| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* isa-skeleton.c: A network driver outline for linux. | 
|  | 2 | * | 
|  | 3 | *	Written 1993-94 by Donald Becker. | 
|  | 4 | * | 
|  | 5 | *	Copyright 1993 United States Government as represented by the | 
|  | 6 | *	Director, National Security Agency. | 
|  | 7 | * | 
|  | 8 | *	This software may be used and distributed according to the terms | 
|  | 9 | *	of the GNU General Public License, incorporated herein by reference. | 
|  | 10 | * | 
|  | 11 | *	The author may be reached as becker@scyld.com, or C/O | 
|  | 12 | *	Scyld Computing Corporation | 
|  | 13 | *	410 Severn Ave., Suite 210 | 
|  | 14 | *	Annapolis MD 21403 | 
|  | 15 | * | 
|  | 16 | *	This file is an outline for writing a network device driver for the | 
|  | 17 | *	the Linux operating system. | 
|  | 18 | * | 
|  | 19 | *	To write (or understand) a driver, have a look at the "loopback.c" file to | 
|  | 20 | *	get a feel of what is going on, and then use the code below as a skeleton | 
|  | 21 | *	for the new driver. | 
|  | 22 | * | 
|  | 23 | */ | 
|  | 24 |  | 
|  | 25 | static const char *version = | 
|  | 26 | "isa-skeleton.c:v1.51 9/24/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n"; | 
|  | 27 |  | 
|  | 28 | /* | 
|  | 29 | *  Sources: | 
|  | 30 | *	List your sources of programming information to document that | 
|  | 31 | *	the driver is your own creation, and give due credit to others | 
|  | 32 | *	that contributed to the work. Remember that GNU project code | 
|  | 33 | *	cannot use proprietary or trade secret information. Interface | 
|  | 34 | *	definitions are generally considered non-copyrightable to the | 
|  | 35 | *	extent that the same names and structures must be used to be | 
|  | 36 | *	compatible. | 
|  | 37 | * | 
|  | 38 | *	Finally, keep in mind that the Linux kernel is has an API, not | 
|  | 39 | *	ABI. Proprietary object-code-only distributions are not permitted | 
|  | 40 | *	under the GPL. | 
|  | 41 | */ | 
|  | 42 |  | 
|  | 43 | #include <linux/module.h> | 
|  | 44 | #include <linux/kernel.h> | 
|  | 45 | #include <linux/types.h> | 
|  | 46 | #include <linux/fcntl.h> | 
|  | 47 | #include <linux/interrupt.h> | 
|  | 48 | #include <linux/ioport.h> | 
|  | 49 | #include <linux/in.h> | 
|  | 50 | #include <linux/slab.h> | 
|  | 51 | #include <linux/string.h> | 
|  | 52 | #include <linux/spinlock.h> | 
|  | 53 | #include <linux/errno.h> | 
|  | 54 | #include <linux/init.h> | 
|  | 55 | #include <linux/netdevice.h> | 
|  | 56 | #include <linux/etherdevice.h> | 
|  | 57 | #include <linux/skbuff.h> | 
|  | 58 | #include <linux/bitops.h> | 
|  | 59 |  | 
|  | 60 | #include <asm/system.h> | 
|  | 61 | #include <asm/io.h> | 
|  | 62 | #include <asm/dma.h> | 
|  | 63 |  | 
|  | 64 | /* | 
|  | 65 | * The name of the card. Is used for messages and in the requests for | 
|  | 66 | * io regions, irqs and dma channels | 
|  | 67 | */ | 
|  | 68 | static const char* cardname = "netcard"; | 
|  | 69 |  | 
|  | 70 | /* First, a few definitions that the brave might change. */ | 
|  | 71 |  | 
|  | 72 | /* A zero-terminated list of I/O addresses to be probed. */ | 
|  | 73 | static unsigned int netcard_portlist[] __initdata = | 
|  | 74 | { 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0}; | 
|  | 75 |  | 
|  | 76 | /* use 0 for production, 1 for verification, >2 for debug */ | 
|  | 77 | #ifndef NET_DEBUG | 
|  | 78 | #define NET_DEBUG 2 | 
|  | 79 | #endif | 
|  | 80 | static unsigned int net_debug = NET_DEBUG; | 
|  | 81 |  | 
