| Matthew Dharm | e80b0fa | 2005-12-04 22:02:44 -0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Driver for Alauda-based card readers | 
|  | 3 | * | 
|  | 4 | * Current development and maintenance by: | 
|  | 5 | *   (c) 2005 Daniel Drake <dsd@gentoo.org> | 
|  | 6 | * | 
|  | 7 | * The 'Alauda' is a chip manufacturered by RATOC for OEM use. | 
|  | 8 | * | 
|  | 9 | * Alauda implements a vendor-specific command set to access two media reader | 
|  | 10 | * ports (XD, SmartMedia). This driver converts SCSI commands to the commands | 
|  | 11 | * which are accepted by these devices. | 
|  | 12 | * | 
|  | 13 | * The driver was developed through reverse-engineering, with the help of the | 
|  | 14 | * sddr09 driver which has many similarities, and with some help from the | 
|  | 15 | * (very old) vendor-supplied GPL sma03 driver. | 
|  | 16 | * | 
|  | 17 | * For protocol info, see http://alauda.sourceforge.net | 
|  | 18 | * | 
|  | 19 | * This program is free software; you can redistribute it and/or modify it | 
|  | 20 | * under the terms of the GNU General Public License as published by the | 
|  | 21 | * Free Software Foundation; either version 2, or (at your option) any | 
|  | 22 | * later version. | 
|  | 23 | * | 
|  | 24 | * This program is distributed in the hope that it will be useful, but | 
|  | 25 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 26 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 27 | * General Public License for more details. | 
|  | 28 | * | 
|  | 29 | * You should have received a copy of the GNU General Public License along | 
|  | 30 | * with this program; if not, write to the Free Software Foundation, Inc., | 
|  | 31 | * 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | 32 | */ | 
|  | 33 |  | 
|  | 34 | #include <scsi/scsi.h> | 
|  | 35 | #include <scsi/scsi_cmnd.h> | 
|  | 36 | #include <scsi/scsi_device.h> | 
|  | 37 |  | 
|  | 38 | #include "usb.h" | 
|  | 39 | #include "transport.h" | 
|  | 40 | #include "protocol.h" | 
|  | 41 | #include "debug.h" | 
|  | 42 | #include "alauda.h" | 
|  | 43 |  | 
|  | 44 | #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) | 
|  | 45 | #define LSB_of(s) ((s)&0xFF) | 
|  | 46 | #define MSB_of(s) ((s)>>8) | 
|  | 47 |  | 
|  | 48 | #define MEDIA_PORT(us) us->srb->device->lun | 
|  | 49 | #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] | 
|  | 50 |  | 
|  | 51 | #define PBA_LO(pba) ((pba & 0xF) << 5) | 
|  | 52 | #define PBA_HI(pba) (pba >> 3) | 
|  | 53 | #define PBA_ZONE(pba) (pba >> 11) | 
|  | 54 |  | 
|  | 55 | /* | 
|  | 56 | * Media handling | 
|  | 57 | */ | 
|  | 58 |  | 
|  | 59 | struct alauda_card_info { | 
|  | 60 | unsigned char id;		/* id byte */ | 
|  | 61 | unsigned char chipshift;	/* 1<<cs bytes total capacity */ | 
|  | 62 | unsigned char pageshift;	/* 1<<ps bytes in a page */ | 
|  | 63 | unsigned char blockshift;	/* 1<<bs pages per block */ | 
|  | 64 | unsigned char zoneshift;	/* 1<<zs blocks per zone */ | 
|  | 65 | }; | 
|  | 66 |  | 
|  | 67 | static struct alauda_card_info alauda_card_ids[] = { | 
|  | 68 | /* NAND flash */ | 
|  | 69 | { 0x6e, 20, 8, 4, 8},	/* 1 MB */ | 
|  | 70 | { 0xe8, 20, 8, 4, 8},	/* 1 MB */ | 
|  | 71 | { 0xec, 20, 8, 4, 8},	/* 1 MB */ | 
|  | 72 | { 0x64, 21, 8, 4, 9}, 	/* 2 MB */ | 
|  | 73 | { 0xea, 21, 8, 4, 9},	/* 2 MB */ | 
|  | 74 | { 0x6b, 22, 9, 4, 9},	/* 4 MB */ | 
|  | 75 | { 0xe3, 22, 9, 4, 9},	/* 4 MB */ | 
|  | 76 | { 0xe5, 22, 9, 4, 9},	/* 4 MB */ | 
|  | 77 | { 0xe6, 23, 9, 4, 10},	/* 8 MB */ | 
|  | 78 | { 0x73, 24, 9, 5, 10},	/* 16 MB */ | 
|  | 79 | { 0x75, 25, 9, 5, 10},	/* 32 MB */ | 
|  | 80 | { 0x76, 26, 9, 5, 10},	/* 64 MB */ | 
|  | 81 | { 0x79, 27, 9, 5, 10},	/* 128 MB */ | 
|  | 82 | { 0x71, 28, 9, 5, 10},	/* 256 MB */ | 
|  | 83 |  | 
|  | 84 | /* MASK ROM */ | 
|  | 85 | { 0x5d, 21, 9, 4, 8},	/* 2 MB */ | 
|  | 86 | { 0xd5, 22, 9, 4, 9},	/* 4 MB */ | 
|  | 87 | { 0xd6, 23, 9, 4, 10},	/* 8 MB */ | 
|  | 88 | { 0x57, 24, 9, 4, 11},	/* 16 MB */ | 
|  | 89 | { 0x58, 25, 9, 4, 12},	/* 32 MB */ | 
|  | 90 | { 0,} | 
|  | 91 | }; | 
|  | 92 |  | 
|  | 93 | static struct alauda_card_info *alauda_card_find_id(unsigned char id) { | 
|  | 94 | int i; | 
|  | 95 |  | 
|  | 96 | for (i = 0; alauda_card_ids[i].id != 0; i++) | 
|  | 97 | if (alauda_card_ids[i].id == id) | 
|  | 98 | return &(alauda_card_ids[i]); | 
|  | 99 | return NULL; | 
|  | 100 | } | 
|  | 101 |  | 
|  | 102 | /* | 
|  | 103 | * ECC computation. | 
|  | 104 | */ | 
|  | 105 |  | 
|  | 106 | static unsigned char parity[256]; | 
|  | 107 | static unsigned char ecc2[256]; | 
|  | 108 |  | 
|  | 109 | static void nand_init_ecc(void) { | 
|  | 110 | int i, j, a; | 
|  | 111 |  | 
|  | 112 | parity[0] = 0; | 
|  | 113 | for (i = 1; i < 256; i++) | 
|  | 114 | parity[i] = (parity[i&(i-1)] ^ 1); | 
|  | 115 |  | 
|  | 116 | for (i = 0; i < 256; i++) { | 
|  | 117 | a = 0; | 
|  | 118 | for (j = 0; j < 8; j++) { | 
|  | 119 | if (i & (1<<j)) { | 
|  | 120 | if ((j & 1) == 0) | 
|  | 121 | a ^= 0x04; | 
|  | 122 | if ((j & 2) == 0) | 
|  | 123 | a ^= 0x10; | 
|  | 124 | if ((j & 4) == 0) | 
|  | 125 | a ^= 0x40; | 
|  | 126 | } | 
|  | 127 | } | 
|  | 128 | ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); | 
|  | 129 | } | 
|  | 130 | } | 
|  | 131 |  | 
|  | 132 | /* compute 3-byte ecc on 256 bytes */ | 
|  | 133 | static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | 134 | int i, j, a; | 
|  | 135 | unsigned char par, bit, bits[8]; | 
|  | 136 |  | 
|  | 137 | par = 0; | 
|  | 138 | for (j = 0; j < 8; j++) | 
|  | 139 | bits[j] = 0; | 
