| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef __ASM_SH_BITOPS_H | 
 | 2 | #define __ASM_SH_BITOPS_H | 
 | 3 |  | 
 | 4 | #ifdef __KERNEL__ | 
 | 5 | #include <asm/system.h> | 
 | 6 | /* For __swab32 */ | 
 | 7 | #include <asm/byteorder.h> | 
 | 8 |  | 
 | 9 | static __inline__ void set_bit(int nr, volatile void * addr) | 
 | 10 | { | 
 | 11 | 	int	mask; | 
 | 12 | 	volatile unsigned int *a = addr; | 
 | 13 | 	unsigned long flags; | 
 | 14 |  | 
 | 15 | 	a += nr >> 5; | 
 | 16 | 	mask = 1 << (nr & 0x1f); | 
 | 17 | 	local_irq_save(flags); | 
 | 18 | 	*a |= mask; | 
 | 19 | 	local_irq_restore(flags); | 
 | 20 | } | 
 | 21 |  | 
 | 22 | static __inline__ void __set_bit(int nr, volatile void * addr) | 
 | 23 | { | 
 | 24 | 	int	mask; | 
 | 25 | 	volatile unsigned int *a = addr; | 
 | 26 |  | 
 | 27 | 	a += nr >> 5; | 
 | 28 | 	mask = 1 << (nr & 0x1f); | 
 | 29 | 	*a |= mask; | 
 | 30 | } | 
 | 31 |  | 
 | 32 | /* | 
 | 33 |  * clear_bit() doesn't provide any barrier for the compiler. | 
 | 34 |  */ | 
 | 35 | #define smp_mb__before_clear_bit()	barrier() | 
 | 36 | #define smp_mb__after_clear_bit()	barrier() | 
 | 37 | static __inline__ void clear_bit(int nr, volatile void * addr) | 
 | 38 | { | 
 | 39 | 	int	mask; | 
 | 40 | 	volatile unsigned int *a = addr; | 
 | 41 | 	unsigned long flags; | 
 | 42 |  | 
 | 43 | 	a += nr >> 5; | 
 | 44 | 	mask = 1 << (nr & 0x1f); | 
 | 45 | 	local_irq_save(flags); | 
 | 46 | 	*a &= ~mask; | 
 | 47 | 	local_irq_restore(flags); | 
 | 48 | } | 
 | 49 |  | 
 | 50 | static __inline__ void __clear_bit(int nr, volatile void * addr) | 
 | 51 | { | 
 | 52 | 	int	mask; | 
 | 53 | 	volatile unsigned int *a = addr; | 
 | 54 |  | 
 | 55 | 	a += nr >> 5; | 
 | 56 | 	mask = 1 << (nr & 0x1f); | 
 | 57 | 	*a &= ~mask; | 
 | 58 | } | 
 | 59 |  | 
 | 60 | static __inline__ void change_bit(int nr, volatile void * addr) | 
 | 61 | { | 
 | 62 | 	int	mask; | 
 | 63 | 	volatile unsigned int *a = addr; | 
 | 64 | 	unsigned long flags; | 
 | 65 |  | 
 | 66 | 	a += nr >> 5; | 
 | 67 | 	mask = 1 << (nr & 0x1f); | 
 | 68 | 	local_irq_save(flags); | 
 | 69 | 	*a ^= mask; | 
 | 70 | 	local_irq_restore(flags); | 
 | 71 | } | 
 | 72 |  | 
 | 73 | static __inline__ void __change_bit(int nr, volatile void * addr) | 
 | 74 | { | 
 | 75 | 	int	mask; | 
 | 76 | 	volatile unsigned int *a = addr; | 
 | 77 |  | 
 | 78 | 	a += nr >> 5; | 
 | 79 | 	mask = 1 << (nr & 0x1f); | 
 | 80 | 	*a ^= mask; | 
 | 81 | } | 
 | 82 |  | 
 | 83 | static __inline__ int test_and_set_bit(int nr, volatile void * addr) | 
 | 84 | { | 
 | 85 | 	int	mask, retval; | 
 | 86 | 	volatile unsigned int *a = addr; | 
 | 87 | 	unsigned long flags; | 
 | 88 |  | 
 | 89 | 	a += nr >> 5; | 
 | 90 | 	mask = 1 << (nr & 0x1f); | 
 | 91 | 	local_irq_save(flags); | 
 | 92 | 	retval = (mask & *a) != 0; | 
 | 93 | 	*a |= mask; | 
 | 94 | 	local_irq_restore(flags); | 
 | 95 |  | 
 | 96 | 	return retval; | 
 | 97 | } | 
 | 98 |  | 
 | 99 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) | 
 | 100 | { | 
 | 101 | 	int	mask, retval; | 
 | 102 | 	volatile unsigned int *a = addr; | 
 | 103 |  | 
 | 104 | 	a += nr >> 5; | 
