| Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 1 | /* gf128mul.c - GF(2^128) multiplication functions | 
 | 2 |  * | 
 | 3 |  * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. | 
 | 4 |  * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> | 
 | 5 |  * | 
 | 6 |  * Based on Dr Brian Gladman's (GPL'd) work published at | 
| Adrian-Ken Rueegsegger | 8c882f6 | 2009-03-04 14:43:52 +0800 | [diff] [blame] | 7 |  * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php | 
| Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 8 |  * See the original copyright notice below. | 
 | 9 |  * | 
 | 10 |  * This program is free software; you can redistribute it and/or modify it | 
 | 11 |  * under the terms of the GNU General Public License as published by the Free | 
 | 12 |  * Software Foundation; either version 2 of the License, or (at your option) | 
 | 13 |  * any later version. | 
 | 14 |  */ | 
 | 15 |  | 
 | 16 | /* | 
 | 17 |  --------------------------------------------------------------------------- | 
 | 18 |  Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved. | 
 | 19 |  | 
 | 20 |  LICENSE TERMS | 
 | 21 |  | 
 | 22 |  The free distribution and use of this software in both source and binary | 
 | 23 |  form is allowed (with or without changes) provided that: | 
 | 24 |  | 
 | 25 |    1. distributions of this source code include the above copyright | 
 | 26 |       notice, this list of conditions and the following disclaimer; | 
 | 27 |  | 
 | 28 |    2. distributions in binary form include the above copyright | 
 | 29 |       notice, this list of conditions and the following disclaimer | 
 | 30 |       in the documentation and/or other associated materials; | 
 | 31 |  | 
 | 32 |    3. the copyright holder's name is not used to endorse products | 
 | 33 |       built using this software without specific written permission. | 
 | 34 |  | 
 | 35 |  ALTERNATIVELY, provided that this notice is retained in full, this product | 
 | 36 |  may be distributed under the terms of the GNU General Public License (GPL), | 
 | 37 |  in which case the provisions of the GPL apply INSTEAD OF those given above. | 
 | 38 |  | 
 | 39 |  DISCLAIMER | 
 | 40 |  | 
 | 41 |  This software is provided 'as is' with no explicit or implied warranties | 
 | 42 |  in respect of its properties, including, but not limited to, correctness | 
 | 43 |  and/or fitness for purpose. | 
 | 44 |  --------------------------------------------------------------------------- | 
 | 45 |  Issue 31/01/2006 | 
 | 46 |  | 
 | 47 |  This file provides fast multiplication in GF(128) as required by several | 
 | 48 |  cryptographic authentication modes | 
 | 49 | */ | 
 | 50 |  | 
 | 51 | #include <crypto/gf128mul.h> | 
 | 52 | #include <linux/kernel.h> | 
 | 53 | #include <linux/module.h> | 
 | 54 | #include <linux/slab.h> | 
 | 55 |  | 
 | 56 | #define gf128mul_dat(q) { \ | 
 | 57 | 	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ | 
 | 58 | 	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ | 
 | 59 | 	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ | 