|  | 82 | /* The number of low I/O ports used by the ethercard. */ | 
|  | 83 | #define NETCARD_IO_EXTENT	32 | 
|  | 84 |  | 
|  | 85 | #define MY_TX_TIMEOUT  ((400*HZ)/1000) | 
|  | 86 |  | 
|  | 87 | /* Information that need to be kept for each board. */ | 
|  | 88 | struct net_local { | 
|  | 89 | struct net_device_stats stats; | 
|  | 90 | long open_time;			/* Useless example local info. */ | 
|  | 91 |  | 
|  | 92 | /* Tx control lock.  This protects the transmit buffer ring | 
|  | 93 | * state along with the "tx full" state of the driver.  This | 
|  | 94 | * means all netif_queue flow control actions are protected | 
|  | 95 | * by this lock as well. | 
|  | 96 | */ | 
|  | 97 | spinlock_t lock; | 
|  | 98 | }; | 
|  | 99 |  | 
|  | 100 | /* The station (ethernet) address prefix, used for IDing the board. */ | 
|  | 101 | #define SA_ADDR0 0x00 | 
|  | 102 | #define SA_ADDR1 0x42 | 
|  | 103 | #define SA_ADDR2 0x65 | 
|  | 104 |  | 
|  | 105 | /* Index to functions, as function prototypes. */ | 
|  | 106 |  | 
|  | 107 | static int	netcard_probe1(struct net_device *dev, int ioaddr); | 
|  | 108 | static int	net_open(struct net_device *dev); | 
|  | 109 | static int	net_send_packet(struct sk_buff *skb, struct net_device *dev); | 
|  | 110 | static irqreturn_t net_interrupt(int irq, void *dev_id, struct pt_regs *regs); | 
|  | 111 | static void	net_rx(struct net_device *dev); | 
|  | 112 | static int	net_close(struct net_device *dev); | 
|  | 113 | static struct	net_device_stats *net_get_stats(struct net_device *dev); | 
|  | 114 | static void	set_multicast_list(struct net_device *dev); | 
|  | 115 | static void     net_tx_timeout(struct net_device *dev); | 
|  | 116 |  | 
|  | 117 |  | 
|  | 118 | /* Example routines you must write ;->. */ | 
|  | 119 | #define tx_done(dev) 1 | 
|  | 120 | static void	hardware_send_packet(short ioaddr, char *buf, int length); | 
|  | 121 | static void 	chipset_init(struct net_device *dev, int startp); | 
|  | 122 |  | 
|  | 123 | /* | 
|  | 124 | * Check for a network adaptor of this type, and return '0' iff one exists. | 
|  | 125 | * If dev->base_addr == 0, probe all likely locations. | 
|  | 126 | * If dev->base_addr == 1, always return failure. | 
|  | 127 | * If dev->base_addr == 2, allocate space for the device and return success | 
|  | 128 | * (detachable devices only). | 
|  | 129 | */ | 
|  | 130 | static int __init do_netcard_probe(struct net_device *dev) | 
|  | 131 | { | 
|  | 132 | int i; | 
|  | 133 | int base_addr = dev->base_addr; | 
|  | 134 | int irq = dev->irq; | 
|  | 135 |  | 
|  | 136 | SET_MODULE_OWNER(dev); | 
|  | 137 |  | 
|  | 138 | if (base_addr > 0x1ff)    /* Check a single specified location. */ | 
|  | 139 | return netcard_probe1(dev, base_addr); | 
|  | 140 | else if (base_addr != 0)  /* Don't probe at all. */ | 
|  | 141 | return -ENXIO; | 
|  | 142 |  | 
|  | 143 | for (i = 0; netcard_portlist[i]; i++) { | 
|  | 144 | int ioaddr = netcard_portlist[i]; | 
|  | 145 | if (netcard_probe1(dev, ioaddr) == 0) | 
|  | 146 | return 0; | 
|  | 147 | dev->irq = irq; | 
|  | 148 | } | 
|  | 149 |  | 
|  | 150 | return -ENODEV; | 
|  | 151 | } | 
|  | 152 |  | 
|  | 153 | static void cleanup_card(struct net_device *dev) | 
|  | 154 | { | 
|  | 155 | #ifdef jumpered_dma | 
|  | 156 | free_dma(dev->dma); | 
|  | 157 | #endif | 
|  | 158 | #ifdef jumpered_interrupts | 
|  | 159 | free_irq(dev->irq, dev); | 
|  | 160 | #endif | 
|  | 161 | release_region(dev->base_addr, NETCARD_IO_EXTENT); | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | #ifndef MODULE | 
