| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Architecture-specific unaligned trap handling. | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co | 
|  | 5 | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | 6 | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | 7 | * | 
|  | 8 | * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix | 
|  | 9 | *		get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame | 
|  | 10 | *		stacked register returns an undefined value; it does NOT trigger a | 
|  | 11 | *		"rsvd register fault"). | 
|  | 12 | * 2001/10/11	Fix unaligned access to rotating registers in s/w pipelined loops. | 
|  | 13 | * 2001/08/13	Correct size of extended floats (float_fsz) from 16 to 10 bytes. | 
|  | 14 | * 2001/01/17	Add support emulation of unaligned kernel accesses. | 
|  | 15 | */ | 
| S.Caglar Onur | 5cf1f7c | 2008-03-28 14:27:05 -0700 | [diff] [blame] | 16 | #include <linux/jiffies.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 17 | #include <linux/kernel.h> | 
|  | 18 | #include <linux/sched.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 19 | #include <linux/tty.h> | 
|  | 20 |  | 
|  | 21 | #include <asm/intrinsics.h> | 
|  | 22 | #include <asm/processor.h> | 
|  | 23 | #include <asm/rse.h> | 
|  | 24 | #include <asm/uaccess.h> | 
|  | 25 | #include <asm/unaligned.h> | 
|  | 26 |  | 
| Jan Beulich | 620de2f | 2008-02-04 23:43:03 -0800 | [diff] [blame] | 27 | extern int die_if_kernel(char *str, struct pt_regs *regs, long err); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 28 |  | 
|  | 29 | #undef DEBUG_UNALIGNED_TRAP | 
|  | 30 |  | 
|  | 31 | #ifdef DEBUG_UNALIGNED_TRAP | 
| Harvey Harrison | d4ed808 | 2008-03-04 15:15:00 -0800 | [diff] [blame] | 32 | # define DPRINT(a...)	do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 33 | # define DDUMP(str,vp,len)	dump(str, vp, len) | 
|  | 34 |  | 
|  | 35 | static void | 
|  | 36 | dump (const char *str, void *vp, size_t len) | 
|  | 37 | { | 
|  | 38 | unsigned char *cp = vp; | 
|  | 39 | int i; | 
|  | 40 |  | 
|  | 41 | printk("%s", str); | 
|  | 42 | for (i = 0; i < len; ++i) | 
|  | 43 | printk (" %02x", *cp++); | 
|  | 44 | printk("\n"); | 
|  | 45 | } | 
|  | 46 | #else | 
|  | 47 | # define DPRINT(a...) | 
|  | 48 | # define DDUMP(str,vp,len) | 
|  | 49 | #endif | 
|  | 50 |  | 
|  | 51 | #define IA64_FIRST_STACKED_GR	32 | 
|  | 52 | #define IA64_FIRST_ROTATING_FR	32 | 
|  | 53 | #define SIGN_EXT9		0xffffffffffffff00ul | 
|  | 54 |  | 
|  | 55 | /* | 
| Jes Sorensen | d2b176e | 2006-02-28 09:42:23 -0800 | [diff] [blame] | 56 | *  sysctl settable hook which tells the kernel whether to honor the | 
|  | 57 | *  IA64_THREAD_UAC_NOPRINT prctl.  Because this is user settable, we want | 
|  | 58 | *  to allow the super user to enable/disable this for security reasons | 
|  | 59 | *  (i.e. don't allow attacker to fill up logs with unaligned accesses). | 
|  | 60 | */ | 
|  | 61 | int no_unaligned_warning; | 
| Doug Chapman | 88fc241 | 2009-01-15 10:38:56 -0800 | [diff] [blame] | 62 | int unaligned_dump_stack; | 
| Jes Sorensen | d2b176e | 2006-02-28 09:42:23 -0800 | [diff] [blame] | 63 | static int noprint_warning; | 
|  | 64 |  | 
|  | 65 | /* | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 66 | * For M-unit: | 
|  | 67 | * | 
|  | 68 | *  opcode |   m  |   x6    | | 
|  | 69 | * --------|------|---------| | 
|  | 70 | * [40-37] | [36] | [35:30] | | 
|  | 71 | * --------|------|---------| | 
|  | 72 | *     4   |   1  |    6    | = 11 bits | 
|  | 73 | * -------------------------- | 
|  | 74 | * However bits [31:30] are not directly useful to distinguish between | 
|  | 75 | * load/store so we can use [35:32] instead, which gives the following | 
|  | 76 | * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer | 
|  | 77 | * checking the m-bit until later in the load/store emulation. | 
|  | 78 | */ | 
|  | 79 | #define IA64_OPCODE_MASK	0x1ef | 
|  | 80 | #define IA64_OPCODE_SHIFT	32 | 
|  | 81 |  | 
|  | 82 | /* | 
|  | 83 | * Table C-28 Integer Load/Store | 
|  | 84 | * | 
|  | 85 | * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF | 
|  | 86 | * | 
|  | 87 | * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on | 
|  | 88 | * the address (bits [8:3]), so we must failed. | 
|  | 89 | */ | 
|  | 90 | #define LD_OP            0x080 | 
|  | 91 | #define LDS_OP           0x081 | 
|  | 92 | #define LDA_OP           0x082 | 
|  | 93 | #define LDSA_OP          0x083 | 
|  | 94 | #define LDBIAS_OP        0x084 | 
|  | 95 | #define LDACQ_OP         0x085 | 
|  | 96 | /* 0x086, 0x087 are not relevant */ | 
|  | 97 | #define LDCCLR_OP        0x088 | 
|  | 98 | #define LDCNC_OP         0x089 | 
|  | 99 | #define LDCCLRACQ_OP     0x08a | 
|  | 100 | #define ST_OP            0x08c | 
|  | 101 | #define STREL_OP         0x08d | 
|  | 102 | /* 0x08e,0x8f are not relevant */ | 
|  | 103 |  | 
|  | 104 | /* | 
|  | 105 | * Table C-29 Integer Load +Reg | 
|  | 106 | * | 
|  | 107 | * we use the ld->m (bit [36:36]) field to determine whether or not we have | 
|  | 108 | * a load/store of this form. | 
|  | 109 | */ | 
|  | 110 |  | 
|  | 111 | /* | 
|  | 112 | * Table C-30 Integer Load/Store +Imm | 
|  | 113 | * | 
|  | 114 | * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF | 
|  | 115 | * | 
|  | 116 | * ld8.fill, st8.fill  must be aligned because the Nat register are based on | 
|  | 117 | * the address, so we must fail and the program must be fixed. | 
|  | 118 | */ | 
|  | 119 | #define LD_IMM_OP            0x0a0 | 
|  | 120 | #define LDS_IMM_OP           0x0a1 | 
|  | 121 | #define LDA_IMM_OP           0x0a2 | 
|  | 122 | #define LDSA_IMM_OP          0x0a3 | 
|  | 123 | #define LDBIAS_IMM_OP        0x0a4 | 
|  | 124 | #define LDACQ_IMM_OP         0x0a5 | 
|  | 125 | /* 0x0a6, 0xa7 are not relevant */ | 
|  | 126 | #define LDCCLR_IMM_OP        0x0a8 | 
|  | 127 | #define LDCNC_IMM_OP         0x0a9 | 
|  | 128 | #define LDCCLRACQ_IMM_OP     0x0aa | 
|  | 129 | #define ST_IMM_OP            0x0ac | 
|  | 130 | #define STREL_IMM_OP         0x0ad | 
|  | 131 | /* 0x0ae,0xaf are not relevant */ | 
|  | 132 |  | 
|  | 133 | /* | 
|  | 134 | * Table C-32 Floating-point Load/Store | 
|  | 135 | */ | 
|  | 136 | #define LDF_OP           0x0c0 | 
|  | 137 | #define LDFS_OP          0x0c1 | 
|  | 138 | #define LDFA_OP          0x0c2 | 
|  | 139 | #define LDFSA_OP         0x0c3 | 
|  | 140 | /* 0x0c6 is irrelevant */ | 
|  | 141 | #define LDFCCLR_OP       0x0c8 | 
|  | 142 | #define LDFCNC_OP        0x0c9 | 
|  | 143 | /* 0x0cb is irrelevant  */ | 
|  | 144 | #define STF_OP           0x0cc | 
|  | 145 |  | 
|  | 146 | /* | 
|  | 147 | * Table C-33 Floating-point Load +Reg | 
|  | 148 | * | 
|  | 149 | * we use the ld->m (bit [36:36]) field to determine whether or not we have | 
|  | 150 | * a load/store of this form. | 
|  | 151 | */ | 
|  | 152 |  | 
|  | 153 | /* | 
|  | 154 | * Table C-34 Floating-point Load/Store +Imm | 
|  | 155 | */ | 
|  | 156 | #define LDF_IMM_OP       0x0e0 | 
|  | 157 | #define LDFS_IMM_OP      0x0e1 | 
|  | 158 | #define LDFA_IMM_OP      0x0e2 | 
|  | 159 | #define LDFSA_IMM_OP     0x0e3 | 
|  | 160 | /* 0x0e6 is irrelevant */ | 
|  | 161 | #define LDFCCLR_IMM_OP   0x0e8 | 
|  | 162 | #define LDFCNC_IMM_OP    0x0e9 | 
|  | 163 | #define STF_IMM_OP       0x0ec | 
|  | 164 |  | 
|  | 165 | typedef struct { | 
|  | 166 | unsigned long	 qp:6;	/* [0:5]   */ | 
|  | 167 | unsigned long    r1:7;	/* [6:12]  */ | 
|  | 168 | unsigned long   imm:7;	/* [13:19] */ | 
|  | 169 | unsigned long    r3:7;	/* [20:26] */ | 
|  | 170 | unsigned long     x:1;  /* [27:27] */ | 
|  | 171 | unsigned long  hint:2;	/* [28:29] */ | 
|  | 172 | unsigned long x6_sz:2;	/* [30:31] */ | 
|  | 173 | unsigned long x6_op:4;	/* [32:35], x6 = x6_sz|x6_op */ | 
|  | 174 | unsigned long     m:1;	/* [36:36] */ | 
|  | 175 | unsigned long    op:4;	/* [37:40] */ | 
|  | 176 | unsigned long   pad:23; /* [41:63] */ | 