|  | 140 |  | 
|  | 141 | /* collect 16 checksum bits */ | 
|  | 142 | for (i = 0; i < 256; i++) { | 
|  | 143 | par ^= data[i]; | 
|  | 144 | bit = parity[data[i]]; | 
|  | 145 | for (j = 0; j < 8; j++) | 
|  | 146 | if ((i & (1<<j)) == 0) | 
|  | 147 | bits[j] ^= bit; | 
|  | 148 | } | 
|  | 149 |  | 
|  | 150 | /* put 4+4+4 = 12 bits in the ecc */ | 
|  | 151 | a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; | 
|  | 152 | ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); | 
|  | 153 |  | 
|  | 154 | a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; | 
|  | 155 | ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); | 
|  | 156 |  | 
|  | 157 | ecc[2] = ecc2[par]; | 
|  | 158 | } | 
|  | 159 |  | 
|  | 160 | static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | 161 | return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | static void nand_store_ecc(unsigned char *data, unsigned char *ecc) { | 
|  | 165 | memcpy(data, ecc, 3); | 
|  | 166 | } | 
|  | 167 |  | 
|  | 168 | /* | 
|  | 169 | * Alauda driver | 
|  | 170 | */ | 
|  | 171 |  | 
|  | 172 | /* | 
|  | 173 | * Forget our PBA <---> LBA mappings for a particular port | 
|  | 174 | */ | 
|  | 175 | static void alauda_free_maps (struct alauda_media_info *media_info) | 
|  | 176 | { | 
|  | 177 | unsigned int shift = media_info->zoneshift | 
|  | 178 | + media_info->blockshift + media_info->pageshift; | 
|  | 179 | unsigned int num_zones = media_info->capacity >> shift; | 
|  | 180 | unsigned int i; | 
|  | 181 |  | 
|  | 182 | if (media_info->lba_to_pba != NULL) | 
|  | 183 | for (i = 0; i < num_zones; i++) { | 
|  | 184 | kfree(media_info->lba_to_pba[i]); | 
|  | 185 | media_info->lba_to_pba[i] = NULL; | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | if (media_info->pba_to_lba != NULL) | 
|  | 189 | for (i = 0; i < num_zones; i++) { | 
|  | 190 | kfree(media_info->pba_to_lba[i]); | 
|  | 191 | media_info->pba_to_lba[i] = NULL; | 
|  | 192 | } | 
|  | 193 | } | 
|  | 194 |  | 
|  | 195 | /* | 
|  | 196 | * Returns 2 bytes of status data | 
|  | 197 | * The first byte describes media status, and second byte describes door status | 
|  | 198 | */ | 
|  | 199 | static int alauda_get_media_status(struct us_data *us, unsigned char *data) | 
|  | 200 | { | 
|  | 201 | int rc; | 
|  | 202 | unsigned char command; | 
|  | 203 |  | 
|  | 204 | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) | 
|  | 205 | command = ALAUDA_GET_XD_MEDIA_STATUS; | 
|  | 206 | else | 
|  | 207 | command = ALAUDA_GET_SM_MEDIA_STATUS; | 
|  | 208 |  | 
|  | 209 | rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, | 
|  | 210 | command, 0xc0, 0, 1, data, 2); | 
|  | 211 |  | 
|  | 212 | US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n", | 
|  | 213 | data[0], data[1]); | 
|  | 214 |  | 
|  | 215 | return rc; | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | /* | 
|  | 219 | * Clears the "media was changed" bit so that we know when it changes again | 
|  | 220 | * in the future. | 
|  | 221 | */ | 
|  | 222 | static int alauda_ack_media(struct us_data *us) | 
|  | 223 | { | 
|  | 224 | unsigned char command; | 
|  | 225 |  | 
|  | 226 | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) | 
|  | 227 | command = ALAUDA_ACK_XD_MEDIA_CHANGE; | 
|  | 228 | else | 
|  | 229 | command = ALAUDA_ACK_SM_MEDIA_CHANGE; | 
|  | 230 |  | 
|  | 231 | return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, | 
|  | 232 | command, 0x40, 0, 1, NULL, 0); | 
|  | 233 | } | 
|  | 234 |  | 
|  | 235 | /* | 
|  | 236 | * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, | 
|  | 237 | * and some other details. | 
|  | 238 | */ | 
|  | 239 | static int alauda_get_media_signature(struct us_data *us, unsigned char *data) | 
|  | 240 | { | 
|  | 241 | unsigned char command; | 
|  | 242 |  | 
|  | 243 | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) | 
|  | 244 | command = ALAUDA_GET_XD_MEDIA_SIG; | 
|  | 245 | else | 
|  | 246 | command = ALAUDA_GET_SM_MEDIA_SIG; | 
|  | 247 |  | 
|  | 248 | return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, | 
|  | 249 | command, 0xc0, 0, 0, data, 4); | 
|  | 250 | } | 
|  | 251 |  | 
|  | 252 | /* | 
|  | 253 | * Resets the media status (but not the whole device?) | 
|  | 254 | */ | 
|  | 255 | static int alauda_reset_media(struct us_data *us) | 
|  | 256 | { | 
|  | 257 | unsigned char *command = us->iobuf; | 
|  | 258 |  | 
|  | 259 | memset(command, 0, 9); | 
|  | 260 | command[0] = ALAUDA_BULK_CMD; | 
|  | 261 | command[1] = ALAUDA_BULK_RESET_MEDIA; | 
|  | 262 | command[8] = MEDIA_PORT(us); | 
|  | 263 |  | 
|  | 264 | return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | 265 | command, 9, NULL); | 
|  | 266 | } | 
|  | 267 |  | 
|  | 268 | /* | 
|  | 269 | * Examines the media and deduces capacity, etc. | 
|  | 270 | */ | 
|  | 271 | static int alauda_init_media(struct us_data *us) | 
|  | 272 | { | 
|  | 273 | unsigned char *data = us->iobuf; | 
|  | 274 | int ready = 0; | 
|  | 275 | struct alauda_card_info *media_info; | 
|  | 276 | unsigned int num_zones; | 
|  | 277 |  | 
|  | 278 | while (ready == 0) { | 
|  | 279 | msleep(20); | 
|  | 280 |  | 
|  | 281 | if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) | 
|  | 282 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 283 |  | 
|  | 284 | if (data[0] & 0x10) | 
|  | 285 | ready = 1; | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | US_DEBUGP("alauda_init_media: We are ready for action!\n"); | 
|  | 289 |  | 
|  | 290 | if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) | 