|  | 165 | struct net_device * __init netcard_probe(int unit) | 
|  | 166 | { | 
|  | 167 | struct net_device *dev = alloc_etherdev(sizeof(struct net_local)); | 
|  | 168 | int err; | 
|  | 169 |  | 
|  | 170 | if (!dev) | 
|  | 171 | return ERR_PTR(-ENOMEM); | 
|  | 172 |  | 
|  | 173 | sprintf(dev->name, "eth%d", unit); | 
|  | 174 | netdev_boot_setup_check(dev); | 
|  | 175 |  | 
|  | 176 | err = do_netcard_probe(dev); | 
|  | 177 | if (err) | 
|  | 178 | goto out; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 179 | return dev; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 180 | out: | 
|  | 181 | free_netdev(dev); | 
|  | 182 | return ERR_PTR(err); | 
|  | 183 | } | 
|  | 184 | #endif | 
|  | 185 |  | 
|  | 186 | /* | 
|  | 187 | * This is the real probe routine. Linux has a history of friendly device | 
|  | 188 | * probes on the ISA bus. A good device probes avoids doing writes, and | 
|  | 189 | * verifies that the correct device exists and functions. | 
|  | 190 | */ | 
|  | 191 | static int __init netcard_probe1(struct net_device *dev, int ioaddr) | 
|  | 192 | { | 
|  | 193 | struct net_local *np; | 
|  | 194 | static unsigned version_printed; | 
|  | 195 | int i; | 
|  | 196 | int err = -ENODEV; | 
|  | 197 |  | 
|  | 198 | /* Grab the region so that no one else tries to probe our ioports. */ | 
|  | 199 | if (!request_region(ioaddr, NETCARD_IO_EXTENT, cardname)) | 
|  | 200 | return -EBUSY; | 
|  | 201 |  | 
|  | 202 | /* | 
|  | 203 | * For ethernet adaptors the first three octets of the station address | 
|  | 204 | * contains the manufacturer's unique code. That might be a good probe | 
|  | 205 | * method. Ideally you would add additional checks. | 
|  | 206 | */ | 
|  | 207 | if (inb(ioaddr + 0) != SA_ADDR0 | 
|  | 208 | ||	 inb(ioaddr + 1) != SA_ADDR1 | 
|  | 209 | ||	 inb(ioaddr + 2) != SA_ADDR2) | 
|  | 210 | goto out; | 
|  | 211 |  | 
|  | 212 | if (net_debug  &&  version_printed++ == 0) | 
|  | 213 | printk(KERN_DEBUG "%s", version); | 
|  | 214 |  | 
|  | 215 | printk(KERN_INFO "%s: %s found at %#3x, ", dev->name, cardname, ioaddr); | 
|  | 216 |  | 
|  | 217 | /* Fill in the 'dev' fields. */ | 
|  | 218 | dev->base_addr = ioaddr; | 
|  | 219 |  | 
|  | 220 | /* Retrieve and print the ethernet address. */ | 
|  | 221 | for (i = 0; i < 6; i++) | 
|  | 222 | printk(" %2.2x", dev->dev_addr[i] = inb(ioaddr + i)); | 
|  | 223 |  | 
|  | 224 | err = -EAGAIN; | 
|  | 225 | #ifdef jumpered_interrupts | 
|  | 226 | /* | 
|  | 227 | * If this board has jumpered interrupts, allocate the interrupt | 
|  | 228 | * vector now. There is no point in waiting since no other device | 
|  | 229 | * can use the interrupt, and this marks the irq as busy. Jumpered | 
|  | 230 | * interrupts are typically not reported by the boards, and we must | 
|  | 231 | * used autoIRQ to find them. | 
|  | 232 | */ | 
|  | 233 |  | 
|  | 234 | if (dev->irq == -1) | 
|  | 235 | ;	/* Do nothing: a user-level program will set it. */ | 
|  | 236 | else if (dev->irq < 2) {	/* "Auto-IRQ" */ | 
|  | 237 | unsigned long irq_mask = probe_irq_on(); | 
|  | 238 | /* Trigger an interrupt here. */ | 
|  | 239 |  | 
|  | 240 | dev->irq = probe_irq_off(irq_mask); | 
|  | 241 | if (net_debug >= 2) | 
|  | 242 | printk(" autoirq is %d", dev->irq); | 
|  | 243 | } else if (dev->irq == 2) | 
|  | 244 | /* | 
|  | 245 | * Fixup for users that don't know that IRQ 2 is really | 
|  | 246 | * IRQ9, or don't know which one to set. | 
|  | 247 | */ | 
|  | 248 | dev->irq = 9; | 
|  | 249 |  | 
|  | 250 | { | 