|  | 177 | } load_store_t; | 
|  | 178 |  | 
|  | 179 |  | 
|  | 180 | typedef enum { | 
|  | 181 | UPD_IMMEDIATE,	/* ldXZ r1=[r3],imm(9) */ | 
|  | 182 | UPD_REG		/* ldXZ r1=[r3],r2     */ | 
|  | 183 | } update_t; | 
|  | 184 |  | 
|  | 185 | /* | 
|  | 186 | * We use tables to keep track of the offsets of registers in the saved state. | 
|  | 187 | * This way we save having big switch/case statements. | 
|  | 188 | * | 
|  | 189 | * We use bit 0 to indicate switch_stack or pt_regs. | 
|  | 190 | * The offset is simply shifted by 1 bit. | 
|  | 191 | * A 2-byte value should be enough to hold any kind of offset | 
|  | 192 | * | 
|  | 193 | * In case the calling convention changes (and thus pt_regs/switch_stack) | 
|  | 194 | * simply use RSW instead of RPT or vice-versa. | 
|  | 195 | */ | 
|  | 196 |  | 
|  | 197 | #define RPO(x)	((size_t) &((struct pt_regs *)0)->x) | 
|  | 198 | #define RSO(x)	((size_t) &((struct switch_stack *)0)->x) | 
|  | 199 |  | 
|  | 200 | #define RPT(x)		(RPO(x) << 1) | 
|  | 201 | #define RSW(x)		(1| RSO(x)<<1) | 
|  | 202 |  | 
|  | 203 | #define GR_OFFS(x)	(gr_info[x]>>1) | 
|  | 204 | #define GR_IN_SW(x)	(gr_info[x] & 0x1) | 
|  | 205 |  | 
|  | 206 | #define FR_OFFS(x)	(fr_info[x]>>1) | 
|  | 207 | #define FR_IN_SW(x)	(fr_info[x] & 0x1) | 
|  | 208 |  | 
|  | 209 | static u16 gr_info[32]={ | 
|  | 210 | 0,			/* r0 is read-only : WE SHOULD NEVER GET THIS */ | 
|  | 211 |  | 
|  | 212 | RPT(r1), RPT(r2), RPT(r3), | 
|  | 213 |  | 
|  | 214 | RSW(r4), RSW(r5), RSW(r6), RSW(r7), | 
|  | 215 |  | 
|  | 216 | RPT(r8), RPT(r9), RPT(r10), RPT(r11), | 
|  | 217 | RPT(r12), RPT(r13), RPT(r14), RPT(r15), | 
|  | 218 |  | 
|  | 219 | RPT(r16), RPT(r17), RPT(r18), RPT(r19), | 
|  | 220 | RPT(r20), RPT(r21), RPT(r22), RPT(r23), | 
|  | 221 | RPT(r24), RPT(r25), RPT(r26), RPT(r27), | 
|  | 222 | RPT(r28), RPT(r29), RPT(r30), RPT(r31) | 
|  | 223 | }; | 
|  | 224 |  | 
|  | 225 | static u16 fr_info[32]={ | 
|  | 226 | 0,			/* constant : WE SHOULD NEVER GET THIS */ | 
|  | 227 | 0,			/* constant : WE SHOULD NEVER GET THIS */ | 
|  | 228 |  | 
|  | 229 | RSW(f2), RSW(f3), RSW(f4), RSW(f5), | 
|  | 230 |  | 
|  | 231 | RPT(f6), RPT(f7), RPT(f8), RPT(f9), | 
|  | 232 | RPT(f10), RPT(f11), | 
|  | 233 |  | 
|  | 234 | RSW(f12), RSW(f13), RSW(f14), | 
|  | 235 | RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), | 
|  | 236 | RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), | 
|  | 237 | RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), | 
|  | 238 | RSW(f30), RSW(f31) | 
|  | 239 | }; | 
|  | 240 |  | 
|  | 241 | /* Invalidate ALAT entry for integer register REGNO.  */ | 
|  | 242 | static void | 
|  | 243 | invala_gr (int regno) | 
|  | 244 | { | 
|  | 245 | #	define F(reg)	case reg: ia64_invala_gr(reg); break | 
|  | 246 |  | 
|  | 247 | switch (regno) { | 
|  | 248 | F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7); | 
|  | 249 | F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); | 
|  | 250 | F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); | 
|  | 251 | F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); | 
|  | 252 | F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); | 
|  | 253 | F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); | 
|  | 254 | F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); | 
|  | 255 | F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); | 
|  | 256 | F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); | 
|  | 257 | F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); | 
|  | 258 | F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); | 
|  | 259 | F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); | 
|  | 260 | F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); | 
|  | 261 | F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); | 
|  | 262 | F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); | 
|  | 263 | F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); | 
|  | 264 | } | 
|  | 265 | #	undef F | 
|  | 266 | } | 
|  | 267 |  | 
|  | 268 | /* Invalidate ALAT entry for floating-point register REGNO.  */ | 
|  | 269 | static void | 
|  | 270 | invala_fr (int regno) | 
|  | 271 | { | 
|  | 272 | #	define F(reg)	case reg: ia64_invala_fr(reg); break | 
|  | 273 |  | 
|  | 274 | switch (regno) { | 
|  | 275 | F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7); | 
|  | 276 | F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); | 
|  | 277 | F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); | 
|  | 278 | F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); | 
|  | 279 | F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); | 
|  | 280 | F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); | 
|  | 281 | F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); | 
|  | 282 | F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); | 
|  | 283 | F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); | 
|  | 284 | F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); | 
|  | 285 | F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); | 
|  | 286 | F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); | 
|  | 287 | F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); | 
|  | 288 | F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); | 
|  | 289 | F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); | 
|  | 290 | F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); | 
|  | 291 | } | 
|  | 292 | #	undef F | 
|  | 293 | } | 
|  | 294 |  | 
|  | 295 | static inline unsigned long | 
|  | 296 | rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg) | 
|  | 297 | { | 
|  | 298 | reg += rrb; | 
|  | 299 | if (reg >= sor) | 
|  | 300 | reg -= sor; | 
|  | 301 | return reg; | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | static void | 
|  | 305 | set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) | 
|  | 306 | { | 
|  | 307 | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | 308 | unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end; | 
|  | 309 | unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; | 
|  | 310 | unsigned long rnats, nat_mask; | 
|  | 311 | unsigned long on_kbs; | 
|  | 312 | long sof = (regs->cr_ifs) & 0x7f; | 
|  | 313 | long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); | 
|  | 314 | long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; | 
|  | 315 | long ridx = r1 - 32; | 
|  | 316 |  | 
|  | 317 | if (ridx >= sof) { | 
|  | 318 | /* this should never happen, as the "rsvd register fault" has higher priority */ | 
|  | 319 | DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof); | 
|  | 320 | return; | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | if (ridx < sor) | 
|  | 324 | ridx = rotate_reg(sor, rrb_gr, ridx); | 
|  | 325 |  | 
|  | 326 | DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", | 
|  | 327 | r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); | 
|  | 328 |  | 
|  | 329 | on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); | 
|  | 330 | addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); | 
|  | 331 | if (addr >= kbs) { | 
|  | 332 | /* the register is on the kernel backing store: easy... */ | 
|  | 333 | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  | 334 | if ((unsigned long) rnat_addr >= sw->ar_bspstore) | 
|  | 335 | rnat_addr = &sw->ar_rnat; | 
|  | 336 | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  | 337 |  | 
|  | 338 | *addr = val; | 
|  | 339 | if (nat) | 
|  | 340 | *rnat_addr |=  nat_mask; | 
|  | 341 | else | 
|  | 342 | *rnat_addr &= ~nat_mask; | 
|  | 343 | return; | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | if (!user_stack(current, regs)) { | 
|  | 347 | DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1); | 
|  | 348 | return; | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 | bspstore = (unsigned long *)regs->ar_bspstore; | 
|  | 352 | ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); | 