 | 60 | 	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ | 
 | 61 | 	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ | 
 | 62 | 	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ | 
 | 63 | 	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ | 
 | 64 | 	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ | 
 | 65 | 	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ | 
 | 66 | 	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ | 
 | 67 | 	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ | 
 | 68 | 	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ | 
 | 69 | 	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ | 
 | 70 | 	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ | 
 | 71 | 	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ | 
 | 72 | 	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ | 
 | 73 | 	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ | 
 | 74 | 	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ | 
 | 75 | 	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ | 
 | 76 | 	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ | 
 | 77 | 	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ | 
 | 78 | 	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ | 
 | 79 | 	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ | 
 | 80 | 	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ | 
 | 81 | 	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ | 
 | 82 | 	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ | 
 | 83 | 	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ | 
 | 84 | 	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ | 
 | 85 | 	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ | 
 | 86 | 	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ | 
 | 87 | 	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ | 
 | 88 | 	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ | 
 | 89 | } | 
 | 90 |  | 
 | 91 | /*	Given the value i in 0..255 as the byte overflow when a field element | 
 | 92 |     in GHASH is multipled by x^8, this function will return the values that | 
 | 93 |     are generated in the lo 16-bit word of the field value by applying the | 
 | 94 |     modular polynomial. The values lo_byte and hi_byte are returned via the | 
 | 95 |     macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into | 
 | 96 |     memory as required by a suitable definition of this macro operating on | 
 | 97 |     the table above | 
 | 98 | */ | 
 | 99 |  | 
 | 100 | #define xx(p, q)	0x##p##q | 
 | 101 |  | 
 | 102 | #define xda_bbe(i) ( \ | 
 | 103 | 	(i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \ | 
 | 104 | 	(i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \ | 
 | 105 | 	(i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \ | 
 | 106 | 	(i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \ | 
 | 107 | ) | 
 | 108 |  | 
 | 109 | #define xda_lle(i) ( \ | 
 | 110 | 	(i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \ | 
 | 111 | 	(i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \ | 
 | 112 | 	(i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \ | 