|  | 251 | int irqval = request_irq(dev->irq, &net_interrupt, 0, cardname, dev); | 
|  | 252 | if (irqval) { | 
|  | 253 | printk("%s: unable to get IRQ %d (irqval=%d).\n", | 
|  | 254 | dev->name, dev->irq, irqval); | 
|  | 255 | goto out; | 
|  | 256 | } | 
|  | 257 | } | 
|  | 258 | #endif	/* jumpered interrupt */ | 
|  | 259 | #ifdef jumpered_dma | 
|  | 260 | /* | 
|  | 261 | * If we use a jumpered DMA channel, that should be probed for and | 
|  | 262 | * allocated here as well. See lance.c for an example. | 
|  | 263 | */ | 
|  | 264 | if (dev->dma == 0) { | 
|  | 265 | if (request_dma(dev->dma, cardname)) { | 
|  | 266 | printk("DMA %d allocation failed.\n", dev->dma); | 
|  | 267 | goto out1; | 
|  | 268 | } else | 
|  | 269 | printk(", assigned DMA %d.\n", dev->dma); | 
|  | 270 | } else { | 
|  | 271 | short dma_status, new_dma_status; | 
|  | 272 |  | 
|  | 273 | /* Read the DMA channel status registers. */ | 
|  | 274 | dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | | 
|  | 275 | (inb(DMA2_STAT_REG) & 0xf0); | 
|  | 276 | /* Trigger a DMA request, perhaps pause a bit. */ | 
|  | 277 | outw(0x1234, ioaddr + 8); | 
|  | 278 | /* Re-read the DMA status registers. */ | 
|  | 279 | new_dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | | 
|  | 280 | (inb(DMA2_STAT_REG) & 0xf0); | 
|  | 281 | /* | 
|  | 282 | * Eliminate the old and floating requests, | 
|  | 283 | * and DMA4 the cascade. | 
|  | 284 | */ | 
|  | 285 | new_dma_status ^= dma_status; | 
|  | 286 | new_dma_status &= ~0x10; | 
|  | 287 | for (i = 7; i > 0; i--) | 
|  | 288 | if (test_bit(i, &new_dma_status)) { | 
|  | 289 | dev->dma = i; | 
|  | 290 | break; | 
|  | 291 | } | 
|  | 292 | if (i <= 0) { | 
|  | 293 | printk("DMA probe failed.\n"); | 
|  | 294 | goto out1; | 
|  | 295 | } | 
|  | 296 | if (request_dma(dev->dma, cardname)) { | 
|  | 297 | printk("probed DMA %d allocation failed.\n", dev->dma); | 
|  | 298 | goto out1; | 
|  | 299 | } | 
|  | 300 | } | 
|  | 301 | #endif	/* jumpered DMA */ | 
|  | 302 |  | 
|  | 303 | np = netdev_priv(dev); | 
|  | 304 | spin_lock_init(&np->lock); | 
|  | 305 |  | 
|  | 306 | dev->open		= net_open; | 
|  | 307 | dev->stop		= net_close; | 
|  | 308 | dev->hard_start_xmit	= net_send_packet; | 
|  | 309 | dev->get_stats		= net_get_stats; | 
|  | 310 | dev->set_multicast_list = &set_multicast_list; | 
|  | 311 |  | 
|  | 312 | dev->tx_timeout		= &net_tx_timeout; | 
|  | 313 | dev->watchdog_timeo	= MY_TX_TIMEOUT; | 
|  | b1fc550 | 2005-05-12 20:11:55 -0400 | [diff] [blame] | 314 |  | 
|  | 315 | err = register_netdev(dev); | 
|  | 316 | if (err) | 
|  | 317 | goto out2; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 318 | return 0; | 
|  | b1fc550 | 2005-05-12 20:11:55 -0400 | [diff] [blame] | 319 | out2: | 
|  | 320 | #ifdef jumpered_dma | 
|  | 321 | free_dma(dev->dma); | 
|  | 322 | #endif | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 323 | out1: | 
|  | 324 | #ifdef jumpered_interrupts | 
|  | 325 | free_irq(dev->irq, dev); | 
|  | 326 | #endif | 
|  | 327 | out: | 
|  | 328 | release_region(base_addr, NETCARD_IO_EXTENT); | 
|  | 329 | return err; | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | static void net_tx_timeout(struct net_device *dev) | 
|  | 333 | { | 
|  | 334 | struct net_local *np = netdev_priv(dev); | 
|  | 335 |  | 
|  | 336 | printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name, | 
|  | 337 | tx_done(dev) ? "IRQ conflict" : "network cable problem"); | 
|  | 338 |  | 
|  | 339 | /* Try to restart the adaptor. */ | 
|  | 340 | chipset_init(dev, 1); | 
|  | 341 |  | 