|  | 353 | bsp     = ia64_rse_skip_regs(ubs_end, -sof); | 
|  | 354 | addr    = ia64_rse_skip_regs(bsp, ridx); | 
|  | 355 |  | 
|  | 356 | DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); | 
|  | 357 |  | 
|  | 358 | ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); | 
|  | 359 |  | 
|  | 360 | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  | 361 |  | 
|  | 362 | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); | 
|  | 363 | DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n", | 
|  | 364 | (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1); | 
|  | 365 |  | 
|  | 366 | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  | 367 | if (nat) | 
|  | 368 | rnats |=  nat_mask; | 
|  | 369 | else | 
|  | 370 | rnats &= ~nat_mask; | 
|  | 371 | ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats); | 
|  | 372 |  | 
|  | 373 | DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats); | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 |  | 
|  | 377 | static void | 
|  | 378 | get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) | 
|  | 379 | { | 
|  | 380 | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | 381 | unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore; | 
|  | 382 | unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; | 
|  | 383 | unsigned long rnats, nat_mask; | 
|  | 384 | unsigned long on_kbs; | 
|  | 385 | long sof = (regs->cr_ifs) & 0x7f; | 
|  | 386 | long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); | 
|  | 387 | long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; | 
|  | 388 | long ridx = r1 - 32; | 
|  | 389 |  | 
|  | 390 | if (ridx >= sof) { | 
|  | 391 | /* read of out-of-frame register returns an undefined value; 0 in our case.  */ | 
|  | 392 | DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof); | 
|  | 393 | goto fail; | 
|  | 394 | } | 
|  | 395 |  | 
|  | 396 | if (ridx < sor) | 
|  | 397 | ridx = rotate_reg(sor, rrb_gr, ridx); | 
|  | 398 |  | 
|  | 399 | DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", | 
|  | 400 | r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); | 
|  | 401 |  | 
|  | 402 | on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); | 
|  | 403 | addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); | 
|  | 404 | if (addr >= kbs) { | 
|  | 405 | /* the register is on the kernel backing store: easy... */ | 
|  | 406 | *val = *addr; | 
|  | 407 | if (nat) { | 
|  | 408 | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  | 409 | if ((unsigned long) rnat_addr >= sw->ar_bspstore) | 
|  | 410 | rnat_addr = &sw->ar_rnat; | 
|  | 411 | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  | 412 | *nat = (*rnat_addr & nat_mask) != 0; | 
|  | 413 | } | 
|  | 414 | return; | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | if (!user_stack(current, regs)) { | 
|  | 418 | DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1); | 
|  | 419 | goto fail; | 
|  | 420 | } | 
|  | 421 |  | 
|  | 422 | bspstore = (unsigned long *)regs->ar_bspstore; | 
|  | 423 | ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); | 
|  | 424 | bsp     = ia64_rse_skip_regs(ubs_end, -sof); | 
|  | 425 | addr    = ia64_rse_skip_regs(bsp, ridx); | 
|  | 426 |  | 
|  | 427 | DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); | 
|  | 428 |  | 
|  | 429 | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); | 
|  | 430 |  | 
|  | 431 | if (nat) { | 
|  | 432 | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  | 433 | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  | 434 |  | 
|  | 435 | DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats); | 
|  | 436 |  | 
|  | 437 | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); | 
|  | 438 | *nat = (rnats & nat_mask) != 0; | 
|  | 439 | } | 
|  | 440 | return; | 
|  | 441 |  | 
|  | 442 | fail: | 
|  | 443 | *val = 0; | 
|  | 444 | if (nat) | 
|  | 445 | *nat = 0; | 
|  | 446 | return; | 
|  | 447 | } | 
|  | 448 |  | 
|  | 449 |  | 
|  | 450 | static void | 
|  | 451 | setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) | 
|  | 452 | { | 
|  | 453 | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | 454 | unsigned long addr; | 
|  | 455 | unsigned long bitmask; | 
|  | 456 | unsigned long *unat; | 
|  | 457 |  | 
|  | 458 | /* | 
|  | 459 | * First takes care of stacked registers | 
|  | 460 | */ | 
|  | 461 | if (regnum >= IA64_FIRST_STACKED_GR) { | 
|  | 462 | set_rse_reg(regs, regnum, val, nat); | 
|  | 463 | return; | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | /* | 
|  | 467 | * Using r0 as a target raises a General Exception fault which has higher priority | 
|  | 468 | * than the Unaligned Reference fault. | 
|  | 469 | */ | 
|  | 470 |  | 
|  | 471 | /* | 
|  | 472 | * Now look at registers in [0-31] range and init correct UNAT | 
|  | 473 | */ | 
|  | 474 | if (GR_IN_SW(regnum)) { | 
|  | 475 | addr = (unsigned long)sw; | 
|  | 476 | unat = &sw->ar_unat; | 
|  | 477 | } else { | 
|  | 478 | addr = (unsigned long)regs; | 
|  | 479 | unat = &sw->caller_unat; | 
|  | 480 | } | 
|  | 481 | DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n", | 
|  | 482 | addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum)); | 
|  | 483 | /* | 
|  | 484 | * add offset from base of struct | 
|  | 485 | * and do it ! | 
|  | 486 | */ | 
|  | 487 | addr += GR_OFFS(regnum); | 
|  | 488 |  | 
|  | 489 | *(unsigned long *)addr = val; | 
|  | 490 |  | 
|  | 491 | /* | 
|  | 492 | * We need to clear the corresponding UNAT bit to fully emulate the load | 
|  | 493 | * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 | 
|  | 494 | */ | 
|  | 495 | bitmask   = 1UL << (addr >> 3 & 0x3f); | 
|  | 496 | DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat); | 
|  | 497 | if (nat) { | 
|  | 498 | *unat |= bitmask; | 
|  | 499 | } else { | 
|  | 500 | *unat &= ~bitmask; | 
|  | 501 | } | 
|  | 502 | DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat); | 
|  | 503 | } | 
|  | 504 |  | 
|  | 505 | /* | 
|  | 506 | * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the | 
|  | 507 | * range from 32-127, result is in the range from 0-95. | 
|  | 508 | */ | 
|  | 509 | static inline unsigned long | 
|  | 510 | fph_index (struct pt_regs *regs, long regnum) | 
|  | 511 | { | 
|  | 512 | unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f; | 
|  | 513 | return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR)); | 
|  | 514 | } | 
|  | 515 |  | 
|  | 516 | static void | 
|  | 517 | setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) | 
|  | 518 | { | 
|  | 519 | struct switch_stack *sw = (struct switch_stack *)regs - 1; | 
|  | 520 | unsigned long addr; | 
|  | 521 |  | 
|  | 522 | /* | 
|  | 523 | * From EAS-2.5: FPDisableFault has higher priority than Unaligned | 
|  | 524 | * Fault. Thus, when we get here, we know the partition is enabled. | 
|  | 525 | * To update f32-f127, there are three choices: | 
|  | 526 | * | 
|  | 527 | *	(1) save f32-f127 to thread.fph and update the values there | 
|  | 528 | *	(2) use a gigantic switch statement to directly access the registers | 
|  | 529 | *	(3) generate code on the fly to update the desired register | 
|  | 530 | * | 
|  | 531 | * For now, we are using approach (1). | 
|  | 532 | */ | 
|  | 533 | if (regnum >= IA64_FIRST_ROTATING_FR) { | 
|  | 534 | ia64_sync_fph(current); | 
|  | 535 | current->thread.fph[fph_index(regs, regnum)] = *fpval; | 
|  | 536 | } else { | 
|  | 537 | /* | 
|  | 538 | * pt_regs or switch_stack ? | 
|  | 539 | */ | 
|  | 540 | if (FR_IN_SW(regnum)) { | 
|  | 541 | addr = (unsigned long)sw; | 
|  | 542 | } else { | 
|  | 543 | addr = (unsigned long)regs; | 
|  | 544 | } | 
|  | 545 |  | 
|  | 546 | DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum)); | 
|  | 547 |  | 
|  | 548 | addr += FR_OFFS(regnum); | 
|  | 549 | *(struct ia64_fpreg *)addr = *fpval; | 
|  | 550 |  | 
|  | 551 | /* | 