|  | 291 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 292 |  | 
|  | 293 | msleep(10); | 
|  | 294 |  | 
|  | 295 | if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) | 
|  | 296 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 297 |  | 
|  | 298 | if (data[0] != 0x14) { | 
|  | 299 | US_DEBUGP("alauda_init_media: Media not ready after ack\n"); | 
|  | 300 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 301 | } | 
|  | 302 |  | 
|  | 303 | if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) | 
|  | 304 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 305 |  | 
|  | 306 | US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n", | 
|  | 307 | data[0], data[1], data[2], data[3]); | 
|  | 308 | media_info = alauda_card_find_id(data[1]); | 
|  | 309 | if (media_info == NULL) { | 
|  | 310 | printk("alauda_init_media: Unrecognised media signature: " | 
|  | 311 | "%02X %02X %02X %02X\n", | 
|  | 312 | data[0], data[1], data[2], data[3]); | 
|  | 313 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | MEDIA_INFO(us).capacity = 1 << media_info->chipshift; | 
|  | 317 | US_DEBUGP("Found media with capacity: %ldMB\n", | 
|  | 318 | MEDIA_INFO(us).capacity >> 20); | 
|  | 319 |  | 
|  | 320 | MEDIA_INFO(us).pageshift = media_info->pageshift; | 
|  | 321 | MEDIA_INFO(us).blockshift = media_info->blockshift; | 
|  | 322 | MEDIA_INFO(us).zoneshift = media_info->zoneshift; | 
|  | 323 |  | 
|  | 324 | MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; | 
|  | 325 | MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; | 
|  | 326 | MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; | 
|  | 327 |  | 
|  | 328 | MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; | 
|  | 329 | MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; | 
|  | 330 |  | 
|  | 331 | num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift | 
|  | 332 | + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); | 
|  | 333 | MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); | 
|  | 334 | MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); | 
|  | 335 |  | 
|  | 336 | if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) | 
|  | 337 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 338 |  | 
|  | 339 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 340 | } | 
|  | 341 |  | 
|  | 342 | /* | 
|  | 343 | * Examines the media status and does the right thing when the media has gone, | 
|  | 344 | * appeared, or changed. | 
|  | 345 | */ | 
|  | 346 | static int alauda_check_media(struct us_data *us) | 
|  | 347 | { | 
|  | 348 | struct alauda_info *info = (struct alauda_info *) us->extra; | 
|  | 349 | unsigned char status[2]; | 
|  | 350 | int rc; | 
|  | 351 |  | 
|  | 352 | rc = alauda_get_media_status(us, status); | 
|  | 353 |  | 
|  | 354 | /* Check for no media or door open */ | 
|  | 355 | if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) | 
|  | 356 | || ((status[1] & 0x01) == 0)) { | 
|  | 357 | US_DEBUGP("alauda_check_media: No media, or door open\n"); | 
|  | 358 | alauda_free_maps(&MEDIA_INFO(us)); | 
|  | 359 | info->sense_key = 0x02; | 
|  | 360 | info->sense_asc = 0x3A; | 
|  | 361 | info->sense_ascq = 0x00; | 
|  | 362 | return USB_STOR_TRANSPORT_FAILED; | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 | /* Check for media change */ | 
|  | 366 | if (status[0] & 0x08) { | 
|  | 367 | US_DEBUGP("alauda_check_media: Media change detected\n"); | 
|  | 368 | alauda_free_maps(&MEDIA_INFO(us)); | 
|  | 369 | alauda_init_media(us); | 
|  | 370 |  | 
|  | 371 | info->sense_key = UNIT_ATTENTION; | 
|  | 372 | info->sense_asc = 0x28; | 
|  | 373 | info->sense_ascq = 0x00; | 
|  | 374 | return USB_STOR_TRANSPORT_FAILED; | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | /* | 
|  | 381 | * Checks the status from the 2nd status register | 
|  | 382 | * Returns 3 bytes of status data, only the first is known | 
|  | 383 | */ | 
|  | 384 | static int alauda_check_status2(struct us_data *us) | 
|  | 385 | { | 
|  | 386 | int rc; | 
|  | 387 | unsigned char command[] = { | 
|  | 388 | ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, | 
|  | 389 | 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) | 
|  | 390 | }; | 
|  | 391 | unsigned char data[3]; | 
|  | 392 |  | 
|  | 393 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | 394 | command, 9, NULL); | 
|  | 395 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 396 | return rc; | 
|  | 397 |  | 
|  | 398 | rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | 399 | data, 3, NULL); | 
|  | 400 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 401 | return rc; | 
|  | 402 |  | 
|  | 403 | US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]); | 
|  | 404 | if (data[0] & ALAUDA_STATUS_ERROR) | 
|  | 405 | return USB_STOR_XFER_ERROR; | 
|  | 406 |  | 
|  | 407 | return USB_STOR_XFER_GOOD; | 
|  | 408 | } | 
|  | 409 |  | 
|  | 410 | /* | 
|  | 411 | * Gets the redundancy data for the first page of a PBA | 
|  | 412 | * Returns 16 bytes. | 
|  | 413 | */ | 
|  | 414 | static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) | 
|  | 415 | { | 
|  | 416 | int rc; | 
|  | 417 | unsigned char command[] = { | 
|  | 418 | ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, | 
|  | 419 | PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) | 
|  | 420 | }; | 
|  | 421 |  | 
|  | 422 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | 423 | command, 9, NULL); | 
|  | 424 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 425 | return rc; | 
|  | 426 |  | 
