| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * fp_util.S | 
 | 3 |  * | 
 | 4 |  * Copyright Roman Zippel, 1997.  All rights reserved. | 
 | 5 |  * | 
 | 6 |  * Redistribution and use in source and binary forms, with or without | 
 | 7 |  * modification, are permitted provided that the following conditions | 
 | 8 |  * are met: | 
 | 9 |  * 1. Redistributions of source code must retain the above copyright | 
 | 10 |  *    notice, and the entire permission notice in its entirety, | 
 | 11 |  *    including the disclaimer of warranties. | 
 | 12 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 | 13 |  *    notice, this list of conditions and the following disclaimer in the | 
 | 14 |  *    documentation and/or other materials provided with the distribution. | 
 | 15 |  * 3. The name of the author may not be used to endorse or promote | 
 | 16 |  *    products derived from this software without specific prior | 
 | 17 |  *    written permission. | 
 | 18 |  * | 
 | 19 |  * ALTERNATIVELY, this product may be distributed under the terms of | 
 | 20 |  * the GNU General Public License, in which case the provisions of the GPL are | 
 | 21 |  * required INSTEAD OF the above restrictions.  (This clause is | 
 | 22 |  * necessary due to a potential bad interaction between the GPL and | 
 | 23 |  * the restrictions contained in a BSD-style copyright.) | 
 | 24 |  * | 
 | 25 |  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
 | 26 |  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
 | 27 |  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
 | 28 |  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, | 
 | 29 |  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
 | 30 |  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
 | 31 |  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 | 32 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 | 33 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 | 34 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 | 35 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 | 36 |  */ | 
 | 37 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 38 | #include "fp_emu.h" | 
 | 39 |  | 
 | 40 | /* | 
 | 41 |  * Here are lots of conversion and normalization functions mainly | 
 | 42 |  * used by fp_scan.S | 
 | 43 |  * Note that these functions are optimized for "normal" numbers, | 
 | 44 |  * these are handled first and exit as fast as possible, this is | 
 | 45 |  * especially important for fp_normalize_ext/fp_conv_ext2ext, as | 
 | 46 |  * it's called very often. | 
 | 47 |  * The register usage is optimized for fp_scan.S and which register | 
 | 48 |  * is currently at that time unused, be careful if you want change | 
 | 49 |  * something here. %d0 and %d1 is always usable, sometimes %d2 (or | 
 | 50 |  * only the lower half) most function have to return the %a0 | 
 | 51 |  * unmodified, so that the caller can immediately reuse it. | 
 | 52 |  */ | 
 | 53 |  | 
 | 54 | 	.globl	fp_ill, fp_end | 
 | 55 |  | 
 | 56 | 	| exits from fp_scan: | 
 | 57 | 	| illegal instruction | 
 | 58 | fp_ill: | 
 | 59 | 	printf	,"fp_illegal\n" | 
 | 60 | 	rts | 
 | 61 | 	| completed instruction | 
 | 62 | fp_end: | 
 | 63 | 	tst.l	(TASK_MM-8,%a2) | 
 | 64 | 	jmi	1f | 
 | 65 | 	tst.l	(TASK_MM-4,%a2) | 
 | 66 | 	jmi	1f | 
 | 67 | 	tst.l	(TASK_MM,%a2) | 
 | 68 | 	jpl	2f | 
 | 69 | 1:	printf	,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM) | 
 | 70 | 2:	clr.l	%d0 | 
 | 71 | 	rts | 
 | 72 |  | 
 | 73 | 	.globl	fp_conv_long2ext, fp_conv_single2ext | 
 | 74 | 	.globl	fp_conv_double2ext, fp_conv_ext2ext | 
 | 75 | 	.globl	fp_normalize_ext, fp_normalize_double | 
 | 76 | 	.globl	fp_normalize_single, fp_normalize_single_fast | 
 | 77 | 	.globl	fp_conv_ext2double, fp_conv_ext2single | 
 | 78 | 	.globl	fp_conv_ext2long, fp_conv_ext2short | 
 | 79 | 	.globl	fp_conv_ext2byte | 
 | 80 | 	.globl	fp_finalrounding_single, fp_finalrounding_single_fast | 
 | 81 | 	.globl	fp_finalrounding_double | 
 | 82 | 	.globl	fp_finalrounding, fp_finaltest, fp_final | 
 | 83 |  | 
 | 84 | /* | 
 | 85 |  * First several conversion functions from a source operand | 
 | 86 |  * into the extended format. Note, that only fp_conv_ext2ext | 
 | 87 |  * normalizes the number and is always called after the other | 
 | 88 |  * conversion functions, which only move the information into | 
 | 89 |  * fp_ext structure. | 
 | 90 |  */ | 
 | 91 |  | 
 | 92 | 	| fp_conv_long2ext: | 
 | 93 | 	| | 
 | 94 | 	| args:	%d0 = source (32-bit long) | 
 | 95 | 	|	%a0 = destination (ptr to struct fp_ext) | 
 | 96 |  | 
 | 97 | fp_conv_long2ext: | 
 | 98 | 	printf	PCONV,"l2e: %p -> %p(",2,%d0,%a0 | 
 | 99 | 	clr.l	%d1			| sign defaults to zero | 
 | 100 | 	tst.l	%d0 | 
 | 101 | 	jeq	fp_l2e_zero		| is source zero? | 
 | 102 | 	jpl	1f			| positive? | 
 | 103 | 	moveq	#1,%d1 | 
 | 104 | 	neg.l	%d0 | 
 | 105 | 1:	swap	%d1 | 
 | 106 | 	move.w	#0x3fff+31,%d1 | 
 | 107 | 	move.l	%d1,(%a0)+		| set sign / exp | 
 | 108 | 	move.l	%d0,(%a0)+		| set mantissa | 
 | 109 | 	clr.l	(%a0) | 
 | 110 | 	subq.l	#8,%a0			| restore %a0 | 
 | 111 | 	printx	PCONV,%a0@ | 
 | 112 | 	printf	PCONV,")\n" | 
 | 113 | 	rts | 
 | 114 | 	| source is zero | 
 | 115 | fp_l2e_zero: | 
 | 116 | 	clr.l	(%a0)+ | 
 | 117 | 	clr.l	(%a0)+ | 
 | 118 | 	clr.l	(%a0) | 
 | 119 | 	subq.l	#8,%a0 | 
 | 120 | 	printx	PCONV,%a0@ | 
 | 121 | 	printf	PCONV,")\n" | 
 | 122 | 	rts | 
 | 123 |  | 
 | 124 | 	| fp_conv_single2ext | 
 | 125 | 	| args:	%d0 = source (single-precision fp value) | 
 | 126 | 	|	%a0 = dest (struct fp_ext *) | 
 | 127 |  | 
 | 128 | fp_conv_single2ext: | 
 | 129 | 	printf	PCONV,"s2e: %p -> %p(",2,%d0,%a0 | 
 | 130 | 	move.l	%d0,%d1 | 
 | 131 | 	lsl.l	#8,%d0			| shift mantissa | 
 | 132 | 	lsr.l	#8,%d1			| exponent / sign | 
 | 133 | 	lsr.l	#7,%d1 | 
 | 134 | 	lsr.w	#8,%d1 | 
 | 135 | 	jeq	fp_s2e_small		| zero / denormal? | 
 | 136 | 	cmp.w	#0xff,%d1		| NaN / Inf? | 
 | 137 | 	jeq	fp_s2e_large | 
 | 138 | 	bset	#31,%d0			| set explizit bit | 
 | 139 | 	add.w	#0x3fff-0x7f,%d1	| re-bias the exponent. | 
 | 140 | 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp | 
 | 141 | 	move.l	%d0,(%a0)+		| high lword of fp_ext.mant | 
 | 142 | 	clr.l	(%a0)			| low lword = 0 | 
 | 143 | 	subq.l	#8,%a0 | 
 | 144 | 	printx	PCONV,%a0@ | 
 | 145 | 	printf	PCONV,")\n" | 
 | 146 | 	rts | 
 | 147 | 	| zeros and denormalized | 
 | 148 | fp_s2e_small: | 
 | 149 | 	| exponent is zero, so explizit bit is already zero too | 
 | 150 | 	tst.l	%d0 | 
 | 151 | 	jeq	9b | 
 | 152 | 	move.w	#0x4000-0x7f,%d1 | 
 | 153 | 	jra	9b | 
 | 154 | 	| infinities and NAN | 
 | 155 | fp_s2e_large: | 
 | 156 | 	bclr	#31,%d0			| clear explizit bit | 
 | 157 | 	move.w	#0x7fff,%d1 | 
 | 158 | 	jra	9b | 
 | 159 |  | 
 | 160 | fp_conv_double2ext: | 