 | 113 | 	(i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \ | 
 | 114 | ) | 
 | 115 |  | 
 | 116 | static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle); | 
 | 117 | static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe); | 
 | 118 |  | 
 | 119 | /* These functions multiply a field element by x, by x^4 and by x^8 | 
 | 120 |  * in the polynomial field representation. It uses 32-bit word operations | 
 | 121 |  * to gain speed but compensates for machine endianess and hence works | 
 | 122 |  * correctly on both styles of machine. | 
 | 123 |  */ | 
 | 124 |  | 
 | 125 | static void gf128mul_x_lle(be128 *r, const be128 *x) | 
 | 126 | { | 
 | 127 | 	u64 a = be64_to_cpu(x->a); | 
 | 128 | 	u64 b = be64_to_cpu(x->b); | 
 | 129 | 	u64 _tt = gf128mul_table_lle[(b << 7) & 0xff]; | 
 | 130 |  | 
 | 131 | 	r->b = cpu_to_be64((b >> 1) | (a << 63)); | 
 | 132 | 	r->a = cpu_to_be64((a >> 1) ^ (_tt << 48)); | 
 | 133 | } | 
 | 134 |  | 
 | 135 | static void gf128mul_x_bbe(be128 *r, const be128 *x) | 
 | 136 | { | 
 | 137 | 	u64 a = be64_to_cpu(x->a); | 
 | 138 | 	u64 b = be64_to_cpu(x->b); | 
 | 139 | 	u64 _tt = gf128mul_table_bbe[a >> 63]; | 
 | 140 |  | 
 | 141 | 	r->a = cpu_to_be64((a << 1) | (b >> 63)); | 
 | 142 | 	r->b = cpu_to_be64((b << 1) ^ _tt); | 
 | 143 | } | 
 | 144 |  | 
| Rik Snel | f19f511 | 2007-09-19 20:23:13 +0800 | [diff] [blame] | 145 | void gf128mul_x_ble(be128 *r, const be128 *x) | 
 | 146 | { | 
 | 147 | 	u64 a = le64_to_cpu(x->a); | 
 | 148 | 	u64 b = le64_to_cpu(x->b); | 
 | 149 | 	u64 _tt = gf128mul_table_bbe[b >> 63]; | 
 | 150 |  | 
 | 151 | 	r->a = cpu_to_le64((a << 1) ^ _tt); | 
 | 152 | 	r->b = cpu_to_le64((b << 1) | (a >> 63)); | 
 | 153 | } | 
 | 154 | EXPORT_SYMBOL(gf128mul_x_ble); | 
 | 155 |  | 
| Rik Snel | c494e07 | 2006-11-29 18:59:44 +1100 | [diff] [blame] | 156 | static void gf128mul_x8_lle(be128 *x) | 
 | 157 | { | 
 | 158 | 	u64 a = be64_to_cpu(x->a); | 
 | 159 | 	u64 b = be64_to_cpu(x->b); | 
 | 160 | 	u64 _tt = gf128mul_table_lle[b & 0xff]; | 
 | 161 |  | 
 | 162 | 	x->b = cpu_to_be64((b >> 8) | (a << 56)); | 
 | 163 | 	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); | 
 | 164 | } | 
 | 165 |  | 
 | 166 | static void gf128mul_x8_bbe(be128 *x) | 
 | 167 | { | 
 | 168 | 	u64 a = be64_to_cpu(x->a); | 
 | 169 | 	u64 b = be64_to_cpu(x->b); | 
 | 170 | 	u64 _tt = gf128mul_table_bbe[a >> 56]; | 
 | 171 |  | 
 | 172 | 	x->a = cpu_to_be64((a << 8) | (b >> 56)); | 
 | 173 | 	x->b = cpu_to_be64((b << 8) ^ _tt); | 
 | 174 | } | 
 | 175 |  | 
 | 176 | void gf128mul_lle(be128 *r, const be128 *b) | 
 | 177 | { | 
 | 178 | 	be128 p[8]; | 
 | 179 | 	int i; | 
 | 180 |  | 
 | 181 | 	p[0] = *r; | 
 | 182 | 	for (i = 0; i < 7; ++i) | 
 | 183 | 		gf128mul_x_lle(&p[i + 1], &p[i]); | 
 | 184 |  | 
 | 185 | 	memset(r, 0, sizeof(r)); | 
 | 186 | 	for (i = 0;;) { | 
 | 187 | 		u8 ch = ((u8 *)b)[15 - i]; | 
 | 188 |  | 
 | 189 | 		if (ch & 0x80) | 
 | 190 | 			be128_xor(r, r, &p[0]); | 
 | 191 | 		if (ch & 0x40) | 
 | 192 | 			be128_xor(r, r, &p[1]); | 
 | 193 | 		if (ch & 0x20) | 
 | 194 | 			be128_xor(r, r, &p[2]); | 
 | 195 | 		if (ch & 0x10) | 