|  | 552 | * mark the low partition as being used now | 
|  | 553 | * | 
|  | 554 | * It is highly unlikely that this bit is not already set, but | 
|  | 555 | * let's do it for safety. | 
|  | 556 | */ | 
|  | 557 | regs->cr_ipsr |= IA64_PSR_MFL; | 
|  | 558 | } | 
|  | 559 | } | 
|  | 560 |  | 
|  | 561 | /* | 
|  | 562 | * Those 2 inline functions generate the spilled versions of the constant floating point | 
|  | 563 | * registers which can be used with stfX | 
|  | 564 | */ | 
|  | 565 | static inline void | 
|  | 566 | float_spill_f0 (struct ia64_fpreg *final) | 
|  | 567 | { | 
|  | 568 | ia64_stf_spill(final, 0); | 
|  | 569 | } | 
|  | 570 |  | 
|  | 571 | static inline void | 
|  | 572 | float_spill_f1 (struct ia64_fpreg *final) | 
|  | 573 | { | 
|  | 574 | ia64_stf_spill(final, 1); | 
|  | 575 | } | 
|  | 576 |  | 
|  | 577 | static void | 
|  | 578 | getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) | 
|  | 579 | { | 
|  | 580 | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | 581 | unsigned long addr; | 
|  | 582 |  | 
|  | 583 | /* | 
|  | 584 | * From EAS-2.5: FPDisableFault has higher priority than | 
|  | 585 | * Unaligned Fault. Thus, when we get here, we know the partition is | 
|  | 586 | * enabled. | 
|  | 587 | * | 
|  | 588 | * When regnum > 31, the register is still live and we need to force a save | 
|  | 589 | * to current->thread.fph to get access to it.  See discussion in setfpreg() | 
|  | 590 | * for reasons and other ways of doing this. | 
|  | 591 | */ | 
|  | 592 | if (regnum >= IA64_FIRST_ROTATING_FR) { | 
|  | 593 | ia64_flush_fph(current); | 
|  | 594 | *fpval = current->thread.fph[fph_index(regs, regnum)]; | 
|  | 595 | } else { | 
|  | 596 | /* | 
|  | 597 | * f0 = 0.0, f1= 1.0. Those registers are constant and are thus | 
|  | 598 | * not saved, we must generate their spilled form on the fly | 
|  | 599 | */ | 
|  | 600 | switch(regnum) { | 
|  | 601 | case 0: | 
|  | 602 | float_spill_f0(fpval); | 
|  | 603 | break; | 
|  | 604 | case 1: | 
|  | 605 | float_spill_f1(fpval); | 
|  | 606 | break; | 
|  | 607 | default: | 
|  | 608 | /* | 
|  | 609 | * pt_regs or switch_stack ? | 
|  | 610 | */ | 
|  | 611 | addr =  FR_IN_SW(regnum) ? (unsigned long)sw | 
|  | 612 | : (unsigned long)regs; | 
|  | 613 |  | 
|  | 614 | DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n", | 
|  | 615 | FR_IN_SW(regnum), addr, FR_OFFS(regnum)); | 
|  | 616 |  | 
|  | 617 | addr  += FR_OFFS(regnum); | 
|  | 618 | *fpval = *(struct ia64_fpreg *)addr; | 
|  | 619 | } | 
|  | 620 | } | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 |  | 
|  | 624 | static void | 
|  | 625 | getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) | 
|  | 626 | { | 
|  | 627 | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | 628 | unsigned long addr, *unat; | 
|  | 629 |  | 
|  | 630 | if (regnum >= IA64_FIRST_STACKED_GR) { | 
|  | 631 | get_rse_reg(regs, regnum, val, nat); | 
|  | 632 | return; | 
|  | 633 | } | 
|  | 634 |  | 
|  | 635 | /* | 
|  | 636 | * take care of r0 (read-only always evaluate to 0) | 
|  | 637 | */ | 
|  | 638 | if (regnum == 0) { | 
|  | 639 | *val = 0; | 
|  | 640 | if (nat) | 
|  | 641 | *nat = 0; | 
|  | 642 | return; | 
|  | 643 | } | 
|  | 644 |  | 
|  | 645 | /* | 
|  | 646 | * Now look at registers in [0-31] range and init correct UNAT | 
|  | 647 | */ | 
|  | 648 | if (GR_IN_SW(regnum)) { | 
|  | 649 | addr = (unsigned long)sw; | 
|  | 650 | unat = &sw->ar_unat; | 
|  | 651 | } else { | 
|  | 652 | addr = (unsigned long)regs; | 
|  | 653 | unat = &sw->caller_unat; | 
|  | 654 | } | 
|  | 655 |  | 
|  | 656 | DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum)); | 
|  | 657 |  | 
|  | 658 | addr += GR_OFFS(regnum); | 
|  | 659 |  | 
|  | 660 | *val  = *(unsigned long *)addr; | 
|  | 661 |  | 
|  | 662 | /* | 
|  | 663 | * do it only when requested | 
|  | 664 | */ | 
|  | 665 | if (nat) | 
|  | 666 | *nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; | 
|  | 667 | } | 
|  | 668 |  | 
|  | 669 | static void | 
|  | 670 | emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa) | 
|  | 671 | { | 
|  | 672 | /* | 
|  | 673 | * IMPORTANT: | 
|  | 674 | * Given the way we handle unaligned speculative loads, we should | 
|  | 675 | * not get to this point in the code but we keep this sanity check, | 
|  | 676 | * just in case. | 
|  | 677 | */ | 
|  | 678 | if (ld.x6_op == 1 || ld.x6_op == 3) { | 
| Harvey Harrison | d4ed808 | 2008-03-04 15:15:00 -0800 | [diff] [blame] | 679 | printk(KERN_ERR "%s: register update on speculative load, error\n", __func__); | 
| Jan Beulich | 620de2f | 2008-02-04 23:43:03 -0800 | [diff] [blame] | 680 | if (die_if_kernel("unaligned reference on speculative load with register update\n", | 
|  | 681 | regs, 30)) | 
|  | 682 | return; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 683 | } | 
|  | 684 |  | 
|  | 685 |  | 
|  | 686 | /* | 
|  | 687 | * at this point, we know that the base register to update is valid i.e., | 
|  | 688 | * it's not r0 | 
|  | 689 | */ | 
|  | 690 | if (type == UPD_IMMEDIATE) { | 
|  | 691 | unsigned long imm; | 
|  | 692 |  | 
|  | 693 | /* | 
|  | 694 | * Load +Imm: ldXZ r1=[r3],imm(9) | 
|  | 695 | * | 
|  | 696 | * | 
|  | 697 | * form imm9: [13:19] contain the first 7 bits | 
|  | 698 | */ | 
|  | 699 | imm = ld.x << 7 | ld.imm; | 
|  | 700 |  | 
|  | 701 | /* | 
|  | 702 | * sign extend (1+8bits) if m set | 
|  | 703 | */ | 
|  | 704 | if (ld.m) imm |= SIGN_EXT9; | 
|  | 705 |  | 
|  | 706 | /* | 
|  | 707 | * ifa == r3 and we know that the NaT bit on r3 was clear so | 
|  | 708 | * we can directly use ifa. | 
|  | 709 | */ | 
|  | 710 | ifa += imm; | 
|  | 711 |  | 
|  | 712 | setreg(ld.r3, ifa, 0, regs); | 
|  | 713 |  | 
|  | 714 | DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa); | 
|  | 715 |  | 
|  | 716 | } else if (ld.m) { | 
|  | 717 | unsigned long r2; | 
|  | 718 | int nat_r2; | 
|  | 719 |  | 
|  | 720 | /* | 
|  | 721 | * Load +Reg Opcode: ldXZ r1=[r3],r2 | 
|  | 722 | * | 
|  | 723 | * Note: that we update r3 even in the case of ldfX.a | 
|  | 724 | * (where the load does not happen) | 
|  | 725 | * | 
|  | 726 | * The way the load algorithm works, we know that r3 does not | 
|  | 727 | * have its NaT bit set (would have gotten NaT consumption | 
|  | 728 | * before getting the unaligned fault). So we can use ifa | 
|  | 729 | * which equals r3 at this point. | 
|  | 730 | * | 
|  | 731 | * IMPORTANT: | 
|  | 732 | * The above statement holds ONLY because we know that we | 
|  | 733 | * never reach this code when trying to do a ldX.s. | 
|  | 734 | * If we ever make it to here on an ldfX.s then | 
|  | 735 | */ | 
|  | 736 | getreg(ld.imm, &r2, &nat_r2, regs); | 
|  | 737 |  | 
|  | 738 | ifa += r2; | 
|  | 739 |  | 
|  | 740 | /* | 
|  | 741 | * propagate Nat r2 -> r3 | 
|  | 742 | */ | 
|  | 743 | setreg(ld.r3, ifa, nat_r2, regs); | 
|  | 744 |  | 
|  | 745 | DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2); | 
|  | 746 | } | 
|  | 747 | } | 
|  | 748 |  | 
|  | 749 |  | 
|  | 750 | static int | 
|  | 751 | emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | 752 | { | 
|  | 753 | unsigned int len = 1 << ld.x6_sz; | 
|  | 754 | unsigned long val = 0; | 
|  | 755 |  | 
|  | 756 | /* | 
|  | 757 | * r0, as target, doesn't need to be checked because Illegal Instruction | 
|  | 758 | * faults have higher priority than unaligned faults. | 
|  | 759 | * | 
|  | 760 | * r0 cannot be found as the base as it would never generate an | 
|  | 761 | * unaligned reference. | 
|  | 762 | */ | 
|  | 763 |  | 
|  | 764 | /* | 
|  | 765 | * ldX.a we will emulate load and also invalidate the ALAT entry. | 
|  | 766 | * See comment below for explanation on how we handle ldX.a | 
|  | 767 | */ | 
|  | 768 |  | 
|  | 769 | if (len != 2 && len != 4 && len != 8) { | 
|  | 770 | DPRINT("unknown size: x6=%d\n", ld.x6_sz); | 
|  | 771 | return -1; | 
|  | 772 | } | 
