 | 6840 | } | 
 | 6841 |  | 
 | 6842 |  | 
 | 6843 |  |