 | 196 | 			be128_xor(r, r, &p[3]); | 
 | 197 | 		if (ch & 0x08) | 
 | 198 | 			be128_xor(r, r, &p[4]); | 
 | 199 | 		if (ch & 0x04) | 
 | 200 | 			be128_xor(r, r, &p[5]); | 
 | 201 | 		if (ch & 0x02) | 
 | 202 | 			be128_xor(r, r, &p[6]); | 
 | 203 | 		if (ch & 0x01) | 
 | 204 | 			be128_xor(r, r, &p[7]); | 
 | 205 |  | 
 | 206 | 		if (++i >= 16) | 
 | 207 | 			break; | 
 | 208 |  | 
 | 209 | 		gf128mul_x8_lle(r); | 
 | 210 | 	} | 
 | 211 | } | 
 | 212 | EXPORT_SYMBOL(gf128mul_lle); | 
 | 213 |  | 
 | 214 | void gf128mul_bbe(be128 *r, const be128 *b) | 
 | 215 | { | 
 | 216 | 	be128 p[8]; | 
 | 217 | 	int i; | 
 | 218 |  | 
 | 219 | 	p[0] = *r; | 
 | 220 | 	for (i = 0; i < 7; ++i) | 
 | 221 | 		gf128mul_x_bbe(&p[i + 1], &p[i]); | 
 | 222 |  | 
 | 223 | 	memset(r, 0, sizeof(r)); | 
 | 224 | 	for (i = 0;;) { | 
 | 225 | 		u8 ch = ((u8 *)b)[i]; | 
 | 226 |  | 
 | 227 | 		if (ch & 0x80) | 
 | 228 | 			be128_xor(r, r, &p[7]); | 
 | 229 | 		if (ch & 0x40) | 
 | 230 | 			be128_xor(r, r, &p[6]); | 
 | 231 | 		if (ch & 0x20) | 
 | 232 | 			be128_xor(r, r, &p[5]); | 
 | 233 | 		if (ch & 0x10) | 
 | 234 | 			be128_xor(r, r, &p[4]); | 
 | 235 | 		if (ch & 0x08) | 
 | 236 | 			be128_xor(r, r, &p[3]); | 
 | 237 | 		if (ch & 0x04) | 
 | 238 | 			be128_xor(r, r, &p[2]); | 
 | 239 | 		if (ch & 0x02) | 
 | 240 | 			be128_xor(r, r, &p[1]); | 
 | 241 | 		if (ch & 0x01) | 
 | 242 | 			be128_xor(r, r, &p[0]); | 
 | 243 |  | 
 | 244 | 		if (++i >= 16) | 
 | 245 | 			break; | 
 | 246 |  | 
 | 247 | 		gf128mul_x8_bbe(r); | 
 | 248 | 	} | 
 | 249 | } | 
 | 250 | EXPORT_SYMBOL(gf128mul_bbe); | 
 | 251 |  | 
 | 252 | /*      This version uses 64k bytes of table space. | 
 | 253 |     A 16 byte buffer has to be multiplied by a 16 byte key | 
 | 254 |     value in GF(128).  If we consider a GF(128) value in | 
 | 255 |     the buffer's lowest byte, we can construct a table of | 
 | 256 |     the 256 16 byte values that result from the 256 values | 
 | 257 |     of this byte.  This requires 4096 bytes. But we also | 
 | 258 |     need tables for each of the 16 higher bytes in the | 
 | 259 |     buffer as well, which makes 64 kbytes in total. | 
 | 260 | */ | 
 | 261 | /* additional explanation | 
 | 262 |  * t[0][BYTE] contains g*BYTE | 
 | 263 |  * t[1][BYTE] contains g*x^8*BYTE | 
 | 264 |  *  .. | 
 | 265 |  * t[15][BYTE] contains g*x^120*BYTE */ | 
 | 266 | struct gf128mul_64k *gf128mul_init_64k_lle(const be128 *g) | 
 | 267 | { | 
 | 268 | 	struct gf128mul_64k *t; | 
 | 269 | 	int i, j, k; | 
 | 270 |  | 
 | 271 | 	t = kzalloc(sizeof(*t), GFP_KERNEL); | 
 | 272 | 	if (!t) | 
 | 273 | 		goto out; | 
 | 274 |  | 
 | 275 | 	for (i = 0; i < 16; i++) { | 
 | 276 | 		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | 
 | 277 | 		if (!t->t[i]) { | 
 | 278 | 			gf128mul_free_64k(t); | 
 | 279 | 			t = NULL; | 
 | 280 | 			goto out; | 
 | 281 | 		} | 
 | 282 | 	} | 
 | 283 |  | 
 | 284 | 	t->t[0]->t[128] = *g; | 
 | 285 | 	for (j = 64; j > 0; j >>= 1) | 
 | 286 | 		gf128mul_x_lle(&t->t[0]->t[j], &t->t[0]->t[j + j]); | 
 | 287 |  | 
 | 288 | 	for (i = 0;;) { | 
 | 289 | 		for (j = 2; j < 256; j += j) | 