|  | 773 | /* this assumes little-endian byte-order: */ | 
|  | 774 | if (copy_from_user(&val, (void __user *) ifa, len)) | 
|  | 775 | return -1; | 
|  | 776 | setreg(ld.r1, val, 0, regs); | 
|  | 777 |  | 
|  | 778 | /* | 
|  | 779 | * check for updates on any kind of loads | 
|  | 780 | */ | 
|  | 781 | if (ld.op == 0x5 || ld.m) | 
|  | 782 | emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); | 
|  | 783 |  | 
|  | 784 | /* | 
|  | 785 | * handling of various loads (based on EAS2.4): | 
|  | 786 | * | 
|  | 787 | * ldX.acq (ordered load): | 
|  | 788 | *	- acquire semantics would have been used, so force fence instead. | 
|  | 789 | * | 
|  | 790 | * ldX.c.clr (check load and clear): | 
|  | 791 | *	- if we get to this handler, it's because the entry was not in the ALAT. | 
|  | 792 | *	  Therefore the operation reverts to a normal load | 
|  | 793 | * | 
|  | 794 | * ldX.c.nc (check load no clear): | 
|  | 795 | *	- same as previous one | 
|  | 796 | * | 
|  | 797 | * ldX.c.clr.acq (ordered check load and clear): | 
|  | 798 | *	- same as above for c.clr part. The load needs to have acquire semantics. So | 
|  | 799 | *	  we use the fence semantics which is stronger and thus ensures correctness. | 
|  | 800 | * | 
|  | 801 | * ldX.a (advanced load): | 
|  | 802 | *	- suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the | 
|  | 803 | *	  address doesn't match requested size alignment. This means that we would | 
|  | 804 | *	  possibly need more than one load to get the result. | 
|  | 805 | * | 
|  | 806 | *	  The load part can be handled just like a normal load, however the difficult | 
|  | 807 | *	  part is to get the right thing into the ALAT. The critical piece of information | 
|  | 808 | *	  in the base address of the load & size. To do that, a ld.a must be executed, | 
|  | 809 | *	  clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now | 
|  | 810 | *	  if we use the same target register, we will be okay for the check.a instruction. | 
|  | 811 | *	  If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry | 
|  | 812 | *	  which would overlap within [r3,r3+X] (the size of the load was store in the | 
|  | 813 | *	  ALAT). If such an entry is found the entry is invalidated. But this is not good | 
|  | 814 | *	  enough, take the following example: | 
|  | 815 | *		r3=3 | 
|  | 816 | *		ld4.a r1=[r3] | 
|  | 817 | * | 
|  | 818 | *	  Could be emulated by doing: | 
|  | 819 | *		ld1.a r1=[r3],1 | 
|  | 820 | *		store to temporary; | 
|  | 821 | *		ld1.a r1=[r3],1 | 
|  | 822 | *		store & shift to temporary; | 
|  | 823 | *		ld1.a r1=[r3],1 | 
|  | 824 | *		store & shift to temporary; | 
|  | 825 | *		ld1.a r1=[r3] | 
|  | 826 | *		store & shift to temporary; | 
|  | 827 | *		r1=temporary | 
|  | 828 | * | 
|  | 829 | *	  So in this case, you would get the right value is r1 but the wrong info in | 
|  | 830 | *	  the ALAT.  Notice that you could do it in reverse to finish with address 3 | 
|  | 831 | *	  but you would still get the size wrong.  To get the size right, one needs to | 
|  | 832 | *	  execute exactly the same kind of load. You could do it from a aligned | 
|  | 833 | *	  temporary location, but you would get the address wrong. | 
|  | 834 | * | 
|  | 835 | *	  So no matter what, it is not possible to emulate an advanced load | 
|  | 836 | *	  correctly. But is that really critical ? | 
|  | 837 | * | 
|  | 838 | *	  We will always convert ld.a into a normal load with ALAT invalidated.  This | 
|  | 839 | *	  will enable compiler to do optimization where certain code path after ld.a | 
|  | 840 | *	  is not required to have ld.c/chk.a, e.g., code path with no intervening stores. | 
|  | 841 | * | 
|  | 842 | *	  If there is a store after the advanced load, one must either do a ld.c.* or | 
|  | 843 | *	  chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no | 
|  | 844 | *	  entry found in ALAT), and that's perfectly ok because: | 
|  | 845 | * | 
|  | 846 | *		- ld.c.*, if the entry is not present a  normal load is executed | 
|  | 847 | *		- chk.a.*, if the entry is not present, execution jumps to recovery code | 
|  | 848 | * | 
|  | 849 | *	  In either case, the load can be potentially retried in another form. | 
|  | 850 | * | 
|  | 851 | *	  ALAT must be invalidated for the register (so that chk.a or ld.c don't pick | 
|  | 852 | *	  up a stale entry later). The register base update MUST also be performed. | 
|  | 853 | */ | 
|  | 854 |  | 
|  | 855 | /* | 
|  | 856 | * when the load has the .acq completer then | 
|  | 857 | * use ordering fence. | 
|  | 858 | */ | 
|  | 859 | if (ld.x6_op == 0x5 || ld.x6_op == 0xa) | 
|  | 860 | mb(); | 
|  | 861 |  | 
|  | 862 | /* | 
|  | 863 | * invalidate ALAT entry in case of advanced load | 
|  | 864 | */ | 
|  | 865 | if (ld.x6_op == 0x2) | 
|  | 866 | invala_gr(ld.r1); | 
|  | 867 |  | 
|  | 868 | return 0; | 
|  | 869 | } | 
|  | 870 |  | 
|  | 871 | static int | 
|  | 872 | emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | 873 | { | 
|  | 874 | unsigned long r2; | 
|  | 875 | unsigned int len = 1 << ld.x6_sz; | 
|  | 876 |  | 
|  | 877 | /* | 
|  | 878 | * if we get to this handler, Nat bits on both r3 and r2 have already | 
|  | 879 | * been checked. so we don't need to do it | 
|  | 880 | * | 
|  | 881 | * extract the value to be stored | 
|  | 882 | */ | 
|  | 883 | getreg(ld.imm, &r2, NULL, regs); | 
|  | 884 |  | 
|  | 885 | /* | 
|  | 886 | * we rely on the macros in unaligned.h for now i.e., | 
|  | 887 | * we let the compiler figure out how to read memory gracefully. | 
|  | 888 | * | 
|  | 889 | * We need this switch/case because the way the inline function | 
|  | 890 | * works. The code is optimized by the compiler and looks like | 
|  | 891 | * a single switch/case. | 
|  | 892 | */ | 
|  | 893 | DPRINT("st%d [%lx]=%lx\n", len, ifa, r2); | 
|  | 894 |  | 
|  | 895 | if (len != 2 && len != 4 && len != 8) { | 
|  | 896 | DPRINT("unknown size: x6=%d\n", ld.x6_sz); | 
|  | 897 | return -1; | 
|  | 898 | } | 
|  | 899 |  | 
|  | 900 | /* this assumes little-endian byte-order: */ | 
|  | 901 | if (copy_to_user((void __user *) ifa, &r2, len)) | 
|  | 902 | return -1; | 
|  | 903 |  | 
|  | 904 | /* | 
|  | 905 | * stX [r3]=r2,imm(9) | 
|  | 906 | * | 
|  | 907 | * NOTE: | 
|  | 908 | * ld.r3 can never be r0, because r0 would not generate an | 
|  | 909 | * unaligned access. | 
|  | 910 | */ | 
|  | 911 | if (ld.op == 0x5) { | 
|  | 912 | unsigned long imm; | 
|  | 913 |  | 
|  | 914 | /* | 
|  | 915 | * form imm9: [12:6] contain first 7bits | 
|  | 916 | */ | 
|  | 917 | imm = ld.x << 7 | ld.r1; | 
|  | 918 | /* | 
|  | 919 | * sign extend (8bits) if m set | 
|  | 920 | */ | 
|  | 921 | if (ld.m) imm |= SIGN_EXT9; | 
|  | 922 | /* | 
|  | 923 | * ifa == r3 (NaT is necessarily cleared) | 
|  | 924 | */ | 
|  | 925 | ifa += imm; | 
|  | 926 |  | 
|  | 927 | DPRINT("imm=%lx r3=%lx\n", imm, ifa); | 
|  | 928 |  | 
|  | 929 | setreg(ld.r3, ifa, 0, regs); | 
|  | 930 | } | 
|  | 931 | /* | 
|  | 932 | * we don't have alat_invalidate_multiple() so we need | 
|  | 933 | * to do the complete flush :-<< | 
|  | 934 | */ | 
|  | 935 | ia64_invala(); | 
|  | 936 |  | 
|  | 937 | /* | 
|  | 938 | * stX.rel: use fence instead of release | 
|  | 939 | */ | 
|  | 940 | if (ld.x6_op == 0xd) | 
|  | 941 | mb(); | 
|  | 942 |  | 
|  | 943 | return 0; | 
|  | 944 | } | 
|  | 945 |  | 
|  | 946 | /* | 
|  | 947 | * floating point operations sizes in bytes | 
|  | 948 | */ | 
|  | 949 | static const unsigned char float_fsz[4]={ | 
|  | 950 | 10, /* extended precision (e) */ | 
|  | 951 | 8,  /* integer (8)            */ | 
|  | 952 | 4,  /* single precision (s)   */ | 
|  | 953 | 8   /* double precision (d)   */ | 
|  | 954 | }; | 
|  | 955 |  | 
|  | 956 | static inline void | 
|  | 957 | mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 958 | { | 
|  | 959 | ia64_ldfe(6, init); | 
|  | 960 | ia64_stop(); | 
|  | 961 | ia64_stf_spill(final, 6); | 