 | 161 | #ifdef FPU_EMU_DEBUG | 
 | 162 | 	getuser.l %a1@(0),%d0,fp_err_ua2,%a1 | 
 | 163 | 	getuser.l %a1@(4),%d1,fp_err_ua2,%a1 | 
 | 164 | 	printf	PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0 | 
 | 165 | #endif | 
 | 166 | 	getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | 
 | 167 | 	move.l	%d0,%d1 | 
 | 168 | 	lsl.l	#8,%d0			| shift high mantissa | 
 | 169 | 	lsl.l	#3,%d0 | 
 | 170 | 	lsr.l	#8,%d1			| exponent / sign | 
 | 171 | 	lsr.l	#7,%d1 | 
 | 172 | 	lsr.w	#5,%d1 | 
 | 173 | 	jeq	fp_d2e_small		| zero / denormal? | 
 | 174 | 	cmp.w	#0x7ff,%d1		| NaN / Inf? | 
 | 175 | 	jeq	fp_d2e_large | 
 | 176 | 	bset	#31,%d0			| set explizit bit | 
 | 177 | 	add.w	#0x3fff-0x3ff,%d1	| re-bias the exponent. | 
 | 178 | 9:	move.l	%d1,(%a0)+		| fp_ext.sign, fp_ext.exp | 
 | 179 | 	move.l	%d0,(%a0)+ | 
 | 180 | 	getuser.l (%a1)+,%d0,fp_err_ua2,%a1 | 
 | 181 | 	move.l	%d0,%d1 | 
 | 182 | 	lsl.l	#8,%d0 | 
 | 183 | 	lsl.l	#3,%d0 | 
 | 184 | 	move.l	%d0,(%a0) | 
 | 185 | 	moveq	#21,%d0 | 
 | 186 | 	lsr.l	%d0,%d1 | 
 | 187 | 	or.l	%d1,-(%a0) | 
 | 188 | 	subq.l	#4,%a0 | 
 | 189 | 	printx	PCONV,%a0@ | 
 | 190 | 	printf	PCONV,")\n" | 
 | 191 | 	rts | 
 | 192 | 	| zeros and denormalized | 
 | 193 | fp_d2e_small: | 
 | 194 | 	| exponent is zero, so explizit bit is already zero too | 
 | 195 | 	tst.l	%d0 | 
 | 196 | 	jeq	9b | 
 | 197 | 	move.w	#0x4000-0x3ff,%d1 | 
 | 198 | 	jra	9b | 
 | 199 | 	| infinities and NAN | 
 | 200 | fp_d2e_large: | 
 | 201 | 	bclr	#31,%d0			| clear explizit bit | 
 | 202 | 	move.w	#0x7fff,%d1 | 
 | 203 | 	jra	9b | 
 | 204 |  | 
 | 205 | 	| fp_conv_ext2ext: | 
 | 206 | 	| originally used to get longdouble from userspace, now it's | 
 | 207 | 	| called before arithmetic operations to make sure the number | 
 | 208 | 	| is normalized [maybe rename it?]. | 
 | 209 | 	| args:	%a0 = dest (struct fp_ext *) | 
 | 210 | 	| returns 0 in %d0 for a NaN, otherwise 1 | 
 | 211 |  | 
 | 212 | fp_conv_ext2ext: | 
 | 213 | 	printf	PCONV,"e2e: %p(",1,%a0 | 
 | 214 | 	printx	PCONV,%a0@ | 
 | 215 | 	printf	PCONV,"), " | 
 | 216 | 	move.l	(%a0)+,%d0 | 
 | 217 | 	cmp.w	#0x7fff,%d0		| Inf / NaN? | 
 | 218 | 	jeq	fp_e2e_large | 
 | 219 | 	move.l	(%a0),%d0 | 
 | 220 | 	jpl	fp_e2e_small		| zero / denorm? | 
 | 221 | 	| The high bit is set, so normalization is irrelevant. | 
 | 222 | fp_e2e_checkround: | 
 | 223 | 	subq.l	#4,%a0 | 
 | 224 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 225 | 	move.b	(%a0),%d0 | 
 | 226 | 	jne	fp_e2e_round | 
 | 227 | #endif | 
 | 228 | 	printf	PCONV,"%p(",1,%a0 | 
 | 229 | 	printx	PCONV,%a0@ | 
 | 230 | 	printf	PCONV,")\n" | 
 | 231 | 	moveq	#1,%d0 | 
 | 232 | 	rts | 
 | 233 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 234 | fp_e2e_round: | 
 | 235 | 	fp_set_sr FPSR_EXC_INEX2 | 
 | 236 | 	clr.b	(%a0) | 
 | 237 | 	move.w	(FPD_RND,FPDATA),%d2 | 
 | 238 | 	jne	fp_e2e_roundother	| %d2 == 0, round to nearest | 
 | 239 | 	tst.b	%d0			| test guard bit | 
 | 240 | 	jpl	9f			| zero is closer | 
 | 241 | 	btst	#0,(11,%a0)		| test lsb bit | 
 | 242 | 	jne	fp_e2e_doroundup	| round to infinity | 
 | 243 | 	lsl.b	#1,%d0			| check low bits | 
 | 244 | 	jeq	9f			| round to zero | 
 | 245 | fp_e2e_doroundup: | 
 | 246 | 	addq.l	#1,(8,%a0) | 
 | 247 | 	jcc	9f | 
 | 248 | 	addq.l	#1,(4,%a0) | 
 | 249 | 	jcc	9f | 
 | 250 | 	move.w	#0x8000,(4,%a0) | 
 | 251 | 	addq.w	#1,(2,%a0) | 
 | 252 | 9:	printf	PNORM,"%p(",1,%a0 | 
 | 253 | 	printx	PNORM,%a0@ | 
 | 254 | 	printf	PNORM,")\n" | 
 | 255 | 	rts | 
 | 256 | fp_e2e_roundother: | 
 | 257 | 	subq.w	#2,%d2 | 
 | 258 | 	jcs	9b			| %d2 < 2, round to zero | 
 | 259 | 	jhi	1f			| %d2 > 2, round to +infinity | 
 | 260 | 	tst.b	(1,%a0)			| to -inf | 
 | 261 | 	jne	fp_e2e_doroundup	| negative, round to infinity | 
 | 262 | 	jra	9b			| positive, round to zero | 
 | 263 | 1:	tst.b	(1,%a0)			| to +inf | 
 | 264 | 	jeq	fp_e2e_doroundup	| positive, round to infinity | 
 | 265 | 	jra	9b			| negative, round to zero | 
 | 266 | #endif | 
 | 267 | 	| zeros and subnormals: | 
 | 268 | 	| try to normalize these anyway. | 
 | 269 | fp_e2e_small: | 
 | 270 | 	jne	fp_e2e_small1		| high lword zero? | 
 | 271 | 	move.l	(4,%a0),%d0 | 
 | 272 | 	jne	fp_e2e_small2 | 
 | 273 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 274 | 	clr.l	%d0 | 
 | 275 | 	move.b	(-4,%a0),%d0 | 
 | 276 | 	jne	fp_e2e_small3 | 
 | 277 | #endif | 
 | 278 | 	| Genuine zero. | 
 | 279 | 	clr.w	-(%a0) | 
 | 280 | 	subq.l	#2,%a0 | 
 | 281 | 	printf	PNORM,"%p(",1,%a0 | 
 | 282 | 	printx	PNORM,%a0@ | 
 | 283 | 	printf	PNORM,")\n" | 
 | 284 | 	moveq	#1,%d0 | 
 | 285 | 	rts | 
 | 286 | 	| definitely subnormal, need to shift all 64 bits | 
 | 287 | fp_e2e_small1: | 
 | 288 | 	bfffo	%d0{#0,#32},%d1 | 
 | 289 | 	move.w	-(%a0),%d2 | 
 | 290 | 	sub.w	%d1,%d2 | 
 | 291 | 	jcc	1f | 
 | 292 | 	| Pathologically small, denormalize. | 
 | 293 | 	add.w	%d2,%d1 | 
 | 294 | 	clr.w	%d2 | 
 | 295 | 1:	move.w	%d2,(%a0)+ | 
 | 296 | 	move.w	%d1,%d2 | 
 | 297 | 	jeq	fp_e2e_checkround | 
 | 298 | 	| fancy 64-bit double-shift begins here | 
 | 299 | 	lsl.l	%d2,%d0 | 
 | 300 | 	move.l	%d0,(%a0)+ | 
 | 301 | 	move.l	(%a0),%d0 | 
 | 302 | 	move.l	%d0,%d1 | 
 | 303 | 	lsl.l	%d2,%d0 | 
 | 304 | 	move.l	%d0,(%a0) | 
 | 305 | 	neg.w	%d2 | 
 | 306 | 	and.w	#0x1f,%d2 | 
 | 307 | 	lsr.l	%d2,%d1 | 
 | 308 | 	or.l	%d1,-(%a0) | 
 | 309 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 310 | fp_e2e_extra1: | 
 | 311 | 	clr.l	%d0 | 
 | 312 | 	move.b	(-4,%a0),%d0 | 
 | 313 | 	neg.w	%d2 | 
 | 314 | 	add.w	#24,%d2 | 
 | 315 | 	jcc	1f | 
 | 316 | 	clr.b	(-4,%a0) | 
 | 317 | 	lsl.l	%d2,%d0 | 
 | 318 | 	or.l	%d0,(4,%a0) | 
 | 319 | 	jra	fp_e2e_checkround | 
 | 320 | 1:	addq.w	#8,%d2 | 
 | 321 | 	lsl.l	%d2,%d0 | 
 | 322 | 	move.b	%d0,(-4,%a0) | 
 | 323 | 	lsr.l	#8,%d0 | 
 | 324 | 	or.l	%d0,(4,%a0) | 
 | 325 | #endif | 
 | 326 | 	jra	fp_e2e_checkround | 
 | 327 | 	| pathologically small subnormal | 
 | 328 | fp_e2e_small2: | 
 | 329 | 	bfffo	%d0{#0,#32},%d1 | 
 | 330 | 	add.w	#32,%d1 | 
 | 331 | 	move.w	-(%a0),%d2 | 
 | 332 | 	sub.w	%d1,%d2 | 
 | 333 | 	jcc	1f | 
 | 334 | 	| Beyond pathologically small, denormalize. | 
 | 335 | 	add.w	%d2,%d1 | 
 | 336 | 	clr.w	%d2 | 
 | 337 | 1:	move.w	%d2,(%a0)+ | 
 | 338 | 	ext.l	%d1 | 
 | 339 | 	jeq	fp_e2e_checkround | 
 | 340 | 	clr.l	(4,%a0) | 
 | 341 | 	sub.w	#32,%d2 | 
 | 342 | 	jcs	1f | 
 | 343 | 	lsl.l	%d1,%d0			| lower lword needs only to be shifted | 
 | 344 | 	move.l	%d0,(%a0)		| into the higher lword | 
 | 345 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 346 | 	clr.l	%d0 | 
 | 347 | 	move.b	(-4,%a0),%d0 | 
 | 348 | 	clr.b	(-4,%a0) | 
 | 349 | 	neg.w	%d1 | 
 | 350 | 	add.w	#32,%d1 | 
 | 351 | 	bfins	%d0,(%a0){%d1,#8} | 
 | 352 | #endif | 
 | 353 | 	jra	fp_e2e_checkround | 
 | 354 | 1:	neg.w	%d1			| lower lword is splitted between | 