|  | 342 | np->stats.tx_errors++; | 
|  | 343 |  | 
|  | 344 | /* If we have space available to accept new transmit | 
|  | 345 | * requests, wake up the queueing layer.  This would | 
|  | 346 | * be the case if the chipset_init() call above just | 
|  | 347 | * flushes out the tx queue and empties it. | 
|  | 348 | * | 
|  | 349 | * If instead, the tx queue is retained then the | 
|  | 350 | * netif_wake_queue() call should be placed in the | 
|  | 351 | * TX completion interrupt handler of the driver instead | 
|  | 352 | * of here. | 
|  | 353 | */ | 
|  | 354 | if (!tx_full(dev)) | 
|  | 355 | netif_wake_queue(dev); | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | /* | 
|  | 359 | * Open/initialize the board. This is called (in the current kernel) | 
|  | 360 | * sometime after booting when the 'ifconfig' program is run. | 
|  | 361 | * | 
|  | 362 | * This routine should set everything up anew at each open, even | 
|  | 363 | * registers that "should" only need to be set once at boot, so that | 
|  | 364 | * there is non-reboot way to recover if something goes wrong. | 
|  | 365 | */ | 
|  | 366 | static int | 
|  | 367 | net_open(struct net_device *dev) | 
|  | 368 | { | 
|  | 369 | struct net_local *np = netdev_priv(dev); | 
|  | 370 | int ioaddr = dev->base_addr; | 
|  | 371 | /* | 
|  | 372 | * This is used if the interrupt line can turned off (shared). | 
|  | 373 | * See 3c503.c for an example of selecting the IRQ at config-time. | 
|  | 374 | */ | 
|  | 375 | if (request_irq(dev->irq, &net_interrupt, 0, cardname, dev)) { | 
|  | 376 | return -EAGAIN; | 
|  | 377 | } | 
|  | 378 | /* | 
|  | 379 | * Always allocate the DMA channel after the IRQ, | 
|  | 380 | * and clean up on failure. | 
|  | 381 | */ | 
|  | 382 | if (request_dma(dev->dma, cardname)) { | 
|  | 383 | free_irq(dev->irq, dev); | 
|  | 384 | return -EAGAIN; | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | /* Reset the hardware here. Don't forget to set the station address. */ | 
|  | 388 | chipset_init(dev, 1); | 
|  | 389 | outb(0x00, ioaddr); | 
|  | 390 | np->open_time = jiffies; | 
|  | 391 |  | 
|  | 392 | /* We are now ready to accept transmit requeusts from | 
|  | 393 | * the queueing layer of the networking. | 
|  | 394 | */ | 
|  | 395 | netif_start_queue(dev); | 
|  | 396 |  | 
|  | 397 | return 0; | 
|  | 398 | } | 
|  | 399 |  | 
|  | 400 | /* This will only be invoked if your driver is _not_ in XOFF state. | 
|  | 401 | * What this means is that you need not check it, and that this | 
|  | 402 | * invariant will hold if you make sure that the netif_*_queue() | 
|  | 403 | * calls are done at the proper times. | 
|  | 404 | */ | 
|  | 405 | static int net_send_packet(struct sk_buff *skb, struct net_device *dev) | 
|  | 406 | { | 
|  | 407 | struct net_local *np = netdev_priv(dev); | 
|  | 408 | int ioaddr = dev->base_addr; | 
|  | 409 | short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; | 
|  | 410 | unsigned char *buf = skb->data; | 
|  | 411 |  | 
|  | 412 | /* If some error occurs while trying to transmit this | 
|  | 413 | * packet, you should return '1' from this function. | 
|  | 414 | * In such a case you _may not_ do anything to the | 
|  | 415 | * SKB, it is still owned by the network queueing | 
|  | 416 | * layer when an error is returned.  This means you | 
|  | 417 | * may not modify any SKB fields, you may not free | 
|  | 418 | * the SKB, etc. | 
|  | 419 | */ | 
|  | 420 |  | 
|  | 421 | #if TX_RING | 
|  | 422 | /* This is the most common case for modern hardware. | 