|  | 962 | } | 
|  | 963 |  | 
|  | 964 | static inline void | 
|  | 965 | mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 966 | { | 
|  | 967 | ia64_ldf8(6, init); | 
|  | 968 | ia64_stop(); | 
|  | 969 | ia64_stf_spill(final, 6); | 
|  | 970 | } | 
|  | 971 |  | 
|  | 972 | static inline void | 
|  | 973 | mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 974 | { | 
|  | 975 | ia64_ldfs(6, init); | 
|  | 976 | ia64_stop(); | 
|  | 977 | ia64_stf_spill(final, 6); | 
|  | 978 | } | 
|  | 979 |  | 
|  | 980 | static inline void | 
|  | 981 | mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 982 | { | 
|  | 983 | ia64_ldfd(6, init); | 
|  | 984 | ia64_stop(); | 
|  | 985 | ia64_stf_spill(final, 6); | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | static inline void | 
|  | 989 | float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 990 | { | 
|  | 991 | ia64_ldf_fill(6, init); | 
|  | 992 | ia64_stop(); | 
|  | 993 | ia64_stfe(final, 6); | 
|  | 994 | } | 
|  | 995 |  | 
|  | 996 | static inline void | 
|  | 997 | float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 998 | { | 
|  | 999 | ia64_ldf_fill(6, init); | 
|  | 1000 | ia64_stop(); | 
|  | 1001 | ia64_stf8(final, 6); | 
|  | 1002 | } | 
|  | 1003 |  | 
|  | 1004 | static inline void | 
|  | 1005 | float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 1006 | { | 
|  | 1007 | ia64_ldf_fill(6, init); | 
|  | 1008 | ia64_stop(); | 
|  | 1009 | ia64_stfs(final, 6); | 
|  | 1010 | } | 
|  | 1011 |  | 
|  | 1012 | static inline void | 
|  | 1013 | float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | 1014 | { | 
|  | 1015 | ia64_ldf_fill(6, init); | 
|  | 1016 | ia64_stop(); | 
|  | 1017 | ia64_stfd(final, 6); | 
|  | 1018 | } | 
|  | 1019 |  | 
|  | 1020 | static int | 
|  | 1021 | emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | 1022 | { | 
|  | 1023 | struct ia64_fpreg fpr_init[2]; | 
|  | 1024 | struct ia64_fpreg fpr_final[2]; | 
|  | 1025 | unsigned long len = float_fsz[ld.x6_sz]; | 
|  | 1026 |  | 
|  | 1027 | /* | 
|  | 1028 | * fr0 & fr1 don't need to be checked because Illegal Instruction faults have | 
|  | 1029 | * higher priority than unaligned faults. | 
|  | 1030 | * | 
|  | 1031 | * r0 cannot be found as the base as it would never generate an unaligned | 
|  | 1032 | * reference. | 
|  | 1033 | */ | 
|  | 1034 |  | 
|  | 1035 | /* | 
|  | 1036 | * make sure we get clean buffers | 
|  | 1037 | */ | 
|  | 1038 | memset(&fpr_init, 0, sizeof(fpr_init)); | 
|  | 1039 | memset(&fpr_final, 0, sizeof(fpr_final)); | 
|  | 1040 |  | 
|  | 1041 | /* | 
|  | 1042 | * ldfpX.a: we don't try to emulate anything but we must | 
|  | 1043 | * invalidate the ALAT entry and execute updates, if any. | 
|  | 1044 | */ | 
|  | 1045 | if (ld.x6_op != 0x2) { | 
|  | 1046 | /* | 
|  | 1047 | * This assumes little-endian byte-order.  Note that there is no "ldfpe" | 
|  | 1048 | * instruction: | 
|  | 1049 | */ | 
|  | 1050 | if (copy_from_user(&fpr_init[0], (void __user *) ifa, len) | 
|  | 1051 | || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len)) | 
|  | 1052 | return -1; | 
|  | 1053 |  | 
|  | 1054 | DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz); | 
|  | 1055 | DDUMP("frp_init =", &fpr_init, 2*len); | 
|  | 1056 | /* | 
|  | 1057 | * XXX fixme | 
|  | 1058 | * Could optimize inlines by using ldfpX & 2 spills | 
|  | 1059 | */ | 
|  | 1060 | switch( ld.x6_sz ) { | 
|  | 1061 | case 0: | 
|  | 1062 | mem2float_extended(&fpr_init[0], &fpr_final[0]); | 
|  | 1063 | mem2float_extended(&fpr_init[1], &fpr_final[1]); | 
|  | 1064 | break; | 
|  | 1065 | case 1: | 
|  | 1066 | mem2float_integer(&fpr_init[0], &fpr_final[0]); | 
|  | 1067 | mem2float_integer(&fpr_init[1], &fpr_final[1]); | 
|  | 1068 | break; | 
|  | 1069 | case 2: | 
|  | 1070 | mem2float_single(&fpr_init[0], &fpr_final[0]); | 
|  | 1071 | mem2float_single(&fpr_init[1], &fpr_final[1]); | 
|  | 1072 | break; | 
|  | 1073 | case 3: | 
|  | 1074 | mem2float_double(&fpr_init[0], &fpr_final[0]); | 
|  | 1075 | mem2float_double(&fpr_init[1], &fpr_final[1]); | 
|  | 1076 | break; | 
|  | 1077 | } | 
|  | 1078 | DDUMP("fpr_final =", &fpr_final, 2*len); | 
|  | 1079 | /* | 
|  | 1080 | * XXX fixme | 
|  | 1081 | * | 
|  | 1082 | * A possible optimization would be to drop fpr_final and directly | 
|  | 1083 | * use the storage from the saved context i.e., the actual final | 
|  | 1084 | * destination (pt_regs, switch_stack or thread structure). | 
|  | 1085 | */ | 
|  | 1086 | setfpreg(ld.r1, &fpr_final[0], regs); | 
|  | 1087 | setfpreg(ld.imm, &fpr_final[1], regs); | 
|  | 1088 | } | 
|  | 1089 |  | 
|  | 1090 | /* | 
|  | 1091 | * Check for updates: only immediate updates are available for this | 
|  | 1092 | * instruction. | 
|  | 1093 | */ | 
|  | 1094 | if (ld.m) { | 
|  | 1095 | /* | 
|  | 1096 | * the immediate is implicit given the ldsz of the operation: | 
|  | 1097 | * single: 8 (2x4) and for  all others it's 16 (2x8) | 
|  | 1098 | */ | 
|  | 1099 | ifa += len<<1; | 
|  | 1100 |  | 
|  | 1101 | /* | 
|  | 1102 | * IMPORTANT: | 
|  | 1103 | * the fact that we force the NaT of r3 to zero is ONLY valid | 
|  | 1104 | * as long as we don't come here with a ldfpX.s. | 
|  | 1105 | * For this reason we keep this sanity check | 
|  | 1106 | */ | 
|  | 1107 | if (ld.x6_op == 1 || ld.x6_op == 3) | 
|  | 1108 | printk(KERN_ERR "%s: register update on speculative load pair, error\n", | 
| Harvey Harrison | d4ed808 | 2008-03-04 15:15:00 -0800 | [diff] [blame] | 1109 | __func__); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1110 |  | 
|  | 1111 | setreg(ld.r3, ifa, 0, regs); | 
|  | 1112 | } | 
|  | 1113 |  | 
|  | 1114 | /* | 
|  | 1115 | * Invalidate ALAT entries, if any, for both registers. | 
|  | 1116 | */ | 
|  | 1117 | if (ld.x6_op == 0x2) { | 
|  | 1118 | invala_fr(ld.r1); | 
|  | 1119 | invala_fr(ld.imm); | 
|  | 1120 | } | 
|  | 1121 | return 0; | 
|  | 1122 | } | 
|  | 1123 |  | 
|  | 1124 |  | 
|  | 1125 | static int | 
|  | 1126 | emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | 1127 | { | 
|  | 1128 | struct ia64_fpreg fpr_init; | 
|  | 1129 | struct ia64_fpreg fpr_final; | 
|  | 1130 | unsigned long len = float_fsz[ld.x6_sz]; | 
|  | 1131 |  | 
|  | 1132 | /* | 
|  | 1133 | * fr0 & fr1 don't need to be checked because Illegal Instruction | 
|  | 1134 | * faults have higher priority than unaligned faults. | 
|  | 1135 | * | 
|  | 1136 | * r0 cannot be found as the base as it would never generate an | 
|  | 1137 | * unaligned reference. | 
|  | 1138 | */ | 
|  | 1139 |  | 
|  | 1140 | /* | 
|  | 1141 | * make sure we get clean buffers | 
|  | 1142 | */ | 
|  | 1143 | memset(&fpr_init,0, sizeof(fpr_init)); | 
|  | 1144 | memset(&fpr_final,0, sizeof(fpr_final)); | 
|  | 1145 |  | 
|  | 1146 | /* | 
|  | 1147 | * ldfX.a we don't try to emulate anything but we must | 
|  | 1148 | * invalidate the ALAT entry. | 
|  | 1149 | * See comments in ldX for descriptions on how the various loads are handled. | 
|  | 1150 | */ | 
|  | 1151 | if (ld.x6_op != 0x2) { | 
|  | 1152 | if (copy_from_user(&fpr_init, (void __user *) ifa, len)) | 
|  | 1153 | return -1; | 
|  | 1154 |  | 
|  | 1155 | DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); | 
|  | 1156 | DDUMP("fpr_init =", &fpr_init, len); | 
|  | 1157 | /* | 
|  | 1158 | * we only do something for x6_op={0,8,9} | 
|  | 1159 | */ | 
|  | 1160 | switch( ld.x6_sz ) { | 
|  | 1161 | case 0: | 
|  | 1162 | mem2float_extended(&fpr_init, &fpr_final); | 
|  | 1163 | break; | 
|  | 1164 | case 1: | 
|  | 1165 | mem2float_integer(&fpr_init, &fpr_final); | 
|  | 1166 | break; | 
|  | 1167 | case 2: | 
|  | 1168 | mem2float_single(&fpr_init, &fpr_final); | 
|  | 1169 | break; | 
|  | 1170 | case 3: | 
|  | 1171 | mem2float_double(&fpr_init, &fpr_final); | 
|  | 1172 | break; | 
|  | 1173 | } | 
|  | 1174 | DDUMP("fpr_final =", &fpr_final, len); | 
|  | 1175 | /* | 
|  | 1176 | * XXX fixme | 