|  | 427 | return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | 428 | data, 16, NULL); | 
|  | 429 | } | 
|  | 430 |  | 
|  | 431 | /* | 
|  | 432 | * Finds the first unused PBA in a zone | 
|  | 433 | * Returns the absolute PBA of an unused PBA, or 0 if none found. | 
|  | 434 | */ | 
|  | 435 | static u16 alauda_find_unused_pba(struct alauda_media_info *info, | 
|  | 436 | unsigned int zone) | 
|  | 437 | { | 
|  | 438 | u16 *pba_to_lba = info->pba_to_lba[zone]; | 
|  | 439 | unsigned int i; | 
|  | 440 |  | 
|  | 441 | for (i = 0; i < info->zonesize; i++) | 
|  | 442 | if (pba_to_lba[i] == UNDEF) | 
|  | 443 | return (zone << info->zoneshift) + i; | 
|  | 444 |  | 
|  | 445 | return 0; | 
|  | 446 | } | 
|  | 447 |  | 
|  | 448 | /* | 
|  | 449 | * Reads the redundancy data for all PBA's in a zone | 
|  | 450 | * Produces lba <--> pba mappings | 
|  | 451 | */ | 
|  | 452 | static int alauda_read_map(struct us_data *us, unsigned int zone) | 
|  | 453 | { | 
|  | 454 | unsigned char *data = us->iobuf; | 
|  | 455 | int result; | 
|  | 456 | int i, j; | 
|  | 457 | unsigned int zonesize = MEDIA_INFO(us).zonesize; | 
|  | 458 | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; | 
|  | 459 | unsigned int lba_offset, lba_real, blocknum; | 
|  | 460 | unsigned int zone_base_lba = zone * uzonesize; | 
|  | 461 | unsigned int zone_base_pba = zone * zonesize; | 
|  | 462 | u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); | 
|  | 463 | u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); | 
|  | 464 | if (lba_to_pba == NULL || pba_to_lba == NULL) { | 
|  | 465 | result = USB_STOR_TRANSPORT_ERROR; | 
|  | 466 | goto error; | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone); | 
|  | 470 |  | 
|  | 471 | /* 1024 PBA's per zone */ | 
|  | 472 | for (i = 0; i < zonesize; i++) | 
|  | 473 | lba_to_pba[i] = pba_to_lba[i] = UNDEF; | 
|  | 474 |  | 
|  | 475 | for (i = 0; i < zonesize; i++) { | 
|  | 476 | blocknum = zone_base_pba + i; | 
|  | 477 |  | 
|  | 478 | result = alauda_get_redu_data(us, blocknum, data); | 
|  | 479 | if (result != USB_STOR_XFER_GOOD) { | 
|  | 480 | result = USB_STOR_TRANSPORT_ERROR; | 
|  | 481 | goto error; | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 | /* special PBAs have control field 0^16 */ | 
|  | 485 | for (j = 0; j < 16; j++) | 
|  | 486 | if (data[j] != 0) | 
|  | 487 | goto nonz; | 
|  | 488 | pba_to_lba[i] = UNUSABLE; | 
|  | 489 | US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum); | 
|  | 490 | continue; | 
|  | 491 |  | 
|  | 492 | nonz: | 
|  | 493 | /* unwritten PBAs have control field FF^16 */ | 
|  | 494 | for (j = 0; j < 16; j++) | 
|  | 495 | if (data[j] != 0xff) | 
|  | 496 | goto nonff; | 
|  | 497 | continue; | 
|  | 498 |  | 
|  | 499 | nonff: | 
|  | 500 | /* normal PBAs start with six FFs */ | 
|  | 501 | if (j < 6) { | 
|  | 502 | US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: " | 
|  | 503 | "reserved area = %02X%02X%02X%02X " | 
|  | 504 | "data status %02X block status %02X\n", | 
|  | 505 | blocknum, data[0], data[1], data[2], data[3], | 
|  | 506 | data[4], data[5]); | 
|  | 507 | pba_to_lba[i] = UNUSABLE; | 
|  | 508 | continue; | 
|  | 509 | } | 
|  | 510 |  | 
|  | 511 | if ((data[6] >> 4) != 0x01) { | 
|  | 512 | US_DEBUGP("alauda_read_map: PBA %d has invalid address " | 
|  | 513 | "field %02X%02X/%02X%02X\n", | 
|  | 514 | blocknum, data[6], data[7], data[11], data[12]); | 
|  | 515 | pba_to_lba[i] = UNUSABLE; | 
|  | 516 | continue; | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | /* check even parity */ | 
|  | 520 | if (parity[data[6] ^ data[7]]) { | 
|  | 521 | printk("alauda_read_map: Bad parity in LBA for block %d" | 
|  | 522 | " (%02X %02X)\n", i, data[6], data[7]); | 
|  | 523 | pba_to_lba[i] = UNUSABLE; | 
|  | 524 | continue; | 
|  | 525 | } | 
|  | 526 |  | 
|  | 527 | lba_offset = short_pack(data[7], data[6]); | 
|  | 528 | lba_offset = (lba_offset & 0x07FF) >> 1; | 
|  | 529 | lba_real = lba_offset + zone_base_lba; | 
|  | 530 |  | 
|  | 531 | /* | 
|  | 532 | * Every 1024 physical blocks ("zone"), the LBA numbers | 
|  | 533 | * go back to zero, but are within a higher block of LBA's. | 
|  | 534 | * Also, there is a maximum of 1000 LBA's per zone. | 
|  | 535 | * In other words, in PBA 1024-2047 you will find LBA 0-999 | 
|  | 536 | * which are really LBA 1000-1999. This allows for 24 bad | 
|  | 537 | * or special physical blocks per zone. | 
|  | 538 | */ | 
|  | 539 |  | 
|  | 540 | if (lba_offset >= uzonesize) { | 
|  | 541 | printk("alauda_read_map: Bad low LBA %d for block %d\n", | 
|  | 542 | lba_real, blocknum); | 
|  | 543 | continue; | 
|  | 544 | } | 
|  | 545 |  | 
|  | 546 | if (lba_to_pba[lba_offset] != UNDEF) { | 
|  | 547 | printk("alauda_read_map: LBA %d seen for PBA %d and %d\n", | 
|  | 548 | lba_real, lba_to_pba[lba_offset], blocknum); | 
|  | 549 | continue; | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 | pba_to_lba[i] = lba_real; | 
|  | 553 | lba_to_pba[lba_offset] = blocknum; | 
|  | 554 | continue; | 
|  | 555 | } | 
|  | 556 |  | 
|  | 557 | MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; | 
|  | 558 | MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; | 
|  | 559 | result = 0; | 
|  | 560 | goto out; | 
|  | 561 |  | 
|  | 562 | error: | 
|  | 563 | kfree(lba_to_pba); | 
|  | 564 | kfree(pba_to_lba); | 
|  | 565 | out: | 
|  | 566 | return result; | 
|  | 567 | } | 
|  | 568 |  | 
|  | 569 | /* | 
|  | 570 | * Checks to see whether we have already mapped a certain zone | 