|  | 423 | * The spinlock protects this code from the TX complete | 
|  | 424 | * hardware interrupt handler.  Queue flow control is | 
|  | 425 | * thus managed under this lock as well. | 
|  | 426 | */ | 
|  | 427 | spin_lock_irq(&np->lock); | 
|  | 428 |  | 
|  | 429 | add_to_tx_ring(np, skb, length); | 
|  | 430 | dev->trans_start = jiffies; | 
|  | 431 |  | 
|  | 432 | /* If we just used up the very last entry in the | 
|  | 433 | * TX ring on this device, tell the queueing | 
|  | 434 | * layer to send no more. | 
|  | 435 | */ | 
|  | 436 | if (tx_full(dev)) | 
|  | 437 | netif_stop_queue(dev); | 
|  | 438 |  | 
|  | 439 | /* When the TX completion hw interrupt arrives, this | 
|  | 440 | * is when the transmit statistics are updated. | 
|  | 441 | */ | 
|  | 442 |  | 
|  | 443 | spin_unlock_irq(&np->lock); | 
|  | 444 | #else | 
|  | 445 | /* This is the case for older hardware which takes | 
|  | 446 | * a single transmit buffer at a time, and it is | 
|  | 447 | * just written to the device via PIO. | 
|  | 448 | * | 
|  | 449 | * No spin locking is needed since there is no TX complete | 
|  | 450 | * event.  If by chance your card does have a TX complete | 
|  | 451 | * hardware IRQ then you may need to utilize np->lock here. | 
|  | 452 | */ | 
|  | 453 | hardware_send_packet(ioaddr, buf, length); | 
|  | 454 | np->stats.tx_bytes += skb->len; | 
|  | 455 |  | 
|  | 456 | dev->trans_start = jiffies; | 
|  | 457 |  | 
|  | 458 | /* You might need to clean up and record Tx statistics here. */ | 
|  | 459 | if (inw(ioaddr) == /*RU*/81) | 
|  | 460 | np->stats.tx_aborted_errors++; | 
|  | 461 | dev_kfree_skb (skb); | 
|  | 462 | #endif | 
|  | 463 |  | 
|  | 464 | return 0; | 
|  | 465 | } | 
|  | 466 |  | 
|  | 467 | #if TX_RING | 
|  | 468 | /* This handles TX complete events posted by the device | 
|  | 469 | * via interrupts. | 
|  | 470 | */ | 
|  | 471 | void net_tx(struct net_device *dev) | 
|  | 472 | { | 
|  | 473 | struct net_local *np = netdev_priv(dev); | 
|  | 474 | int entry; | 
|  | 475 |  | 
|  | 476 | /* This protects us from concurrent execution of | 
|  | 477 | * our dev->hard_start_xmit function above. | 
|  | 478 | */ | 
|  | 479 | spin_lock(&np->lock); | 
|  | 480 |  | 
|  | 481 | entry = np->tx_old; | 
|  | 482 | while (tx_entry_is_sent(np, entry)) { | 
|  | 483 | struct sk_buff *skb = np->skbs[entry]; | 
|  | 484 |  | 
|  | 485 | np->stats.tx_bytes += skb->len; | 
|  | 486 | dev_kfree_skb_irq (skb); | 
|  | 487 |  | 
|  | 488 | entry = next_tx_entry(np, entry); | 
|  | 489 | } | 
|  | 490 | np->tx_old = entry; | 
|  | 491 |  | 
|  | 492 | /* If we had stopped the queue due to a "tx full" | 
|  | 493 | * condition, and space has now been made available, | 
|  | 494 | * wake up the queue. | 
|  | 495 | */ | 
|  | 496 | if (netif_queue_stopped(dev) && ! tx_full(dev)) | 
|  | 497 | netif_wake_queue(dev); | 
|  | 498 |  | 
|  | 499 | spin_unlock(&np->lock); | 
|  | 500 | } | 
|  | 501 | #endif | 
|  | 502 |  | 
|  | 503 | /* | 
|  | 504 | * The typical workload of the driver: | 
|  | 505 | * Handle the network interface interrupts. | 
|  | 506 | */ | 
|  | 507 | static irqreturn_t net_interrupt(int irq, void *dev_id, struct pt_regs * regs) | 
|  | 508 | { | 
|  | 509 | struct net_device *dev = dev_id; | 
|  | 510 | struct net_local *np; | 
|  | 511 | int ioaddr, status; | 
|  | 512 | int handled = 0; | 
|  | 513 |  | 
|  | 514 | ioaddr = dev->base_addr; | 
|  | 515 |  | 
|  | 516 | np = netdev_priv(dev); | 
|  | 517 | status = inw(ioaddr + 0); | 
|  | 518 |  | 
|  | 519 | if (status == 0) | 
|  | 520 | goto out; | 