|  | 1177 | * | 
|  | 1178 | * A possible optimization would be to drop fpr_final and directly | 
|  | 1179 | * use the storage from the saved context i.e., the actual final | 
|  | 1180 | * destination (pt_regs, switch_stack or thread structure). | 
|  | 1181 | */ | 
|  | 1182 | setfpreg(ld.r1, &fpr_final, regs); | 
|  | 1183 | } | 
|  | 1184 |  | 
|  | 1185 | /* | 
|  | 1186 | * check for updates on any loads | 
|  | 1187 | */ | 
|  | 1188 | if (ld.op == 0x7 || ld.m) | 
|  | 1189 | emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); | 
|  | 1190 |  | 
|  | 1191 | /* | 
|  | 1192 | * invalidate ALAT entry in case of advanced floating point loads | 
|  | 1193 | */ | 
|  | 1194 | if (ld.x6_op == 0x2) | 
|  | 1195 | invala_fr(ld.r1); | 
|  | 1196 |  | 
|  | 1197 | return 0; | 
|  | 1198 | } | 
|  | 1199 |  | 
|  | 1200 |  | 
|  | 1201 | static int | 
|  | 1202 | emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | 1203 | { | 
|  | 1204 | struct ia64_fpreg fpr_init; | 
|  | 1205 | struct ia64_fpreg fpr_final; | 
|  | 1206 | unsigned long len = float_fsz[ld.x6_sz]; | 
|  | 1207 |  | 
|  | 1208 | /* | 
|  | 1209 | * make sure we get clean buffers | 
|  | 1210 | */ | 
|  | 1211 | memset(&fpr_init,0, sizeof(fpr_init)); | 
|  | 1212 | memset(&fpr_final,0, sizeof(fpr_final)); | 
|  | 1213 |  | 
|  | 1214 | /* | 
|  | 1215 | * if we get to this handler, Nat bits on both r3 and r2 have already | 
|  | 1216 | * been checked. so we don't need to do it | 
|  | 1217 | * | 
|  | 1218 | * extract the value to be stored | 
|  | 1219 | */ | 
|  | 1220 | getfpreg(ld.imm, &fpr_init, regs); | 
|  | 1221 | /* | 
|  | 1222 | * during this step, we extract the spilled registers from the saved | 
|  | 1223 | * context i.e., we refill. Then we store (no spill) to temporary | 
|  | 1224 | * aligned location | 
|  | 1225 | */ | 
|  | 1226 | switch( ld.x6_sz ) { | 
|  | 1227 | case 0: | 
|  | 1228 | float2mem_extended(&fpr_init, &fpr_final); | 
|  | 1229 | break; | 
|  | 1230 | case 1: | 
|  | 1231 | float2mem_integer(&fpr_init, &fpr_final); | 
|  | 1232 | break; | 
|  | 1233 | case 2: | 
|  | 1234 | float2mem_single(&fpr_init, &fpr_final); | 
|  | 1235 | break; | 
|  | 1236 | case 3: | 
|  | 1237 | float2mem_double(&fpr_init, &fpr_final); | 
|  | 1238 | break; | 
|  | 1239 | } | 
|  | 1240 | DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); | 
|  | 1241 | DDUMP("fpr_init =", &fpr_init, len); | 
|  | 1242 | DDUMP("fpr_final =", &fpr_final, len); | 
|  | 1243 |  | 
|  | 1244 | if (copy_to_user((void __user *) ifa, &fpr_final, len)) | 
|  | 1245 | return -1; | 
|  | 1246 |  | 
|  | 1247 | /* | 
|  | 1248 | * stfX [r3]=r2,imm(9) | 
|  | 1249 | * | 
|  | 1250 | * NOTE: | 
|  | 1251 | * ld.r3 can never be r0, because r0 would not generate an | 
|  | 1252 | * unaligned access. | 
|  | 1253 | */ | 
|  | 1254 | if (ld.op == 0x7) { | 
|  | 1255 | unsigned long imm; | 
|  | 1256 |  | 
|  | 1257 | /* | 
|  | 1258 | * form imm9: [12:6] contain first 7bits | 
|  | 1259 | */ | 
|  | 1260 | imm = ld.x << 7 | ld.r1; | 
|  | 1261 | /* | 
|  | 1262 | * sign extend (8bits) if m set | 
|  | 1263 | */ | 
|  | 1264 | if (ld.m) | 
|  | 1265 | imm |= SIGN_EXT9; | 
|  | 1266 | /* | 
|  | 1267 | * ifa == r3 (NaT is necessarily cleared) | 
|  | 1268 | */ | 
|  | 1269 | ifa += imm; | 
|  | 1270 |  | 
|  | 1271 | DPRINT("imm=%lx r3=%lx\n", imm, ifa); | 
|  | 1272 |  | 
|  | 1273 | setreg(ld.r3, ifa, 0, regs); | 
|  | 1274 | } | 
|  | 1275 | /* | 
|  | 1276 | * we don't have alat_invalidate_multiple() so we need | 
|  | 1277 | * to do the complete flush :-<< | 
|  | 1278 | */ | 
|  | 1279 | ia64_invala(); | 
|  | 1280 |  | 
|  | 1281 | return 0; | 
|  | 1282 | } | 
|  | 1283 |  | 
|  | 1284 | /* | 
|  | 1285 | * Make sure we log the unaligned access, so that user/sysadmin can notice it and | 
|  | 1286 | * eventually fix the program.  However, we don't want to do that for every access so we | 
|  | 1287 | * pace it with jiffies.  This isn't really MP-safe, but it doesn't really have to be | 
|  | 1288 | * either... | 
|  | 1289 | */ | 
|  | 1290 | static int | 
|  | 1291 | within_logging_rate_limit (void) | 
|  | 1292 | { | 
|  | 1293 | static unsigned long count, last_time; | 
|  | 1294 |  | 
| S.Caglar Onur | 5cf1f7c | 2008-03-28 14:27:05 -0700 | [diff] [blame] | 1295 | if (time_after(jiffies, last_time + 5 * HZ)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1296 | count = 0; | 
| Jack Steiner | 79c83bd | 2006-01-24 16:32:11 -0600 | [diff] [blame] | 1297 | if (count < 5) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1298 | last_time = jiffies; | 
| Jack Steiner | 79c83bd | 2006-01-24 16:32:11 -0600 | [diff] [blame] | 1299 | count++; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1300 | return 1; | 
|  | 1301 | } | 
|  | 1302 | return 0; | 
|  | 1303 |  | 
|  | 1304 | } | 
|  | 1305 |  | 
|  | 1306 | void | 
|  | 1307 | ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs) | 
|  | 1308 | { | 
|  | 1309 | struct ia64_psr *ipsr = ia64_psr(regs); | 
|  | 1310 | mm_segment_t old_fs = get_fs(); | 
|  | 1311 | unsigned long bundle[2]; | 
|  | 1312 | unsigned long opcode; | 
|  | 1313 | struct siginfo si; | 
|  | 1314 | const struct exception_table_entry *eh = NULL; | 
|  | 1315 | union { | 
|  | 1316 | unsigned long l; | 
|  | 1317 | load_store_t insn; | 
|  | 1318 | } u; | 
|  | 1319 | int ret = -1; | 
|  | 1320 |  | 
|  | 1321 | if (ia64_psr(regs)->be) { | 
|  | 1322 | /* we don't support big-endian accesses */ | 
| Jan Beulich | 620de2f | 2008-02-04 23:43:03 -0800 | [diff] [blame] | 1323 | if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0)) | 
|  | 1324 | return; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1325 | goto force_sigbus; | 
|  | 1326 | } | 
|  | 1327 |  | 
|  | 1328 | /* | 
|  | 1329 | * Treat kernel accesses for which there is an exception handler entry the same as | 
|  | 1330 | * user-level unaligned accesses.  Otherwise, a clever program could trick this | 
|  | 1331 | * handler into reading an arbitrary kernel addresses... | 
|  | 1332 | */ | 
|  | 1333 | if (!user_mode(regs)) | 
|  | 1334 | eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); | 
|  | 1335 | if (user_mode(regs) || eh) { | 
|  | 1336 | if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0) | 
|  | 1337 | goto force_sigbus; | 
|  | 1338 |  | 
| Jes Sorensen | d2b176e | 2006-02-28 09:42:23 -0800 | [diff] [blame] | 1339 | if (!no_unaligned_warning && | 
|  | 1340 | !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) && | 
|  | 1341 | within_logging_rate_limit()) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1342 | { | 
|  | 1343 | char buf[200];	/* comm[] is at most 16 bytes... */ | 
|  | 1344 | size_t len; | 
|  | 1345 |  | 
|  | 1346 | len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, " | 
| Alexey Dobriyan | 19c5870 | 2007-10-18 23:40:41 -0700 | [diff] [blame] | 1347 | "ip=0x%016lx\n\r", current->comm, | 
|  | 1348 | task_pid_nr(current), | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1349 | ifa, regs->cr_iip + ipsr->ri); | 
|  | 1350 | /* | 
|  | 1351 | * Don't call tty_write_message() if we're in the kernel; we might | 
|  | 1352 | * be holding locks... | 
|  | 1353 | */ | 
|  | 1354 | if (user_mode(regs)) | 
|  | 1355 | tty_write_message(current->signal->tty, buf); | 
|  | 1356 | buf[len-1] = '\0';	/* drop '\r' */ | 
| Jes Sorensen | d2b176e | 2006-02-28 09:42:23 -0800 | [diff] [blame] | 1357 | /* watch for command names containing %s */ | 
|  | 1358 | printk(KERN_WARNING "%s", buf); | 
|  | 1359 | } else { | 
|  | 1360 | if (no_unaligned_warning && !noprint_warning) { | 
|  | 1361 | noprint_warning = 1; | 
|  | 1362 | printk(KERN_WARNING "%s(%d) encountered an " | 
|  | 1363 | "unaligned exception which required\n" | 
|  | 1364 | "kernel assistance, which degrades " | 
|  | 1365 | "the performance of the application.\n" | 
|  | 1366 | "Unaligned exception warnings have " | 
|  | 1367 | "been disabled by the system " | 