 | 355 | 	bfins	%d0,(%a0){%d1,#32}	| higher and lower lword | 
 | 356 | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 357 | 	jra	fp_e2e_checkround | 
 | 358 | #else | 
 | 359 | 	move.w	%d1,%d2 | 
 | 360 | 	jra	fp_e2e_extra1 | 
 | 361 | 	| These are extremely small numbers, that will mostly end up as zero | 
 | 362 | 	| anyway, so this is only important for correct rounding. | 
 | 363 | fp_e2e_small3: | 
 | 364 | 	bfffo	%d0{#24,#8},%d1 | 
 | 365 | 	add.w	#40,%d1 | 
 | 366 | 	move.w	-(%a0),%d2 | 
 | 367 | 	sub.w	%d1,%d2 | 
 | 368 | 	jcc	1f | 
 | 369 | 	| Pathologically small, denormalize. | 
 | 370 | 	add.w	%d2,%d1 | 
 | 371 | 	clr.w	%d2 | 
 | 372 | 1:	move.w	%d2,(%a0)+ | 
 | 373 | 	ext.l	%d1 | 
 | 374 | 	jeq	fp_e2e_checkround | 
 | 375 | 	cmp.w	#8,%d1 | 
 | 376 | 	jcs	2f | 
 | 377 | 1:	clr.b	(-4,%a0) | 
 | 378 | 	sub.w	#64,%d1 | 
 | 379 | 	jcs	1f | 
 | 380 | 	add.w	#24,%d1 | 
 | 381 | 	lsl.l	%d1,%d0 | 
 | 382 | 	move.l	%d0,(%a0) | 
 | 383 | 	jra	fp_e2e_checkround | 
 | 384 | 1:	neg.w	%d1 | 
 | 385 | 	bfins	%d0,(%a0){%d1,#8} | 
 | 386 | 	jra	fp_e2e_checkround | 
 | 387 | 2:	lsl.l	%d1,%d0 | 
 | 388 | 	move.b	%d0,(-4,%a0) | 
 | 389 | 	lsr.l	#8,%d0 | 
 | 390 | 	move.b	%d0,(7,%a0) | 
 | 391 | 	jra	fp_e2e_checkround | 
 | 392 | #endif | 
 | 393 | 1:	move.l	%d0,%d1			| lower lword is splitted between | 
 | 394 | 	lsl.l	%d2,%d0			| higher and lower lword | 
 | 395 | 	move.l	%d0,(%a0) | 
 | 396 | 	move.l	%d1,%d0 | 
 | 397 | 	neg.w	%d2 | 
 | 398 | 	add.w	#32,%d2 | 
 | 399 | 	lsr.l	%d2,%d0 | 
 | 400 | 	move.l	%d0,-(%a0) | 
 | 401 | 	jra	fp_e2e_checkround | 
 | 402 | 	| Infinities and NaNs | 
 | 403 | fp_e2e_large: | 
 | 404 | 	move.l	(%a0)+,%d0 | 
 | 405 | 	jne	3f | 
 | 406 | 1:	tst.l	(%a0) | 
 | 407 | 	jne	4f | 
 | 408 | 	moveq	#1,%d0 | 
 | 409 | 2:	subq.l	#8,%a0 | 
 | 410 | 	printf	PCONV,"%p(",1,%a0 | 
 | 411 | 	printx	PCONV,%a0@ | 
 | 412 | 	printf	PCONV,")\n" | 
 | 413 | 	rts | 
 | 414 | 	| we have maybe a NaN, shift off the highest bit | 
 | 415 | 3:	lsl.l	#1,%d0 | 
 | 416 | 	jeq	1b | 
 | 417 | 	| we have a NaN, clear the return value | 
 | 418 | 4:	clrl	%d0 | 
 | 419 | 	jra	2b | 
 | 420 |  | 
 | 421 |  | 
 | 422 | /* | 
 | 423 |  * Normalization functions.  Call these on the output of general | 
 | 424 |  * FP operators, and before any conversion into the destination | 
 | 425 |  * formats. fp_normalize_ext has always to be called first, the | 
 | 426 |  * following conversion functions expect an already normalized | 
 | 427 |  * number. | 
 | 428 |  */ | 
 | 429 |  | 
 | 430 | 	| fp_normalize_ext: | 
 | 431 | 	| normalize an extended in extended (unpacked) format, basically | 
 | 432 | 	| it does the same as fp_conv_ext2ext, additionally it also does | 
 | 433 | 	| the necessary postprocessing checks. | 
 | 434 | 	| args:	%a0 (struct fp_ext *) | 
 | 435 | 	| NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2 | 
 | 436 |  | 
 | 437 | fp_normalize_ext: | 
 | 438 | 	printf	PNORM,"ne: %p(",1,%a0 | 
 | 439 | 	printx	PNORM,%a0@ | 
 | 440 | 	printf	PNORM,"), " | 
 | 441 | 	move.l	(%a0)+,%d0 | 
 | 442 | 	cmp.w	#0x7fff,%d0		| Inf / NaN? | 
 | 443 | 	jeq	fp_ne_large | 
 | 444 | 	move.l	(%a0),%d0 | 
 | 445 | 	jpl	fp_ne_small		| zero / denorm? | 
 | 446 | 	| The high bit is set, so normalization is irrelevant. | 
 | 447 | fp_ne_checkround: | 
 | 448 | 	subq.l	#4,%a0 | 
 | 449 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 450 | 	move.b	(%a0),%d0 | 
 | 451 | 	jne	fp_ne_round | 
 | 452 | #endif | 
 | 453 | 	printf	PNORM,"%p(",1,%a0 | 
 | 454 | 	printx	PNORM,%a0@ | 
 | 455 | 	printf	PNORM,")\n" | 
 | 456 | 	rts | 
 | 457 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 458 | fp_ne_round: | 
 | 459 | 	fp_set_sr FPSR_EXC_INEX2 | 
 | 460 | 	clr.b	(%a0) | 
 | 461 | 	move.w	(FPD_RND,FPDATA),%d2 | 
 | 462 | 	jne	fp_ne_roundother	| %d2 == 0, round to nearest | 
 | 463 | 	tst.b	%d0			| test guard bit | 
 | 464 | 	jpl	9f			| zero is closer | 
 | 465 | 	btst	#0,(11,%a0)		| test lsb bit | 
 | 466 | 	jne	fp_ne_doroundup		| round to infinity | 
 | 467 | 	lsl.b	#1,%d0			| check low bits | 
 | 468 | 	jeq	9f			| round to zero | 
 | 469 | fp_ne_doroundup: | 
 | 470 | 	addq.l	#1,(8,%a0) | 
 | 471 | 	jcc	9f | 
 | 472 | 	addq.l	#1,(4,%a0) | 
 | 473 | 	jcc	9f | 
 | 474 | 	addq.w	#1,(2,%a0) | 
 | 475 | 	move.w	#0x8000,(4,%a0) | 
 | 476 | 9:	printf	PNORM,"%p(",1,%a0 | 
 | 477 | 	printx	PNORM,%a0@ | 
 | 478 | 	printf	PNORM,")\n" | 
 | 479 | 	rts | 
 | 480 | fp_ne_roundother: | 
 | 481 | 	subq.w	#2,%d2 | 
 | 482 | 	jcs	9b			| %d2 < 2, round to zero | 
 | 483 | 	jhi	1f			| %d2 > 2, round to +infinity | 
 | 484 | 	tst.b	(1,%a0)			| to -inf | 
 | 485 | 	jne	fp_ne_doroundup		| negative, round to infinity | 
 | 486 | 	jra	9b			| positive, round to zero | 
 | 487 | 1:	tst.b	(1,%a0)			| to +inf | 
 | 488 | 	jeq	fp_ne_doroundup		| positive, round to infinity | 
 | 489 | 	jra	9b			| negative, round to zero | 
 | 490 | #endif | 
 | 491 | 	| Zeros and subnormal numbers | 
 | 492 | 	| These are probably merely subnormal, rather than "denormalized" | 
 | 493 | 	|  numbers, so we will try to make them normal again. | 
 | 494 | fp_ne_small: | 
 | 495 | 	jne	fp_ne_small1		| high lword zero? | 
 | 496 | 	move.l	(4,%a0),%d0 | 
 | 497 | 	jne	fp_ne_small2 | 
 | 498 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 499 | 	clr.l	%d0 | 
 | 500 | 	move.b	(-4,%a0),%d0 | 
 | 501 | 	jne	fp_ne_small3 | 
 | 502 | #endif | 
 | 503 | 	| Genuine zero. | 
 | 504 | 	clr.w	-(%a0) | 
 | 505 | 	subq.l	#2,%a0 | 
 | 506 | 	printf	PNORM,"%p(",1,%a0 | 
 | 507 | 	printx	PNORM,%a0@ | 
 | 508 | 	printf	PNORM,")\n" | 
 | 509 | 	rts | 
 | 510 | 	| Subnormal. | 
 | 511 | fp_ne_small1: | 
 | 512 | 	bfffo	%d0{#0,#32},%d1 | 
 | 513 | 	move.w	-(%a0),%d2 | 
 | 514 | 	sub.w	%d1,%d2 | 
 | 515 | 	jcc	1f | 
 | 516 | 	| Pathologically small, denormalize. | 
 | 517 | 	add.w	%d2,%d1 | 
 | 518 | 	clr.w	%d2 | 
 | 519 | 	fp_set_sr FPSR_EXC_UNFL | 
 | 520 | 1:	move.w	%d2,(%a0)+ | 
 | 521 | 	move.w	%d1,%d2 | 
 | 522 | 	jeq	fp_ne_checkround | 
 | 523 | 	| This is exactly the same 64-bit double shift as seen above. | 
 | 524 | 	lsl.l	%d2,%d0 | 
 | 525 | 	move.l	%d0,(%a0)+ | 
 | 526 | 	move.l	(%a0),%d0 | 
 | 527 | 	move.l	%d0,%d1 | 
 | 528 | 	lsl.l	%d2,%d0 | 
 | 529 | 	move.l	%d0,(%a0) | 
 | 530 | 	neg.w	%d2 | 
 | 531 | 	and.w	#0x1f,%d2 | 
 | 532 | 	lsr.l	%d2,%d1 | 
 | 533 | 	or.l	%d1,-(%a0) | 
 | 534 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 535 | fp_ne_extra1: | 
 | 536 | 	clr.l	%d0 | 
 | 537 | 	move.b	(-4,%a0),%d0 | 
 | 538 | 	neg.w	%d2 | 
 | 539 | 	add.w	#24,%d2 | 
 | 540 | 	jcc	1f | 
 | 541 | 	clr.b	(-4,%a0) | 
 | 542 | 	lsl.l	%d2,%d0 | 
 | 543 | 	or.l	%d0,(4,%a0) | 
 | 544 | 	jra	fp_ne_checkround | 
 | 545 | 1:	addq.w	#8,%d2 | 
 | 546 | 	lsl.l	%d2,%d0 | 
 | 547 | 	move.b	%d0,(-4,%a0) | 
 | 548 | 	lsr.l	#8,%d0 | 