 | 290 | 			for (k = 1; k < j; ++k) | 
 | 291 | 				be128_xor(&t->t[i]->t[j + k], | 
 | 292 | 					  &t->t[i]->t[j], &t->t[i]->t[k]); | 
 | 293 |  | 
 | 294 | 		if (++i >= 16) | 
 | 295 | 			break; | 
 | 296 |  | 
 | 297 | 		for (j = 128; j > 0; j >>= 1) { | 
 | 298 | 			t->t[i]->t[j] = t->t[i - 1]->t[j]; | 
 | 299 | 			gf128mul_x8_lle(&t->t[i]->t[j]); | 
 | 300 | 		} | 
 | 301 | 	} | 
 | 302 |  | 
 | 303 | out: | 
 | 304 | 	return t; | 
 | 305 | } | 
 | 306 | EXPORT_SYMBOL(gf128mul_init_64k_lle); | 
 | 307 |  | 
 | 308 | struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) | 
 | 309 | { | 
 | 310 | 	struct gf128mul_64k *t; | 
 | 311 | 	int i, j, k; | 
 | 312 |  | 
 | 313 | 	t = kzalloc(sizeof(*t), GFP_KERNEL); | 
 | 314 | 	if (!t) | 
 | 315 | 		goto out; | 
 | 316 |  | 
 | 317 | 	for (i = 0; i < 16; i++) { | 
 | 318 | 		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); | 
 | 319 | 		if (!t->t[i]) { | 
 | 320 | 			gf128mul_free_64k(t); | 
 | 321 | 			t = NULL; | 
 | 322 | 			goto out; | 
 | 323 | 		} | 
 | 324 | 	} | 
 | 325 |  | 
 | 326 | 	t->t[0]->t[1] = *g; | 
 | 327 | 	for (j = 1; j <= 64; j <<= 1) | 
 | 328 | 		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); | 
 | 329 |  | 
 | 330 | 	for (i = 0;;) { | 
 | 331 | 		for (j = 2; j < 256; j += j) | 
 | 332 | 			for (k = 1; k < j; ++k) | 
 | 333 | 				be128_xor(&t->t[i]->t[j + k], | 
 | 334 | 					  &t->t[i]->t[j], &t->t[i]->t[k]); | 
 | 335 |  | 
 | 336 | 		if (++i >= 16) | 
 | 337 | 			break; | 
 | 338 |  | 
 | 339 | 		for (j = 128; j > 0; j >>= 1) { | 
 | 340 | 			t->t[i]->t[j] = t->t[i - 1]->t[j]; | 
 | 341 | 			gf128mul_x8_bbe(&t->t[i]->t[j]); | 
 | 342 | 		} | 
 | 343 | 	} | 
 | 344 |  | 
 | 345 | out: | 
 | 346 | 	return t; | 
 | 347 | } | 
 | 348 | EXPORT_SYMBOL(gf128mul_init_64k_bbe); | 
 | 349 |  | 
 | 350 | void gf128mul_free_64k(struct gf128mul_64k *t) | 
 | 351 | { | 
 | 352 | 	int i; | 
 | 353 |  | 
 | 354 | 	for (i = 0; i < 16; i++) | 
 | 355 | 		kfree(t->t[i]); | 
 | 356 | 	kfree(t); | 
 | 357 | } | 
 | 358 | EXPORT_SYMBOL(gf128mul_free_64k); | 
 | 359 |  | 
 | 360 | void gf128mul_64k_lle(be128 *a, struct gf128mul_64k *t) | 
 | 361 | { | 
 | 362 | 	u8 *ap = (u8 *)a; | 
 | 363 | 	be128 r[1]; | 
 | 364 | 	int i; | 
 | 365 |  | 
 | 366 | 	*r = t->t[0]->t[ap[0]]; | 
 | 367 | 	for (i = 1; i < 16; ++i) | 
 | 368 | 		be128_xor(r, r, &t->t[i]->t[ap[i]]); | 
 | 369 | 	*a = *r; | 
 | 370 | } | 
 | 371 | EXPORT_SYMBOL(gf128mul_64k_lle); | 
 | 372 |  | 
 | 373 | void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t) | 
 | 374 | { | 
 | 375 | 	u8 *ap = (u8 *)a; | 
 | 376 | 	be128 r[1]; | 
 | 377 | 	int i; | 
 | 378 |  | 
 | 379 | 	*r = t->t[0]->t[ap[15]]; | 
 | 380 | 	for (i = 1; i < 16; ++i) | 
 | 381 | 		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); | 
 | 382 | 	*a = *r; | 
 | 383 | } | 
 | 384 | EXPORT_SYMBOL(gf128mul_64k_bbe); | 
 | 385 |  | 
 | 386 | /*      This version uses 4k bytes of table space. | 
 | 387 |     A 16 byte buffer has to be multiplied by a 16 byte key | 
 | 388 |     value in GF(128).  If we consider a GF(128) value in a | 
 | 389 |     single byte, we can construct a table of the 256 16 byte | 