|  | 1368 | "administrator\n" | 
|  | 1369 | "echo 0 > /proc/sys/kernel/ignore-" | 
|  | 1370 | "unaligned-usertrap to re-enable\n", | 
| Alexey Dobriyan | 19c5870 | 2007-10-18 23:40:41 -0700 | [diff] [blame] | 1371 | current->comm, task_pid_nr(current)); | 
| Jes Sorensen | d2b176e | 2006-02-28 09:42:23 -0800 | [diff] [blame] | 1372 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1373 | } | 
|  | 1374 | } else { | 
| Doug Chapman | 88fc241 | 2009-01-15 10:38:56 -0800 | [diff] [blame] | 1375 | if (within_logging_rate_limit()) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1376 | printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n", | 
|  | 1377 | ifa, regs->cr_iip + ipsr->ri); | 
| Doug Chapman | 88fc241 | 2009-01-15 10:38:56 -0800 | [diff] [blame] | 1378 | if (unaligned_dump_stack) | 
|  | 1379 | dump_stack(); | 
|  | 1380 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1381 | set_fs(KERNEL_DS); | 
|  | 1382 | } | 
|  | 1383 |  | 
|  | 1384 | DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n", | 
|  | 1385 | regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it); | 
|  | 1386 |  | 
|  | 1387 | if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16)) | 
|  | 1388 | goto failure; | 
|  | 1389 |  | 
|  | 1390 | /* | 
|  | 1391 | * extract the instruction from the bundle given the slot number | 
|  | 1392 | */ | 
|  | 1393 | switch (ipsr->ri) { | 
|  | 1394 | case 0: u.l = (bundle[0] >>  5); break; | 
|  | 1395 | case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break; | 
|  | 1396 | case 2: u.l = (bundle[1] >> 23); break; | 
|  | 1397 | } | 
|  | 1398 | opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK; | 
|  | 1399 |  | 
|  | 1400 | DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " | 
|  | 1401 | "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm, | 
|  | 1402 | u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op); | 
|  | 1403 |  | 
|  | 1404 | /* | 
|  | 1405 | * IMPORTANT: | 
|  | 1406 | * Notice that the switch statement DOES not cover all possible instructions | 
|  | 1407 | * that DO generate unaligned references. This is made on purpose because for some | 
|  | 1408 | * instructions it DOES NOT make sense to try and emulate the access. Sometimes it | 
|  | 1409 | * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., | 
|  | 1410 | * the program will get a signal and die: | 
|  | 1411 | * | 
|  | 1412 | *	load/store: | 
|  | 1413 | *		- ldX.spill | 
|  | 1414 | *		- stX.spill | 
|  | 1415 | *	Reason: RNATs are based on addresses | 
|  | 1416 | *		- ld16 | 
|  | 1417 | *		- st16 | 
|  | 1418 | *	Reason: ld16 and st16 are supposed to occur in a single | 
|  | 1419 | *		memory op | 
|  | 1420 | * | 
|  | 1421 | *	synchronization: | 
|  | 1422 | *		- cmpxchg | 
|  | 1423 | *		- fetchadd | 
|  | 1424 | *		- xchg | 
|  | 1425 | *	Reason: ATOMIC operations cannot be emulated properly using multiple | 
|  | 1426 | *	        instructions. | 
|  | 1427 | * | 
|  | 1428 | *	speculative loads: | 
|  | 1429 | *		- ldX.sZ | 
|  | 1430 | *	Reason: side effects, code must be ready to deal with failure so simpler | 
|  | 1431 | *		to let the load fail. | 
|  | 1432 | * --------------------------------------------------------------------------------- | 
|  | 1433 | * XXX fixme | 
|  | 1434 | * | 
|  | 1435 | * I would like to get rid of this switch case and do something | 
|  | 1436 | * more elegant. | 
|  | 1437 | */ | 
|  | 1438 | switch (opcode) { | 
|  | 1439 | case LDS_OP: | 
|  | 1440 | case LDSA_OP: | 
|  | 1441 | if (u.insn.x) | 
|  | 1442 | /* oops, really a semaphore op (cmpxchg, etc) */ | 
|  | 1443 | goto failure; | 
|  | 1444 | /* no break */ | 
|  | 1445 | case LDS_IMM_OP: | 
|  | 1446 | case LDSA_IMM_OP: | 
|  | 1447 | case LDFS_OP: | 
|  | 1448 | case LDFSA_OP: | 
|  | 1449 | case LDFS_IMM_OP: | 
|  | 1450 | /* | 
|  | 1451 | * The instruction will be retried with deferred exceptions turned on, and | 
|  | 1452 | * we should get Nat bit installed | 
|  | 1453 | * | 
|  | 1454 | * IMPORTANT: When PSR_ED is set, the register & immediate update forms | 
|  | 1455 | * are actually executed even though the operation failed. So we don't | 
|  | 1456 | * need to take care of this. | 
|  | 1457 | */ | 
|  | 1458 | DPRINT("forcing PSR_ED\n"); | 
|  | 1459 | regs->cr_ipsr |= IA64_PSR_ED; | 
|  | 1460 | goto done; | 
|  | 1461 |  | 
|  | 1462 | case LD_OP: | 
|  | 1463 | case LDA_OP: | 
|  | 1464 | case LDBIAS_OP: | 
|  | 1465 | case LDACQ_OP: | 
|  | 1466 | case LDCCLR_OP: | 
|  | 1467 | case LDCNC_OP: | 
|  | 1468 | case LDCCLRACQ_OP: | 
|  | 1469 | if (u.insn.x) | 
|  | 1470 | /* oops, really a semaphore op (cmpxchg, etc) */ | 
|  | 1471 | goto failure; | 
|  | 1472 | /* no break */ | 
|  | 1473 | case LD_IMM_OP: | 
|  | 1474 | case LDA_IMM_OP: | 
|  | 1475 | case LDBIAS_IMM_OP: | 
|  | 1476 | case LDACQ_IMM_OP: | 
|  | 1477 | case LDCCLR_IMM_OP: | 
|  | 1478 | case LDCNC_IMM_OP: | 
|  | 1479 | case LDCCLRACQ_IMM_OP: | 
|  | 1480 | ret = emulate_load_int(ifa, u.insn, regs); | 
|  | 1481 | break; | 
|  | 1482 |  | 
|  | 1483 | case ST_OP: | 
|  | 1484 | case STREL_OP: | 
|  | 1485 | if (u.insn.x) | 
|  | 1486 | /* oops, really a semaphore op (cmpxchg, etc) */ | 
|  | 1487 | goto failure; | 
|  | 1488 | /* no break */ | 
|  | 1489 | case ST_IMM_OP: | 
|  | 1490 | case STREL_IMM_OP: | 
|  | 1491 | ret = emulate_store_int(ifa, u.insn, regs); | 
|  | 1492 | break; | 
|  | 1493 |  | 
|  | 1494 | case LDF_OP: | 
|  | 1495 | case LDFA_OP: | 
|  | 1496 | case LDFCCLR_OP: | 
|  | 1497 | case LDFCNC_OP: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1498 | if (u.insn.x) | 
|  | 1499 | ret = emulate_load_floatpair(ifa, u.insn, regs); | 
|  | 1500 | else | 
|  | 1501 | ret = emulate_load_float(ifa, u.insn, regs); | 
|  | 1502 | break; | 
|  | 1503 |  | 
| Luck, Tony | 1a49915 | 2008-01-14 09:59:24 -0800 | [diff] [blame] | 1504 | case LDF_IMM_OP: | 
|  | 1505 | case LDFA_IMM_OP: | 
|  | 1506 | case LDFCCLR_IMM_OP: | 
|  | 1507 | case LDFCNC_IMM_OP: | 
|  | 1508 | ret = emulate_load_float(ifa, u.insn, regs); | 
|  | 1509 | break; | 
|  | 1510 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1511 | case STF_OP: | 
|  | 1512 | case STF_IMM_OP: | 
|  | 1513 | ret = emulate_store_float(ifa, u.insn, regs); | 
|  | 1514 | break; | 
|  | 1515 |  | 
|  | 1516 | default: | 
|  | 1517 | goto failure; | 
|  | 1518 | } | 
|  | 1519 | DPRINT("ret=%d\n", ret); | 
|  | 1520 | if (ret) | 
|  | 1521 | goto failure; | 
|  | 1522 |  | 
|  | 1523 | if (ipsr->ri == 2) | 
|  | 1524 | /* | 
|  | 1525 | * given today's architecture this case is not likely to happen because a | 
|  | 1526 | * memory access instruction (M) can never be in the last slot of a | 
|  | 1527 | * bundle. But let's keep it for now. | 
|  | 1528 | */ | 
|  | 1529 | regs->cr_iip += 16; | 
|  | 1530 | ipsr->ri = (ipsr->ri + 1) & 0x3; | 
|  | 1531 |  | 
|  | 1532 | DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip); | 
|  | 1533 | done: | 
|  | 1534 | set_fs(old_fs);		/* restore original address limit */ | 
|  | 1535 | return; | 
|  | 1536 |  | 
|  | 1537 | failure: | 
|  | 1538 | /* something went wrong... */ | 
|  | 1539 | if (!user_mode(regs)) { | 
|  | 1540 | if (eh) { | 
|  | 1541 | ia64_handle_exception(regs, eh); | 
|  | 1542 | goto done; | 
|  | 1543 | } | 
| Jan Beulich | 620de2f | 2008-02-04 23:43:03 -0800 | [diff] [blame] | 1544 | if (die_if_kernel("error during unaligned kernel access\n", regs, ret)) | 
|  | 1545 | return; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1546 | /* NOT_REACHED */ | 
|  | 1547 | } | 
|  | 1548 | force_sigbus: | 
|  | 1549 | si.si_signo = SIGBUS; | 
|  | 1550 | si.si_errno = 0; | 
|  | 1551 | si.si_code = BUS_ADRALN; | 
|  | 1552 | si.si_addr = (void __user *) ifa; | 
|  | 1553 | si.si_flags = 0; | 
|  | 1554 | si.si_isr = 0; | 
|  | 1555 | si.si_imm = 0; | 
|  | 1556 | force_sig_info(SIGBUS, &si, current); | 
|  | 1557 | goto done; | 
|  | 1558 | } |