 | 549 | 	or.l	%d0,(4,%a0) | 
 | 550 | #endif | 
 | 551 | 	jra	fp_ne_checkround | 
 | 552 | 	| May or may not be subnormal, if so, only 32 bits to shift. | 
 | 553 | fp_ne_small2: | 
 | 554 | 	bfffo	%d0{#0,#32},%d1 | 
 | 555 | 	add.w	#32,%d1 | 
 | 556 | 	move.w	-(%a0),%d2 | 
 | 557 | 	sub.w	%d1,%d2 | 
 | 558 | 	jcc	1f | 
 | 559 | 	| Beyond pathologically small, denormalize. | 
 | 560 | 	add.w	%d2,%d1 | 
 | 561 | 	clr.w	%d2 | 
 | 562 | 	fp_set_sr FPSR_EXC_UNFL | 
 | 563 | 1:	move.w	%d2,(%a0)+ | 
 | 564 | 	ext.l	%d1 | 
 | 565 | 	jeq	fp_ne_checkround | 
 | 566 | 	clr.l	(4,%a0) | 
 | 567 | 	sub.w	#32,%d1 | 
 | 568 | 	jcs	1f | 
 | 569 | 	lsl.l	%d1,%d0			| lower lword needs only to be shifted | 
 | 570 | 	move.l	%d0,(%a0)		| into the higher lword | 
 | 571 | #ifdef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 572 | 	clr.l	%d0 | 
 | 573 | 	move.b	(-4,%a0),%d0 | 
 | 574 | 	clr.b	(-4,%a0) | 
 | 575 | 	neg.w	%d1 | 
 | 576 | 	add.w	#32,%d1 | 
 | 577 | 	bfins	%d0,(%a0){%d1,#8} | 
 | 578 | #endif | 
 | 579 | 	jra	fp_ne_checkround | 
 | 580 | 1:	neg.w	%d1			| lower lword is splitted between | 
 | 581 | 	bfins	%d0,(%a0){%d1,#32}	| higher and lower lword | 
 | 582 | #ifndef CONFIG_M68KFPU_EMU_EXTRAPREC | 
 | 583 | 	jra	fp_ne_checkround | 
 | 584 | #else | 
 | 585 | 	move.w	%d1,%d2 | 
 | 586 | 	jra	fp_ne_extra1 | 
 | 587 | 	| These are extremely small numbers, that will mostly end up as zero | 
 | 588 | 	| anyway, so this is only important for correct rounding. | 
 | 589 | fp_ne_small3: | 
 | 590 | 	bfffo	%d0{#24,#8},%d1 | 
 | 591 | 	add.w	#40,%d1 | 
 | 592 | 	move.w	-(%a0),%d2 | 
 | 593 | 	sub.w	%d1,%d2 | 
 | 594 | 	jcc	1f | 
 | 595 | 	| Pathologically small, denormalize. | 
 | 596 | 	add.w	%d2,%d1 | 
 | 597 | 	clr.w	%d2 | 
 | 598 | 1:	move.w	%d2,(%a0)+ | 
 | 599 | 	ext.l	%d1 | 
 | 600 | 	jeq	fp_ne_checkround | 
 | 601 | 	cmp.w	#8,%d1 | 
 | 602 | 	jcs	2f | 
 | 603 | 1:	clr.b	(-4,%a0) | 
 | 604 | 	sub.w	#64,%d1 | 
 | 605 | 	jcs	1f | 
 | 606 | 	add.w	#24,%d1 | 
 | 607 | 	lsl.l	%d1,%d0 | 
 | 608 | 	move.l	%d0,(%a0) | 
 | 609 | 	jra	fp_ne_checkround | 
 | 610 | 1:	neg.w	%d1 | 
 | 611 | 	bfins	%d0,(%a0){%d1,#8} | 
 | 612 | 	jra	fp_ne_checkround | 
 | 613 | 2:	lsl.l	%d1,%d0 | 
 | 614 | 	move.b	%d0,(-4,%a0) | 
 | 615 | 	lsr.l	#8,%d0 | 
 | 616 | 	move.b	%d0,(7,%a0) | 
 | 617 | 	jra	fp_ne_checkround | 
 | 618 | #endif | 
 | 619 | 	| Infinities and NaNs, again, same as above. | 
 | 620 | fp_ne_large: | 
 | 621 | 	move.l	(%a0)+,%d0 | 
 | 622 | 	jne	3f | 
 | 623 | 1:	tst.l	(%a0) | 
 | 624 | 	jne	4f | 
 | 625 | 2:	subq.l	#8,%a0 | 
 | 626 | 	printf	PNORM,"%p(",1,%a0 | 
 | 627 | 	printx	PNORM,%a0@ | 
 | 628 | 	printf	PNORM,")\n" | 
 | 629 | 	rts | 
 | 630 | 	| we have maybe a NaN, shift off the highest bit | 
 | 631 | 3:	move.l	%d0,%d1 | 
 | 632 | 	lsl.l	#1,%d1 | 
 | 633 | 	jne	4f | 
 | 634 | 	clr.l	(-4,%a0) | 
 | 635 | 	jra	1b | 
 | 636 | 	| we have a NaN, test if it is signaling | 
 | 637 | 4:	bset	#30,%d0 | 
 | 638 | 	jne	2b | 
 | 639 | 	fp_set_sr FPSR_EXC_SNAN | 
 | 640 | 	move.l	%d0,(-4,%a0) | 
 | 641 | 	jra	2b | 
 | 642 |  | 
 | 643 | 	| these next two do rounding as per the IEEE standard. | 
 | 644 | 	| values for the rounding modes appear to be: | 
 | 645 | 	| 0:	Round to nearest | 
 | 646 | 	| 1:	Round to zero | 
 | 647 | 	| 2:	Round to -Infinity | 
 | 648 | 	| 3:	Round to +Infinity | 
 | 649 | 	| both functions expect that fp_normalize was already | 
 | 650 | 	| called (and extended argument is already normalized | 
 | 651 | 	| as far as possible), these are used if there is different | 
 | 652 | 	| rounding precision is selected and before converting | 
 | 653 | 	| into single/double | 
 | 654 |  | 
 | 655 | 	| fp_normalize_double: | 
 | 656 | 	| normalize an extended with double (52-bit) precision | 
 | 657 | 	| args:	 %a0 (struct fp_ext *) | 
 | 658 |  | 
 | 659 | fp_normalize_double: | 
 | 660 | 	printf	PNORM,"nd: %p(",1,%a0 | 
 | 661 | 	printx	PNORM,%a0@ | 
 | 662 | 	printf	PNORM,"), " | 
 | 663 | 	move.l	(%a0)+,%d2 | 
 | 664 | 	tst.w	%d2 | 
 | 665 | 	jeq	fp_nd_zero		| zero / denormalized | 
 | 666 | 	cmp.w	#0x7fff,%d2 | 
 | 667 | 	jeq	fp_nd_huge		| NaN / infinitive. | 
 | 668 | 	sub.w	#0x4000-0x3ff,%d2	| will the exponent fit? | 
 | 669 | 	jcs	fp_nd_small		| too small. | 
 | 670 | 	cmp.w	#0x7fe,%d2 | 
 | 671 | 	jcc	fp_nd_large		| too big. | 
 | 672 | 	addq.l	#4,%a0 | 
 | 673 | 	move.l	(%a0),%d0		| low lword of mantissa | 
 | 674 | 	| now, round off the low 11 bits. | 
 | 675 | fp_nd_round: | 
 | 676 | 	moveq	#21,%d1 | 
 | 677 | 	lsl.l	%d1,%d0			| keep 11 low bits. | 
 | 678 | 	jne	fp_nd_checkround	| Are they non-zero? | 
 | 679 | 	| nothing to do here | 
 | 680 | 9:	subq.l	#8,%a0 | 
 | 681 | 	printf	PNORM,"%p(",1,%a0 | 
 | 682 | 	printx	PNORM,%a0@ | 
 | 683 | 	printf	PNORM,")\n" | 
 | 684 | 	rts | 
 | 685 | 	| Be careful with the X bit! It contains the lsb | 
 | 686 | 	| from the shift above, it is needed for round to nearest. | 
 | 687 | fp_nd_checkround: | 
 | 688 | 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
 | 689 | 	and.w	#0xf800,(2,%a0)		| clear bits 0-10 | 
 | 690 | 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
 | 691 | 	jne	2f			| %d2 == 0, round to nearest | 
 | 692 | 	tst.l	%d0			| test guard bit | 
 | 693 | 	jpl	9b			| zero is closer | 
 | 694 | 	| here we test the X bit by adding it to %d2 | 
 | 695 | 	clr.w	%d2			| first set z bit, addx only clears it | 
 | 696 | 	addx.w	%d2,%d2			| test lsb bit | 
 | 697 | 	| IEEE754-specified "round to even" behaviour.  If the guard | 
 | 698 | 	| bit is set, then the number is odd, so rounding works like | 
 | 699 | 	| in grade-school arithmetic (i.e. 1.5 rounds to 2.0) | 
 | 700 | 	| Otherwise, an equal distance rounds towards zero, so as not | 
 | 701 | 	| to produce an odd number.  This is strange, but it is what | 
 | 702 | 	| the standard says. | 
 | 703 | 	jne	fp_nd_doroundup		| round to infinity | 
 | 704 | 	lsl.l	#1,%d0			| check low bits | 
 | 705 | 	jeq	9b			| round to zero | 
 | 706 | fp_nd_doroundup: | 
 | 707 | 	| round (the mantissa, that is) towards infinity | 
 | 708 | 	add.l	#0x800,(%a0) | 
 | 709 | 	jcc	9b			| no overflow, good. | 
 | 710 | 	addq.l	#1,-(%a0)		| extend to high lword | 
 | 711 | 	jcc	1f			| no overflow, good. | 
 | 712 | 	| Yow! we have managed to overflow the mantissa.  Since this | 
 | 713 | 	| only happens when %d1 was 0xfffff800, it is now zero, so | 
 | 714 | 	| reset the high bit, and increment the exponent. | 
 | 715 | 	move.w	#0x8000,(%a0) | 
 | 716 | 	addq.w	#1,-(%a0) | 
 | 717 | 	cmp.w	#0x43ff,(%a0)+		| exponent now overflown? | 
 | 718 | 	jeq	fp_nd_large		| yes, so make it infinity. | 
 | 719 | 1:	subq.l	#4,%a0 | 
 | 720 | 	printf	PNORM,"%p(",1,%a0 | 
 | 721 | 	printx	PNORM,%a0@ | 
 | 722 | 	printf	PNORM,")\n" | 
 | 723 | 	rts | 
 | 724 | 2:	subq.w	#2,%d2 | 