|  | 571 | * If we haven't, the map is generated | 
|  | 572 | */ | 
|  | 573 | static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) | 
|  | 574 | { | 
|  | 575 | if (MEDIA_INFO(us).lba_to_pba[zone] == NULL | 
|  | 576 | || MEDIA_INFO(us).pba_to_lba[zone] == NULL) | 
|  | 577 | alauda_read_map(us, zone); | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | /* | 
|  | 581 | * Erases an entire block | 
|  | 582 | */ | 
|  | 583 | static int alauda_erase_block(struct us_data *us, u16 pba) | 
|  | 584 | { | 
|  | 585 | int rc; | 
|  | 586 | unsigned char command[] = { | 
|  | 587 | ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), | 
|  | 588 | PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) | 
|  | 589 | }; | 
|  | 590 | unsigned char buf[2]; | 
|  | 591 |  | 
|  | 592 | US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba); | 
|  | 593 |  | 
|  | 594 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | 595 | command, 9, NULL); | 
|  | 596 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 597 | return rc; | 
|  | 598 |  | 
|  | 599 | rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | 600 | buf, 2, NULL); | 
|  | 601 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 602 | return rc; | 
|  | 603 |  | 
|  | 604 | US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n", | 
|  | 605 | buf[0], buf[1]); | 
|  | 606 | return rc; | 
|  | 607 | } | 
|  | 608 |  | 
|  | 609 | /* | 
|  | 610 | * Reads data from a certain offset page inside a PBA, including interleaved | 
|  | 611 | * redundancy data. Returns (pagesize+64)*pages bytes in data. | 
|  | 612 | */ | 
|  | 613 | static int alauda_read_block_raw(struct us_data *us, u16 pba, | 
|  | 614 | unsigned int page, unsigned int pages, unsigned char *data) | 
|  | 615 | { | 
|  | 616 | int rc; | 
|  | 617 | unsigned char command[] = { | 
|  | 618 | ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), | 
|  | 619 | PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) | 
|  | 620 | }; | 
|  | 621 |  | 
|  | 622 | US_DEBUGP("alauda_read_block: pba %d page %d count %d\n", | 
|  | 623 | pba, page, pages); | 
|  | 624 |  | 
|  | 625 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | 626 | command, 9, NULL); | 
|  | 627 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 628 | return rc; | 
|  | 629 |  | 
|  | 630 | return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, | 
|  | 631 | data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); | 
|  | 632 | } | 
|  | 633 |  | 
|  | 634 | /* | 
|  | 635 | * Reads data from a certain offset page inside a PBA, excluding redundancy | 
|  | 636 | * data. Returns pagesize*pages bytes in data. Note that data must be big enough | 
|  | 637 | * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' | 
|  | 638 | * trailing bytes outside this function. | 
|  | 639 | */ | 
|  | 640 | static int alauda_read_block(struct us_data *us, u16 pba, | 
|  | 641 | unsigned int page, unsigned int pages, unsigned char *data) | 
|  | 642 | { | 
|  | 643 | int i, rc; | 
|  | 644 | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  | 645 |  | 
|  | 646 | rc = alauda_read_block_raw(us, pba, page, pages, data); | 
|  | 647 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 648 | return rc; | 
|  | 649 |  | 
|  | 650 | /* Cut out the redundancy data */ | 
|  | 651 | for (i = 0; i < pages; i++) { | 
|  | 652 | int dest_offset = i * pagesize; | 
|  | 653 | int src_offset = i * (pagesize + 64); | 
|  | 654 | memmove(data + dest_offset, data + src_offset, pagesize); | 
|  | 655 | } | 
|  | 656 |  | 
|  | 657 | return rc; | 
|  | 658 | } | 
|  | 659 |  | 
|  | 660 | /* | 
|  | 661 | * Writes an entire block of data and checks status after write. | 
|  | 662 | * Redundancy data must be already included in data. Data should be | 
|  | 663 | * (pagesize+64)*blocksize bytes in length. | 
|  | 664 | */ | 
|  | 665 | static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) | 
|  | 666 | { | 
|  | 667 | int rc; | 
|  | 668 | struct alauda_info *info = (struct alauda_info *) us->extra; | 
|  | 669 | unsigned char command[] = { | 
|  | 670 | ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), | 
|  | 671 | PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) | 
|  | 672 | }; | 
|  | 673 |  | 
|  | 674 | US_DEBUGP("alauda_write_block: pba %d\n", pba); | 
|  | 675 |  | 
|  | 676 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, | 
|  | 677 | command, 9, NULL); | 
|  | 678 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 679 | return rc; | 
|  | 680 |  | 
|  | 681 | rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, | 
|  | 682 | (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, | 
|  | 683 | NULL); | 
|  | 684 | if (rc != USB_STOR_XFER_GOOD) | 
|  | 685 | return rc; | 
|  | 686 |  | 
|  | 687 | return alauda_check_status2(us); | 
|  | 688 | } | 
|  | 689 |  | 
|  | 690 | /* | 
|  | 691 | * Write some data to a specific LBA. | 
|  | 692 | */ | 
|  | 693 | static int alauda_write_lba(struct us_data *us, u16 lba, | 
|  | 694 | unsigned int page, unsigned int pages, | 
|  | 695 | unsigned char *ptr, unsigned char *blockbuffer) | 
|  | 696 | { | 
|  | 697 | u16 pba, lbap, new_pba; | 
|  | 698 | unsigned char *bptr, *cptr, *xptr; | 
|  | 699 | unsigned char ecc[3]; | 
|  | 700 | int i, result; | 
|  | 701 | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; | 
|  | 702 | unsigned int zonesize = MEDIA_INFO(us).zonesize; | 
|  | 703 | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  | 704 | unsigned int blocksize = MEDIA_INFO(us).blocksize; | 
|  | 705 | unsigned int lba_offset = lba % uzonesize; | 