 | 105 | 	mask = 1 << (nr & 0x1f); | 
 | 106 | 	retval = (mask & *a) != 0; | 
 | 107 | 	*a |= mask; | 
 | 108 |  | 
 | 109 | 	return retval; | 
 | 110 | } | 
 | 111 |  | 
 | 112 | static __inline__ int test_and_clear_bit(int nr, volatile void * addr) | 
 | 113 | { | 
 | 114 | 	int	mask, retval; | 
 | 115 | 	volatile unsigned int *a = addr; | 
 | 116 | 	unsigned long flags; | 
 | 117 |  | 
 | 118 | 	a += nr >> 5; | 
 | 119 | 	mask = 1 << (nr & 0x1f); | 
 | 120 | 	local_irq_save(flags); | 
 | 121 | 	retval = (mask & *a) != 0; | 
 | 122 | 	*a &= ~mask; | 
 | 123 | 	local_irq_restore(flags); | 
 | 124 |  | 
 | 125 | 	return retval; | 
 | 126 | } | 
 | 127 |  | 
 | 128 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) | 
 | 129 | { | 
 | 130 | 	int	mask, retval; | 
 | 131 | 	volatile unsigned int *a = addr; | 
 | 132 |  | 
 | 133 | 	a += nr >> 5; | 
 | 134 | 	mask = 1 << (nr & 0x1f); | 
 | 135 | 	retval = (mask & *a) != 0; | 
 | 136 | 	*a &= ~mask; | 
 | 137 |  | 
 | 138 | 	return retval; | 
 | 139 | } | 
 | 140 |  | 
 | 141 | static __inline__ int test_and_change_bit(int nr, volatile void * addr) | 
 | 142 | { | 
 | 143 | 	int	mask, retval; | 
 | 144 | 	volatile unsigned int *a = addr; | 
 | 145 | 	unsigned long flags; | 
 | 146 |  | 
 | 147 | 	a += nr >> 5; | 
 | 148 | 	mask = 1 << (nr & 0x1f); | 
 | 149 | 	local_irq_save(flags); | 
 | 150 | 	retval = (mask & *a) != 0; | 
 | 151 | 	*a ^= mask; | 
 | 152 | 	local_irq_restore(flags); | 
 | 153 |  | 
 | 154 | 	return retval; | 
 | 155 | } | 
 | 156 |  | 
 | 157 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) | 
 | 158 | { | 
 | 159 | 	int	mask, retval; | 
 | 160 | 	volatile unsigned int *a = addr; | 
 | 161 |  | 
 | 162 | 	a += nr >> 5; | 
 | 163 | 	mask = 1 << (nr & 0x1f); | 
 | 164 | 	retval = (mask & *a) != 0; | 
 | 165 | 	*a ^= mask; | 
 | 166 |  | 
 | 167 | 	return retval; | 
 | 168 | } | 
 | 169 |  | 
 | 170 | static __inline__ int test_bit(int nr, const volatile void *addr) | 
 | 171 | { | 
 | 172 | 	return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31)); | 
 | 173 | } | 
 | 174 |  | 
 | 175 | static __inline__ unsigned long ffz(unsigned long word) | 
 | 176 | { | 
 | 177 | 	unsigned long result; | 
 | 178 |  | 
 | 179 | 	__asm__("1:\n\t" | 
 | 180 | 		"shlr	%1\n\t" | 
 | 181 | 		"bt/s	1b\n\t" | 
 | 182 | 		" add	#1, %0" | 
 | 183 | 		: "=r" (result), "=r" (word) | 
 | 184 | 		: "0" (~0L), "1" (word) | 
 | 185 | 		: "t"); | 
 | 186 | 	return result; | 
 | 187 | } | 
 | 188 |  | 
 | 189 | /** | 
 | 190 |  * __ffs - find first bit in word. | 
 | 191 |  * @word: The word to search | 
 | 192 |  * | 
 | 193 |  * Undefined if no bit exists, so code should check against 0 first. | 
 | 194 |  */ | 
 | 195 | static __inline__ unsigned long __ffs(unsigned long word) | 
 | 196 | { | 
 | 197 | 	unsigned long result; | 
 | 198 |  | 
 | 199 | 	__asm__("1:\n\t" | 
 | 200 | 		"shlr	%1\n\t" | 
 | 201 | 		"bf/s	1b\n\t" | 
 | 202 | 		" add	#1, %0" | 
 | 203 | 		: "=r" (result), "=r" (word) | 
 | 204 | 		: "0" (~0L), "1" (word) | 
 | 205 | 		: "t"); | 
 | 206 | 	return result; | 
 | 207 | } | 
 | 208 |  | 
 | 209 | /** | 