 | 725 | 	jcs	9b			| %d2 < 2, round to zero | 
 | 726 | 	jhi	3f			| %d2 > 2, round to +infinity | 
 | 727 | 	| Round to +Inf or -Inf.  High word of %d2 contains the | 
 | 728 | 	| sign of the number, by the way. | 
 | 729 | 	swap	%d2			| to -inf | 
 | 730 | 	tst.b	%d2 | 
 | 731 | 	jne	fp_nd_doroundup		| negative, round to infinity | 
 | 732 | 	jra	9b			| positive, round to zero | 
 | 733 | 3:	swap	%d2			| to +inf | 
 | 734 | 	tst.b	%d2 | 
 | 735 | 	jeq	fp_nd_doroundup		| positive, round to infinity | 
 | 736 | 	jra	9b			| negative, round to zero | 
 | 737 | 	| Exponent underflow.  Try to make a denormal, and set it to | 
 | 738 | 	| the smallest possible fraction if this fails. | 
 | 739 | fp_nd_small: | 
 | 740 | 	fp_set_sr FPSR_EXC_UNFL		| set UNFL bit | 
 | 741 | 	move.w	#0x3c01,(-2,%a0)	| 2**-1022 | 
 | 742 | 	neg.w	%d2			| degree of underflow | 
 | 743 | 	cmp.w	#32,%d2			| single or double shift? | 
 | 744 | 	jcc	1f | 
 | 745 | 	| Again, another 64-bit double shift. | 
 | 746 | 	move.l	(%a0),%d0 | 
 | 747 | 	move.l	%d0,%d1 | 
 | 748 | 	lsr.l	%d2,%d0 | 
 | 749 | 	move.l	%d0,(%a0)+ | 
 | 750 | 	move.l	(%a0),%d0 | 
 | 751 | 	lsr.l	%d2,%d0 | 
 | 752 | 	neg.w	%d2 | 
 | 753 | 	add.w	#32,%d2 | 
 | 754 | 	lsl.l	%d2,%d1 | 
 | 755 | 	or.l	%d1,%d0 | 
 | 756 | 	move.l	(%a0),%d1 | 
 | 757 | 	move.l	%d0,(%a0) | 
 | 758 | 	| Check to see if we shifted off any significant bits | 
 | 759 | 	lsl.l	%d2,%d1 | 
 | 760 | 	jeq	fp_nd_round		| Nope, round. | 
 | 761 | 	bset	#0,%d0			| Yes, so set the "sticky bit". | 
 | 762 | 	jra	fp_nd_round		| Now, round. | 
 | 763 | 	| Another 64-bit single shift and store | 
 | 764 | 1:	sub.w	#32,%d2 | 
 | 765 | 	cmp.w	#32,%d2			| Do we really need to shift? | 
 | 766 | 	jcc	2f			| No, the number is too small. | 
 | 767 | 	move.l	(%a0),%d0 | 
 | 768 | 	clr.l	(%a0)+ | 
 | 769 | 	move.l	%d0,%d1 | 
 | 770 | 	lsr.l	%d2,%d0 | 
 | 771 | 	neg.w	%d2 | 
 | 772 | 	add.w	#32,%d2 | 
 | 773 | 	| Again, check to see if we shifted off any significant bits. | 
 | 774 | 	tst.l	(%a0) | 
 | 775 | 	jeq	1f | 
 | 776 | 	bset	#0,%d0			| Sticky bit. | 
 | 777 | 1:	move.l	%d0,(%a0) | 
 | 778 | 	lsl.l	%d2,%d1 | 
 | 779 | 	jeq	fp_nd_round | 
 | 780 | 	bset	#0,%d0 | 
 | 781 | 	jra	fp_nd_round | 
 | 782 | 	| Sorry, the number is just too small. | 
 | 783 | 2:	clr.l	(%a0)+ | 
 | 784 | 	clr.l	(%a0) | 
 | 785 | 	moveq	#1,%d0			| Smallest possible fraction, | 
 | 786 | 	jra	fp_nd_round		| round as desired. | 
 | 787 | 	| zero and denormalized | 
 | 788 | fp_nd_zero: | 
 | 789 | 	tst.l	(%a0)+ | 
 | 790 | 	jne	1f | 
 | 791 | 	tst.l	(%a0) | 
 | 792 | 	jne	1f | 
 | 793 | 	subq.l	#8,%a0 | 
 | 794 | 	printf	PNORM,"%p(",1,%a0 | 
 | 795 | 	printx	PNORM,%a0@ | 
 | 796 | 	printf	PNORM,")\n" | 
 | 797 | 	rts				| zero.  nothing to do. | 
 | 798 | 	| These are not merely subnormal numbers, but true denormals, | 
 | 799 | 	| i.e. pathologically small (exponent is 2**-16383) numbers. | 
 | 800 | 	| It is clearly impossible for even a normal extended number | 
 | 801 | 	| with that exponent to fit into double precision, so just | 
 | 802 | 	| write these ones off as "too darn small". | 
 | 803 | 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit | 
 | 804 | 	clr.l	(%a0) | 
 | 805 | 	clr.l	-(%a0) | 
 | 806 | 	move.w	#0x3c01,-(%a0)		| i.e. 2**-1022 | 
 | 807 | 	addq.l	#6,%a0 | 
 | 808 | 	moveq	#1,%d0 | 
 | 809 | 	jra	fp_nd_round		| round. | 
 | 810 | 	| Exponent overflow.  Just call it infinity. | 
 | 811 | fp_nd_large: | 
 | 812 | 	move.w	#0x7ff,%d0 | 
 | 813 | 	and.w	(6,%a0),%d0 | 
 | 814 | 	jeq	1f | 
 | 815 | 	fp_set_sr FPSR_EXC_INEX2 | 
 | 816 | 1:	fp_set_sr FPSR_EXC_OVFL | 
 | 817 | 	move.w	(FPD_RND,FPDATA),%d2 | 
 | 818 | 	jne	3f			| %d2 = 0 round to nearest | 
 | 819 | 1:	move.w	#0x7fff,(-2,%a0) | 
 | 820 | 	clr.l	(%a0)+ | 
 | 821 | 	clr.l	(%a0) | 
 | 822 | 2:	subq.l	#8,%a0 | 
 | 823 | 	printf	PNORM,"%p(",1,%a0 | 
 | 824 | 	printx	PNORM,%a0@ | 
 | 825 | 	printf	PNORM,")\n" | 
 | 826 | 	rts | 
 | 827 | 3:	subq.w	#2,%d2 | 
 | 828 | 	jcs	5f			| %d2 < 2, round to zero | 
 | 829 | 	jhi	4f			| %d2 > 2, round to +infinity | 
 | 830 | 	tst.b	(-3,%a0)		| to -inf | 
 | 831 | 	jne	1b | 
 | 832 | 	jra	5f | 
 | 833 | 4:	tst.b	(-3,%a0)		| to +inf | 
 | 834 | 	jeq	1b | 
 | 835 | 5:	move.w	#0x43fe,(-2,%a0) | 
 | 836 | 	moveq	#-1,%d0 | 
 | 837 | 	move.l	%d0,(%a0)+ | 
 | 838 | 	move.w	#0xf800,%d0 | 
 | 839 | 	move.l	%d0,(%a0) | 
 | 840 | 	jra	2b | 
 | 841 | 	| Infinities or NaNs | 
 | 842 | fp_nd_huge: | 
 | 843 | 	subq.l	#4,%a0 | 
 | 844 | 	printf	PNORM,"%p(",1,%a0 | 
 | 845 | 	printx	PNORM,%a0@ | 
 | 846 | 	printf	PNORM,")\n" | 
 | 847 | 	rts | 
 | 848 |  | 
 | 849 | 	| fp_normalize_single: | 
 | 850 | 	| normalize an extended with single (23-bit) precision | 
 | 851 | 	| args:	 %a0 (struct fp_ext *) | 
 | 852 |  | 
 | 853 | fp_normalize_single: | 
 | 854 | 	printf	PNORM,"ns: %p(",1,%a0 | 
 | 855 | 	printx	PNORM,%a0@ | 
 | 856 | 	printf	PNORM,") " | 
 | 857 | 	addq.l	#2,%a0 | 
 | 858 | 	move.w	(%a0)+,%d2 | 
 | 859 | 	jeq	fp_ns_zero		| zero / denormalized | 
 | 860 | 	cmp.w	#0x7fff,%d2 | 
 | 861 | 	jeq	fp_ns_huge		| NaN / infinitive. | 
 | 862 | 	sub.w	#0x4000-0x7f,%d2	| will the exponent fit? | 
 | 863 | 	jcs	fp_ns_small		| too small. | 
 | 864 | 	cmp.w	#0xfe,%d2 | 
 | 865 | 	jcc	fp_ns_large		| too big. | 
 | 866 | 	move.l	(%a0)+,%d0		| get high lword of mantissa | 
 | 867 | fp_ns_round: | 
 | 868 | 	tst.l	(%a0)			| check the low lword | 
 | 869 | 	jeq	1f | 
 | 870 | 	| Set a sticky bit if it is non-zero.  This should only | 
 | 871 | 	| affect the rounding in what would otherwise be equal- | 
 | 872 | 	| distance situations, which is what we want it to do. | 
 | 873 | 	bset	#0,%d0 | 
 | 874 | 1:	clr.l	(%a0)			| zap it from memory. | 
 | 875 | 	| now, round off the low 8 bits of the hi lword. | 
 | 876 | 	tst.b	%d0			| 8 low bits. | 
 | 877 | 	jne	fp_ns_checkround	| Are they non-zero? | 
 | 878 | 	| nothing to do here | 
 | 879 | 	subq.l	#8,%a0 | 
 | 880 | 	printf	PNORM,"%p(",1,%a0 | 
 | 881 | 	printx	PNORM,%a0@ | 
 | 882 | 	printf	PNORM,")\n" | 
 | 883 | 	rts | 
 | 884 | fp_ns_checkround: | 
 | 885 | 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
 | 886 | 	clr.b	-(%a0)			| clear low byte of high lword | 
 | 887 | 	subq.l	#3,%a0 | 
 | 888 | 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
 | 889 | 	jne	2f			| %d2 == 0, round to nearest | 
 | 890 | 	tst.b	%d0			| test guard bit | 
 | 891 | 	jpl	9f			| zero is closer | 
 | 892 | 	btst	#8,%d0			| test lsb bit | 
 | 893 | 	| round to even behaviour, see above. | 
 | 894 | 	jne	fp_ns_doroundup		| round to infinity | 
 | 895 | 	lsl.b	#1,%d0			| check low bits | 
 | 896 | 	jeq	9f			| round to zero | 
 | 897 | fp_ns_doroundup: | 
 | 898 | 	| round (the mantissa, that is) towards infinity | 
 | 899 | 	add.l	#0x100,(%a0) | 
 | 900 | 	jcc	9f			| no overflow, good. | 