|  | 521 | handled = 1; | 
|  | 522 |  | 
|  | 523 | if (status & RX_INTR) { | 
|  | 524 | /* Got a packet(s). */ | 
|  | 525 | net_rx(dev); | 
|  | 526 | } | 
|  | 527 | #if TX_RING | 
|  | 528 | if (status & TX_INTR) { | 
|  | 529 | /* Transmit complete. */ | 
|  | 530 | net_tx(dev); | 
|  | 531 | np->stats.tx_packets++; | 
|  | 532 | netif_wake_queue(dev); | 
|  | 533 | } | 
|  | 534 | #endif | 
|  | 535 | if (status & COUNTERS_INTR) { | 
|  | 536 | /* Increment the appropriate 'localstats' field. */ | 
|  | 537 | np->stats.tx_window_errors++; | 
|  | 538 | } | 
|  | 539 | out: | 
|  | 540 | return IRQ_RETVAL(handled); | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | /* We have a good packet(s), get it/them out of the buffers. */ | 
|  | 544 | static void | 
|  | 545 | net_rx(struct net_device *dev) | 
|  | 546 | { | 
|  | 547 | struct net_local *lp = netdev_priv(dev); | 
|  | 548 | int ioaddr = dev->base_addr; | 
|  | 549 | int boguscount = 10; | 
|  | 550 |  | 
|  | 551 | do { | 
|  | 552 | int status = inw(ioaddr); | 
|  | 553 | int pkt_len = inw(ioaddr); | 
|  | 554 |  | 
|  | 555 | if (pkt_len == 0)		/* Read all the frames? */ | 
|  | 556 | break;			/* Done for now */ | 
|  | 557 |  | 
|  | 558 | if (status & 0x40) {	/* There was an error. */ | 
|  | 559 | lp->stats.rx_errors++; | 
|  | 560 | if (status & 0x20) lp->stats.rx_frame_errors++; | 
|  | 561 | if (status & 0x10) lp->stats.rx_over_errors++; | 
|  | 562 | if (status & 0x08) lp->stats.rx_crc_errors++; | 
|  | 563 | if (status & 0x04) lp->stats.rx_fifo_errors++; | 
|  | 564 | } else { | 
|  | 565 | /* Malloc up new buffer. */ | 
|  | 566 | struct sk_buff *skb; | 
|  | 567 |  | 
|  | 568 | lp->stats.rx_bytes+=pkt_len; | 
|  | 569 |  | 
|  | 570 | skb = dev_alloc_skb(pkt_len); | 
|  | 571 | if (skb == NULL) { | 
|  | 572 | printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", | 
|  | 573 | dev->name); | 
|  | 574 | lp->stats.rx_dropped++; | 
|  | 575 | break; | 
|  | 576 | } | 
|  | 577 | skb->dev = dev; | 
|  | 578 |  | 
|  | 579 | /* 'skb->data' points to the start of sk_buff data area. */ | 
|  | 580 | memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start, | 
|  | 581 | pkt_len); | 
|  | 582 | /* or */ | 
|  | 583 | insw(ioaddr, skb->data, (pkt_len + 1) >> 1); | 
|  | 584 |  | 
|  | 585 | netif_rx(skb); | 
|  | 586 | dev->last_rx = jiffies; | 
|  | 587 | lp->stats.rx_packets++; | 
|  | 588 | lp->stats.rx_bytes += pkt_len; | 
|  | 589 | } | 
|  | 590 | } while (--boguscount); | 
|  | 591 |  | 
|  | 592 | return; | 
|  | 593 | } | 
|  | 594 |  | 
|  | 595 | /* The inverse routine to net_open(). */ | 
|  | 596 | static int | 
|  | 597 | net_close(struct net_device *dev) | 
|  | 598 | { | 
|  | 599 | struct net_local *lp = netdev_priv(dev); | 
|  | 600 | int ioaddr = dev->base_addr; | 
|  | 601 |  | 
|  | 602 | lp->open_time = 0; | 
|  | 603 |  | 
|  | 604 | netif_stop_queue(dev); | 
|  | 605 |  | 
|  | 606 | /* Flush the Tx and disable Rx here. */ | 
|  | 607 |  | 
|  | 608 | disable_dma(dev->dma); | 
|  | 609 |  | 
|  | 610 | /* If not IRQ or DMA jumpered, free up the line. */ | 
|  | 611 | outw(0x00, ioaddr+0);	/* Release the physical interrupt line. */ | 
|  | 612 |  | 
|  | 613 | free_irq(dev->irq, dev); | 
|  | 614 | free_dma(dev->dma); | 
|  | 615 |  | 
|  | 616 | /* Update the statistics here. */ | 
|  | 617 |  | 
|  | 618 | return 0; | 
|  | 619 |  | 
|  | 620 | } | 
|  | 621 |  | 
|  | 622 | /* | 
|  | 623 | * Get the current statistics. | 
|  | 624 | * This may be called with the card open or closed. | 