 | 210 |  * find_next_bit - find the next set bit in a memory region | 
 | 211 |  * @addr: The address to base the search on | 
 | 212 |  * @offset: The bitnumber to start searching at | 
 | 213 |  * @size: The maximum size to search | 
 | 214 |  */ | 
 | 215 | static __inline__ unsigned long find_next_bit(const unsigned long *addr, | 
 | 216 | 	unsigned long size, unsigned long offset) | 
 | 217 | { | 
 | 218 | 	unsigned int *p = ((unsigned int *) addr) + (offset >> 5); | 
 | 219 | 	unsigned int result = offset & ~31UL; | 
 | 220 | 	unsigned int tmp; | 
 | 221 |  | 
 | 222 | 	if (offset >= size) | 
 | 223 | 		return size; | 
 | 224 | 	size -= result; | 
 | 225 | 	offset &= 31UL; | 
 | 226 | 	if (offset) { | 
 | 227 | 		tmp = *p++; | 
 | 228 | 		tmp &= ~0UL << offset; | 
 | 229 | 		if (size < 32) | 
 | 230 | 			goto found_first; | 
 | 231 | 		if (tmp) | 
 | 232 | 			goto found_middle; | 
 | 233 | 		size -= 32; | 
 | 234 | 		result += 32; | 
 | 235 | 	} | 
 | 236 | 	while (size >= 32) { | 
 | 237 | 		if ((tmp = *p++) != 0) | 
 | 238 | 			goto found_middle; | 
 | 239 | 		result += 32; | 
 | 240 | 		size -= 32; | 
 | 241 | 	} | 
 | 242 | 	if (!size) | 
 | 243 | 		return result; | 
 | 244 | 	tmp = *p; | 
 | 245 |  | 
 | 246 | found_first: | 
 | 247 | 	tmp &= ~0UL >> (32 - size); | 
 | 248 | 	if (tmp == 0UL)        /* Are any bits set? */ | 
 | 249 | 		return result + size; /* Nope. */ | 
 | 250 | found_middle: | 
 | 251 | 	return result + __ffs(tmp); | 
 | 252 | } | 
 | 253 |  | 
 | 254 | /** | 
 | 255 |  * find_first_bit - find the first set bit in a memory region | 
 | 256 |  * @addr: The address to start the search at | 
 | 257 |  * @size: The maximum size to search | 
 | 258 |  * | 
 | 259 |  * Returns the bit-number of the first set bit, not the number of the byte | 
 | 260 |  * containing a bit. | 
 | 261 |  */ | 
 | 262 | #define find_first_bit(addr, size) \ | 
 | 263 | 	find_next_bit((addr), (size), 0) | 
 | 264 |  | 
 | 265 | static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset) | 
 | 266 | { | 
 | 267 | 	const unsigned long *p = ((unsigned long *) addr) + (offset >> 5); | 
 | 268 | 	unsigned long result = offset & ~31UL; | 
 | 269 | 	unsigned long tmp; | 
 | 270 |  | 
 | 271 | 	if (offset >= size) | 
 | 272 | 		return size; | 
 | 273 | 	size -= result; | 
 | 274 | 	offset &= 31UL; | 
 | 275 | 	if (offset) { | 
 | 276 | 		tmp = *(p++); | 
 | 277 | 		tmp |= ~0UL >> (32-offset); | 
 | 278 | 		if (size < 32) | 
 | 279 | 			goto found_first; | 
 | 280 | 		if (~tmp) | 
 | 281 | 			goto found_middle; | 
 | 282 | 		size -= 32; | 
 | 283 | 		result += 32; | 
 | 284 | 	} | 
 | 285 | 	while (size & ~31UL) { | 
 | 286 | 		if (~(tmp = *(p++))) | 
 | 287 | 			goto found_middle; | 
 | 288 | 		result += 32; | 
 | 289 | 		size -= 32; | 
 | 290 | 	} | 
 | 291 | 	if (!size) | 
 | 292 | 		return result; | 
 | 293 | 	tmp = *p; | 
 | 294 |  | 
 | 295 | found_first: | 
 | 296 | 	tmp |= ~0UL << size; | 
 | 297 | found_middle: | 
 | 298 | 	return result + ffz(tmp); | 
 | 299 | } | 
 | 300 |  | 
 | 301 | #define find_first_zero_bit(addr, size) \ | 
 | 302 |         find_next_zero_bit((addr), (size), 0) | 
 | 303 |  | 
 | 304 | /* | 