 | 901 | 	| Overflow.  This means that the %d1 was 0xffffff00, so it | 
 | 902 | 	| is now zero.  We will set the mantissa to reflect this, and | 
 | 903 | 	| increment the exponent (checking for overflow there too) | 
 | 904 | 	move.w	#0x8000,(%a0) | 
 | 905 | 	addq.w	#1,-(%a0) | 
 | 906 | 	cmp.w	#0x407f,(%a0)+		| exponent now overflown? | 
 | 907 | 	jeq	fp_ns_large		| yes, so make it infinity. | 
 | 908 | 9:	subq.l	#4,%a0 | 
 | 909 | 	printf	PNORM,"%p(",1,%a0 | 
 | 910 | 	printx	PNORM,%a0@ | 
 | 911 | 	printf	PNORM,")\n" | 
 | 912 | 	rts | 
 | 913 | 	| check nondefault rounding modes | 
 | 914 | 2:	subq.w	#2,%d2 | 
 | 915 | 	jcs	9b			| %d2 < 2, round to zero | 
 | 916 | 	jhi	3f			| %d2 > 2, round to +infinity | 
 | 917 | 	tst.b	(-3,%a0)		| to -inf | 
 | 918 | 	jne	fp_ns_doroundup		| negative, round to infinity | 
 | 919 | 	jra	9b			| positive, round to zero | 
 | 920 | 3:	tst.b	(-3,%a0)		| to +inf | 
 | 921 | 	jeq	fp_ns_doroundup		| positive, round to infinity | 
 | 922 | 	jra	9b			| negative, round to zero | 
 | 923 | 	| Exponent underflow.  Try to make a denormal, and set it to | 
 | 924 | 	| the smallest possible fraction if this fails. | 
 | 925 | fp_ns_small: | 
 | 926 | 	fp_set_sr FPSR_EXC_UNFL		| set UNFL bit | 
 | 927 | 	move.w	#0x3f81,(-2,%a0)	| 2**-126 | 
 | 928 | 	neg.w	%d2			| degree of underflow | 
 | 929 | 	cmp.w	#32,%d2			| single or double shift? | 
 | 930 | 	jcc	2f | 
 | 931 | 	| a 32-bit shift. | 
 | 932 | 	move.l	(%a0),%d0 | 
 | 933 | 	move.l	%d0,%d1 | 
 | 934 | 	lsr.l	%d2,%d0 | 
 | 935 | 	move.l	%d0,(%a0)+ | 
 | 936 | 	| Check to see if we shifted off any significant bits. | 
 | 937 | 	neg.w	%d2 | 
 | 938 | 	add.w	#32,%d2 | 
 | 939 | 	lsl.l	%d2,%d1 | 
 | 940 | 	jeq	1f | 
 | 941 | 	bset	#0,%d0			| Sticky bit. | 
 | 942 | 	| Check the lower lword | 
 | 943 | 1:	tst.l	(%a0) | 
 | 944 | 	jeq	fp_ns_round | 
 | 945 | 	clr	(%a0) | 
 | 946 | 	bset	#0,%d0			| Sticky bit. | 
 | 947 | 	jra	fp_ns_round | 
 | 948 | 	| Sorry, the number is just too small. | 
 | 949 | 2:	clr.l	(%a0)+ | 
 | 950 | 	clr.l	(%a0) | 
 | 951 | 	moveq	#1,%d0			| Smallest possible fraction, | 
 | 952 | 	jra	fp_ns_round		| round as desired. | 
 | 953 | 	| Exponent overflow.  Just call it infinity. | 
 | 954 | fp_ns_large: | 
 | 955 | 	tst.b	(3,%a0) | 
 | 956 | 	jeq	1f | 
 | 957 | 	fp_set_sr FPSR_EXC_INEX2 | 
 | 958 | 1:	fp_set_sr FPSR_EXC_OVFL | 
 | 959 | 	move.w	(FPD_RND,FPDATA),%d2 | 
 | 960 | 	jne	3f			| %d2 = 0 round to nearest | 
 | 961 | 1:	move.w	#0x7fff,(-2,%a0) | 
 | 962 | 	clr.l	(%a0)+ | 
 | 963 | 	clr.l	(%a0) | 
 | 964 | 2:	subq.l	#8,%a0 | 
 | 965 | 	printf	PNORM,"%p(",1,%a0 | 
 | 966 | 	printx	PNORM,%a0@ | 
 | 967 | 	printf	PNORM,")\n" | 
 | 968 | 	rts | 
 | 969 | 3:	subq.w	#2,%d2 | 
 | 970 | 	jcs	5f			| %d2 < 2, round to zero | 
 | 971 | 	jhi	4f			| %d2 > 2, round to +infinity | 
 | 972 | 	tst.b	(-3,%a0)		| to -inf | 
 | 973 | 	jne	1b | 
 | 974 | 	jra	5f | 
 | 975 | 4:	tst.b	(-3,%a0)		| to +inf | 
 | 976 | 	jeq	1b | 
 | 977 | 5:	move.w	#0x407e,(-2,%a0) | 
 | 978 | 	move.l	#0xffffff00,(%a0)+ | 
 | 979 | 	clr.l	(%a0) | 
 | 980 | 	jra	2b | 
 | 981 | 	| zero and denormalized | 
 | 982 | fp_ns_zero: | 
 | 983 | 	tst.l	(%a0)+ | 
 | 984 | 	jne	1f | 
 | 985 | 	tst.l	(%a0) | 
 | 986 | 	jne	1f | 
 | 987 | 	subq.l	#8,%a0 | 
 | 988 | 	printf	PNORM,"%p(",1,%a0 | 
 | 989 | 	printx	PNORM,%a0@ | 
 | 990 | 	printf	PNORM,")\n" | 
 | 991 | 	rts				| zero.  nothing to do. | 
 | 992 | 	| These are not merely subnormal numbers, but true denormals, | 
 | 993 | 	| i.e. pathologically small (exponent is 2**-16383) numbers. | 
 | 994 | 	| It is clearly impossible for even a normal extended number | 
 | 995 | 	| with that exponent to fit into single precision, so just | 
 | 996 | 	| write these ones off as "too darn small". | 
 | 997 | 1:	fp_set_sr FPSR_EXC_UNFL		| Set UNFL bit | 
 | 998 | 	clr.l	(%a0) | 
 | 999 | 	clr.l	-(%a0) | 
 | 1000 | 	move.w	#0x3f81,-(%a0)		| i.e. 2**-126 | 
 | 1001 | 	addq.l	#6,%a0 | 
 | 1002 | 	moveq	#1,%d0 | 
 | 1003 | 	jra	fp_ns_round		| round. | 
 | 1004 | 	| Infinities or NaNs | 
 | 1005 | fp_ns_huge: | 
 | 1006 | 	subq.l	#4,%a0 | 
 | 1007 | 	printf	PNORM,"%p(",1,%a0 | 
 | 1008 | 	printx	PNORM,%a0@ | 
 | 1009 | 	printf	PNORM,")\n" | 
 | 1010 | 	rts | 
 | 1011 |  | 
 | 1012 | 	| fp_normalize_single_fast: | 
 | 1013 | 	| normalize an extended with single (23-bit) precision | 
 | 1014 | 	| this is only used by fsgldiv/fsgdlmul, where the | 
 | 1015 | 	| operand is not completly normalized. | 
 | 1016 | 	| args:	 %a0 (struct fp_ext *) | 
 | 1017 |  | 
 | 1018 | fp_normalize_single_fast: | 
 | 1019 | 	printf	PNORM,"nsf: %p(",1,%a0 | 
 | 1020 | 	printx	PNORM,%a0@ | 
 | 1021 | 	printf	PNORM,") " | 
 | 1022 | 	addq.l	#2,%a0 | 
 | 1023 | 	move.w	(%a0)+,%d2 | 
 | 1024 | 	cmp.w	#0x7fff,%d2 | 
 | 1025 | 	jeq	fp_nsf_huge		| NaN / infinitive. | 
 | 1026 | 	move.l	(%a0)+,%d0		| get high lword of mantissa | 
 | 1027 | fp_nsf_round: | 
 | 1028 | 	tst.l	(%a0)			| check the low lword | 
 | 1029 | 	jeq	1f | 
 | 1030 | 	| Set a sticky bit if it is non-zero.  This should only | 
 | 1031 | 	| affect the rounding in what would otherwise be equal- | 
 | 1032 | 	| distance situations, which is what we want it to do. | 
 | 1033 | 	bset	#0,%d0 | 
 | 1034 | 1:	clr.l	(%a0)			| zap it from memory. | 
 | 1035 | 	| now, round off the low 8 bits of the hi lword. | 
 | 1036 | 	tst.b	%d0			| 8 low bits. | 
 | 1037 | 	jne	fp_nsf_checkround	| Are they non-zero? | 
 | 1038 | 	| nothing to do here | 
 | 1039 | 	subq.l	#8,%a0 | 
 | 1040 | 	printf	PNORM,"%p(",1,%a0 | 
 | 1041 | 	printx	PNORM,%a0@ | 
 | 1042 | 	printf	PNORM,")\n" | 
 | 1043 | 	rts | 
 | 1044 | fp_nsf_checkround: | 
 | 1045 | 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
 | 1046 | 	clr.b	-(%a0)			| clear low byte of high lword | 
 | 1047 | 	subq.l	#3,%a0 | 
 | 1048 | 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
 | 1049 | 	jne	2f			| %d2 == 0, round to nearest | 
 | 1050 | 	tst.b	%d0			| test guard bit | 
 | 1051 | 	jpl	9f			| zero is closer | 
 | 1052 | 	btst	#8,%d0			| test lsb bit | 
 | 1053 | 	| round to even behaviour, see above. | 
 | 1054 | 	jne	fp_nsf_doroundup		| round to infinity | 
 | 1055 | 	lsl.b	#1,%d0			| check low bits | 
 | 1056 | 	jeq	9f			| round to zero | 
 | 1057 | fp_nsf_doroundup: | 
 | 1058 | 	| round (the mantissa, that is) towards infinity | 
 | 1059 | 	add.l	#0x100,(%a0) | 
 | 1060 | 	jcc	9f			| no overflow, good. | 
 | 1061 | 	| Overflow.  This means that the %d1 was 0xffffff00, so it | 
 | 1062 | 	| is now zero.  We will set the mantissa to reflect this, and | 
 | 1063 | 	| increment the exponent (checking for overflow there too) | 
 | 1064 | 	move.w	#0x8000,(%a0) | 
 | 1065 | 	addq.w	#1,-(%a0) | 
 | 1066 | 	cmp.w	#0x407f,(%a0)+		| exponent now overflown? | 
 | 1067 | 	jeq	fp_nsf_large		| yes, so make it infinity. | 