|  | 625 | */ | 
|  | 626 | static struct net_device_stats *net_get_stats(struct net_device *dev) | 
|  | 627 | { | 
|  | 628 | struct net_local *lp = netdev_priv(dev); | 
|  | 629 | short ioaddr = dev->base_addr; | 
|  | 630 |  | 
|  | 631 | /* Update the statistics from the device registers. */ | 
|  | 632 | lp->stats.rx_missed_errors = inw(ioaddr+1); | 
|  | 633 | return &lp->stats; | 
|  | 634 | } | 
|  | 635 |  | 
|  | 636 | /* | 
|  | 637 | * Set or clear the multicast filter for this adaptor. | 
|  | 638 | * num_addrs == -1	Promiscuous mode, receive all packets | 
|  | 639 | * num_addrs == 0	Normal mode, clear multicast list | 
|  | 640 | * num_addrs > 0	Multicast mode, receive normal and MC packets, | 
|  | 641 | *			and do best-effort filtering. | 
|  | 642 | */ | 
|  | 643 | static void | 
|  | 644 | set_multicast_list(struct net_device *dev) | 
|  | 645 | { | 
|  | 646 | short ioaddr = dev->base_addr; | 
|  | 647 | if (dev->flags&IFF_PROMISC) | 
|  | 648 | { | 
|  | 649 | /* Enable promiscuous mode */ | 
|  | 650 | outw(MULTICAST|PROMISC, ioaddr); | 
|  | 651 | } | 
|  | 652 | else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > HW_MAX_ADDRS) | 
|  | 653 | { | 
|  | 654 | /* Disable promiscuous mode, use normal mode. */ | 
|  | 655 | hardware_set_filter(NULL); | 
|  | 656 |  | 
|  | 657 | outw(MULTICAST, ioaddr); | 
|  | 658 | } | 
|  | 659 | else if(dev->mc_count) | 
|  | 660 | { | 
|  | 661 | /* Walk the address list, and load the filter */ | 
|  | 662 | hardware_set_filter(dev->mc_list); | 
|  | 663 |  | 
|  | 664 | outw(MULTICAST, ioaddr); | 
|  | 665 | } | 
|  | 666 | else | 
|  | 667 | outw(0, ioaddr); | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | #ifdef MODULE | 
|  | 671 |  | 
|  | 672 | static struct net_device *this_device; | 
|  | 673 | static int io = 0x300; | 
|  | 674 | static int irq; | 
|  | 675 | static int dma; | 
|  | 676 | static int mem; | 
|  | 677 | MODULE_LICENSE("GPL"); | 
|  | 678 |  | 
|  | 679 | int init_module(void) | 
|  | 680 | { | 
|  | 681 | struct net_device *dev; | 
|  | 682 | int result; | 
|  | 683 |  | 
|  | 684 | if (io == 0) | 
|  | 685 | printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n", | 
|  | 686 | cardname); | 
|  | 687 | dev = alloc_etherdev(sizeof(struct net_local)); | 
|  | 688 | if (!dev) | 
|  | 689 | return -ENOMEM; | 
|  | 690 |  | 
|  | 691 | /* Copy the parameters from insmod into the device structure. */ | 
|  | 692 | dev->base_addr = io; | 
|  | 693 | dev->irq       = irq; | 
|  | 694 | dev->dma       = dma; | 
|  | 695 | dev->mem_start = mem; | 
|  | 696 | if (do_netcard_probe(dev) == 0) { | 
|  | b1fc550 | 2005-05-12 20:11:55 -0400 | [diff] [blame] | 697 | this_device = dev; | 
|  | 698 | return 0; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 699 | } | 
|  | 700 | free_netdev(dev); | 
|  | 701 | return -ENXIO; | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | void | 
|  | 705 | cleanup_module(void) | 
|  | 706 | { | 
|  | 707 | unregister_netdev(this_device); | 
|  | 708 | cleanup_card(this_device); | 
|  | 709 | free_netdev(this_device); | 
|  | 710 | } | 
|  | 711 |  | 
|  | 712 | #endif /* MODULE */ | 
|  | 713 |  | 
|  | 714 | /* | 
|  | 715 | * Local variables: | 
|  | 716 | *  compile-command: | 
|  | 717 | *	gcc -D__KERNEL__ -Wall -Wstrict-prototypes -Wwrite-strings | 
|  | 718 | *	-Wredundant-decls -O2 -m486 -c skeleton.c | 
|  | 719 | *  version-control: t | 
|  | 720 | *  kept-new-versions: 5 | 
|  | 721 | *  tab-width: 4 | 
|  | 722 | *  c-indent-level: 4 | 
|  | 723 | * End: | 
|  | 724 | */ |