 | 305 |  * ffs: find first bit set. This is defined the same way as | 
 | 306 |  * the libc and compiler builtin ffs routines, therefore | 
 | 307 |  * differs in spirit from the above ffz (man ffs). | 
 | 308 |  */ | 
 | 309 |  | 
 | 310 | #define ffs(x) generic_ffs(x) | 
 | 311 |  | 
 | 312 | /* | 
 | 313 |  * hweightN: returns the hamming weight (i.e. the number | 
 | 314 |  * of bits set) of a N-bit word | 
 | 315 |  */ | 
 | 316 |  | 
 | 317 | #define hweight32(x) generic_hweight32(x) | 
 | 318 | #define hweight16(x) generic_hweight16(x) | 
 | 319 | #define hweight8(x) generic_hweight8(x) | 
 | 320 |  | 
 | 321 | /* | 
 | 322 |  * Every architecture must define this function. It's the fastest | 
 | 323 |  * way of searching a 140-bit bitmap where the first 100 bits are | 
 | 324 |  * unlikely to be set. It's guaranteed that at least one of the 140 | 
 | 325 |  * bits is cleared. | 
 | 326 |  */ | 
 | 327 |  | 
 | 328 | static inline int sched_find_first_bit(const unsigned long *b) | 
 | 329 | { | 
 | 330 | 	if (unlikely(b[0])) | 
 | 331 | 		return __ffs(b[0]); | 
 | 332 | 	if (unlikely(b[1])) | 
 | 333 | 		return __ffs(b[1]) + 32; | 
 | 334 | 	if (unlikely(b[2])) | 
 | 335 | 		return __ffs(b[2]) + 64; | 
 | 336 | 	if (b[3]) | 
 | 337 | 		return __ffs(b[3]) + 96; | 
 | 338 | 	return __ffs(b[4]) + 128; | 
 | 339 | } | 
 | 340 |  | 
 | 341 | #ifdef __LITTLE_ENDIAN__ | 
 | 342 | #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) | 
 | 343 | #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) | 
 | 344 | #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) | 
 | 345 | #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) | 
 | 346 | #define ext2_find_next_zero_bit(addr, size, offset) \ | 
 | 347 |                 find_next_zero_bit((unsigned long *)(addr), (size), (offset)) | 
 | 348 | #else | 
 | 349 | static __inline__ int ext2_set_bit(int nr, volatile void * addr) | 
 | 350 | { | 
 | 351 | 	int		mask, retval; | 
 | 352 | 	unsigned long	flags; | 
 | 353 | 	volatile unsigned char	*ADDR = (unsigned char *) addr; | 
 | 354 |  | 
 | 355 | 	ADDR += nr >> 3; | 
 | 356 | 	mask = 1 << (nr & 0x07); | 
 | 357 | 	local_irq_save(flags); | 
 | 358 | 	retval = (mask & *ADDR) != 0; | 
 | 359 | 	*ADDR |= mask; | 
 | 360 | 	local_irq_restore(flags); | 
 | 361 | 	return retval; | 
 | 362 | } | 
 | 363 |  | 
 | 364 | static __inline__ int ext2_clear_bit(int nr, volatile void * addr) | 
 | 365 | { | 
 | 366 | 	int		mask, retval; | 
 | 367 | 	unsigned long	flags; | 
 | 368 | 	volatile unsigned char	*ADDR = (unsigned char *) addr; | 
 | 369 |  | 
 | 370 | 	ADDR += nr >> 3; | 
 | 371 | 	mask = 1 << (nr & 0x07); | 
 | 372 | 	local_irq_save(flags); | 
 | 373 | 	retval = (mask & *ADDR) != 0; | 
 | 374 | 	*ADDR &= ~mask; | 
 | 375 | 	local_irq_restore(flags); | 
 | 376 | 	return retval; | 
 | 377 | } | 
 | 378 |  | 
 | 379 | static __inline__ int ext2_test_bit(int nr, const volatile void * addr) | 
 | 380 | { | 
 | 381 | 	int			mask; | 
 | 382 | 	const volatile unsigned char	*ADDR = (const unsigned char *) addr; | 
 | 383 |  | 
 | 384 | 	ADDR += nr >> 3; | 
 | 385 | 	mask = 1 << (nr & 0x07); | 