|  | 706 | unsigned int new_pba_offset; | 
|  | 707 | unsigned int zone = lba / uzonesize; | 
|  | 708 |  | 
|  | 709 | alauda_ensure_map_for_zone(us, zone); | 
|  | 710 |  | 
|  | 711 | pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; | 
|  | 712 | if (pba == 1) { | 
|  | 713 | /* Maybe it is impossible to write to PBA 1. | 
|  | 714 | Fake success, but don't do anything. */ | 
|  | 715 | printk("alauda_write_lba: avoid writing to pba 1\n"); | 
|  | 716 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 717 | } | 
|  | 718 |  | 
|  | 719 | new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); | 
|  | 720 | if (!new_pba) { | 
|  | 721 | printk("alauda_write_lba: Out of unused blocks\n"); | 
|  | 722 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 723 | } | 
|  | 724 |  | 
|  | 725 | /* read old contents */ | 
|  | 726 | if (pba != UNDEF) { | 
|  | 727 | result = alauda_read_block_raw(us, pba, 0, | 
|  | 728 | blocksize, blockbuffer); | 
|  | 729 | if (result != USB_STOR_XFER_GOOD) | 
|  | 730 | return result; | 
|  | 731 | } else { | 
|  | 732 | memset(blockbuffer, 0, blocksize * (pagesize + 64)); | 
|  | 733 | } | 
|  | 734 |  | 
|  | 735 | lbap = (lba_offset << 1) | 0x1000; | 
|  | 736 | if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) | 
|  | 737 | lbap ^= 1; | 
|  | 738 |  | 
|  | 739 | /* check old contents and fill lba */ | 
|  | 740 | for (i = 0; i < blocksize; i++) { | 
|  | 741 | bptr = blockbuffer + (i * (pagesize + 64)); | 
|  | 742 | cptr = bptr + pagesize; | 
|  | 743 | nand_compute_ecc(bptr, ecc); | 
|  | 744 | if (!nand_compare_ecc(cptr+13, ecc)) { | 
|  | 745 | US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n", | 
|  | 746 | i, pba); | 
|  | 747 | nand_store_ecc(cptr+13, ecc); | 
|  | 748 | } | 
|  | 749 | nand_compute_ecc(bptr + (pagesize / 2), ecc); | 
|  | 750 | if (!nand_compare_ecc(cptr+8, ecc)) { | 
|  | 751 | US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n", | 
|  | 752 | i, pba); | 
|  | 753 | nand_store_ecc(cptr+8, ecc); | 
|  | 754 | } | 
|  | 755 | cptr[6] = cptr[11] = MSB_of(lbap); | 
|  | 756 | cptr[7] = cptr[12] = LSB_of(lbap); | 
|  | 757 | } | 
|  | 758 |  | 
|  | 759 | /* copy in new stuff and compute ECC */ | 
|  | 760 | xptr = ptr; | 
|  | 761 | for (i = page; i < page+pages; i++) { | 
|  | 762 | bptr = blockbuffer + (i * (pagesize + 64)); | 
|  | 763 | cptr = bptr + pagesize; | 
|  | 764 | memcpy(bptr, xptr, pagesize); | 
|  | 765 | xptr += pagesize; | 
|  | 766 | nand_compute_ecc(bptr, ecc); | 
|  | 767 | nand_store_ecc(cptr+13, ecc); | 
|  | 768 | nand_compute_ecc(bptr + (pagesize / 2), ecc); | 
|  | 769 | nand_store_ecc(cptr+8, ecc); | 
|  | 770 | } | 
|  | 771 |  | 
|  | 772 | result = alauda_write_block(us, new_pba, blockbuffer); | 
|  | 773 | if (result != USB_STOR_XFER_GOOD) | 
|  | 774 | return result; | 
|  | 775 |  | 
|  | 776 | new_pba_offset = new_pba - (zone * zonesize); | 
|  | 777 | MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; | 
|  | 778 | MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; | 
|  | 779 | US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n", | 
|  | 780 | lba, new_pba); | 
|  | 781 |  | 
|  | 782 | if (pba != UNDEF) { | 
|  | 783 | unsigned int pba_offset = pba - (zone * zonesize); | 
|  | 784 | result = alauda_erase_block(us, pba); | 
|  | 785 | if (result != USB_STOR_XFER_GOOD) | 
|  | 786 | return result; | 
|  | 787 | MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; | 
|  | 788 | } | 
|  | 789 |  | 
|  | 790 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 791 | } | 
|  | 792 |  | 
|  | 793 | /* | 
|  | 794 | * Read data from a specific sector address | 
|  | 795 | */ | 
|  | 796 | static int alauda_read_data(struct us_data *us, unsigned long address, | 
|  | 797 | unsigned int sectors) | 
|  | 798 | { | 
|  | 799 | unsigned char *buffer; | 
|  | 800 | u16 lba, max_lba; | 
|  | 801 | unsigned int page, len, index, offset; | 
|  | 802 | unsigned int blockshift = MEDIA_INFO(us).blockshift; | 
|  | 803 | unsigned int pageshift = MEDIA_INFO(us).pageshift; | 
|  | 804 | unsigned int blocksize = MEDIA_INFO(us).blocksize; | 
|  | 805 | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  | 806 | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; | 
|  | 807 | int result; | 
|  | 808 |  | 
|  | 809 | /* | 
|  | 810 | * Since we only read in one block at a time, we have to create | 
|  | 811 | * a bounce buffer and move the data a piece at a time between the | 
|  | 812 | * bounce buffer and the actual transfer buffer. | 
|  | 813 | * We make this buffer big enough to hold temporary redundancy data, | 
|  | 814 | * which we use when reading the data blocks. | 
|  | 815 | */ | 
|  | 816 |  | 
|  | 817 | len = min(sectors, blocksize) * (pagesize + 64); | 
|  | 818 | buffer = kmalloc(len, GFP_NOIO); | 
|  | 819 | if (buffer == NULL) { | 
|  | 820 | printk("alauda_read_data: Out of memory\n"); | 
|  | 821 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 822 | } | 
|  | 823 |  | 
|  | 824 | /* Figure out the initial LBA and page */ | 
|  | 825 | lba = address >> blockshift; | 
|  | 826 | page = (address & MEDIA_INFO(us).blockmask); | 
|  | 827 | max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); | 
|  | 828 |  | 
|  | 829 | result = USB_STOR_TRANSPORT_GOOD; | 
|  | 830 | index = offset = 0; | 
|  | 831 |  | 
|  | 832 | while (sectors > 0) { | 
|  | 833 | unsigned int zone = lba / uzonesize; /* integer division */ | 
|  | 834 | unsigned int lba_offset = lba - (zone * uzonesize); | 
|  | 835 | unsigned int pages; | 