 | 390 |     values that result from the 256 values of this byte. | 
 | 391 |     This requires 4096 bytes. If we take the highest byte in | 
 | 392 |     the buffer and use this table to get the result, we then | 
 | 393 |     have to multiply by x^120 to get the final value. For the | 
 | 394 |     next highest byte the result has to be multiplied by x^112 | 
 | 395 |     and so on. But we can do this by accumulating the result | 
 | 396 |     in an accumulator starting with the result for the top | 
 | 397 |     byte.  We repeatedly multiply the accumulator value by | 
 | 398 |     x^8 and then add in (i.e. xor) the 16 bytes of the next | 
 | 399 |     lower byte in the buffer, stopping when we reach the | 
 | 400 |     lowest byte. This requires a 4096 byte table. | 
 | 401 | */ | 
 | 402 | struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) | 
 | 403 | { | 
 | 404 | 	struct gf128mul_4k *t; | 
 | 405 | 	int j, k; | 
 | 406 |  | 
 | 407 | 	t = kzalloc(sizeof(*t), GFP_KERNEL); | 
 | 408 | 	if (!t) | 
 | 409 | 		goto out; | 
 | 410 |  | 
 | 411 | 	t->t[128] = *g; | 
 | 412 | 	for (j = 64; j > 0; j >>= 1) | 
 | 413 | 		gf128mul_x_lle(&t->t[j], &t->t[j+j]); | 
 | 414 |  | 
 | 415 | 	for (j = 2; j < 256; j += j) | 
 | 416 | 		for (k = 1; k < j; ++k) | 
 | 417 | 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | 
 | 418 |  | 
 | 419 | out: | 
 | 420 | 	return t; | 
 | 421 | } | 
 | 422 | EXPORT_SYMBOL(gf128mul_init_4k_lle); | 
 | 423 |  | 
 | 424 | struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) | 
 | 425 | { | 
 | 426 | 	struct gf128mul_4k *t; | 
 | 427 | 	int j, k; | 
 | 428 |  | 
 | 429 | 	t = kzalloc(sizeof(*t), GFP_KERNEL); | 
 | 430 | 	if (!t) | 
 | 431 | 		goto out; | 
 | 432 |  | 
 | 433 | 	t->t[1] = *g; | 
 | 434 | 	for (j = 1; j <= 64; j <<= 1) | 
 | 435 | 		gf128mul_x_bbe(&t->t[j + j], &t->t[j]); | 
 | 436 |  | 
 | 437 | 	for (j = 2; j < 256; j += j) | 
 | 438 | 		for (k = 1; k < j; ++k) | 
 | 439 | 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); | 
 | 440 |  | 
 | 441 | out: | 
 | 442 | 	return t; | 
 | 443 | } | 
 | 444 | EXPORT_SYMBOL(gf128mul_init_4k_bbe); | 
 | 445 |  | 
 | 446 | void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t) | 
 | 447 | { | 
 | 448 | 	u8 *ap = (u8 *)a; | 
 | 449 | 	be128 r[1]; | 
 | 450 | 	int i = 15; | 
 | 451 |  | 
 | 452 | 	*r = t->t[ap[15]]; | 
 | 453 | 	while (i--) { | 
 | 454 | 		gf128mul_x8_lle(r); | 
 | 455 | 		be128_xor(r, r, &t->t[ap[i]]); | 
 | 456 | 	} | 
 | 457 | 	*a = *r; | 
 | 458 | } | 
 | 459 | EXPORT_SYMBOL(gf128mul_4k_lle); | 
 | 460 |  | 
 | 461 | void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t) | 
 | 462 | { | 
 | 463 | 	u8 *ap = (u8 *)a; | 
 | 464 | 	be128 r[1]; | 
 | 465 | 	int i = 0; | 
 | 466 |  | 
 | 467 | 	*r = t->t[ap[0]]; | 
 | 468 | 	while (++i < 16) { | 
 | 469 | 		gf128mul_x8_bbe(r); | 
 | 470 | 		be128_xor(r, r, &t->t[ap[i]]); | 
 | 471 | 	} | 
 | 472 | 	*a = *r; | 
 | 473 | } | 
 | 474 | EXPORT_SYMBOL(gf128mul_4k_bbe); | 
 | 475 |  | 
 | 476 | MODULE_LICENSE("GPL"); | 
 | 477 | MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)"); |