 | 386 | 	return ((mask & *ADDR) != 0); | 
 | 387 | } | 
 | 388 |  | 
 | 389 | #define ext2_find_first_zero_bit(addr, size) \ | 
 | 390 |         ext2_find_next_zero_bit((addr), (size), 0) | 
 | 391 |  | 
 | 392 | static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) | 
 | 393 | { | 
 | 394 | 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5); | 
 | 395 | 	unsigned long result = offset & ~31UL; | 
 | 396 | 	unsigned long tmp; | 
 | 397 |  | 
 | 398 | 	if (offset >= size) | 
 | 399 | 		return size; | 
 | 400 | 	size -= result; | 
 | 401 | 	offset &= 31UL; | 
 | 402 | 	if(offset) { | 
 | 403 | 		/* We hold the little endian value in tmp, but then the | 
 | 404 | 		 * shift is illegal. So we could keep a big endian value | 
 | 405 | 		 * in tmp, like this: | 
 | 406 | 		 * | 
 | 407 | 		 * tmp = __swab32(*(p++)); | 
 | 408 | 		 * tmp |= ~0UL >> (32-offset); | 
 | 409 | 		 * | 
 | 410 | 		 * but this would decrease preformance, so we change the | 
 | 411 | 		 * shift: | 
 | 412 | 		 */ | 
 | 413 | 		tmp = *(p++); | 
 | 414 | 		tmp |= __swab32(~0UL >> (32-offset)); | 
 | 415 | 		if(size < 32) | 
 | 416 | 			goto found_first; | 
 | 417 | 		if(~tmp) | 
 | 418 | 			goto found_middle; | 
 | 419 | 		size -= 32; | 
 | 420 | 		result += 32; | 
 | 421 | 	} | 
 | 422 | 	while(size & ~31UL) { | 
 | 423 | 		if(~(tmp = *(p++))) | 
 | 424 | 			goto found_middle; | 
 | 425 | 		result += 32; | 
 | 426 | 		size -= 32; | 
 | 427 | 	} | 
 | 428 | 	if(!size) | 
 | 429 | 		return result; | 
 | 430 | 	tmp = *p; | 
 | 431 |  | 
 | 432 | found_first: | 
 | 433 | 	/* tmp is little endian, so we would have to swab the shift, | 
 | 434 | 	 * see above. But then we have to swab tmp below for ffz, so | 
 | 435 | 	 * we might as well do this here. | 
 | 436 | 	 */ | 
 | 437 | 	return result + ffz(__swab32(tmp) | (~0UL << size)); | 
 | 438 | found_middle: | 
 | 439 | 	return result + ffz(__swab32(tmp)); | 
 | 440 | } | 
 | 441 | #endif | 
 | 442 |  | 
 | 443 | #define ext2_set_bit_atomic(lock, nr, addr)		\ | 
 | 444 | 	({						\ | 
 | 445 | 		int ret;				\ | 
 | 446 | 		spin_lock(lock);			\ | 
 | 447 | 		ret = ext2_set_bit((nr), (addr));	\ | 
 | 448 | 		spin_unlock(lock);			\ | 
 | 449 | 		ret;					\ | 
 | 450 | 	}) | 
 | 451 |  | 
 | 452 | #define ext2_clear_bit_atomic(lock, nr, addr)		\ | 
 | 453 | 	({						\ | 
 | 454 | 		int ret;				\ | 
 | 455 | 		spin_lock(lock);			\ | 
 | 456 | 		ret = ext2_clear_bit((nr), (addr));	\ | 
 | 457 | 		spin_unlock(lock);			\ | 
 | 458 | 		ret;					\ | 
 | 459 | 	}) | 
 | 460 |  | 
 | 461 | /* Bitmap functions for the minix filesystem.  */ | 
 | 462 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) | 
 | 463 | #define minix_set_bit(nr,addr) set_bit(nr,addr) | 
 | 464 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) | 
 | 465 | #define minix_test_bit(nr,addr) test_bit(nr,addr) | 
 | 466 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) | 
 | 467 |  | 
 | 468 | /* | 
 | 469 |  * fls: find last bit set. | 
 | 470 |  */ | 
 | 471 |  | 
 | 472 | #define fls(x) generic_fls(x) | 
 | 473 |  | 
 | 474 | #endif /* __KERNEL__ */ | 
 | 475 |  | 
 | 476 | #endif /* __ASM_SH_BITOPS_H */ |