 | 1068 | 9:	subq.l	#4,%a0 | 
 | 1069 | 	printf	PNORM,"%p(",1,%a0 | 
 | 1070 | 	printx	PNORM,%a0@ | 
 | 1071 | 	printf	PNORM,")\n" | 
 | 1072 | 	rts | 
 | 1073 | 	| check nondefault rounding modes | 
 | 1074 | 2:	subq.w	#2,%d2 | 
 | 1075 | 	jcs	9b			| %d2 < 2, round to zero | 
 | 1076 | 	jhi	3f			| %d2 > 2, round to +infinity | 
 | 1077 | 	tst.b	(-3,%a0)		| to -inf | 
 | 1078 | 	jne	fp_nsf_doroundup	| negative, round to infinity | 
 | 1079 | 	jra	9b			| positive, round to zero | 
 | 1080 | 3:	tst.b	(-3,%a0)		| to +inf | 
 | 1081 | 	jeq	fp_nsf_doroundup		| positive, round to infinity | 
 | 1082 | 	jra	9b			| negative, round to zero | 
 | 1083 | 	| Exponent overflow.  Just call it infinity. | 
 | 1084 | fp_nsf_large: | 
 | 1085 | 	tst.b	(3,%a0) | 
 | 1086 | 	jeq	1f | 
 | 1087 | 	fp_set_sr FPSR_EXC_INEX2 | 
 | 1088 | 1:	fp_set_sr FPSR_EXC_OVFL | 
 | 1089 | 	move.w	(FPD_RND,FPDATA),%d2 | 
 | 1090 | 	jne	3f			| %d2 = 0 round to nearest | 
 | 1091 | 1:	move.w	#0x7fff,(-2,%a0) | 
 | 1092 | 	clr.l	(%a0)+ | 
 | 1093 | 	clr.l	(%a0) | 
 | 1094 | 2:	subq.l	#8,%a0 | 
 | 1095 | 	printf	PNORM,"%p(",1,%a0 | 
 | 1096 | 	printx	PNORM,%a0@ | 
 | 1097 | 	printf	PNORM,")\n" | 
 | 1098 | 	rts | 
 | 1099 | 3:	subq.w	#2,%d2 | 
 | 1100 | 	jcs	5f			| %d2 < 2, round to zero | 
 | 1101 | 	jhi	4f			| %d2 > 2, round to +infinity | 
 | 1102 | 	tst.b	(-3,%a0)		| to -inf | 
 | 1103 | 	jne	1b | 
 | 1104 | 	jra	5f | 
 | 1105 | 4:	tst.b	(-3,%a0)		| to +inf | 
 | 1106 | 	jeq	1b | 
 | 1107 | 5:	move.w	#0x407e,(-2,%a0) | 
 | 1108 | 	move.l	#0xffffff00,(%a0)+ | 
 | 1109 | 	clr.l	(%a0) | 
 | 1110 | 	jra	2b | 
 | 1111 | 	| Infinities or NaNs | 
 | 1112 | fp_nsf_huge: | 
 | 1113 | 	subq.l	#4,%a0 | 
 | 1114 | 	printf	PNORM,"%p(",1,%a0 | 
 | 1115 | 	printx	PNORM,%a0@ | 
 | 1116 | 	printf	PNORM,")\n" | 
 | 1117 | 	rts | 
 | 1118 |  | 
 | 1119 | 	| conv_ext2int (macro): | 
 | 1120 | 	| Generates a subroutine that converts an extended value to an | 
 | 1121 | 	| integer of a given size, again, with the appropriate type of | 
 | 1122 | 	| rounding. | 
 | 1123 |  | 
 | 1124 | 	| Macro arguments: | 
 | 1125 | 	| s:	size, as given in an assembly instruction. | 
 | 1126 | 	| b:	number of bits in that size. | 
 | 1127 |  | 
 | 1128 | 	| Subroutine arguments: | 
 | 1129 | 	| %a0:	source (struct fp_ext *) | 
 | 1130 |  | 
 | 1131 | 	| Returns the integer in %d0 (like it should) | 
 | 1132 |  | 
 | 1133 | .macro conv_ext2int s,b | 
 | 1134 | 	.set	inf,(1<<(\b-1))-1	| i.e. MAXINT | 
 | 1135 | 	printf	PCONV,"e2i%d: %p(",2,#\b,%a0 | 
 | 1136 | 	printx	PCONV,%a0@ | 
 | 1137 | 	printf	PCONV,") " | 
 | 1138 | 	addq.l	#2,%a0 | 
 | 1139 | 	move.w	(%a0)+,%d2		| exponent | 
 | 1140 | 	jeq	fp_e2i_zero\b		| zero / denorm (== 0, here) | 
 | 1141 | 	cmp.w	#0x7fff,%d2 | 
 | 1142 | 	jeq	fp_e2i_huge\b		| Inf / NaN | 
 | 1143 | 	sub.w	#0x3ffe,%d2 | 
 | 1144 | 	jcs	fp_e2i_small\b | 
 | 1145 | 	cmp.w	#\b,%d2 | 
 | 1146 | 	jhi	fp_e2i_large\b | 
 | 1147 | 	move.l	(%a0),%d0 | 
 | 1148 | 	move.l	%d0,%d1 | 
 | 1149 | 	lsl.l	%d2,%d1 | 
 | 1150 | 	jne	fp_e2i_round\b | 
 | 1151 | 	tst.l	(4,%a0) | 
 | 1152 | 	jne	fp_e2i_round\b | 
 | 1153 | 	neg.w	%d2 | 
 | 1154 | 	add.w	#32,%d2 | 
 | 1155 | 	lsr.l	%d2,%d0 | 
 | 1156 | 9:	tst.w	(-4,%a0) | 
 | 1157 | 	jne	1f | 
 | 1158 | 	tst.\s	%d0 | 
 | 1159 | 	jmi	fp_e2i_large\b | 
 | 1160 | 	printf	PCONV,"-> %p\n",1,%d0 | 
 | 1161 | 	rts | 
 | 1162 | 1:	neg.\s	%d0 | 
 | 1163 | 	jeq	1f | 
 | 1164 | 	jpl	fp_e2i_large\b | 
 | 1165 | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
 | 1166 | 	rts | 
 | 1167 | fp_e2i_round\b: | 
 | 1168 | 	fp_set_sr FPSR_EXC_INEX2	| INEX2 bit | 
 | 1169 | 	neg.w	%d2 | 
 | 1170 | 	add.w	#32,%d2 | 
 | 1171 | 	.if	\b>16 | 
 | 1172 | 	jeq	5f | 
 | 1173 | 	.endif | 
 | 1174 | 	lsr.l	%d2,%d0 | 
 | 1175 | 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
 | 1176 | 	jne	2f			| %d2 == 0, round to nearest | 
 | 1177 | 	tst.l	%d1			| test guard bit | 
 | 1178 | 	jpl	9b			| zero is closer | 
 | 1179 | 	btst	%d2,%d0			| test lsb bit (%d2 still 0) | 
 | 1180 | 	jne	fp_e2i_doroundup\b | 
 | 1181 | 	lsl.l	#1,%d1			| check low bits | 
 | 1182 | 	jne	fp_e2i_doroundup\b | 
 | 1183 | 	tst.l	(4,%a0) | 
 | 1184 | 	jeq	9b | 
 | 1185 | fp_e2i_doroundup\b: | 
 | 1186 | 	addq.l	#1,%d0 | 
 | 1187 | 	jra	9b | 
 | 1188 | 	| check nondefault rounding modes | 
 | 1189 | 2:	subq.w	#2,%d2 | 
 | 1190 | 	jcs	9b			| %d2 < 2, round to zero | 
 | 1191 | 	jhi	3f			| %d2 > 2, round to +infinity | 
 | 1192 | 	tst.w	(-4,%a0)		| to -inf | 
 | 1193 | 	jne	fp_e2i_doroundup\b	| negative, round to infinity | 
 | 1194 | 	jra	9b			| positive, round to zero | 
 | 1195 | 3:	tst.w	(-4,%a0)		| to +inf | 
 | 1196 | 	jeq	fp_e2i_doroundup\b	| positive, round to infinity | 
 | 1197 | 	jra	9b	| negative, round to zero | 
 | 1198 | 	| we are only want -2**127 get correctly rounded here, | 
 | 1199 | 	| since the guard bit is in the lower lword. | 
 | 1200 | 	| everything else ends up anyway as overflow. | 
 | 1201 | 	.if	\b>16 | 
 | 1202 | 5:	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
 | 1203 | 	jne	2b			| %d2 == 0, round to nearest | 
 | 1204 | 	move.l	(4,%a0),%d1		| test guard bit | 
 | 1205 | 	jpl	9b			| zero is closer | 
 | 1206 | 	lsl.l	#1,%d1			| check low bits | 
 | 1207 | 	jne	fp_e2i_doroundup\b | 
 | 1208 | 	jra	9b | 
 | 1209 | 	.endif | 
 | 1210 | fp_e2i_zero\b: | 
 | 1211 | 	clr.l	%d0 | 
 | 1212 | 	tst.l	(%a0)+ | 
 | 1213 | 	jne	1f | 
 | 1214 | 	tst.l	(%a0) | 
 | 1215 | 	jeq	3f | 
 | 1216 | 1:	subq.l	#4,%a0 | 
 | 1217 | 	fp_clr_sr FPSR_EXC_UNFL		| fp_normalize_ext has set this bit | 
 | 1218 | fp_e2i_small\b: | 
 | 1219 | 	fp_set_sr FPSR_EXC_INEX2 | 
 | 1220 | 	clr.l	%d0 | 
 | 1221 | 	move.w	(FPD_RND,FPDATA),%d2	| rounding mode | 
 | 1222 | 	subq.w	#2,%d2 | 
 | 1223 | 	jcs	3f			| %d2 < 2, round to nearest/zero | 
 | 1224 | 	jhi	2f			| %d2 > 2, round to +infinity | 
 | 1225 | 	tst.w	(-4,%a0)		| to -inf | 
 | 1226 | 	jeq	3f | 
 | 1227 | 	subq.\s	#1,%d0 | 
 | 1228 | 	jra	3f | 
 | 1229 | 2:	tst.w	(-4,%a0)		| to +inf | 
 | 1230 | 	jne	3f | 
 | 1231 | 	addq.\s	#1,%d0 | 
 | 1232 | 3:	printf	PCONV,"-> %p\n",1,%d0 | 
 | 1233 | 	rts | 
 | 1234 | fp_e2i_large\b: | 
 | 1235 | 	fp_set_sr FPSR_EXC_OPERR | 
 | 1236 | 	move.\s	#inf,%d0 | 
 | 1237 | 	tst.w	(-4,%a0) | 
 | 1238 | 	jeq	1f | 
 | 1239 | 	addq.\s	#1,%d0 | 
 | 1240 | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
 | 1241 | 	rts | 
 | 1242 | fp_e2i_huge\b: | 
 | 1243 | 	move.\s	(%a0),%d0 | 
 | 1244 | 	tst.l	(%a0) | 
 | 1245 | 	jne	1f | 
 | 1246 | 	tst.l	(%a0) | 
 | 1247 | 	jeq	fp_e2i_large\b | 
 | 1248 | 	| fp_normalize_ext has set this bit already | 
 | 1249 | 	| and made the number nonsignaling | 
 | 1250 | 1:	fp_tst_sr FPSR_EXC_SNAN | 
 | 1251 | 	jne	1f | 
 | 1252 | 	fp_set_sr FPSR_EXC_OPERR | 
 | 1253 | 1:	printf	PCONV,"-> %p\n",1,%d0 | 