|  | 836 | u16 pba; | 
|  | 837 | alauda_ensure_map_for_zone(us, zone); | 
|  | 838 |  | 
|  | 839 | /* Not overflowing capacity? */ | 
|  | 840 | if (lba >= max_lba) { | 
|  | 841 | US_DEBUGP("Error: Requested lba %u exceeds " | 
|  | 842 | "maximum %u\n", lba, max_lba); | 
|  | 843 | result = USB_STOR_TRANSPORT_ERROR; | 
|  | 844 | break; | 
|  | 845 | } | 
|  | 846 |  | 
|  | 847 | /* Find number of pages we can read in this block */ | 
|  | 848 | pages = min(sectors, blocksize - page); | 
|  | 849 | len = pages << pageshift; | 
|  | 850 |  | 
|  | 851 | /* Find where this lba lives on disk */ | 
|  | 852 | pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; | 
|  | 853 |  | 
|  | 854 | if (pba == UNDEF) {	/* this lba was never written */ | 
|  | 855 | US_DEBUGP("Read %d zero pages (LBA %d) page %d\n", | 
|  | 856 | pages, lba, page); | 
|  | 857 |  | 
|  | 858 | /* This is not really an error. It just means | 
|  | 859 | that the block has never been written. | 
|  | 860 | Instead of returning USB_STOR_TRANSPORT_ERROR | 
|  | 861 | it is better to return all zero data. */ | 
|  | 862 |  | 
|  | 863 | memset(buffer, 0, len); | 
|  | 864 | } else { | 
|  | 865 | US_DEBUGP("Read %d pages, from PBA %d" | 
|  | 866 | " (LBA %d) page %d\n", | 
|  | 867 | pages, pba, lba, page); | 
|  | 868 |  | 
|  | 869 | result = alauda_read_block(us, pba, page, pages, buffer); | 
|  | 870 | if (result != USB_STOR_TRANSPORT_GOOD) | 
|  | 871 | break; | 
|  | 872 | } | 
|  | 873 |  | 
|  | 874 | /* Store the data in the transfer buffer */ | 
|  | 875 | usb_stor_access_xfer_buf(buffer, len, us->srb, | 
|  | 876 | &index, &offset, TO_XFER_BUF); | 
|  | 877 |  | 
|  | 878 | page = 0; | 
|  | 879 | lba++; | 
|  | 880 | sectors -= pages; | 
|  | 881 | } | 
|  | 882 |  | 
|  | 883 | kfree(buffer); | 
|  | 884 | return result; | 
|  | 885 | } | 
|  | 886 |  | 
|  | 887 | /* | 
|  | 888 | * Write data to a specific sector address | 
|  | 889 | */ | 
|  | 890 | static int alauda_write_data(struct us_data *us, unsigned long address, | 
|  | 891 | unsigned int sectors) | 
|  | 892 | { | 
|  | 893 | unsigned char *buffer, *blockbuffer; | 
|  | 894 | unsigned int page, len, index, offset; | 
|  | 895 | unsigned int blockshift = MEDIA_INFO(us).blockshift; | 
|  | 896 | unsigned int pageshift = MEDIA_INFO(us).pageshift; | 
|  | 897 | unsigned int blocksize = MEDIA_INFO(us).blocksize; | 
|  | 898 | unsigned int pagesize = MEDIA_INFO(us).pagesize; | 
|  | 899 | u16 lba, max_lba; | 
|  | 900 | int result; | 
|  | 901 |  | 
|  | 902 | /* | 
|  | 903 | * Since we don't write the user data directly to the device, | 
|  | 904 | * we have to create a bounce buffer and move the data a piece | 
|  | 905 | * at a time between the bounce buffer and the actual transfer buffer. | 
|  | 906 | */ | 
|  | 907 |  | 
|  | 908 | len = min(sectors, blocksize) * pagesize; | 
|  | 909 | buffer = kmalloc(len, GFP_NOIO); | 
|  | 910 | if (buffer == NULL) { | 
|  | 911 | printk("alauda_write_data: Out of memory\n"); | 
|  | 912 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 913 | } | 
|  | 914 |  | 
|  | 915 | /* | 
|  | 916 | * We also need a temporary block buffer, where we read in the old data, | 
|  | 917 | * overwrite parts with the new data, and manipulate the redundancy data | 
|  | 918 | */ | 
|  | 919 | blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO); | 
|  | 920 | if (blockbuffer == NULL) { | 
|  | 921 | printk("alauda_write_data: Out of memory\n"); | 
|  | 922 | kfree(buffer); | 
|  | 923 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 924 | } | 
|  | 925 |  | 
|  | 926 | /* Figure out the initial LBA and page */ | 
|  | 927 | lba = address >> blockshift; | 
|  | 928 | page = (address & MEDIA_INFO(us).blockmask); | 
|  | 929 | max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); | 
|  | 930 |  | 
|  | 931 | result = USB_STOR_TRANSPORT_GOOD; | 
|  | 932 | index = offset = 0; | 
|  | 933 |  | 
|  | 934 | while (sectors > 0) { | 
|  | 935 | /* Write as many sectors as possible in this block */ | 
|  | 936 | unsigned int pages = min(sectors, blocksize - page); | 
|  | 937 | len = pages << pageshift; | 
|  | 938 |  | 
|  | 939 | /* Not overflowing capacity? */ | 
|  | 940 | if (lba >= max_lba) { | 
|  | 941 | US_DEBUGP("alauda_write_data: Requested lba %u exceeds " | 
|  | 942 | "maximum %u\n", lba, max_lba); | 
|  | 943 | result = USB_STOR_TRANSPORT_ERROR; | 
|  | 944 | break; | 
|  | 945 | } | 
|  | 946 |  | 
|  | 947 | /* Get the data from the transfer buffer */ | 
|  | 948 | usb_stor_access_xfer_buf(buffer, len, us->srb, | 
|  | 949 | &index, &offset, FROM_XFER_BUF); | 
|  | 950 |  | 
|  | 951 | result = alauda_write_lba(us, lba, page, pages, buffer, | 
|  | 952 | blockbuffer); | 
|  | 953 | if (result != USB_STOR_TRANSPORT_GOOD) | 
|  | 954 | break; | 
|  | 955 |  | 
|  | 956 | page = 0; | 
|  | 957 | lba++; | 
|  | 958 | sectors -= pages; | 
|  | 959 | } | 
|  | 960 |  | 
|  | 961 | kfree(buffer); | 
|  | 962 | kfree(blockbuffer); | 
|  | 963 | return result; | 
|  | 964 | } | 
|  | 965 |  | 
|  | 966 | /* | 
|  | 967 | * Our interface with the rest of the world | 
|  | 968 | */ | 
|  | 969 |  | 
|  | 970 | static void alauda_info_destructor(void *extra) | 
|  | 971 | { | 
|  | 972 | struct alauda_info *info = (struct alauda_info *) extra; | 
|  | 973 | int port; | 
|  | 974 |  | 
|  | 975 | if (!info) | 
|  | 976 | return; | 
|  | 977 |  | 
|  | 978 | for (port = 0; port < 2; port++) { | 
|  | 979 | struct alauda_media_info *media_info = &info->port[port]; | 
|  | 980 |  | 
|  | 981 | alauda_free_maps(media_info); | 
|  | 982 | kfree(media_info->lba_to_pba); | 
|  | 983 | kfree(media_info->pba_to_lba); | 
|  | 984 | } | 
|  | 985 | } | 
|  | 986 |  | 
|  | 987 | /* | 
|  | 988 | * Initialize alauda_info struct and find the data-write endpoint | 
|  | 989 | */ | 
|  | 990 | int init_alauda(struct us_data *us) | 
|  | 991 | { | 
|  | 992 | struct alauda_info *info; | 
|  | 993 | struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; | 
|  | 994 | nand_init_ecc(); | 
|  | 995 |  | 
|  | 996 | us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); | 
|  | 997 | if (!us->extra) { | 
|  | 998 | US_DEBUGP("init_alauda: Gah! Can't allocate storage for" | 
|  | 999 | "alauda info struct!\n"); | 
|  | 1000 | return USB_STOR_TRANSPORT_ERROR; | 
|  | 1001 | } | 
|  | 1002 | info = (struct alauda_info *) us->extra; | 
|  | 1003 | us->extra_destructor = alauda_info_destructor; | 
|  | 1004 |  | 
|  | 1005 | info->wr_ep = usb_sndbulkpipe(us->pusb_dev, | 
|  | 1006 | altsetting->endpoint[0].desc.bEndpointAddress | 
|  | 1007 | & USB_ENDPOINT_NUMBER_MASK); | 
|  | 1008 |  | 
|  | 1009 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 1010 | } | 
|  | 1011 |  | 
|  | 1012 | int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) | 
|  | 1013 | { | 
|  | 1014 | int rc; | 
|  | 1015 | struct alauda_info *info = (struct alauda_info *) us->extra; | 
|  | 1016 | unsigned char *ptr = us->iobuf; | 
|  | 1017 | static unsigned char inquiry_response[36] = { | 
|  | 1018 | 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 | 
|  | 1019 | }; | 
|  | 1020 |  | 
|  | 1021 | if (srb->cmnd[0] == INQUIRY) { | 
|  | 1022 | US_DEBUGP("alauda_transport: INQUIRY. " | 
|  | 1023 | "Returning bogus response.\n"); | 
|  | 1024 | memcpy(ptr, inquiry_response, sizeof(inquiry_response)); | 
|  | 1025 | fill_inquiry_response(us, ptr, 36); | 
|  | 1026 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 1027 | } | 
|  | 1028 |  | 
|  | 1029 | if (srb->cmnd[0] == TEST_UNIT_READY) { | 
|  | 1030 | US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n"); | 
|  | 1031 | return alauda_check_media(us); | 
|  | 1032 | } | 
|  | 1033 |  | 
|  | 1034 | if (srb->cmnd[0] == READ_CAPACITY) { | 
|  | 1035 | unsigned int num_zones; | 
|  | 1036 | unsigned long capacity; | 
|  | 1037 |  | 
|  | 1038 | rc = alauda_check_media(us); | 
|  | 1039 | if (rc != USB_STOR_TRANSPORT_GOOD) | 
|  | 1040 | return rc; | 
|  | 1041 |  | 
|  | 1042 | num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift | 
|  | 1043 | + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); | 
|  | 1044 |  | 
|  | 1045 | capacity = num_zones * MEDIA_INFO(us).uzonesize | 
|  | 1046 | * MEDIA_INFO(us).blocksize; | 
|  | 1047 |  | 
|  | 1048 | /* Report capacity and page size */ | 
|  | 1049 | ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); | 
|  | 1050 | ((__be32 *) ptr)[1] = cpu_to_be32(512); | 
|  | 1051 |  | 
|  | 1052 | usb_stor_set_xfer_buf(ptr, 8, srb); | 
|  | 1053 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 1054 | } | 
|  | 1055 |  | 
|  | 1056 | if (srb->cmnd[0] == READ_10) { | 
|  | 1057 | unsigned int page, pages; | 
|  | 1058 |  | 
|  | 1059 | rc = alauda_check_media(us); | 
|  | 1060 | if (rc != USB_STOR_TRANSPORT_GOOD) | 
|  | 1061 | return rc; | 
|  | 1062 |  | 
|  | 1063 | page = short_pack(srb->cmnd[3], srb->cmnd[2]); | 
|  | 1064 | page <<= 16; | 
|  | 1065 | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); | 
|  | 1066 | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); | 
|  | 1067 |  | 
|  | 1068 | US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n", | 
|  | 1069 | page, pages); | 
|  | 1070 |  | 
|  | 1071 | return alauda_read_data(us, page, pages); | 
|  | 1072 | } | 
|  | 1073 |  | 
|  | 1074 | if (srb->cmnd[0] == WRITE_10) { | 
|  | 1075 | unsigned int page, pages; | 
|  | 1076 |  | 
|  | 1077 | rc = alauda_check_media(us); | 
|  | 1078 | if (rc != USB_STOR_TRANSPORT_GOOD) | 
|  | 1079 | return rc; | 
|  | 1080 |  | 
|  | 1081 | page = short_pack(srb->cmnd[3], srb->cmnd[2]); | 
|  | 1082 | page <<= 16; | 
|  | 1083 | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); | 
|  | 1084 | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); | 
|  | 1085 |  | 
|  | 1086 | US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n", | 
|  | 1087 | page, pages); | 
|  | 1088 |  | 
|  | 1089 | return alauda_write_data(us, page, pages); | 
|  | 1090 | } | 
|  | 1091 |  | 
|  | 1092 | if (srb->cmnd[0] == REQUEST_SENSE) { | 
|  | 1093 | US_DEBUGP("alauda_transport: REQUEST_SENSE.\n"); | 
|  | 1094 |  | 
|  | 1095 | memset(ptr, 0, 18); | 
|  | 1096 | ptr[0] = 0xF0; | 
|  | 1097 | ptr[2] = info->sense_key; | 
|  | 1098 | ptr[7] = 11; | 
|  | 1099 | ptr[12] = info->sense_asc; | 
|  | 1100 | ptr[13] = info->sense_ascq; | 
|  | 1101 | usb_stor_set_xfer_buf(ptr, 18, srb); | 
|  | 1102 |  | 
|  | 1103 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 1104 | } | 
|  | 1105 |  | 
|  | 1106 | if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { | 
|  | 1107 | /* sure.  whatever.  not like we can stop the user from popping | 
|  | 1108 | the media out of the device (no locking doors, etc) */ | 
|  | 1109 | return USB_STOR_TRANSPORT_GOOD; | 
|  | 1110 | } | 
|  | 1111 |  | 
|  | 1112 | US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n", | 
|  | 1113 | srb->cmnd[0], srb->cmnd[0]); | 
|  | 1114 | info->sense_key = 0x05; | 
|  | 1115 | info->sense_asc = 0x20; | 
|  | 1116 | info->sense_ascq = 0x00; | 
|  | 1117 | return USB_STOR_TRANSPORT_FAILED; | 
|  | 1118 | } | 
|  | 1119 |  |