 | 1254 | 	rts | 
 | 1255 | .endm | 
 | 1256 |  | 
 | 1257 | fp_conv_ext2long: | 
 | 1258 | 	conv_ext2int l,32 | 
 | 1259 |  | 
 | 1260 | fp_conv_ext2short: | 
 | 1261 | 	conv_ext2int w,16 | 
 | 1262 |  | 
 | 1263 | fp_conv_ext2byte: | 
 | 1264 | 	conv_ext2int b,8 | 
 | 1265 |  | 
 | 1266 | fp_conv_ext2double: | 
 | 1267 | 	jsr	fp_normalize_double | 
 | 1268 | 	printf	PCONV,"e2d: %p(",1,%a0 | 
 | 1269 | 	printx	PCONV,%a0@ | 
 | 1270 | 	printf	PCONV,"), " | 
 | 1271 | 	move.l	(%a0)+,%d2 | 
 | 1272 | 	cmp.w	#0x7fff,%d2 | 
 | 1273 | 	jne	1f | 
 | 1274 | 	move.w	#0x7ff,%d2 | 
 | 1275 | 	move.l	(%a0)+,%d0 | 
 | 1276 | 	jra	2f | 
 | 1277 | 1:	sub.w	#0x3fff-0x3ff,%d2 | 
 | 1278 | 	move.l	(%a0)+,%d0 | 
 | 1279 | 	jmi	2f | 
 | 1280 | 	clr.w	%d2 | 
 | 1281 | 2:	lsl.w	#5,%d2 | 
 | 1282 | 	lsl.l	#7,%d2 | 
 | 1283 | 	lsl.l	#8,%d2 | 
 | 1284 | 	move.l	%d0,%d1 | 
 | 1285 | 	lsl.l	#1,%d0 | 
 | 1286 | 	lsr.l	#4,%d0 | 
 | 1287 | 	lsr.l	#8,%d0 | 
 | 1288 | 	or.l	%d2,%d0 | 
 | 1289 | 	putuser.l %d0,(%a1)+,fp_err_ua2,%a1 | 
 | 1290 | 	moveq	#21,%d0 | 
 | 1291 | 	lsl.l	%d0,%d1 | 
 | 1292 | 	move.l	(%a0),%d0 | 
 | 1293 | 	lsr.l	#4,%d0 | 
 | 1294 | 	lsr.l	#7,%d0 | 
 | 1295 | 	or.l	%d1,%d0 | 
 | 1296 | 	putuser.l %d0,(%a1),fp_err_ua2,%a1 | 
 | 1297 | #ifdef FPU_EMU_DEBUG | 
 | 1298 | 	getuser.l %a1@(-4),%d0,fp_err_ua2,%a1 | 
 | 1299 | 	getuser.l %a1@(0),%d1,fp_err_ua2,%a1 | 
 | 1300 | 	printf	PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1 | 
 | 1301 | #endif | 
 | 1302 | 	rts | 
 | 1303 |  | 
 | 1304 | fp_conv_ext2single: | 
 | 1305 | 	jsr	fp_normalize_single | 
 | 1306 | 	printf	PCONV,"e2s: %p(",1,%a0 | 
 | 1307 | 	printx	PCONV,%a0@ | 
 | 1308 | 	printf	PCONV,"), " | 
 | 1309 | 	move.l	(%a0)+,%d1 | 
 | 1310 | 	cmp.w	#0x7fff,%d1 | 
 | 1311 | 	jne	1f | 
 | 1312 | 	move.w	#0xff,%d1 | 
 | 1313 | 	move.l	(%a0)+,%d0 | 
 | 1314 | 	jra	2f | 
 | 1315 | 1:	sub.w	#0x3fff-0x7f,%d1 | 
 | 1316 | 	move.l	(%a0)+,%d0 | 
 | 1317 | 	jmi	2f | 
 | 1318 | 	clr.w	%d1 | 
 | 1319 | 2:	lsl.w	#8,%d1 | 
 | 1320 | 	lsl.l	#7,%d1 | 
 | 1321 | 	lsl.l	#8,%d1 | 
 | 1322 | 	bclr	#31,%d0 | 
 | 1323 | 	lsr.l	#8,%d0 | 
 | 1324 | 	or.l	%d1,%d0 | 
 | 1325 | 	printf	PCONV,"%08x\n",1,%d0 | 
 | 1326 | 	rts | 
 | 1327 |  | 
 | 1328 | 	| special return addresses for instr that | 
 | 1329 | 	| encode the rounding precision in the opcode | 
 | 1330 | 	| (e.g. fsmove,fdmove) | 
 | 1331 |  | 
 | 1332 | fp_finalrounding_single: | 
 | 1333 | 	addq.l	#8,%sp | 
 | 1334 | 	jsr	fp_normalize_ext | 
 | 1335 | 	jsr	fp_normalize_single | 
 | 1336 | 	jra	fp_finaltest | 
 | 1337 |  | 
 | 1338 | fp_finalrounding_single_fast: | 
 | 1339 | 	addq.l	#8,%sp | 
 | 1340 | 	jsr	fp_normalize_ext | 
 | 1341 | 	jsr	fp_normalize_single_fast | 
 | 1342 | 	jra	fp_finaltest | 
 | 1343 |  | 
 | 1344 | fp_finalrounding_double: | 
 | 1345 | 	addq.l	#8,%sp | 
 | 1346 | 	jsr	fp_normalize_ext | 
 | 1347 | 	jsr	fp_normalize_double | 
 | 1348 | 	jra	fp_finaltest | 
 | 1349 |  | 
 | 1350 | 	| fp_finaltest: | 
 | 1351 | 	| set the emulated status register based on the outcome of an | 
 | 1352 | 	| emulated instruction. | 
 | 1353 |  | 
 | 1354 | fp_finalrounding: | 
 | 1355 | 	addq.l	#8,%sp | 
 | 1356 | |	printf	,"f: %p\n",1,%a0 | 
 | 1357 | 	jsr	fp_normalize_ext | 
 | 1358 | 	move.w	(FPD_PREC,FPDATA),%d0 | 
 | 1359 | 	subq.w	#1,%d0 | 
 | 1360 | 	jcs	fp_finaltest | 
 | 1361 | 	jne	1f | 
 | 1362 | 	jsr	fp_normalize_single | 
 | 1363 | 	jra	2f | 
 | 1364 | 1:	jsr	fp_normalize_double | 
 | 1365 | 2:|	printf	,"f: %p\n",1,%a0 | 
 | 1366 | fp_finaltest: | 
 | 1367 | 	| First, we do some of the obvious tests for the exception | 
 | 1368 | 	| status byte and condition code bytes of fp_sr here, so that | 
 | 1369 | 	| they do not have to be handled individually by every | 
 | 1370 | 	| emulated instruction. | 
 | 1371 | 	clr.l	%d0 | 
 | 1372 | 	addq.l	#1,%a0 | 
 | 1373 | 	tst.b	(%a0)+			| sign | 
 | 1374 | 	jeq	1f | 
 | 1375 | 	bset	#FPSR_CC_NEG-24,%d0	| N bit | 
 | 1376 | 1:	cmp.w	#0x7fff,(%a0)+		| exponent | 
 | 1377 | 	jeq	2f | 
 | 1378 | 	| test for zero | 
 | 1379 | 	moveq	#FPSR_CC_Z-24,%d1 | 
 | 1380 | 	tst.l	(%a0)+ | 
 | 1381 | 	jne	9f | 
 | 1382 | 	tst.l	(%a0) | 
 | 1383 | 	jne	9f | 
 | 1384 | 	jra	8f | 
 | 1385 | 	| infinitiv and NAN | 
 | 1386 | 2:	moveq	#FPSR_CC_NAN-24,%d1 | 
 | 1387 | 	move.l	(%a0)+,%d2 | 
 | 1388 | 	lsl.l	#1,%d2			| ignore high bit | 
 | 1389 | 	jne	8f | 
 | 1390 | 	tst.l	(%a0) | 
 | 1391 | 	jne	8f | 
 | 1392 | 	moveq	#FPSR_CC_INF-24,%d1 | 
 | 1393 | 8:	bset	%d1,%d0 | 
 | 1394 | 9:	move.b	%d0,(FPD_FPSR+0,FPDATA)	| set condition test result | 
 | 1395 | 	| move instructions enter here | 
 | 1396 | 	| Here, we test things in the exception status byte, and set | 
 | 1397 | 	| other things in the accrued exception byte accordingly. | 
 | 1398 | 	| Emulated instructions can set various things in the former, | 
 | 1399 | 	| as defined in fp_emu.h. | 
 | 1400 | fp_final: | 
 | 1401 | 	move.l	(FPD_FPSR,FPDATA),%d0 | 
 | 1402 | #if 0 | 
 | 1403 | 	btst	#FPSR_EXC_SNAN,%d0	| EXC_SNAN | 
 | 1404 | 	jne	1f | 
 | 1405 | 	btst	#FPSR_EXC_OPERR,%d0	| EXC_OPERR | 
 | 1406 | 	jeq	2f | 
 | 1407 | 1:	bset	#FPSR_AEXC_IOP,%d0	| set IOP bit | 
 | 1408 | 2:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL | 
 | 1409 | 	jeq	1f | 
 | 1410 | 	bset	#FPSR_AEXC_OVFL,%d0	| set OVFL bit | 
 | 1411 | 1:	btst	#FPSR_EXC_UNFL,%d0	| EXC_UNFL | 
 | 1412 | 	jeq	1f | 
 | 1413 | 	btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2 | 
 | 1414 | 	jeq	1f | 
 | 1415 | 	bset	#FPSR_AEXC_UNFL,%d0	| set UNFL bit | 
 | 1416 | 1:	btst	#FPSR_EXC_DZ,%d0	| EXC_INEX1 | 
 | 1417 | 	jeq	1f | 
 | 1418 | 	bset	#FPSR_AEXC_DZ,%d0	| set DZ bit | 
 | 1419 | 1:	btst	#FPSR_EXC_OVFL,%d0	| EXC_OVFL | 
 | 1420 | 	jne	1f | 
 | 1421 | 	btst	#FPSR_EXC_INEX2,%d0	| EXC_INEX2 | 
 | 1422 | 	jne	1f | 
 | 1423 | 	btst	#FPSR_EXC_INEX1,%d0	| EXC_INEX1 | 
 | 1424 | 	jeq	2f | 
 | 1425 | 1:	bset	#FPSR_AEXC_INEX,%d0	| set INEX bit | 
 | 1426 | 2:	move.l	%d0,(FPD_FPSR,FPDATA) | 
 | 1427 | #else | 
 | 1428 | 	| same as above, greatly optimized, but untested (yet) | 
 | 1429 | 	move.l	%d0,%d2 | 
 | 1430 | 	lsr.l	#5,%d0 | 
 | 1431 | 	move.l	%d0,%d1 | 
 | 1432 | 	lsr.l	#4,%d1 | 
 | 1433 | 	or.l	%d0,%d1 | 
 | 1434 | 	and.b	#0x08,%d1 | 
 | 1435 | 	move.l	%d2,%d0 | 
 | 1436 | 	lsr.l	#6,%d0 | 
 | 1437 | 	or.l	%d1,%d0 | 
 | 1438 | 	move.l	%d2,%d1 | 
 | 1439 | 	lsr.l	#4,%d1 | 
 | 1440 | 	or.b	#0xdf,%d1 | 
 | 1441 | 	and.b	%d1,%d0 | 
 | 1442 | 	move.l	%d2,%d1 | 
 | 1443 | 	lsr.l	#7,%d1 | 
 | 1444 | 	and.b	#0x80,%d1 | 
 | 1445 | 	or.b	%d1,%d0 | 
 | 1446 | 	and.b	#0xf8,%d0 | 
 | 1447 | 	or.b	%d0,%d2 | 
 | 1448 | 	move.l	%d2,(FPD_FPSR,FPDATA) | 
 | 1449 | #endif | 
 | 1450 | 	move.b	(FPD_FPSR+2,FPDATA),%d0 | 
 | 1451 | 	and.b	(FPD_FPCR+2,FPDATA),%d0 | 
 | 1452 | 	jeq	1f | 
 | 1453 | 	printf	,"send signal!!!\n" | 
 | 1454 | 1:	jra	fp_end |